1
|
Ní Leathlobhair M, Frangou A, Kinnersley B, Cornish AJ, Chubb D, Lakatos E, Arumugam P, Gruber AJ, Law P, Tapinos A, Jakobsdottir GM, Peneva I, Sahli A, Smyth EM, Ball RY, Sylva R, Benes K, Stark D, Young RJ, Lee ATJ, Wolverson V, Houlston RS, Sosinsky A, Protheroe A, Murray MJ, Wedge DC, Verrill C. Genomic landscape of adult testicular germ cell tumours in the 100,000 Genomes Project. Nat Commun 2024; 15:9247. [PMID: 39461959 PMCID: PMC11513037 DOI: 10.1038/s41467-024-53193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Testicular germ cell tumours (TGCT), which comprise seminoma and non-seminoma subtypes, are the most common cancers in young men. In this study, we present a comprehensive whole genome sequencing analysis of adult TGCTs. Leveraging samples from participants recruited via the UK National Health Service and data from the Genomics England 100,000 Genomes Project, our results provide an extended description of genomic elements underlying TGCT pathogenesis. This catalogue offers a comprehensive, high-resolution map of copy number alterations, structural variation, and key global genome features, including mutational signatures and analysis of extrachromosomal DNA amplification. This study establishes correlations between genomic alterations and histological diversification, revealing divergent evolutionary trajectories among TGCT subtypes. By reconstructing the chronological order of driver events, we identify a subgroup of adult TGCTs undergoing relatively late whole genome duplication. Additionally, we present evidence that human leukocyte antigen loss is a more prevalent mechanism of immune disruption in seminomas. Collectively, our findings provide valuable insights into the developmental and immune modulatory processes implicated in TGCT pathogenesis and progression.
Collapse
Affiliation(s)
- Máire Ní Leathlobhair
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.
| | - Anna Frangou
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- University College London Cancer Institute, 72 Huntley Street, London, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Eszter Lakatos
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | | | - Andreas J Gruber
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464, Konstanz, Germany
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Avraam Tapinos
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - G Maria Jakobsdottir
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Iliana Peneva
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Atef Sahli
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Evie M Smyth
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Richard Y Ball
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Rushan Sylva
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ksenija Benes
- Department of Pathology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Dan Stark
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Robin J Young
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Alexander T J Lee
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Andrew Protheroe
- Department of Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Matthew J Murray
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - David C Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Clare Verrill
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Ruis C, Weimann A, Tonkin-Hill G, Pandurangan AP, Matuszewska M, Murray GGR, Lévesque RC, Blundell TL, Floto RA, Parkhill J. Mutational spectra are associated with bacterial niche. Nat Commun 2023; 14:7091. [PMID: 37925514 PMCID: PMC10625568 DOI: 10.1038/s41467-023-42916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
As observed in cancers, individual mutagens and defects in DNA repair create distinctive mutational signatures that combine to form context-specific spectra within cells. We reasoned that similar processes must occur in bacterial lineages, potentially allowing decomposition analysis to detect both disruption of DNA repair processes and exposure to niche-specific mutagens. Here we reconstruct mutational spectra for 84 clades from 31 diverse bacterial species and find distinct mutational patterns. We extract signatures driven by specific DNA repair defects using hypermutator lineages, and further deconvolute the spectra into multiple signatures operating within different clades. We show that these signatures are explained by both bacterial phylogeny and replication niche. By comparing mutational spectra of clades from different environmental and biological locations, we identify niche-associated mutational signatures, and then employ these signatures to infer the predominant replication niches for several clades where this was previously obscure. Our results show that mutational spectra may be associated with sites of bacterial replication when mutagen exposures differ, and can be used in these cases to infer transmission routes for established and emergent human bacterial pathogens.
Collapse
Affiliation(s)
- Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Aaron Weimann
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gemma G R Murray
- Parasites and Microbes Programme, Wellcome Sanger Institute; Wellcome Genome Campus, Cambridge, UK
| | - Roger C Lévesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec City, Québec, Canada
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK.
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Rodríguez‐Real G, Domínguez‐Calvo A, Prados‐Carvajal R, Bayona‐Feliú A, Gomes‐Pereira S, Balestra FR, Huertas P. Centriolar subdistal appendages promote double-strand break repair through homologous recombination. EMBO Rep 2023; 24:e56724. [PMID: 37664992 PMCID: PMC10561181 DOI: 10.15252/embr.202256724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/18/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
The centrosome is a cytoplasmic organelle with roles in microtubule organization that has also been proposed to act as a hub for cellular signaling. Some centrosomal components are required for full activation of the DNA damage response. However, whether the centrosome regulates specific DNA repair pathways is not known. Here, we show that centrosome presence is required to fully activate recombination, specifically to completely license its initial step, the so-called DNA end resection. Furthermore, we identify a centriolar structure, the subdistal appendages, and a specific factor, CEP170, as the critical centrosomal component involved in the regulation of recombination and resection. Cells lacking centrosomes or depleted for CEP170 are, consequently, hypersensitive to DNA damaging agents. Moreover, low levels of CEP170 in multiple cancer types correlate with an increase of the mutation burden associated with specific mutational signatures and a better prognosis, suggesting that changes in CEP170 can act as a mutation driver but could also be targeted to improve current oncological treatments.
