1
|
Uyar Y, Mart Kömürcü SZ, Artik Y, Cesur NP, Tanrıverdi A, Şanlı K. The evaluation of SARS-CoV-2 mutations at the early stage of the pandemic in Istanbul population. Ann Clin Microbiol Antimicrob 2024; 23:93. [PMID: 39390548 PMCID: PMC11468081 DOI: 10.1186/s12941-024-00750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Determination of SARS-CoV-2 variant is significant to prevent the spreads of COVID-19 disease. METHODS We aimed to evaluate the variants of SARS-CoV-2 rate in positive patients in Kanuni Sultan Suleyman Training and Research Hospital (KSS-TRH), Istanbul, Türkiye between 1st January and 30th November 2021 by using RT-PCR method. RESULTS Herein, 825,169 patients were evaluated (male:58.53% and female:41.47%) whether COVID-19 positive or not [( +):21.3% and (-):78.7%] and 175,367 patient was described as positive (53.2%-female and 46.8%-male) by RT-PCR. COVID-19 positive rate is observed highest in the 6-15- and 66-75-year age range. The frequencies were obtained as SARS-CoV-2 positive (without mutation of B.1.1.7 [B.1.1.7 (U.K), E484K, L452R, B.1.351 (S. Africa/Brazil) spike mutations] as 66.1% (n: 115,899), B.1.1.7 Variant as 23.2% (n:40,686), Delta mutation (L452R) variant as 9.8% (n:17,182), B.1.351 variant as 0.8% (n:1370) and E484K as 0.1% (n: 230). In April 2021, general SARS-CoV-2 and B.1.1.7 variant were dominantly observed. Up to July 2021, B.1.617.2 (Delta variant/ Indian variant) and E484K has been not observed. B.1.351 variant of SARS-CoV-2 has been started in February 2021 at the rarest ratio and March 2021 is the top point. September 2021 is the pick point of E484K. African/Brazil variant of SARS-CoV-2 has been started in February 2021 at the rarest ratio and March 2021 is the top point. September 2021 is the pick point of E484K. When the gender type is compared within the variants, women were found to be more prevalent in all varieties. CONCLUSIONS The meaning of these mutations is very important to understand the transmission capacity of the COVID-19 disease, pandemic episode, and diagnosis of the virus with mutation types. Understanding the variant type is important for monitoring herd immunity and the spread of the disease.
Collapse
Affiliation(s)
- Yavuz Uyar
- Cerrahpaşa Faculty of Medicine, Department of Medical Microbiology, Istanbul University-Cerrahpaşa, 34147, Istanbul, Türkiye.
| | - Selen Zeliha Mart Kömürcü
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Yakup Artik
- Health Institutes of Türkiye (TUSEB), COVID-19 Diagnostic Center, Istanbul Provincial Directorate of Health, Republic of Türkiye Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Nevra Pelin Cesur
- Health Institutes of Türkiye (TUSEB), COVID-19 Diagnostic Center, Istanbul Provincial Directorate of Health, Republic of Türkiye Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Arzu Tanrıverdi
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Kanuni Sultan Suleyman Training and Research Hospital, Kücükcekmece, 34303, Istanbul, Türkiye
| | - Kamuran Şanlı
- Republic of Türkiye, Istanbul Provincial Directorate of Health, Ministry of Health, University of Health Science, Başakşehir Çam and Sakura City Hospital, Başakşehir, 34480, Istanbul, Türkiye
| |
Collapse
|
2
|
Firouzabadi N, Ghasemiyeh P, Moradishooli F, Mohammadi-Samani S. Update on the effectiveness of COVID-19 vaccines on different variants of SARS-CoV-2. Int Immunopharmacol 2023; 117:109968. [PMID: 37012880 PMCID: PMC9977625 DOI: 10.1016/j.intimp.2023.109968] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
It has been more than three years since the first emergence of coronavirus disease 2019 (COVID-19) and millions of lives have been taken to date. Like most pandemics caused by viral infections, massive public vaccination is the most promising approach to cease COVID-19 infection. In this regard, several vaccine platforms including inactivated virus, nucleic acid-based (mRNA and DNA vaccines), adenovirus-based, and protein-based vaccines have been designed and developed for COVID-19 prevention and many of them have received FDA or WHO approval. Fortunately, after global vaccination, the transmission rate, disease severity, and mortality rate of COVID-19 infection have diminished significantly. However, a rapid increase in COVID-19 cases due to the omicron variant in vaccinated countries has raised concerns about the effectiveness of these vaccines. In this review, articles published between January 2020 and January 2023 were reviewed using PubMed, Google Scholar, and Web of Science search engines with appropriate related keywords. The related papers were selected and discussed in detail. The current review mainly focuses on the effectiveness and safety of COVID-19 vaccines against SARS-CoV-2 variants. Along with discussing the available and approved vaccines, characteristics of different variants of COVID-19 have also been discussed in brief. Finally, the currently circulating COVID-19 variant i.e Omicron, along with the effectiveness of available COVID-19 vaccines against these new variants are discussed in detail. In conclusion, based on the available data, administration of newly developed bivalent mRNA COVID-19 vaccines, as booster shots, would be crucial to prevent further circulation of the newly developed variants.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moradishooli
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Gomes da Silva P, Gonçalves J, Torres Franco A, Rodriguez E, Diaz I, Orduña Domingo A, Garcinuño Pérez S, March Roselló GA, Dueñas Gutiérrez CJ, São José Nascimento M, Sousa SI, Garcia Encina P, Mesquita JR. Environmental Dissemination of SARS-CoV-2 in a University Hospital during the COVID-19 5th Wave Delta Variant Peak in Castile-León, Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1574. [PMID: 36674328 PMCID: PMC9866319 DOI: 10.3390/ijerph20021574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The dominant SARS-CoV-2 Delta variant (B.1.617.2) became the main circulating variant among countries by mid 2021. Attention was raised to the increased risk of airborne transmission, leading to nosocomial outbreaks even among vaccinated individuals. Considering the increased number of COVID-19 hospital admissions fueled by the spread of the variant, with Spain showing the highest COVID-19 rates in mainland Europe by July 2021, the aim of this study was to assess SARS-CoV-2 environmental contamination in different areas of a University Hospital in the region of Castile-León, Spain, during the peak of the 5th wave of COVID-19 in the country (July 2021). Air samples were collected from sixteen different areas of the Hospital using a Coriolis® μ air sampler. Surface samples were collected in these same areas using sterile flocked plastic swabs. RNA extraction followed by a one-step RT-qPCR were performed for detection of SARS-CoV-2 RNA. Of the 21 air samples, only one was positive for SARS-CoV-2 RNA, from the emergency waiting room. Of the 40 surface samples, 2 were positive for SARS-CoV-2 RNA, both from the microbiology laboratory. These results may be relevant for risk assessment of nosocomial infection within healthcare facilities, thus helping prevent and minimize healthcare staff's exposure to SARS-CoV-2, reinforcing the importance of always wearing appropriate and well-fit masks at all times and proper PPE when in contact with infected patients.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 1800-412 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 1800-412 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
| | - José Gonçalves
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Andrés Torres Franco
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Elisa Rodriguez
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Israel Diaz
