1
|
Toubasi AA, Al‐Sayegh TN, Obaid YY, Al‐Harasis SM, AlRyalat SAS. Efficacy and safety of COVID-19 vaccines: A network meta-analysis. J Evid Based Med 2022; 15:245-262. [PMID: 36000160 PMCID: PMC9538745 DOI: 10.1111/jebm.12492] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Several vaccines showed a good safety profile and significant efficacy against COVID-19. Moreover, in the absence of direct head to head comparison between COVID-19 vaccines, a network meta-analysis that indirectly compares between them is needed. METHODS Databases PubMed, CENTRAL, medRxiv, and clinicaltrials.gov were searched. Studies were included if they were placebo-controlled clinical trials and reported the safety profile and/or effectiveness of COVID-19 vaccines. The quality of the included studies was assessed using the Revised Cochrane risk-of-bias tool for randomized trials and the Revised Cochrane risk-of-bias tool for nonrandomized trials. RESULTS Forty-nine clinical trials that included 421,173 participants and assessed 28 vaccines were included in this network meta-analysis. The network meta-analysis showed that Pfizer is the most effective in preventing COVID-19 infection whereas the Sputnik Vaccine was the most effective in preventing severe COVID-19 infection. In terms of the local and systemic side, the Sinopharm and V-01 vaccines were the safest. CONCLUSION We found that almost all of the vaccines included in this study crossed the threshold of 50% efficacy. However, some of them did not reach the previously mentioned threshold against the B.1.351 variant while the remainder have not yet investigated vaccine efficacy against this variant. Since each vaccine has its own strong and weak points, we strongly advocate continued vaccination efforts in individualized manner that recommend the best vaccine for each group in the community which is abundantly required to save lives and to avert the emergence of future variants.
Collapse
|
2
|
Li C, Guo Y, Fang Z, Zhang H, Zhang Y, Chen K. Analysis of the Protective Efficacy of Approved COVID-19 Vaccines Against Various Mutants. Front Immunol 2022; 13:804945. [PMID: 35572594 PMCID: PMC9095899 DOI: 10.3389/fimmu.2022.804945] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The outbreak of COVID-19 (caused by SARS-CoV-2) has posed a significant threat to global public health security because of its high pathogenicity and infectivity. To date, the pathogenic mechanism of this novel coronavirus (SARS-CoV-2) is still unclear, and there is no effective treatment. As one of the most effective strategies to prevent viral infection, vaccines have become a research hotspot. Based on the current understanding of SARS-CoV-2, the research and development of its vaccines cover almost all forms of current vaccine research, including inactivated vaccines, recombinant protein vaccines, viral vector vaccines, and nucleic acid vaccines. Moreover, with the spread of the new mutant virus, it is necessary to evaluate the protection rate of previous administered vaccines. This article reviews the candidate targets, vaccine types, research and development status, progress of SARS-CoV-2 vaccines, and the effectiveness of neutralizing antibodies against SARS-CoV-2 mutants (B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529) induced by these vaccines, to provide a reference for follow-up research and prevention.
Collapse
Affiliation(s)
- Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yikai Guo
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Haiyan Zhang
- Zhejiang Shuren College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanjun Zhang
- Department of Virus Inspection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
3
|
Pack SM, Peters PJ. SARS-CoV-2-Specific Vaccine Candidates; the Contribution of Structural Vaccinology. Vaccines (Basel) 2022; 10:236. [PMID: 35214693 PMCID: PMC8877865 DOI: 10.3390/vaccines10020236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 vaccine production has taken us by storm. We aim to fill in the history of concepts and the work of pioneers and provide a framework of strategies employing structural vaccinology. Cryo-electron microscopy became crucial in providing three-dimensional (3D) structures and creating candidates eliciting T and B cell-mediated immunity. It also determined structural changes in the emerging mutants in order to design new constructs that can be easily, quickly and safely added to the vaccines. The full-length spike (S) protein, the S1 subunit and its receptor binding domain (RBD) of the virus are the best candidates. The vaccine development to cease this COVID-19 pandemic sets a milestone for the pan-coronavirus vaccine's designing and manufacturing. By employing structural vaccinology, we propose that the mRNA and the protein sequences of the currently approved vaccines should be modified rapidly to keep up with the more infectious new variants.