Collapse
Affiliation(s)
- Guillermo Rodríguez‐Real
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevillaSpain
| | - Andrés Domínguez‐Calvo
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevillaSpain
| | - Rosario Prados‐Carvajal
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevillaSpain
| | - Aleix Bayona‐Feliú
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Sonia Gomes‐Pereira
- Department of Cell Biology, Sciences IIIUniversity of GenevaGenevaSwitzerland
| | - Fernando R Balestra
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevillaSpain
| | - Pablo Huertas
- Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevillaSpain
| |
Collapse
|
4
|
Lee JE, Kim KT, Shin SJ, Cheong JH, Choi YY. Genomic and evolutionary characteristics of metastatic gastric cancer by routes. Br J Cancer 2023; 129:672-682. [PMID: 37422528 PMCID: PMC10421927 DOI: 10.1038/s41416-023-02338-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND In gastric cancer (GC) patients, metastatic progression through the lymphatic, hematogenous, peritoneal, and ovarian routes, is the ultimate cause of death. However, the genomic and evolutionary characteristics of metastatic GC have not been widely evaluated. METHODS Whole-exome sequencing data were analyzed for 99 primary and paired metastatic gastric cancers from 15 patients who underwent gastrectomy and metastasectomy. RESULTS Hematogenous metastatic tumors were associated with increased chromosomal instability and de novo gain/amplification in cancer driver genes, whereas peritoneal/ovarian metastasis was linked to sustained chromosomal stability and de novo somatic mutations in driver genes. The genomic distance of the hematogenous and peritoneal metastatic tumors was found to be closer to the primary tumors than lymph node (LN) metastasis, while ovarian metastasis was closer to LN and peritoneal metastasis than the primary tumor. Two migration patterns for metastatic GCs were identified; branched and diaspora. Both molecular subtypes of the metastatic tumors, rather than the primary tumor, and their migration patterns were related to patient survival. CONCLUSIONS Genomic characteristics of metastatic gastric cancer is distinctive by routes and associated with patients' prognosis along with genomic evolution pattenrs, indicating that both primary and metastatic gastric cancers require genomic evaluation.
Collapse
Affiliation(s)
- Jae Eun Lee
- Portrai Inc., Seoul, Korea
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea
| | - Ki Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry, Seoul National University, Seoul, South Korea
- Dental Research Institute and Dental Multi-omics Center, Seoul National University, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea.
| | - Yoon Young Choi
- Department of Surgery, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea.
| |
Collapse
|
5
|
Beichman AC, Robinson J, Lin M, Moreno-Estrada A, Nigenda-Morales S, Harris K. "Evolution of the mutation spectrum across a mammalian phylogeny". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543114. [PMID: 37398383 PMCID: PMC10312511 DOI: 10.1101/2023.05.31.543114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Little is known about how the spectrum and etiology of germline mutagenesis might vary among mammalian species. To shed light on this mystery, we quantify variation in mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k -mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clocklike mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these clocklike signatures to fit each species' 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the mutation spectrum's phylogenetic signal when fit to non-context-dependent mutation spectrum data in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.
Collapse
Affiliation(s)
| | - Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| | - Meixi Lin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity, Advanced Genomics Unit (UGA-LANGEBIO), CINVESTAV, Irapuato, Mexico
| | - Sergio Nigenda-Morales
- Department of Biological Sciences, California State University, San Marcos, San Marcos CA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle WA
| |
Collapse
|
6
|
Yaacov A, Rosenberg S, Simon I. Mutational signatures association with replication timing in normal cells reveals similarities and differences with matched cancer tissues. Sci Rep 2023; 13:7833. [PMID: 37188696 DOI: 10.1038/s41598-023-34631-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Mutational signatures' association with replication timing (RT) has been studied in cancer samples, but the RT distribution of somatic mutations in non-cancerous cells was only minimally explored. Here, we performed comprehensive analyses of mutational signatures in 2.9 million somatic mutations across multiple non-cancerous tissues, stratified by early and late RT regions. We found that many mutational processes are active mainly or solely in early RT, such as SBS16 in hepatocytes and SBS88 in the colon, or in late RT, such as SBS4 in lung and hepatocytes, and SBS18 across many tissues. The two ubiquitous signatures, SBS1 and SBS5, showed late and early bias, respectively, across multiple tissues and in mutations representing germ cells. We also performed a direct comparison with cancer samples in 4 matched tissue-cancer types. Unexpectedly, while for most signatures the RT bias was consistent in normal tissue and in cancer, we found that SBS1's late RT bias is lost in cancer.
Collapse
Affiliation(s)
- Adar Yaacov
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Rosenberg
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Kontogianni G, Voutetakis K, Piroti G, Kypreou K, Stefanaki I, Vlachavas EI, Pilalis E, Stratigos A, Chatziioannou A, Papadodima O. A Comprehensive Analysis of Cutaneous Melanoma Patients in Greece Based on Multi-Omic Data. Cancers (Basel) 2023; 15:cancers15030815. [PMID: 36765773 PMCID: PMC9913631 DOI: 10.3390/cancers15030815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma (CM) is the most aggressive type of skin cancer, and it is characterised by high mutational load and heterogeneity. In this study, we aimed to analyse the genomic and transcriptomic profile of primary melanomas from forty-six Formalin-Fixed, Paraffin-Embedded (FFPE) tissues from Greek patients. Molecular analysis for both germline and somatic variations was performed in genomic DNA from peripheral blood and melanoma samples, respectively, exploiting whole exome and targeted sequencing, and transcriptomic analysis. Detailed clinicopathological data were also included in our analyses and previously reported associations with specific mutations were recognised. Most analysed samples (43/46) were found to harbour at least one clinically actionable somatic variant. A subset of samples was profiled at the transcriptomic level, and it was shown that specific melanoma phenotypic states could be inferred from bulk RNA isolated from FFPE primary melanoma tissue. Integrative bioinformatics analyses, including variant prioritisation, differential gene expression analysis, and functional and gene set enrichment analysis by group and per sample, were conducted and molecular circuits that are implicated in melanoma cell programmes were highlighted. Integration of mutational and transcriptomic data in CM characterisation could shed light on genes and pathways that support the maintenance of phenotypic states encrypted into heterogeneous primary tumours.