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - Antonio Orduña Domingo
- Microbiology Service, Valladolid University Clinical Hospital (HCUV), Faculty of Medicine, University of Valladolid, 47011 Valladolid, Spain
| | | | | | - Carlos Jesús Dueñas Gutiérrez
- Internal Medicine, Infectious Diseases Section, Valladolid University Clinical Hospital (HCUV), 47011 Valladolid, Spain
| | | | - Sofia I.V. Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 1800-412 Porto, Portugal
| | - Pedro Garcia Encina
- Institute of Sustainable Processes, Valladolid University, Dr. Mergelina S/N., 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - João R. Mesquita
- ICBAS—School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 1800-412 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 1800-412 Porto, Portugal
| |
Collapse
|
4
|
Li X, Zhang S, Sherchan S, Orive G, Lertxundi U, Haramoto E, Honda R, Kumar M, Arora S, Kitajima M, Jiang G. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129848. [PMID: 36067562 PMCID: PMC9420035 DOI: 10.1016/j.jhazmat.2022.129848] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has been considered as a promising approach for population-wide surveillance of coronavirus disease 2019 (COVID-19). Many studies have successfully quantified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater (CRNA). However, the correlation between the CRNA and the COVID-19 clinically confirmed cases in the corresponding wastewater catchments varies and the impacts of environmental and other factors remain unclear. A systematic review and meta-analysis were conducted to identify the correlation between CRNA and various types of clinically confirmed case numbers, including prevalence and incidence rates. The impacts of environmental factors, WBE sampling design, and epidemiological conditions on the correlation were assessed for the same datasets. The systematic review identified 133 correlation coefficients, ranging from -0.38 to 0.99. The correlation between CRNA and new cases (either daily new, weekly new, or future cases) was stronger than that of active cases and cumulative cases. These correlation coefficients were potentially affected by environmental and epidemiological conditions and WBE sampling design. Larger variations of air temperature and clinical testing coverage, and the increase of catchment size showed strong negative impacts on the correlation between CRNA and COVID-19 case numbers. Interestingly, the sampling technique had negligible impact although increasing the sampling frequency improved the correlation. These findings highlight the importance of viral shedding dynamics, in-sewer decay, WBE sampling design and clinical testing on the accurate back-estimation of COVID-19 case numbers through the WBE approach.
Collapse
Affiliation(s)
- Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Samendrdra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
5
|
Sokhansanj BA, Zhao Z, Rosen GL. Interpretable and Predictive Deep Neural Network Modeling of the SARS-CoV-2 Spike Protein Sequence to Predict COVID-19 Disease Severity. BIOLOGY 2022; 11:1786. [PMID: 36552295 PMCID: PMC9774807 DOI: 10.3390/biology11121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Through the COVID-19 pandemic, SARS-CoV-2 has gained and lost multiple mutations in novel or unexpected combinations. Predicting how complex mutations affect COVID-19 disease severity is critical in planning public health responses as the virus continues to evolve. This paper presents a novel computational framework to complement conventional lineage classification and applies it to predict the severe disease potential of viral genetic variation. The transformer-based neural network model architecture has additional layers that provide sample embeddings and sequence-wide attention for interpretation and visualization. First, training a model to predict SARS-CoV-2 taxonomy validates the architecture's interpretability. Second, an interpretable predictive model of disease severity is trained on spike protein sequence and patient metadata from GISAID. Confounding effects of changing patient demographics, increasing vaccination rates, and improving treatment over time are addressed by including demographics and case date as independent input to the neural network model. The resulting model can be interpreted to identify potentially significant virus mutations and proves to be a robust predctive tool. Although trained on sequence data obtained entirely before the availability of empirical data for Omicron, the model can predict the Omicron's reduced risk of severe disease, in accord with epidemiological and experimental data.
Collapse
Affiliation(s)
- Bahrad A. Sokhansanj
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical & Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
6
|
Kazemi S, López-Muñoz AD, Hollý J, Jin L, Yewdell JW, Dolan BP. Variations in Cell Surface ACE2 Levels Alter Direct Binding of SARS-CoV-2 Spike Protein and Viral Infectivity: Implications for Measuring Spike Protein Interactions with Animal ACE2 Orthologs. J Virol 2022; 96:e0025622. [PMID: 36000847 PMCID: PMC9472623 DOI: 10.1128/jvi.00256-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/04/2022] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), the most severe pandemic in a century. The virus gains access to host cells when the viral spike protein (S-protein) binds to the host cell surface receptor angiotensin-converting enzyme 2 (ACE2). Studies have attempted to understand SARS-CoV-2 S-protein interactions with vertebrate orthologs of ACE2 by expressing ACE2 orthologs in mammalian cells and measuring viral infection or S-protein binding. Often, these cells only transiently express ACE2 proteins, and the levels of ACE2 at the cell surface are not quantified. Here, we describe a cell-based assay that uses stably transfected cells expressing ACE2 proteins in a bicistronic vector with an easy-to-quantify reporter protein, Thy1.1. We found that both the binding of the S-protein receptor-binding domain (RBD) and infection with a SARS-CoV-2 pseudovirus are proportional to the amount of human ACE2 expressed at the cell surface, which can be inferred by quantifying the level of Thy1.1. We also compared different ACE2 orthologs, which were expressed in stably transfected cells expressing equivalent levels of Thy1.1. When ranked for either viral infectivity or RBD binding, mouse ACE2 had a weak to undetectable affinity for S-protein, while human ACE2 had the highest level detected, and feline ACE2 had an intermediate phenotype. The generation of stably transfected cells whose ACE2 level can be normalized for cross-ortholog comparisons allows us to create a reusable cellular library useful for measuring emerging SARS-CoV-2 variants' abilities to potentially infect different animals. IMPORTANCE SARS-CoV-2 is a zoonotic virus responsible for the worst global pandemic in a century. An understanding of how the virus can infect other vertebrate species is important for controlling viral spread and understanding the natural history of the virus. Here, we describe a method to generate cells stably expressing different orthologs of ACE2, the receptor for SARS-CoV-2, on the surface of a human cell line. We find that both the binding of the viral spike protein receptor-binding domain (RBD) and infection of cells with a SARS-CoV-2 pseudovirus are proportional to the ACE2 levels at the cell surface. This method will allow the creation of a library of stably transfected cells expressing similar levels of different vertebrate ACE2 orthologs, which can be used repeatedly for identifying vertebrate species that may be susceptible to infection with SARS-CoV-2 and its many variants.