Collapse
Affiliation(s)
| | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
4
|
Yap C, Ali A, Prabhakar A, Prabhakar A, Pal A, Lim YY, Kakodkar P. Comprehensive literature review on COVID-19 vaccines and role of SARS-CoV-2 variants in the pandemic. Ther Adv Vaccines Immunother 2021; 9:25151355211059791. [PMID: 34870090 PMCID: PMC8637774 DOI: 10.1177/25151355211059791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/22/2021] [Indexed: 01/11/2023] Open
Abstract
Since the outbreak of the COVID-19 pandemic, there has been a rapid expansion in vaccine research focusing on exploiting the novel discoveries on the pathophysiology, genomics, and molecular biology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although the current preventive measures are primarily socially distancing by maintaining a 1 m distance, it is supplemented using facial masks and other personal hygiene measures. However, the induction of vaccines as primary prevention is crucial to eradicating the disease to attempt restoration to normalcy. This literature review aims to describe the physiology of the vaccines and how the spike protein is used as a target to elicit an antibody-dependent immune response in humans. Furthermore, the overview, dosing strategies, efficacy, and side effects will be discussed for the notable vaccines: BioNTech/Pfizer, Moderna, AstraZeneca, Janssen, Gamaleya, and SinoVac. In addition, the development of other prominent COVID-19 vaccines will be highlighted alongside the sustainability of the vaccine-mediated immune response and current contraindications. As the research is rapidly expanding, we have looked at the association between pregnancy and COVID-19 vaccinations, in addition to the current reviews on the mixing of vaccines. Finally, the prominent emerging variants of concern are described, and the efficacy of the notable vaccines toward these variants has been summarized.
Collapse
Affiliation(s)
- Charles Yap
- School of Medicine, National University of
Ireland, Galway, Ireland
| | - Abulhassan Ali
- School of Medicine, National University of
Ireland, Galway, Ireland
| | - Amogh Prabhakar
- School of Medicine, National University of
Ireland, Galway, Ireland
| | - Akul Prabhakar
- School of Medicine, National University of
Ireland, Galway, Ireland
| | - Aman Pal
- School of Medicine, National University of
Ireland, Galway, Ireland
| | - Ying Yi Lim
- School of Medicine, National University of
Ireland, Galway, Ireland
| | - Pramath Kakodkar
- School of Medicine, National University of
Ireland, Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
5
|
Lu CL, Zheng RX, Xue X, Zhang XW, Liu XH, Jin XY, Pu FL, Lan HD, Fang M, Kong LY, Willcox M, Graz B, Houriet J, Hu XY, Liu JP. Traditional Chinese medicine for COVID-19 pandemic and emerging challenges: An online cross-sectional survey in China. Integr Med Res 2021; 10:100798. [PMID: 34692409 PMCID: PMC8524811 DOI: 10.1016/j.imr.2021.100798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We aimed to investigate use of infection control behaviours, preventative and therapeutic interventions, and outcomes among respondents to an online survey during the COVID-19 pandemic in China. METHODS The survey was designed by an international team, translated and adapted to simplified Chinese, including 132 kinds of traditional Chinese medicine (TCM) preparation recommended by guidelines. It was distributed and collected from February to May 2021, with data analysed by WPS spreadsheet and wjx.cn. Descriptive statistics were used to describe demographics and clinical characteristics, diagnosis, treatments, preventative behaviours and interventions, and their associated outcomes. RESULTS The survey was accessed 503 times with 341 (67.8%) completions covering 23 provinces and four municipalities in China. Most (282/341, 82.7%) respondents reported no symptoms during the pandemic and the majority (290/341, 85.0%) reported having a SARS-CoV-2 PCR test at some point. Forty-five (13.2%) reported having a respiratory infection, among which 19 (42.2%) took one or more categories of modern medicine, e.g. painkillers, antibiotics; 16 (35.6%) used TCM interventions(s); while seven respondents combined TCM with modern medicine. All respondents reported using at least one behavioural or medical approach to prevention, with 22.3% taking TCM and 5.3% taking modern medicines. No respondents reported having a critical condition related to COVID-19. CONCLUSION We found evidence of widespread use of infection control behaviours, modern medicines and TCM for treatment and prevention of COVID-19 and other respiratory symptoms. Larger scale studies are warranted, including a more representative sample exploring TCM preparations recommended in clinical guidelines.