Collapse
Affiliation(s)
- Georgia Kontogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Georgia Piroti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Katerina Kypreou
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Irene Stefanaki
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | | | | | - Alexander Stratigos
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Aristotelis Chatziioannou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- e-NIOS Applications Private Company, 17671 Kallithea, Greece
- Correspondence: (A.C.); (O.P.); Tel.: +30-210-727-3721 (A.C. & O.P.)
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (A.C.); (O.P.); Tel.: +30-210-727-3721 (A.C. & O.P.)
| |
Collapse
|
8
|
Johnson TA, Maekawa S, Fujita M, An J, Ju YS, Maejima K, Kanazashi Y, Jikuya R, Okawa Y, Sasagawa S, Yagi K, Okazaki Y, Kuroda N, Takata R, Obara W, Nakagawa H. Genomic features of renal cell carcinoma developed during end-stage renal disease and dialysis. Hum Mol Genet 2023; 32:290-303. [PMID: 35981075 DOI: 10.1093/hmg/ddac180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 01/18/2023] Open
Abstract
Patients with end-stage renal disease (ESRD) or receiving dialysis have a much higher risk for renal cell carcinoma (RCC), but carcinogenic mechanisms and genomic features remain little explored and undefined. This study's goal was to identify the genomic features of ESRD RCC and characterize them for associations with tumor histology and dialysis exposure. In this study, we obtained 33 RCCs, with various histological subtypes, that developed in ESRD patients receiving dialysis and performed whole-genome sequencing and transcriptome analyses. Driver events, copy-number alteration (CNA) analysis and mutational signature profiling were performed using an analysis pipeline that integrated data from germline and somatic SNVs, Indels and structural variants as well as CNAs, while transcriptome data were analyzed for differentially expressed genes and through gene set enrichment analysis. ESRD related clear cell RCCs' driver genes and mutations mirrored those in sporadic ccRCCs. Longer dialysis periods significantly correlated with a rare mutational signature SBS23, whose etiology is unknown, and increased mitochondrial copy number. All acquired cystic disease (ACD)-RCCs, which developed specifically in ESRD patients, showed chromosome 16q amplification. Gene expression analysis suggests similarity between certain ACD-RCCs and papillary RCCs and in TCGA papillary RCCs with chromosome 16 gain identified enrichment for genes related to DNA repair, as well as pathways related to reactive oxygen species, oxidative phosphorylation and targets of Myc. This analysis suggests that ESRD or dialysis could induce types of cellular stress that impact some specific types of genomic damage leading to oncogenesis.
Collapse
Affiliation(s)
- Todd A Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shigekatsu Maekawa
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, 028-3694, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Jisong An
- Graduate School of Medical Science and Engineering (GSMSE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young-Seok Ju
- Graduate School of Medical Science and Engineering (GSMSE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yuki Kanazashi
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ryosuke Jikuya
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Okawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Ken Yagi
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Naoto Kuroda
- Department of Diagnostic Pathology, Kochi Red Cross Hospital, Kochi 780-8562, Japan
| | - Ryo Takata
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, 028-3694, Japan
| | - Wataru Obara
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Iwate, 028-3694, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| |
Collapse
|
9
|
Argouarch AR, Schultz N, Yang AC, Jang Y, Garcia K, Cosme CG, Corrales CI, Nana AL, Karydas AM, Spina S, Grinberg LT, Miller B, Wyss-Coray T, Abyzov A, Goodarzi H, Seeley WW, Kao AW. Postmortem Human Dura Mater Cells Exhibit Phenotypic, Transcriptomic and Genetic Abnormalities that Impact their Use for Disease Modeling. Stem Cell Rev Rep 2022; 18:3050-3065. [PMID: 35809166 PMCID: PMC9622518 DOI: 10.1007/s12015-022-10416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Patient-derived cells hold great promise for precision medicine approaches in human health. Human dermal fibroblasts have been a major source of cells for reprogramming and differentiating into specific cell types for disease modeling. Postmortem human dura mater has been suggested as a primary source of fibroblasts for in vitro modeling of neurodegenerative diseases. Although fibroblast-like cells from human and mouse dura mater have been previously described, their utility for reprogramming and direct differentiation protocols has not been fully established. In this study, cells derived from postmortem dura mater are directly compared to those from dermal biopsies of living subjects. In two instances, we have isolated and compared dermal and dural cell lines from the same subject. Notably, striking differences were observed between cells of dermal and dural origin. Compared to dermal fibroblasts, postmortem dura mater-derived cells demonstrated different morphology, slower growth rates, and a higher rate of karyotype abnormality. Dura mater-derived cells also failed to express fibroblast protein markers. When dermal fibroblasts and dura mater-derived cells from the same subject were compared, they exhibited highly divergent gene expression profiles that suggest dura mater cells originated from a mixed mural lineage. Given their postmortem origin, somatic mutation signatures of dura mater-derived cells were assessed and suggest defective DNA damage repair. This study argues for rigorous karyotyping of postmortem derived cell lines and highlights limitations of postmortem human dura mater-derived cells for modeling normal biology or disease-associated pathobiology.