Collapse
Affiliation(s)
- Soheila Kazemi
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Alberto Domingo López-Muñoz
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaroslav Hollý
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, Cell Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian P. Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
7
|
Matrajt L, Brown ER, Cohen MS, Dimitrov D, Janes H. Could widespread use of antiviral treatment curb the COVID-19 pandemic? A modeling study. BMC Infect Dis 2022; 22:683. [PMID: 35945513 PMCID: PMC9361252 DOI: 10.1186/s12879-022-07639-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the development of safe and effective vaccines, effective treatments for COVID-19 disease are still urgently needed. Several antiviral drugs have shown to be effective in reducing progression of COVID-19 disease. METHODS In the present work, we use an agent-based mathematical model to assess the potential population impact of the use of antiviral treatments in four countries with different demographic structure and current levels of vaccination coverage: Kenya, Mexico, United States (US) and Belgium. We analyzed antiviral effects on reducing hospitalization and death, and potential antiviral effects on reducing transmission. For each country, we varied daily treatment initiation rate (DTIR) and antiviral effect in reducing transmission (AVT). RESULTS Irrespective of location and AVT, widespread antiviral treatment of symptomatic adult infections (20% DTIR) prevented the majority of COVID-19 deaths, and recruiting 6% of all adult symptomatic infections daily reduced mortality by over 20% in all countries. Furthermore, our model projected that targeting antiviral treatment to the oldest age group (65 years old and older, DTIR of 20%) can prevent over 30% of deaths. Our results suggest that early antiviral treatment (as soon as possible after inception of infection) is needed to mitigate transmission, preventing 50% more infections compared to late treatment (started 3 to 5 days after symptoms onset). Our results highlight the synergistic effect of vaccination and antiviral treatment: as the vaccination rate increases, antivirals have a larger relative impact on population transmission. Finally, our model projects that even in highly vaccinated populations, adding antiviral treatment can be extremely helpful to mitigate COVID-19 deaths. CONCLUSIONS These results suggest that antiviral treatments can become a strategic tool that, in combination with vaccination, can significantly reduce COVID-19 hospitalizations and deaths and can help control SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Laura Matrajt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Elizabeth R. Brown
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Biostatistics, University of Washington, Seattle, USA
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Myron S. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Biostatistics, University of Washington, Seattle, USA
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Dobromir Dimitrov
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Applied Mathematics, University of Washington, Seattle, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
8
|
Puhach O, Adea K, Hulo N, Sattonnet P, Genecand C, Iten A, Jacquérioz F, Kaiser L, Vetter P, Eckerle I, Meyer B. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat Med 2022. [PMID: 35395151 DOI: 10.1101/2022.01.10.22269010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious viral load (VL) expelled as droplets and aerosols by infected individuals partly determines transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RNA VL measured by qRT-PCR is only a weak proxy for infectiousness. Studies on the kinetics of infectious VL are important to understand the mechanisms behind the different transmissibility of SARS-CoV-2 variants and the effect of vaccination on transmission, which allows guidance of public health measures. In this study, we quantified infectious VL in individuals infected with SARS-CoV-2 during the first five symptomatic days by in vitro culturability assay in unvaccinated or vaccinated individuals infected with pre-variant of concern (pre-VOC) SARS-CoV-2, Delta or Omicron BA.1. Unvaccinated individuals infected with pre-VOC SARS-CoV-2 had lower infectious VL than Delta-infected unvaccinated individuals. Full vaccination (defined as >2 weeks after receipt of the second dose during the primary vaccination series) significantly reduced infectious VL for Delta breakthrough cases compared to unvaccinated individuals. For Omicron BA.1 breakthrough cases, reduced infectious VL was observed only in boosted but not in fully vaccinated individuals compared to unvaccinated individuals. In addition, infectious VL was lower in fully vaccinated Omicron BA.1-infected individuals compared to fully vaccinated Delta-infected individuals, suggesting that mechanisms other than increased infectious VL contribute to the high infectiousness of SARS-CoV-2 Omicron BA.1. Our findings indicate that vaccines may lower transmission risk and, therefore, have a public health benefit beyond the individual protection from severe disease.
Collapse
Affiliation(s)
- Olha Puhach
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Pascale Sattonnet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Genecand
- Cantonal Health Service, General Directorate for Health, Geneva, Switzerland
| | - Anne Iten
- Service of Prevention and Infection Control, Directorate of Medicine and Quality, Geneva University Hospitals, Geneva, Switzerland
| | - Frédérique Jacquérioz
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland
- Primary Care Division, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pauline Vetter
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals & Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Jiang G, Wu J, Weidhaas J, Li X, Chen Y, Mueller J, Li J, Kumar M, Zhou X, Arora S, Haramoto E, Sherchan S, Orive G, Lertxundi U, Honda R, Kitajima M, Jackson G. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. WATER RESEARCH 2022; 218:118451. [PMID: 35447417 PMCID: PMC9006161 DOI: 10.1016/j.watres.2022.118451] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 05/06/2023]
Abstract
As a cost-effective and objective population-wide surveillance tool, wastewater-based epidemiology (WBE) has been widely implemented worldwide to monitor the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater. However, viral concentrations or loads in wastewater often correlate poorly with clinical case numbers. To date, there is no reliable method to back-estimate the coronavirus disease 2019 (COVID-19) case numbers from SARS-CoV-2 concentrations in wastewater. This greatly limits WBE in achieving its full potential in monitoring the unfolding pandemic. The exponentially growing SARS-CoV-2 WBE dataset, on the other hand, offers an opportunity to develop data-driven models for the estimation of COVID-19 case numbers (both incidence and prevalence) and transmission dynamics (effective reproduction rate). This study developed artificial neural network (ANN) models by innovatively expanding a conventional WBE dataset to include catchment, weather, clinical testing coverage and vaccination rate. The ANN models were trained and evaluated with a comprehensive state-wide wastewater monitoring dataset from Utah, USA during May 2020 to December 2021. In diverse sewer catchments, ANN models were found to accurately estimate the COVID-19 prevalence and incidence rates, with excellent precision for prevalence rates. Also, an ANN model was developed to estimate the effective reproduction number from both wastewater data and other pertinent factors affecting viral transmission and pandemic dynamics. The established ANN model was successfully validated for its transferability to other states or countries using the WBE dataset from Wisconsin, USA.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jennifer Weidhaas
- University of Utah, Civil and Environmental Engineering, 110 Central Campus Drive, Suite 2000, Salt Lake City, UT, USA
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Greg Jackson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| |
Collapse
|
10
|
Wertheim JO, Wang JC, Leelawong M, Martin DP, Havens JL, Chowdhury MA, Pekar JE, Amin H, Arroyo A, Awandare GA, Chow HY, Gonzalez E, Luoma E, Morang'a CM, Nekrutenko A, Shank SD, Silver S, Quashie PK, Rakeman JL, Ruiz V, Torian LV, Vasylyeva TI, Kosakovsky Pond SL, Hughes S. Detection of SARS-CoV-2 intra-host recombination during superinfection with Alpha and Epsilon variants in New York City. Nat Commun 2022; 13:3645. [PMID: 35752633 PMCID: PMC9233664 DOI: 10.1038/s41467-022-31247-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/08/2022] [Indexed: 01/26/2023] Open
Abstract
Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jade C Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA.