Collapse
Affiliation(s)
- Chun-Li Lu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruo-Xiang Zheng
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Xue
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- First Clinical College and affiliated hospital, Hubei University of Traditional Chinese Medicine, Wuhan, China
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xiao-Wen Zhang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Han Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Jin
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feng-Lan Pu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Di Lan
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Min Fang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Yao Kong
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Merlin Willcox
- Primary care, Population Science and Medical Education, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | - Xiao-Yang Hu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- National Institute for Health Research (NIHR), Research Design Service South Central, Southampton General Hospital, Southampton, United Kingdom
| | - Jian-Ping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Abstract
COVID-19, the disease caused by the novel severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), was first detected in December 2019 and has since morphed into a global pandemic claiming over 2.4 million human lives and severely impacting global economy. The race for a safe and efficacious vaccine was thus initiated with government agencies as well as major pharmaceutical companies as frontrunners. An ideal vaccine would activate multiple arms of the adaptive immune system to generate cytotoxic T cell responses as well as neutralizing antibody responses, while avoiding pathological or deleterious immune responses that result in tissue damage or exacerbation of the disease. Developing an effective vaccine requires an inter-disciplinary effort involving virology, protein biology, biotechnology, immunology and pharmaceutical sciences. In this review, we provide a brief overview of the pathology and immune responses to SARS-CoV-2, which are fundamental to vaccine development. We then summarize the rationale for developing COVID-19 vaccines and provide novel insights into vaccine development from a pharmaceutical science perspective, such as selection of different antigens, adjuvants, delivery platforms and formulations. Finally, we review multiple clinical trial outcomes of novel vaccines in terms of safety and efficacy.
Collapse
Affiliation(s)
- Kirk Hofman
- Department of Pharmaceutical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Gautam N. Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Vincent Chak
- Department of Pharmaceutical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
7
|
[The corona pandemic and multiple sclerosis: vaccinations and their implications for patients-Part 2: vaccine technologies]. DER NERVENARZT 2021; 92:1283-1292. [PMID: 34232358 PMCID: PMC8261806 DOI: 10.1007/s00115-021-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/17/2022]
Abstract
Im Zusammenhang mit den Herausforderungen durch die weltweit vorherrschende COVID-19-Pandemie kam es zu teils epochalen Fortschritten im Bereich der Impfstofftechnologien. Neben den bereits langjährig eingesetzten Tot‑, Lebend- und proteinbasierten Impfstoffen gewannen im Zuge dieser Gesundheitskrise vektor- und genbasierte Impfstoffe enorm an Bedeutung. Ziel dieser Arbeit ist es daher, einen Überblick über Multiple Sklerose und Impfen, rezente Fortschritte in der SARS-CoV-2-Impfstoff-Landschaft sowie eine detaillierte Auseinandersetzung mit den verschiedenen Impfstofftechnologien zu bieten. Abschließend sollen übersichtsmäßig klare Empfehlungen im Zusammenhang mit krankheitsmodifizierenden Therapien und Impfen bei Multiple Sklerose gegeben werden.
Collapse
|
8
|
Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: Synergistic or alternative to intramuscular vaccines? Int J Pharm 2021; 603:120686. [PMID: 33964339 PMCID: PMC8099545 DOI: 10.1016/j.ijpharm.2021.120686] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
It is striking that all marketed SARS-CoV-2 vaccines are developed for intramuscular administration designed to produce humoral and cell mediated immune responses, preventing viremia and the COVID-19 syndrome. They have a high degree of efficacy in humans (70-95%) depending on the type of vaccine. However, little protection is provided against viral replication and shedding in the upper airways due to the lack of a local sIgA immune response, indicating a risk of transmission of virus from vaccinated individuals. A range of novel nasal COVID-19 vaccines are in development and preclinical results in non-human primates have shown a promising prevention of replication and shedding of virus due to the induction of mucosal immune response (sIgA) in upper and lower respiratory tracts as well as robust systemic and humoral immune responses. Whether these results will translate to humans remains to be clarified. An IM prime followed by an IN booster vaccination would likely result in a better well-rounded immune response, including prevention (or strong reduction) in viral replication in the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Lisbeth Illum
- IDentity, 19 Cavendish Crescent North, The Park, Nottingham, NG71BA, United Kingdom.
| |
Collapse
|
9
|
Valdes-Balbin Y, Santana-Mederos D, Paquet F, Fernandez S, Climent Y, Chiodo F, Rodríguez L, Sanchez Ramirez B, Leon K, Hernandez T, Castellanos-Serra L, Garrido R, Chen GW, Garcia-Rivera D, Rivera DG, Verez-Bencomo V. Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS CENTRAL SCIENCE 2021; 7:757-767. [PMID: 34075345 PMCID: PMC8084267 DOI: 10.1021/acscentsci.1c00216] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/08/2023]
Abstract
The development of recombinant COVID-19 vaccines has resulted from scientific progress made at an unprecedented speed during 2020. The recombinant spike glycoprotein monomer, its trimer, and its recombinant receptor-binding domain (RBD) induce a potent anti-RBD neutralizing antibody response in animals. In COVID-19 convalescent sera, there is a good correlation between the antibody response and potent neutralization. In this review, we summarize with a critical view the molecular aspects associated with the interaction of SARS-CoV-2 RBD with its receptor in human cells, the angiotensin-converting enzyme 2 (ACE2), the epitopes involved in the neutralizing activity, and the impact of virus mutations thereof. Recent trends in RBD-based vaccines are analyzed, providing detailed insights into the role of antigen display and multivalence in the immune response of vaccines under development.