Collapse
Affiliation(s)
- Andrea R. Argouarch
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Nina Schultz
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Andrew C. Yang
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94304 USA
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Celica G. Cosme
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Christian I. Corrales
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Alissa L. Nana
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Anna M. Karydas
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Salvatore Spina
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Bruce Miller
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94304 USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158 USA
| | - William W. Seeley
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Pathology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Aimee W. Kao
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
10
|
Jiménez‐Santos MJ, García‐Martín S, Fustero‐Torre C, Di Domenico T, Gómez‐López G, Al‐Shahrour F. Bioinformatics roadmap for therapy selection in cancer genomics. Mol Oncol 2022; 16:3881-3908. [PMID: 35811332 PMCID: PMC9627786 DOI: 10.1002/1878-0261.13286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour heterogeneity is one of the main characteristics of cancer and can be categorised into inter- or intratumour heterogeneity. This heterogeneity has been revealed as one of the key causes of treatment failure and relapse. Precision oncology is an emerging field that seeks to design tailored treatments for each cancer patient according to epidemiological, clinical and omics data. This discipline relies on bioinformatics tools designed to compute scores to prioritise available drugs, with the aim of helping clinicians in treatment selection. In this review, we describe the current approaches for therapy selection depending on which type of tumour heterogeneity is being targeted and the available next-generation sequencing data. We cover intertumour heterogeneity studies and individual treatment selection using genomics variants, expression data or multi-omics strategies. We also describe intratumour dissection through clonal inference and single-cell transcriptomics, in each case providing bioinformatics tools for tailored treatment selection. Finally, we discuss how these therapy selection workflows could be integrated into the clinical practice.
Collapse
Affiliation(s)
| | | | - Coral Fustero‐Torre
- Bioinformatics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Tomás Di Domenico
- Bioinformatics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Gonzalo Gómez‐López
- Bioinformatics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Fátima Al‐Shahrour
- Bioinformatics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
11
|
Burgess EF, Sanders JA, Livasy C, Symanowski J, Gatalica Z, Steuerwald NM, Arguello D, Brouwer CR, Korn WM, Grigg CM, Zhu J, Matulay JT, Clark PE, Heath EI, Raghavan D. Identification of potential biomarkers and novel therapeutic targets through genomic analysis of small cell bladder carcinoma and associated clinical outcomes. Urol Oncol 2022; 40:383.e1-383.e10. [DOI: 10.1016/j.urolonc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/09/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022]
|
12
|
Wang M, Banik I, Shain AH, Yeh I, Bastian BC. Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Med 2022; 14:65. [PMID: 35706047 PMCID: PMC9202124 DOI: 10.1186/s13073-022-01068-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acral and mucosal melanomas are aggressive subtypes of melanoma, which have a significantly lower burden of somatic mutations than cutaneous melanomas, but more frequent copy number variations, focused gene amplifications, and structural alterations. The landscapes of their genomic alterations remain to be fully characterized. METHODS We compiled sequencing data of 240 human acral and mucosal melanoma samples from 11 previously published studies and applied a uniform pipeline to call tumor cell content, ploidy, somatic and germline mutations, as well as CNVs, LOH, and SVs. We identified genes that are significantly mutated or recurrently affected by CNVs and implicated in oncogenesis. We further examined the difference in the frequency of recurrent pathogenic alterations between the two melanoma subtypes, correlation between pathogenic alterations, and their association with clinical features. RESULTS We nominated PTPRJ, mutated and homozygously deleted in 3.8% (9/240) and 0.8% (2/240) of samples, respectively, as a probable tumor suppressor gene, and FER and SKP2, amplified in 3.8% and 11.7% of samples, respectively, as probable oncogenes. We further identified a long tail of infrequent pathogenic alterations, involving genes such as CIC and LZTR1. Pathogenic germline mutations were observed on MITF, PTEN, ATM, and PRKN. We found BRAF V600E mutations in acral melanomas with fewer structural variations, suggesting that they are distinct and related to cutaneous melanomas. Amplifications of PAK1 and GAB2 were more commonly observed in acral melanomas, whereas SF3B1 R625 codon mutations were unique to mucosal melanomas (12.9%). Amplifications at 11q13-14 were frequently accompanied by fusion to a region on chromosome 6q12, revealing a recurrent novel structural rearrangement whose role remains to be elucidated. CONCLUSIONS Our meta-analysis expands the catalog of driver mutations in acral and mucosal melanomas, sheds new light on their pathogenesis and broadens the catalog of therapeutic targets for these difficult-to-treat cancers.
Collapse
Affiliation(s)
- Meng Wang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ishani Banik
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - A Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Iwei Yeh
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| | - Boris C Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Luthra A, Mastrogiacomo B, Smith SA, Chakravarty D, Schultz N, Sanchez-Vega F. Computational methods and translational applications for targeted next-generation sequencing platforms. Genes Chromosomes Cancer 2022; 61:322-331. [PMID: 35066956 PMCID: PMC10129038 DOI: 10.1002/gcc.23023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
During the past decade, next-generation sequencing (NGS) technologies have become widely adopted in cancer research and clinical care. Common applications within the clinical setting include patient stratification into relevant molecular subtypes, identification of biomarkers of response and resistance to targeted and systemic therapies, assessment of heritable cancer risk based on known pathogenic variants, and longitudinal monitoring of treatment response. The need for efficient downstream processing and reliable interpretation of sequencing data has led to the development of novel algorithms and computational pipelines, as well as structured knowledge bases that link genomic alterations to currently available drugs and ongoing clinical trials. Cancer centers around the world use different types of targeted solid-tissue and blood based NGS assays to analyze the genomic and transcriptomic profile of patients as part of their routine clinical care. Recently, cross-institutional collaborations have led to the creation of large pooled datasets that can offer valuable insights into the genomics of rare cancers.
Collapse
Affiliation(s)
- Anisha Luthra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brooke Mastrogiacomo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shaleigh A Smith
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Francisco Sanchez-Vega
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
14
|
Steele CD, Abbasi A, Islam SMA, Bowes AL, Khandekar A, Haase K, Hames-Fathi S, Ajayi D, Verfaillie A, Dhami P, McLatchie A, Lechner M, Light N, Shlien A, Malkin D, Feber A, Proszek P, Lesluyes T, Mertens F, Flanagan AM, Tarabichi M, Van Loo P, Alexandrov LB, Pillay N. Signatures of copy number alterations in human cancer. Nature 2022; 606:984-991. [PMID: 35705804 PMCID: PMC9242861 DOI: 10.1038/s41586-022-04738-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage-fusion-bridge cycles, among others, which may lead to chromosomal instability and aneuploidy1,2. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance3-5. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlas6 revealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2. In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations.