| | - Mindy Leelawong
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Moinuddin A Chowdhury
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Helly Amin
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Anthony Arroyo
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Hoi Yan Chow
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Edimarlyn Gonzalez
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Elizabeth Luoma
- Bureau of the Communicable Diseases, New York City Department of Health and Mental Hygiene, Long Island City, NY, USA
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stefan Silver
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Jennifer L Rakeman
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Victoria Ruiz
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Lucia V Torian
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| |
Collapse
|
11
|
Calcoen B, Callewaert N, Vandenbulcke A, Kerstens W, Imbrechts M, Vercruysse T, Dallmeier K, Van Weyenbergh J, Maes P, Bossuyt X, Zapf D, Dieckmann K, Callebaut K, Thibaut HJ, Vanhoorelbeke K, De Meyer SF, Maes W, Geukens N. High Incidence of SARS-CoV-2 Variant of Concern Breakthrough Infections Despite Residual Humoral and Cellular Immunity Induced by BNT162b2 Vaccination in Healthcare Workers: A Long-Term Follow-Up Study in Belgium. Viruses 2022; 14:1257. [PMID: 35746728 PMCID: PMC9228150 DOI: 10.3390/v14061257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
To mitigate the massive COVID-19 burden caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), several vaccination campaigns were initiated. We performed a single-center observational trial to monitor the mid- (3 months) and long-term (10 months) adaptive immune response and to document breakthrough infections (BTI) in healthcare workers (n = 84) upon BNT162b2 vaccination in a real-world setting. Firstly, serology was determined through immunoassays. Secondly, antibody functionality was analyzed via in vitro binding inhibition and pseudovirus neutralization and circulating receptor-binding domain (RBD)-specific B cells were assessed. Moreover, the induction of SARS-CoV-2-specific T cells was investigated by an interferon-γ release assay combined with flowcytometric profiling of activated CD4+ and CD8+ T cells. Within individuals that did not experience BTI (n = 62), vaccine-induced humoral and cellular immune responses were not correlated. Interestingly, waning over time was more pronounced within humoral compared to cellular immunity. In particular, 45 of these 62 subjects no longer displayed functional neutralization against the delta variant of concern (VoC) at long-term follow-up. Noteworthily, we reported a high incidence of symptomatic BTI cases (17.11%) caused by alpha and delta VoCs, although vaccine-induced immunity was only slightly reduced compared to subjects without BTI at mid-term follow-up.
Collapse
Affiliation(s)
- Bas Calcoen
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium; (B.C.); (A.V.); (K.V.); (S.F.D.M.)
| | - Nico Callewaert
- AZ Groeninge Hospital, Department of Laboratory Medicine, 8500 Kortrijk, Belgium; (K.C.); (N.C.)
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium; (B.C.); (A.V.); (K.V.); (S.F.D.M.)
| | - Winnie Kerstens
- Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven Rega Institute, 3000 Leuven, Belgium; (W.K.); (T.V.); (H.J.T.)
| | - Maya Imbrechts
- PharmAbs, the KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium; (M.I.); (N.G.)
| | - Thomas Vercruysse
- Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven Rega Institute, 3000 Leuven, Belgium; (W.K.); (T.V.); (H.J.T.)
| | - Kai Dallmeier
- Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, Department of Microbiology, Immunology and Transplantation, KU Leuven Rega Institute, 3000 Leuven, Belgium;
| | - Johan Van Weyenbergh
- Laboratory for Clinical and Epidemiological Virology, KU Leuven Rega Institute, 3000 Leuven, Belgium; (J.V.W.); (P.M.)
| | - Piet Maes
- Laboratory for Clinical and Epidemiological Virology, KU Leuven Rega Institute, 3000 Leuven, Belgium; (J.V.W.); (P.M.)
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dorinja Zapf
- Institut für Experimentelle Immunologie, EUROIMMUN Medizinische Labordiagnostika AG, 23552 Lübeck, Germany; (D.Z.); (K.D.)
| | - Kersten Dieckmann
- Institut für Experimentelle Immunologie, EUROIMMUN Medizinische Labordiagnostika AG, 23552 Lübeck, Germany; (D.Z.); (K.D.)
| | - Kim Callebaut
- AZ Groeninge Hospital, Department of Laboratory Medicine, 8500 Kortrijk, Belgium; (K.C.); (N.C.)
| | - Hendrik Jan Thibaut
- Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven Rega Institute, 3000 Leuven, Belgium; (W.K.); (T.V.); (H.J.T.)
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium; (B.C.); (A.V.); (K.V.); (S.F.D.M.)
- PharmAbs, the KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium; (M.I.); (N.G.)
| | - Simon F. De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium; (B.C.); (A.V.); (K.V.); (S.F.D.M.)
| | - Wim Maes
- PharmAbs, the KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium; (M.I.); (N.G.)
| | - Nick Geukens
- PharmAbs, the KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium; (M.I.); (N.G.)