Collapse
Affiliation(s)
| | | | - Françoise Paquet
- Centre
de Biophysique Moléculaire, Centre
National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | | | - Yanet Climent
- Finlay
Vaccine Institute, 200
and 21 Street, Havana 11600, Cuba
| | - Fabrizio Chiodo
- Department
of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1081 HV
- Institute
of Biomolecular Chemistry, National Research
Council (CNR), Pozzuoli, Napoli, Italy
| | - Laura Rodríguez
- Finlay
Vaccine Institute, 200
and 21 Street, Havana 11600, Cuba
| | | | - Kalet Leon
- Center
of Molecular Immunology, P.O. Box 16040, 216 Street, Havana, Cuba
| | - Tays Hernandez
- Center
of Molecular Immunology, P.O. Box 16040, 216 Street, Havana, Cuba
| | | | - Raine Garrido
- Finlay
Vaccine Institute, 200
and 21 Street, Havana 11600, Cuba
| | - Guang-Wu Chen
- Chengdu
Olisynn Biotech. Co. Ltd. and State Key Laboratory of Biotherapy and
Cancer Center, West China Hospital, Sichuan
University, Chengdu 610041, People’s Republic of China
| | | | - Daniel G. Rivera
- Laboratory
of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana 10400, Cuba
| | | |
Collapse
|
10
|
Alderson J, Batchelor V, O’Hanlon M, Cifuentes L, Richter FC, Kopycinski J. Overview of approved and upcoming vaccines for SARS-CoV-2: a living review. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab010. [PMID: 34522886 PMCID: PMC8194545 DOI: 10.1093/oxfimm/iqab010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid design and implementation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is testament to a successfully coordinated global research effort. While employing a variety of different technologies, some of which have been used for the first time, all approved vaccines demonstrate high levels of efficacy with excellent safety profiles. Despite this, there remains an urgent global demand for coronavirus disease 2019 vaccines that require further candidates to pass phase 3 clinical trials. In the expectation of SARS-CoV-2 becoming endemic, researchers are looking to adjust the vaccine constructs to tackle emerging variants. In this review, we outline different platforms used for approved vaccines and summarize latest research data with regards to immunogenicity, dosing regimens and efficiency against emerging variants.
Collapse
Affiliation(s)
- Jennifer Alderson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, OX3 7FY Oxford, UK
| | - Vicky Batchelor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, OX3 7FY Oxford, UK
| | - Miriam O’Hanlon
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, OX3 7FY Oxford, UK
| | - Liliana Cifuentes
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, OX3 7FY Oxford, UK
| | - Felix Clemens Richter
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, OX3 7FY Oxford, UK
| | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7FZ Oxford, UK
| | | |
Collapse
|
11
|
Efficacy and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Vaccines (Basel) 2021; 9:vaccines9050467. [PMID: 34066475 PMCID: PMC8148145 DOI: 10.3390/vaccines9050467] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
The current study systematically reviewed, summarized and meta-analyzed the clinical features of the vaccines in clinical trials to provide a better estimate of their efficacy, side effects and immunogenicity. All relevant publications were systematically searched and collected from major databases up to 12 March 2021. A total of 25 RCTs (123 datasets), 58,889 cases that received the COVID-19 vaccine and 46,638 controls who received placebo were included in the meta-analysis. In total, mRNA-based and adenovirus-vectored COVID-19 vaccines had 94.6% (95% CI 0.936-0.954) and 80.2% (95% CI 0.56-0.93) efficacy in phase II/III RCTs, respectively. Efficacy of the adenovirus-vectored vaccine after the first (97.6%; 95% CI 0.939-0.997) and second (98.2%; 95% CI 0.980-0.984) doses was the highest against receptor-binding domain (RBD) antigen after 3 weeks of injections. The mRNA-based vaccines had the highest level of side effects reported except for diarrhea and arthralgia. Aluminum-adjuvanted vaccines had the lowest systemic and local side effects between vaccines' adjuvant or without adjuvant, except for injection site redness. The adenovirus-vectored and mRNA-based vaccines for COVID-19 showed the highest efficacy after first and second doses, respectively. The mRNA-based vaccines had higher side effects. Remarkably few experienced extreme adverse effects and all stimulated robust immune responses.