Collapse
Affiliation(s)
- Christopher D Steele
- Research Department of Pathology, Cancer Institute, University College London, London, UK
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - S M Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Amy L Bowes
- Research Department of Pathology, Cancer Institute, University College London, London, UK
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Kerstin Haase
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Shadi Hames-Fathi
- Research Department of Pathology, Cancer Institute, University College London, London, UK
| | - Dolapo Ajayi
- Research Department of Pathology, Cancer Institute, University College London, London, UK
| | | | - Pawan Dhami
- CRUK-UCL Cancer Institute Translational Technology Platform (Genomics), London, UK
| | - Alex McLatchie
- CRUK-UCL Cancer Institute Translational Technology Platform (Genomics), London, UK
| | - Matt Lechner
- Research Department of Oncology, UCL Cancer Institute, London, UK
| | - Nicholas Light
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David Malkin
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Feber
- Translational Epigenetics, Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Clinical Genomics, Translational Research Laboratory, Royal Marsden NHS Trust, London, UK
| | - Paula Proszek
- Translational Epigenetics, Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Clinical Genomics, Translational Research Laboratory, Royal Marsden NHS Trust, London, UK
| | - Tom Lesluyes
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Fredrik Mertens
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Lund, Sweden
| | - Adrienne M Flanagan
- Research Department of Pathology, Cancer Institute, University College London, London, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Maxime Tarabichi
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA.
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London, UK.
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK.
| |
Collapse
|
15
|
Levatić J, Salvadores M, Fuster-Tormo F, Supek F. Mutational signatures are markers of drug sensitivity of cancer cells. Nat Commun 2022; 13:2926. [PMID: 35614096 PMCID: PMC9132939 DOI: 10.1038/s41467-022-30582-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Genomic analyses have revealed mutational footprints associated with DNA maintenance gone awry, or with mutagen exposures. Because cancer therapeutics often target DNA synthesis or repair, we asked if mutational signatures make useful markers of drug sensitivity. We detect mutational signatures in cancer cell line exomes (where matched healthy tissues are not available) by adjusting for the confounding germline mutation spectra across ancestries. We identify robust associations between various mutational signatures and drug activity across cancer cell lines; these are as numerous as associations with established genetic markers such as driver gene alterations. Signatures of prior exposures to DNA damaging agents - including chemotherapy - tend to associate with drug resistance, while signatures of deficiencies in DNA repair tend to predict sensitivity towards particular therapeutics. Replication analyses across independent drug and CRISPR genetic screening data sets reveal hundreds of robust associations, which are provided as a resource for drug repurposing guided by mutational signature markers.
Collapse
Affiliation(s)
- Jurica Levatić
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marina Salvadores
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Francisco Fuster-Tormo
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
- MDS Group, Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
16
|
Sasani TA, Ashbrook DG, Beichman AC, Lu L, Palmer AA, Williams RW, Pritchard JK, Harris K. A natural mutator allele shapes mutation spectrum variation in mice. Nature 2022; 605:497-502. [PMID: 35545679 PMCID: PMC9272728 DOI: 10.1038/s41586-022-04701-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
Although germline mutation rates and spectra can vary within and between species, common genetic modifiers of the mutation rate have not been identified in nature1. Here we searched for loci that influence germline mutagenesis using a uniquely powerful resource: a panel of recombinant inbred mouse lines known as the BXD, descended from the laboratory strains C57BL/6J (B haplotype) and DBA/2J (D haplotype). Each BXD lineage has been maintained by brother-sister mating in the near absence of natural selection, accumulating de novo mutations for up to 50 years on a known genetic background that is a unique linear mosaic of B and D haplotypes2. We show that mice inheriting D haplotypes at a quantitative trait locus on chromosome 4 accumulate C>A germline mutations at a 50% higher rate than those inheriting B haplotypes, primarily owing to the activity of a C>A-dominated mutational signature known as SBS18. The B and D quantitative trait locus haplotypes encode different alleles of Mutyh, a DNA repair gene that underlies the heritable cancer predisposition syndrome that causes colorectal tumors with a high SBS18 mutation load3,4. Both B and D Mutyh alleles are present in wild populations of Mus musculus domesticus, providing evidence that common genetic variation modulates germline mutagenesis in a model mammalian species.
Collapse
Affiliation(s)
- Thomas A Sasani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Computational Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
17
|
Degasperi A, Zou X, Amarante TD, Martinez-Martinez A, Koh GCC, Dias JML, Heskin L, Chmelova L, Rinaldi G, Wang VYW, Nanda AS, Bernstein A, Momen SE, Young J, Perez-Gil D, Memari Y, Badja C, Shooter S, Czarnecki J, Brown MA, Davies HR, Nik-Zainal S. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 2022; 376:science.abl9283. [PMID: 35949260 PMCID: PMC7613262 DOI: 10.1126/science.abl9283] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Whole-genome sequencing (WGS) permits comprehensive cancer genome analyses, revealing mutational signatures, imprints of DNA damage and repair processes that have arisen in each patient's cancer. We performed mutational signature analyses on 12,222 WGS tumor-normal matched pairs, from patients recruited via the UK National Health Service. We contrasted our results to two independent cancer WGS datasets, the International Cancer Genome Consortium (ICGC) and Hartwig Foundation, involving 18,640 WGS cancers in total. Our analyses add 40 single and 18 double substitution signatures to the current mutational signature tally. Critically, we show for each organ, that cancers have a limited number of 'common' signatures and a long tail of 'rare' signatures. We provide a practical solution for utilizing this concept of common versus rare signatures in future analyses.