| |
Collapse
|
12
|
Petrone L, Tortorella C, Aiello A, Farroni C, Ruggieri S, Castilletti C, Meschi S, Cuzzi G, Vanini V, Palmieri F, Prosperini L, Haggiag S, Galgani S, Grifoni A, Sette A, Gasperini C, Nicastri E, Goletti D. Humoral and Cellular Response to Spike of Delta SARS-CoV-2 Variant in Vaccinated Patients With Multiple Sclerosis. Front Neurol 2022; 13:881988. [PMID: 35711277 PMCID: PMC9194677 DOI: 10.3389/fneur.2022.881988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives We assessed vaccination-induced antibody and cellular response against spike from the ancestral strain and from the Delta Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) variant in patients with Multiple Sclerosis (MS) treated with disease modifying treatments. Methods We enrolled 47 patients with MS and nine controls ("no MS") having completed the vaccination schedule within 4-6 months from the first dose. The Interferon (IFN)-γ-response to spike peptides derived from the ancestral and the Delta SARS-CoV-2 was measured by enzyme-linked immunoassay (ELISA). Anti-Receptor Binding Domain (RBD) IgG were also evaluated. Results No significant differences were found comparing the IFN-γ-specific immune response between MS and "no MS" subjects to the ancestral (P = 0.62) or Delta peptide pools (P = 0.68). Nevertheless, a reduced IFN-γ-specific response to the ancestral or to the Delta pools was observed in subjects taking fingolimod or cladribine compared to subjects treated with ocrelizumab or IFN-β. The antibody response was significantly reduced in patients with MS compared to "no MS" subjects (P = 0.0452) mainly in patients taking ocrelizumab or fingolimod. Conclusions Cellular responses to Delta SARS-CoV-2 variant remain largely intact in patients with MS. However, the magnitude of these responses depends on the specific therapy.
Collapse
Affiliation(s)
- Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Serena Ruggieri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Luca Prosperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Shalom Haggiag
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Simona Galgani
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Emanuele Nicastri
- UOC Malattie Infettive ad Alta Intensità di Cura, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
13
|
Yang Y, Murray J, Haverstick J, Tripp RA, Zhao Y. Silver nanotriangle array based LSPR sensor for rapid coronavirus detection. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 359:131604. [PMID: 35221531 PMCID: PMC8857771 DOI: 10.1016/j.snb.2022.131604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 05/06/2023]
Abstract
A rapid, portable, and cost-effective method to detect the infection of SARS-CoV-2 is fundamental toward mitigating the current COVID-19 pandemic. Herein, a human angiotensin-converting enzyme 2 protein (ACE2) functionalized silver nanotriangle (AgNT) array localized surface plasmon resonance (LSPR) sensor is developed for rapid coronavirus detection, which is validated by SARS-CoV-2 spike RBD protein and CoV NL63 virus with high sensitivity and specificity. A linear shift of the LSPR wavelength versus the logarithm of the concentration of the spike RBD protein and CoV NL63 is observed. The limits of detection for the spike RBD protein, CoV NL63 in buffer and untreated saliva are determined to be 0.83 pM, 391 PFU/mL, and 625 PFU/mL, respectively, while the detection time is found to be less than 20 min. Thus, the AgNT array optical sensor could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - James Haverstick
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
14
|
Elie B, Roquebert B, Sofonea MT, Trombert‐Paolantoni S, Foulongne V, Guedj J, Haim‐Boukobza S, Alizon S. Variant‐specific SARS‐CoV‐2 within‐host kinetics. J Med Virol 2022; 94:3625-3633. [PMID: 35373851 PMCID: PMC9088644 DOI: 10.1002/jmv.27757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/08/2022]
Abstract
Since early 2021, SARS‐CoV‐2 variants of concern (VOCs) have been causing epidemic rebounds in many countries. Their properties are well characterized at the epidemiological level but the potential underlying within‐host determinants remain poorly understood. We analyze a longitudinal cohort of 6944 individuals with 14 304 cycle threshold (Ct) values of reverse‐transcription quantitative polymerase chain reaction (RT‐qPCR) VOC screening tests performed in the general population and hospitals in France between February 6 and August 21, 2021. To convert Ct values into numbers of virus copies, we performed an additional analysis using droplet digital PCR (ddPCR). We find that the number of viral genome copies reaches a higher peak value and has a slower decay rate in infections caused by Alpha variant compared to that caused by historical lineages. Following the evidence that viral genome copies in upper respiratory tract swabs are informative on contagiousness, we show that the kinetics of the Alpha variant translate into significantly higher transmission potentials, especially in older populations. Finally, comparing infections caused by the Alpha and Delta variants, we find no significant difference in the peak viral copy number. These results highlight that some of the differences between variants may be detected in virus load variations.
Collapse
Affiliation(s)
- Baptiste Elie
- MIVEGEC, CNRS, IRDUniversité de MontpellierMontpellierFrance
| | | | | | | | | | | | | | - Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERMUniversité PSLParisFrance
| |
Collapse
|
15
|
Matrajt L, Brown ER, Cohen MS, Dimitrov D, Janes H. Could widespread use of antiviral treatment curb the COVID-19 pandemic? A modeling study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.11.10.21266139. [PMID: 34790985 PMCID: PMC8597888 DOI: 10.1101/2021.11.10.21266139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the development of safe and effective vaccines, effective treatments for COVID-19 disease are still desperately needed. Recently, two antiviral drugs have shown to be effective in reducing hospitalizations in clinical trials. In the present work, we use an agent-based mathematical model to assess the potential population impact of the use of antiviral treatments in four countries, corresponding to four current levels of vaccination coverage: Kenya, Mexico, United States (US) and Belgium, with 1.5, 38, 57 and 74% of their populations vaccinated. For each location, we varied antiviral coverage and antiviral effect in reducing viral load (25, 50, 75 or 100% reduction). Irrespective of location, widespread antiviral treatment of symptomatic infections (≥50% coverage) is expected to prevent the majority of COVID-19 deaths. Furthermore, even treating 20% of adult symptomatic infections, is expected to reduce mortality by a third in all countries, irrespective of the assumed treatment efficacy in reducing viral load. Our results suggest that early antiviral treatment is needed to mitigate transmission, with early treatment (within two days of symptoms) preventing 50% more infections compared to late treatment (started on days 3 to 5 after developing symptoms). Our results highlight the synergistic effect of vaccination and antiviral treatment: as vaccination rate increased, antiviral treatment had a bigger impact on overall transmission. These results suggest that antiviral treatments can become a strategic tool that, in combination with vaccination, can significantly control SASRS-CoV-2 transmission and reduce COVID-19 hospitalizations and deaths.