Collapse
|
12
|
Min L, Sun Q. Antibodies and Vaccines Target RBD of SARS-CoV-2. Front Mol Biosci 2021; 8:671633. [PMID: 33968996 PMCID: PMC8100443 DOI: 10.3389/fmolb.2021.671633] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
The novel human coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which gives rise to the coronavirus disease 2019 (COVID-19), has caused a serious threat to global public health. On March 11, 2020, the WHO had officially announced COVID-19 as a pandemic. Therefore, it is vital to find effective and safe neutralizing antibodies and vaccines for COVID-19. The critical neutralizing domain (CND) that is contained in the receptor-binding domain (RBD) of the spike protein (S protein) could lead to a highly potent neutralizing antibody response as well as the cross-protection of other strains of SARS. By using RBD as an antigen, many neutralizing antibodies are isolated that are essential to the therapeutics of COVID-19. Furthermore, a subunit vaccine, which is based on the RBD, is expected to be safer than others, thus the RBD in the S protein is a more important target for vaccine development. In this review, we focus on neutralizing antibodies that are targeting RBD as well as the vaccine based on RBD under current development.
Collapse
Affiliation(s)
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
13
|
He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, Xu M, Liang Z. COVID-19 Vaccines: Current Understanding on Immunogenicity, Safety, and Further Considerations. Front Immunol 2021; 12:669339. [PMID: 33912196 PMCID: PMC8071852 DOI: 10.3389/fimmu.2021.669339] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The world has entered the second wave of the COVID-19 pandemic, and its intensity is significantly higher than that of the first wave of early 2020. Many countries or regions have been forced to start the second round of lockdowns. To respond rapidly to this global pandemic, dozens of COVID-19 vaccine candidates have been developed and many are undergoing clinical testing. Evaluating and defining effective vaccine candidates for human use is crucial for prioritizing vaccination programs against COVID-19. In this review, we have summarized and analyzed the efficacy, immunogenicity and safety data from clinical reports on different COVID-19 vaccines. We discuss the various guidelines laid out for the development of vaccines and the importance of biological standards for comparing the performance of vaccines. Lastly, we highlight the key remaining challenges, possible strategies for addressing them and the expected improvements in the next generation of COVID-19 vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
14
|
AboulFotouh K, Cui Z, Williams RO. Next-Generation COVID-19 Vaccines Should Take Efficiency of Distribution into Consideration. AAPS PharmSciTech 2021; 22:126. [PMID: 33835300 PMCID: PMC8034273 DOI: 10.1208/s12249-021-01974-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
The dire need for safe and effective coronavirus disease (COVID-19) vaccines is met with many vaccine candidates being evaluated in pre-clinical and clinical studies. The COVID-19 vaccine candidates currently in phase 3 or phase 2/3 clinical trials as well as those that recently received emergency use authorization (EUA) from the United States Food and Drug Administration (FDA) and/or other regulatory agencies worldwide require either cold (i.e., 2–8°C) or even freezing temperatures as low as −70°C for storage and distribution. Thus, existing cold chain will struggle to support both the standard national immunization programs and COVID-19 vaccination. The requirement for cold chain is now a major challenge towards worldwide rapid mass vaccination against COVID-19. In this commentary, we stress that thermostabilizing technologies are available to enable cold chain-free vaccine storage and distribution, as well as potential needle-free vaccination. Significant efforts on thermostabilizing technologies must now be applied on next-generation COVID-19 vaccines for more cost-effective worldwide mass vaccination and COVID-19 eradication.
Collapse
|
15
|
Klasse PJ, Nixon DF, Moore JP. Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. SCIENCE ADVANCES 2021; 7:eabe8065. [PMID: 33608249 PMCID: PMC7978427 DOI: 10.1126/sciadv.abe8065] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/22/2021] [Indexed: 05/17/2023]
Abstract
Multiple preventive vaccines are being developed to counter the coronavirus disease 2019 pandemic. The leading candidates have now been evaluated in nonhuman primates (NHPs) and human phase 1 and/or phase 2 clinical trials. Several vaccines have already advanced into phase 3 efficacy trials, while others will do so before the end of 2020. Here, we summarize what is known of the antibody and T cell immunogenicity of these vaccines in NHPs and humans. To the extent possible, we compare how the vaccines have performed, taking into account the use of different assays to assess immunogenicity and inconsistencies in how the resulting data are presented. We also review the outcome of challenge experiments with severe acute respiratory syndrome coronavirus 2 in immunized macaques, while noting variations in the protocols used, including but not limited to the virus challenge doses. Press releases on the outcomes of vaccine efficacy trials are also summarized.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|