Collapse
Affiliation(s)
- Andrea Degasperi
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Xueqing Zou
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Tauanne Dias Amarante
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Andrea Martinez-Martinez
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Gene Ching Chiek Koh
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - João M. L. Dias
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Laura Heskin
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Lucia Chmelova
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Giuseppe Rinaldi
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Valerie Ya Wen Wang
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Arjun S. Nanda
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Aaron Bernstein
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Sophie E. Momen
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jamie Young
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Daniel Perez-Gil
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Yasin Memari
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Cherif Badja
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Scott Shooter
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jan Czarnecki
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Matthew A. Brown
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, EC1M 6BQ, UK
- Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK
| | - Helen R. Davies
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge CB2 9NB, UK
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| |
Collapse
|
18
|
Mas-Ponte D, McCullough M, Supek F. Spectrum of DNA mismatch repair failures viewed through the lens of cancer genomics and implications for therapy. Clin Sci (Lond) 2022; 136:383-404. [PMID: 35274136 PMCID: PMC8919091 DOI: 10.1042/cs20210682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Genome sequencing can be used to detect DNA repair failures in tumors and learn about underlying mechanisms. Here, we synthesize findings from genomic studies that examined deficiencies of the DNA mismatch repair (MMR) pathway. The impairment of MMR results in genome-wide hypermutation and in the 'microsatellite instability' (MSI) phenotype-occurrence of indel mutations at short tandem repeat (microsatellite) loci. The MSI status of tumors was traditionally assessed by molecular testing of a selected set of MS loci or by measuring MMR protein expression levels. Today, genomic data can provide a more complete picture of the consequences on genomic instability. Multiple computational studies examined somatic mutation distributions that result from failed DNA repair pathways in tumors. These include analyzing the commonly studied trinucleotide mutational spectra of single-nucleotide variants (SNVs), as well as of other features such as indels, structural variants, mutation clusters and regional mutation rate redistribution. The identified mutation patterns can be used to rigorously measure prevalence of MMR failures across cancer types, and potentially to subcategorize the MMR deficiencies. Diverse data sources, genomic and pre-genomic, from human and from experimental models, suggest there are different ways in which MMR can fail, and/or that the cell-type or genetic background may result in different types of MMR mutational patterns. The spectrum of MMR failures may direct cancer evolution, generating particular sets of driver mutations. Moreover, MMR affects outcomes of therapy by DNA damaging drugs, antimetabolites, nonsense-mediated mRNA decay (NMD) inhibitors, and immunotherapy by promoting either resistance or sensitivity, depending on the type of therapy.
Collapse
Affiliation(s)
- David Mas-Ponte
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Marcel McCullough
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
19
|
Salazar R, Arbeithuber B, Ivankovic M, Heinzl M, Moura S, Hartl I, Mair T, Lahnsteiner A, Ebner T, Shebl O, Pröll J, Tiemann-Boege I. Discovery of an unusually high number of de novo mutations in sperm of older men using duplex sequencing. Genome Res 2022; 32:499-511. [PMID: 35210354 PMCID: PMC8896467 DOI: 10.1101/gr.275695.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
De novo mutations (DNMs) are important players in heritable diseases and evolution. Of particular interest are highly recurrent DNMs associated with congenital disorders that have been described as selfish mutations expanding in the male germline, thus becoming more frequent with age. Here, we have adapted duplex sequencing (DS), an ultradeep sequencing method that renders sequence information on both DNA strands; thus, one mutation can be reliably called in millions of sequenced bases. With DS, we examined ∼4.5 kb of the FGFR3 coding region in sperm DNA from older and younger donors. We identified sites with variant allele frequencies (VAFs) of 10-4 to 10-5, with an overall mutation frequency of the region of ∼6 × 10-7 Some of the substitutions are recurrent and are found at a higher VAF in older donors than in younger ones or are found exclusively in older donors. Also, older donors harbor more mutations associated with congenital disorders. Other mutations are present in both age groups, suggesting that these might result from a different mechanism (e.g., postzygotic mosaicism). We also observe that independent of age, the frequency and deleteriousness of the mutational spectra are more similar to COSMIC than to gnomAD variants. Our approach is an important strategy to identify mutations that could be associated with a gain of function of the receptor tyrosine kinase activity, with unexplored consequences in a society with delayed fatherhood.
Collapse
Affiliation(s)
- Renato Salazar
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | | | - Maja Ivankovic
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Monika Heinzl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Sofia Moura
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Ingrid Hartl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | - Theresa Mair
- Institute of Biophysics, Johannes Kepler University, Linz, Austria 4020
| | | | - Thomas Ebner
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital, Linz, Austria 4020
| | - Omar Shebl
- Department of Gynecology, Obstetrics and Gynecological Endocrinology, Kepler University Hospital, Linz, Austria 4020
| | - Johannes Pröll
- Center for Medical Research, Faculty of Medicine, Johannes Kepler University, Linz, Austria 4020
| | | |
Collapse
|
20
|
Bergstrom EN, Luebeck J, Petljak M, Khandekar A, Barnes M, Zhang T, Steele CD, Pillay N, Landi MT, Bafna V, Mischel PS, Harris RS, Alexandrov LB. Mapping clustered mutations in cancer reveals APOBEC3 mutagenesis of ecDNA. Nature 2022; 602:510-517. [PMID: 35140399 PMCID: PMC8850194 DOI: 10.1038/s41586-022-04398-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022]
Abstract
Clustered somatic mutations are common in cancer genomes and previous analyses reveal several types of clustered single-base substitutions, which include doublet- and multi-base substitutions1-5, diffuse hypermutation termed omikli6, and longer strand-coordinated events termed kataegis3,7-9. Here we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of cancer10. Clustered mutations were highly enriched in driver genes and associated with differential gene expression and changes in overall survival. Several distinct mutational processes gave rise to clustered indels, including signatures that were enriched in tobacco smokers and homologous-recombination-deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, whereas most multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3 activity6, accounted for a large proportion of clustered substitutions; however, only 16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple mutational processes, and 76.1% of all kataegic events exhibited mutational patterns that are associated with the activation-induced deaminase (AID) and APOBEC3 family of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA (ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kyklonic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fuelling the evolution of ecDNA.