Collapse
Affiliation(s)
- Laura Matrajt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elizabeth R. Brown
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Myron S. Cohen
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dobromir Dimitrov
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
16
|
Drews SJ, Hu Q, Samson R, Abe KT, Rathod B, Colwill K, Gingras AC, Yi QL, O’Brien SF. SARS-CoV-2 Virus-Like Particle Neutralizing Capacity in Blood Donors Depends on Serological Profile and Donor-Declared SARS-CoV-2 Vaccination History. Microbiol Spectr 2022; 10:e0226221. [PMID: 35171006 PMCID: PMC8849073 DOI: 10.1128/spectrum.02262-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
This study attempted to understand the levels of neutralizing titers and the breadth of antibody protection against wild-type and variant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Canadian blood donors during the first 3 months of 2021. During this period, it is unlikely that many of the blood donors had received a second dose, since vaccine rollout had not yet ramped up, and less than 2% of the Canadian population had received a second dose of vaccine. A repeated cross-sectional design was used. A random cross-sectional sampling of all available Canadian Blood Services retention samples (n = 1,500/month) was drawn monthly for January, February, and March 2021. A tiered testing approach analyzed 4,500 Canadian blood donor specimens for potential evidence of a signal for anti-spike (anti-S), anti-receptor-binding domain (anti-RBD), and anti-nucleocapsid protein (anti-N). Specimens were stratified based on donor-declared vaccination history and then stratified on the presence or absence of anti-N as follows: (i) "vaccinated plus anti-N" (n = 5), (ii) "vaccinated and no anti-N" (n = 20), (iii) "unvaccinated plus anti-N" (n = 20), and (iv) "unvaccinated and no anti-N" (n = 20). Randomized specimens were then characterized for neutralizing capacity against wild-type as well as SARS-CoV-2 variants of concern (VOCs) (Alpha [B.1.1.7], Beta [B.1.351], Gamma [P.1], and Delta [B.1.617.2]) using S-pseudotyped virus-like particle (VLP) neutralization assays. There was no neutralizing capacity against wild-type and VOC VLPs within the "no vaccine and no anti-N" group. Neutralization of Beta VLPs was less than wild-type VLPs within "vaccinated plus anti-N," "vaccinated and no anti-N", and "unvaccinated plus anti-N" groups. IMPORTANCE In the first 3 months of 2021 as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination was in the initial stages of a mass rollout, Canadian blood donors had various levels of humoral protection against wild-type and variant of concern (VOC) SARS-CoV-2. Very few Canadians would have received a second dose of a SARS-CoV-2 vaccine. In this study, we identified elevated levels of neutralizing capacity, albeit with reduced neutralization capacity against one or more SARS-CoV-2 strains (wild type and VOCs) in vaccinated blood donors. This broad neutralizing response we present regardless of evidence of natural SARS-CoV-2 infection. Neutralizing capacity against wild type and VOCs varied significantly within the unvaccinated group, with one subset of unvaccinated plasma specimens (unvaccinated and no anti-N) having no measurable wild type- nor variant-neutralizing capacity. The study is important because it indicates that vaccination can be associated with a broad neutralizing antibody capacity of donor plasma against SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Steven J. Drews
- Department of Microbiology, Canadian Blood Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kento T. Abe
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Qi-Long Yi
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Sheila F. O’Brien
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Smith DR, Singh C, Green J, Lueder MR, Arnold CE, Voegtly LJ, Long KA, Rice GK, Luquette AE, Miner HL, Glang L, Bennett AJ, Miller RH, Malagon F, Cer RZ, Bishop-Lilly KA. Genomic and Virological Characterization of SARS-CoV-2 Variants in a Subset of Unvaccinated and Vaccinated U.S. Military Personnel. Front Med (Lausanne) 2022; 8:836658. [PMID: 35155489 PMCID: PMC8829001 DOI: 10.3389/fmed.2021.836658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
The emergence of SARS-CoV-2 variants complicates efforts to control the COVID-19 pandemic. Increasing genomic surveillance of SARS-CoV-2 is imperative for early detection of emerging variants, to trace the movement of variants, and to monitor effectiveness of countermeasures. Additionally, determining the amount of viable virus present in clinical samples is helpful to better understand the impact these variants have on viral shedding. In this study, we analyzed nasal swab samples collected between March 2020 and early November 2021 from a cohort of United States (U.S.) military personnel and healthcare system beneficiaries stationed worldwide as a part of the Defense Health Agency's (DHA) Global Emerging Infections Surveillance (GEIS) program. SARS-CoV-2 quantitative real time reverse-transcription PCR (qRT-PCR) positive samples were characterized by next-generation sequencing and a subset was analyzed for isolation and quantification of viable virus. Not surprisingly, we found that the Delta variant is the predominant strain circulating among U.S. military personnel beginning in July 2021 and primarily represents cases of vaccine breakthrough infections (VBIs). Among VBIs, we found a 50-fold increase in viable virus in nasal swab samples from Delta variant cases when compared to cases involving other variants. Notably, we found a 40-fold increase in viable virus in nasal swab samples from VBIs involving Delta as compared to unvaccinated personnel infected with other variants prior to the availability of approved vaccines. This study provides important insight about the genomic and virological characterization of SARS-CoV-2 isolates from a unique study population with a global presence.
Collapse
Affiliation(s)
- Darci R. Smith
- Biological Defense Research Directorate, Department of Microbiology and Immunology, Naval Medical Research Center, Fort Detrick, MD, United States
| | - Christopher Singh
- Biological Defense Research Directorate, Department of Microbiology and Immunology, Naval Medical Research Center, Fort Detrick, MD, United States
- Parsons, Centreville, VA, United States
| | - Jennetta Green
- Biological Defense Research Directorate, Department of Microbiology and Immunology, Naval Medical Research Center, Fort Detrick, MD, United States
| | - Matthew R. Lueder
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Catherine E. Arnold
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Logan J. Voegtly
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Kyle A. Long
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Gregory K. Rice
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Andrea E. Luquette
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Haven L. Miner
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Lindsay Glang
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Andrew J. Bennett
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Robin H. Miller
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Francisco Malagon
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
- Leidos, Reston, VA, United States
| | - Regina Z. Cer
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Department of Genomics and Bioinformatics, Naval Medical Research Center, Fort Detrick, MD, United States
| |
Collapse
|
18
|
Focosi D, Maggi F, Casadevall A. Mucosal Vaccines, Sterilizing Immunity, and the Future of SARS-CoV-2 Virulence. Viruses 2022; 14:187. [PMID: 35215783 PMCID: PMC8878800 DOI: 10.3390/v14020187] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Sterilizing immunity after vaccination is desirable to prevent the spread of infection from vaccinees, which can be especially dangerous in hospital settings while managing frail patients. Sterilizing immunity requires neutralizing antibodies at the site of infection, which for respiratory viruses such as SARS-CoV-2 implies the occurrence of neutralizing IgA in mucosal secretions. Systemic vaccination by intramuscular delivery induces no or low-titer neutralizing IgA against vaccine antigens. Mucosal priming or boosting, is needed to provide sterilizing immunity. On the other side of the coin, sterilizing immunity, by zeroing interhuman transmission, could confine SARS-CoV-2 in animal reservoirs, preventing spontaneous attenuation of virulence in humans as presumably happened with the endemic coronaviruses. We review here the pros and cons of each vaccination strategy, the current mucosal SARS-CoV-2 vaccines under development, and their implications for public health.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD 21218, USA;
| |
Collapse
|
19
|
Focosi D, Franchini M, Pirofski LA, Maggi F, Casadevall A. Is SARS-CoV-2 viral clearance in nasopharyngeal swabs an appropriate surrogate marker for clinical efficacy of neutralising antibody-based therapeutics? Rev Med Virol 2021; 32:e2314. [PMID: 34861088 DOI: 10.1002/rmv.2314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Viral clearance is likely the best way to assess the efficacy of antibody-based therapies. Although antibodies can mediate a variety of effects that include modulation of inflammation, the demonstration of viral clearance provides an accessible and measurable parameter that can be used to evaluate efficacy and determine dosing. Therefore, it is important to ascertain the ability of monoclonal antibodies and convalescent plasma to effect viral clearance. For COVID-19, which is caused by the respiratory virus SARS-CoV-2, the most common assay to assess viral clearance is via a nasopharyngeal swab (NPS). However, assessment of antibody efficacy by sampling this site may be misleading because it may not be as accessible to serum antibodies as respiratory secretions or circulating blood. Adding to the complexity of assessing the efficacy of administered antibody, particularly in randomised controlled trials (RCTs) that enroled patients at different times after the onset of COVID-19 symptoms, viral clearance may also be mediated by endogenous antibody. In this article we critically review available data on viral clearance in RCTs, matched control studies, case series and case reports of antibody therapies in an attempt to identify variables that contribute to antibody efficacy and suggest optimal strategies for future studies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, New York City, New York, USA
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.,Laboratory of Microbiology, ASST Sette Laghi, Varese, Italy
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Tian D, Sun Y, Zhou J, Ye Q. The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape. Front Immunol 2021; 12:751778. [PMID: 34917076 PMCID: PMC8669155 DOI: 10.3389/fimmu.2021.751778] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the COVID-19 pandemic, SARS-CoV-2 variants have emerged and spread worldwide. The Delta (B.1.617.2) variant was first reported in India in October 2020 and was classified as a "variant of concern (VOC)" by the WHO on 11 May, 2021. Compared to the wild-type strain, several studies have shown that the Delta variant is more transmissible and has higher viral loads in infected samples. COVID-19 patients infected with the Delta variant have a higher risk of hospitalization, intensive care unit (ICU) admission, and mortality. The Delta variant is becoming the dominant strain in many countries around the world. This review summarizes and analyses the biological characteristics of key amino acid mutations, the epidemic characteristics, and the immune escape of the Delta variant. We hope to provide scientific reference for the monitoring and prevention measures of the SARS-CoV-2 Delta variant and the development strategy of a second-generation vaccine.
Collapse
Affiliation(s)
| | | | | | - Qing Ye
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Altawalah H, Alfouzan W, Al-Fadalah T, Ezzikouri S. Diagnostic Performance of Automated SARS-CoV-2 Antigen Assay in Nasal Swab during COVID-19 Vaccination Campaign. Diagnostics (Basel) 2021; 11:2110. [PMID: 34829457 PMCID: PMC8621910 DOI: 10.3390/diagnostics11112110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To control the spread of the pandemic brought about by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, it is necessary to have an automated reliable diagnostic assay. To date, the RT-PCR (RT-qPCR) has been the recommended laboratory method to diagnose SARS-CoV-2 infection, but there is a need for more automated and reliable tests. The aim of this real-life study was to assess the diagnostic performance of DiaSorin's LIAISON SARS-CoV-2 antigen (Ag) chemiluminescence immunoassay in detecting SARS-CoV-2 in vaccinated and unvaccinated individuals. METHODS A prospective study was performed on 300 nasopharyngeal swabs randomly collected from 31 May to 6 July 2021. Nasopharyngeal samples were assayed with DiaSorin's LIAISON SARS-CoV-2 Ag and TaqPath™ COVID-19 multiplex RT-qPCR. RESULTS Of 300 participants, 150 had a RT-qPCR confirmed SARS-CoV-2 infection of whom 113 (75.33%) were also detected by the DiaSorin LIAISON SARS-CoV-2 Ag. Taking RT-qPCR as a reference, the sensitivity and specificity of the DiaSorin LIAISON SARS-CoV-2 Ag assay were evaluated as 75.33% (95% CI = 67.64-82) and 100% (95% CI = 97.57-100), respectively. When a viral load cut-off was applied for high viral load (median cycle threshold (Ct) < 18.57), the overall sensitivity was increased to 96.55% (95% CI = 88.09-99.58). Interestingly, median RT-qPCR Ct and SARS-CoV-2 Ag values were similar between fully vaccinated and unvaccinated subjects. CONCLUSIONS Automated, quantitative LIAISON SARS-CoV-2 Ag assay shows good performance to identify SARS-CoV-2-infected individuals with moderate to high viral loads. LIAISON SARS-CoV-2 Ag testing could be used as frontline testing for COVID-19 diagnosis and be more suitable for large utilization.
Collapse
Affiliation(s)
- Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 24923, Kuwait;
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Safat 24923, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 24923, Kuwait;
- Laboratory Medicine, Farwania Hospital, Ministry of Health, Farwania 85000, Kuwait
| | - Talal Al-Fadalah
- Qualities and Accreditation Directorate, Ministry of Health, Safat 13001, Kuwait;
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20250, Morocco
| |
Collapse
|
22
|
Sakai-Tagawa Y, Yamayoshi S, Halfmann PJ, Kawaoka Y. Comparative Sensitivity of Rapid Antigen Tests for the Delta Variant (B.1.617.2) of SARS-CoV-2. Viruses 2021; 13:v13112183. [PMID: 34834991 PMCID: PMC8618251 DOI: 10.3390/v13112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Rapid antigen tests (RATs) for COVID-19 based on lateral flow immunoassays are useful for rapid diagnosis in a variety of settings. Although many kinds of RATs are available, their respective sensitivity has not been compared. Here, we examined the sensitivity of 27 RATs available in Japan for the detection of the SARS-CoV-2 delta variant. All of the RATs tested detected the delta variant albeit with different sensitivities. Nine RATs (ESPLINE SARS-CoV-2, ALSONIC COVID-19 Ag, COVID-19 and Influenza A+B Antigen Combo Rapid Test, ImmunoArrow SARS-CoV-2, Fuji Dri-chem immuno AG cartridge COVID-19 Ag, 2019-nCoV Ag rapid detection kit, Saliva SARS-CoV-2(2019-nCoV) Antigen Test Kit, and Rabliss SARS-CoV-2 antigen detection kit COVID19 AG) showed superior sensitivity to the isolated delta variant. Although actual clinical specimens were not examined, the detection level of most of the RATs was 7500 pfu, indicating that individuals whose test samples contained less virus than that would be considered negative. Therefore, it is important to bear in mind that RATs may miss individuals shedding low levels of infectious virus.