Collapse
Affiliation(s)
- Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Mia Petljak
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher D Steele
- Research Department of Pathology, Cancer Institute, University College London, London, UK
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Nachmanson D, Officer A, Mori H, Gordon J, Evans MF, Steward J, Yao H, O'Keefe T, Hasteh F, Stein GS, Jepsen K, Weaver DL, Hirst GL, Sprague BL, Esserman LJ, Borowsky AD, Stein JL, Harismendy O. The breast pre-cancer atlas illustrates the molecular and micro-environmental diversity of ductal carcinoma in situ. NPJ Breast Cancer 2022; 8:6. [PMID: 35027560 PMCID: PMC8758681 DOI: 10.1038/s41523-021-00365-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Microenvironmental and molecular factors mediating the progression of Breast Ductal Carcinoma In Situ (DCIS) are not well understood, impeding the development of prevention strategies and the safe testing of treatment de-escalation. We addressed methodological barriers and characterized the mutational, transcriptional, histological, and microenvironmental landscape across 85 multiple microdissected regions from 39 cases. Most somatic alterations, including whole-genome duplications, were clonal, but genetic divergence increased with physical distance. Phenotypic and subtype heterogeneity was frequently associated with underlying genetic heterogeneity and regions with low-risk features preceded those with high-risk features according to the inferred phylogeny. B- and T-lymphocytes spatial analysis identified three immune states, including an epithelial excluded state located preferentially at DCIS regions, and characterized by histological and molecular features of immune escape, independently from molecular subtypes. Such breast pre-cancer atlas with uniquely integrated observations will help scope future expansion studies and build finer models of outcomes and progression risk.
Collapse
Affiliation(s)
- Daniela Nachmanson
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Adam Officer
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, School of Medicine, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Jonathan Gordon
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Mark F Evans
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Joseph Steward
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA
| | - Huazhen Yao
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Thomas O'Keefe
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Farnaz Hasteh
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Gary S Stein
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Donald L Weaver
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Gillian L Hirst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Brian L Sprague
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Surgery, University of Vermont, Burlington, VT, 05405, USA
| | - Laura J Esserman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, School of Medicine, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Janet L Stein
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Olivier Harismendy
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA.
| |
Collapse
|
22
|
Wu Y, Chua EHZ, Ng AWT, Boot A, Rozen SG. Accuracy of mutational signature software on correlated signatures. Sci Rep 2022; 12:390. [PMID: 35013428 PMCID: PMC8748538 DOI: 10.1038/s41598-021-04207-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
Mutational signatures are characteristic patterns of mutations generated by exogenous mutagens or by endogenous mutational processes. Mutational signatures are important for research into DNA damage and repair, aging, cancer biology, genetic toxicology, and epidemiology. Unsupervised learning can infer mutational signatures from the somatic mutations in large numbers of tumors, and separating correlated signatures is a notable challenge for this task. To investigate which methods can best meet this challenge, we assessed 18 computational methods for inferring mutational signatures on 20 synthetic data sets that incorporated varying degrees of correlated activity of two common mutational signatures. Performance varied widely, and four methods noticeably outperformed the others: hdp (based on hierarchical Dirichlet processes), SigProExtractor (based on multiple non-negative matrix factorizations over resampled data), TCSM (based on an approach used in document topic analysis), and mutSpec.NMF (also based on non-negative matrix factorization). The results underscored the complexities of mutational signature extraction, including the importance and difficulty of determining the correct number of signatures and the importance of hyperparameters. Our findings indicate directions for improvement of the software and show a need for care when interpreting results from any of these methods, including the need for assessing sensitivity of the results to input parameters.
Collapse
Affiliation(s)
- Yang Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Ellora Hui Zhen Chua
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Alvin Wei Tian Ng
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Arnoud Boot
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Steven G Rozen
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
23
|
Senkin S. MSA: reproducible mutational signature attribution with confidence based on simulations. BMC Bioinformatics 2021; 22:540. [PMID: 34736398 PMCID: PMC8567580 DOI: 10.1186/s12859-021-04450-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mutational signatures proved to be a useful tool for identifying patterns of mutations in genomes, often providing valuable insights about mutagenic processes or normal DNA damage. De novo extraction of signatures is commonly performed using Non-Negative Matrix Factorisation methods, however, accurate attribution of these signatures to individual samples is a distinct problem requiring uncertainty estimation, particularly in noisy scenarios or when the acting signatures have similar shapes. Whilst many packages for signature attribution exist, a few provide accuracy measures, and most are not easily reproducible nor scalable in high-performance computing environments. RESULTS We present Mutational Signature Attribution (MSA), a reproducible pipeline designed to assign signatures of different mutation types on a single-sample basis, using Non-Negative Least Squares method with optimisation based on configurable simulations. Parametric bootstrap is proposed as a way to measure statistical uncertainties of signature attribution. Supported mutation types include single and doublet base substitutions, indels and structural variants. Results are validated using simulations with reference COSMIC signatures, as well as randomly generated signatures. CONCLUSIONS MSA is a tool for optimised mutational signature attribution based on simulations, providing confidence intervals using parametric bootstrap. It comprises a set of Python scripts unified in a single Nextflow pipeline with containerisation for cross-platform reproducibility and scalability in high-performance computing environments. The tool is publicly available from https://gitlab.com/s.senkin/MSA .