Collapse
Affiliation(s)
- Yuko Sakai-Tagawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan;
- International Research Center for Infectious Diseases, Department of Special Pathogens, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan;
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Correspondence: (S.Y.); (Y.K.)
| | - Peter J. Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan;
- International Research Center for Infectious Diseases, Department of Special Pathogens, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Correspondence: (S.Y.); (Y.K.)
| |
Collapse
|
23
|
Kazemi S, López-Muñoz AD, Hollý J, Jin L, Yewdell JW, Dolan BP. Variations in cell-surface ACE2 levels alter direct binding of SARS-CoV-2 Spike protein and viral infectivity: Implications for measuring Spike protein interactions with animal ACE2 orthologs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.10.21.465386. [PMID: 34729559 PMCID: PMC8562541 DOI: 10.1101/2021.10.21.465386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, the most severe pandemic in a century. The virus gains access to host cells when the viral Spike protein (S-protein) binds to the host cell-surface receptor angiotensin-converting enzyme 2 (ACE2). Studies have attempted to understand SARS-CoV-2 S-protein interaction with vertebrate orthologs of ACE2 by expressing ACE2 orthologs in mammalian cells and measuring viral infection or S-protein binding. Often these cells only transiently express ACE2 proteins and levels of ACE2 at the cell surface are not quantified. Here, we describe a cell-based assay that uses stably transfected cells expressing ACE2 proteins in a bi-cistronic vector with an easy to quantify reporter protein to normalize ACE2 expression. We found that both binding of the S-protein receptor-binding domain (RBD) and infection with a SARS-CoV-2 pseudovirus is proportional to the amount of human ACE2 expressed at the cell surface, which can be inferred by quantifying the level of reporter protein, Thy1.1. We also compared different ACE2 orthologs which were expressed in stably transfected cells expressing equivalent levels of Thy1.1. When ranked for either viral infectivity or RBD binding, mouse ACE2 had a weak to undetectable affinity for S-protein while human ACE2 was the highest level detected and feline ACE2 had an intermediate phenotype. The generation of stably transfected cells whose ACE2 level can be normalized for cross-ortholog comparisons allows us to create a reusable cellular library useful for measuring emerging SARS-CoV-2 variant's ability to potentially infect different animals. IMPORTANCE SARS-CoV-2 is a zoonotic virus responsible for the worst global pandemic in a century. An understanding of how the virus can infect other vertebrate species is important for controlling viral spread and understanding the natural history of the virus. Here we describe a method to generate cells stably expressing equivalent levels of different ACE2 orthologs, the receptor for SARS-CoV-2, on the surface of a human cell line. We find that both binding of the viral Spike protein receptor binding domain (RBD) and infection of cells with a SARS-CoV-2 pseudovirus are proportional to ACE2 levels at the cell surface. Adaptation of this method will allow for the creation of a library of stable transfected cells expressing equivalent levels of different vertebrate ACE2 orthologs which can be repeatedly used for identifying vertebrate species which may be susceptible to infection with SARS-CoV-2 and its many variants.
Collapse
Affiliation(s)
- Soheila Kazemi
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, OR. USA
| | - Alberto Domingo López-Muñoz
- Laboratory of Viral Diseases, Cell Biology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD. USA
| | - Jaroslav Hollý
- Laboratory of Viral Diseases, Cell Biology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD. USA
| | - Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, OR. USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, Cell Biology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD. USA
| | - Brian P Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, OR. USA
| |
Collapse
|
24
|
Earnest R, Uddin R, Matluk N, Renzette N, Siddle KJ, Loreth C, Adams G, Tomkins-Tinch CH, Petrone ME, Rothman JE, Breban MI, Koch RT, Billig K, Fauver JR, Vogels CB, Turbett S, Bilguvar K, De Kumar B, Landry ML, Peaper DR, Kelly K, Omerza G, Grieser H, Meak S, Martha J, Dewey HH, Kales S, Berenzy D, Carpenter-Azevedo K, King E, Huard RC, Smole SC, Brown CM, Fink T, Lang AS, Gallagher GR, Sabeti PC, Gabriel S, MacInnis BL, Tewhey R, Adams MD, Park DJ, Lemieux JE, Grubaugh ND. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.06.21264641. [PMID: 34642698 PMCID: PMC8509091 DOI: 10.1101/2021.10.06.21264641] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta's infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∼6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta's enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Rockib Uddin
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicholas Matluk
- Maine Center for Disease Control and Prevention, Augusta, ME 04333
- Health and Environmental Testing Laboratory, Augusta, ME 04333
| | - Nicholas Renzette
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | | | - Gordon Adams
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Mary E. Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Jessica E. Rothman
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Robert Tobias Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Kendall Billig
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Joseph R. Fauver
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sarah Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kaya Bilguvar
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
- Departments of Neurosurgery and Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Medical Genetics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Bony De Kumar
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Marie L. Landry
- Departments of Laboratory Medicine and Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - David R. Peaper
- Departments of Laboratory Medicine and Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kevin Kelly
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Greg Omerza
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Heather Grieser
- Maine Center for Disease Control and Prevention, Augusta, ME 04333
- Health and Environmental Testing Laboratory, Augusta, ME 04333
| | - Sim Meak
- Maine Center for Disease Control and Prevention, Augusta, ME 04333
- Health and Environmental Testing Laboratory, Augusta, ME 04333
| | - John Martha
- Maine Center for Disease Control and Prevention, Augusta, ME 04333
- Health and Environmental Testing Laboratory, Augusta, ME 04333
| | | | - Susan Kales
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Ewa King
- Rhode Island Department of Health, State Health Laboratories, Providence, RI 02904, USA
| | - Richard C. Huard
- Rhode Island Department of Health, State Health Laboratories, Providence, RI 02904, USA
| | - Sandra C. Smole
- Massachusetts Department of Public Health, Boston MA 02130, USA
| | | | - Timelia Fink
- Massachusetts Department of Public Health, Boston MA 02130, USA
| | - Andrew S. Lang
- Massachusetts Department of Public Health, Boston MA 02130, USA
| | | | | | - Stacey Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Ryan Tewhey
- Department of Medical Genetics, Acibadem University School of Medicine, Istanbul, Turkey
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Mark D. Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Daniel J. Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacob E. Lemieux
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|