Collapse
Affiliation(s)
- Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| |
Collapse
|
24
|
Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, Cortez Cardoso Penha R, Fitzgerald S, Bergstrom EN, Atkins J, He Y, Khandekar A, Smith-Byrne K, Carreira C, Gaborieau V, Latimer C, Thomas E, Abnizova I, Bucciarelli PE, Jones D, Teague JW, Abedi-Ardekani B, Serra S, Scoazec JY, Saffar H, Azmoudeh-Ardalan F, Sotoudeh M, Nikmanesh A, Poustchi H, Niavarani A, Gharavi S, Eden M, Richman P, Campos LS, Fitzgerald RC, Ribeiro LF, Soares-Lima SC, Dzamalala C, Mmbaga BT, Shibata T, Menya D, Goldstein AM, Hu N, Malekzadeh R, Fazel A, McCormack V, McKay J, Perdomo S, Scelo G, Chanudet E, Humphreys L, Alexandrov LB, Brennan P, Stratton MR. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet 2021; 53:1553-1563. [PMID: 34663923 DOI: 10.1038/s41588-021-00928-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/28/2021] [Indexed: 12/28/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.
Collapse
Affiliation(s)
- Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - S M Ashiqul Islam
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Dariush Nasrollahzadeh
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | | | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Erik N Bergstrom
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Joshua Atkins
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Yudou He
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Azhar Khandekar
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Valerie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Emily Thomas
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Irina Abnizova
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Pauline E Bucciarelli
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Jean-Yves Scoazec
- Department Laboratory Medicine and Pathology, Gustave Roussy, Paris, France
| | - Hiva Saffar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Azmoudeh-Ardalan
- Liver Transplantation Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Arash Nikmanesh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Samad Gharavi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Michael Eden
- Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Paul Richman
- Histopathology Department, Hemel Hempstead General Hospital, Hemel Hempstead, UK
| | - Lia S Campos
- West Suffolk NHS Foundation Trust, Bury St Edmunds, UK
| | | | | | | | | | - Blandina Theophil Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre & Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Centre Research Institute, Tokyo, Japan
| | | | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Nan Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Abdolreza Fazel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Valerie McCormack
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ghislaine Scelo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Estelle Chanudet
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ludmil B Alexandrov
- Moores Cancer Centre, UC San Diego Health, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, La Jolla, CA, USA
- Department of Bioengineering, University of California, La Jolla, CA, USA
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
25
|
Soares de Lima Y, Arnau-Collell C, Díaz-Gay M, Bonjoch L, Franch-Expósito S, Muñoz J, Moreira L, Ocaña T, Cuatrecasas M, Herrera-Pariente C, Carballal S, Moreno L, Díaz de Bustamante A, Castells A, Bujanda L, Cubiella J, Rodríguez-Alcalde D, Balaguer F, Castellví-Bel S. Germline and Somatic Whole-Exome Sequencing Identifies New Candidate Genes Involved in Familial Predisposition to Serrated Polyposis Syndrome. Cancers (Basel) 2021; 13:929. [PMID: 33672345 PMCID: PMC7927050 DOI: 10.3390/cancers13040929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The serrated polyposis syndrome (SPS) is the most common and yet underdiagnosed colorectal polyposis syndrome. It is characterized by multiple and/or large colonic serrated polyps and a higher associated risk for colorectal cancer (CRC). The main objective of this study was to identify new candidate genes involved in the germline predisposition to SPS/CRC. Thirty-nine SPS patients from 16 families (≥2 patients per family) were recruited without alterations in well-known hereditary CRC genes, and germline and somatic whole-exome sequencing were performed. Germline rare variants with plausible pathogenicity, located in genes involved in cancer development, senescence and epigenetic regulation were selected. Somatic mutational profiling and signature analysis was pursued in one sample per family, when possible. After data filtering, ANXA10, ASXL1, CFTR, DOT1L, HIC1, INO80, KLF3, MCM3AP, MCM8, PDLIM2, POLD1, TP53BP1, WNK2 and WRN were highlighted as the more promising candidate genes for SPS germline predisposition with potentially pathogenic variants shared within families. Somatic analysis characterized mutational profiles in advanced serrated polyps/tumors, revealing a high proportion of hypermutated samples, with a prevalence of clock-like mutational signatures in most samples and the presence of DNA mismatch repair-defective signatures in some cases. In conclusion, we identified new candidate genes to be involved in familial SPS. Further functional studies and replication in additional cohorts are required to confirm the selected candidates.
Collapse
Affiliation(s)
- Yasmin Soares de Lima
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Coral Arnau-Collell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Marcos Díaz-Gay
- Moores Cancer Center, Department of Cellular and Molecular Medicine, Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Laia Bonjoch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sebastià Franch-Expósito
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Jenifer Muñoz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Leticia Moreira
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Teresa Ocaña
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Miriam Cuatrecasas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Pathology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Tumor Bank-Biobank, Hospital Clínic, 08036 Barcelona, Spain;
| | - Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Lorena Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | | | - Antoni Castells
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Luis Bujanda
- Gastroenterology Department, Hospital Donostia-Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Basque Country University (UPV/EHU), 20014 San Sebastián, Spain;
| | - Joaquín Cubiella
- Gastroenterology Department, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitaria Galicia Sur, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 32005 Ourense, Spain;
| | | | - Francesc Balaguer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| | - Sergi Castellví-Bel
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain; (Y.S.d.L.); (C.A.-C.); (L.B.); (S.F.-E.); (J.M.); (L.M.); (T.O.); (C.H.-P.); (S.C.); (L.M.); (A.C.); (F.B.)
| |
Collapse
|