1
|
Trigo-Tasende N, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Vaamonde M, López-Oriona Á, Barbeito I, Nasser-Ali M, Reif R, Rodiño-Janeiro BK, Fernández-Álvarez E, Iglesias-Corrás I, Freire B, Tarrío-Saavedra J, Tomás L, Gallego-García P, Posada D, Bou G, López-de-Ullibarri I, Cao R, Ladra S, Poza M. Wastewater early warning system for SARS-CoV-2 outbreaks and variants in a Coruña, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27877-3. [PMID: 37286834 DOI: 10.1007/s11356-023-27877-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Wastewater-based epidemiology has been widely used as a cost-effective method for tracking the COVID-19 pandemic at the community level. Here we describe COVIDBENS, a wastewater surveillance program running from June 2020 to March 2022 in the wastewater treatment plant of Bens in A Coruña (Spain). The main goal of this work was to provide an effective early warning tool based in wastewater epidemiology to help in decision-making at both the social and public health levels. RT-qPCR procedures and Illumina sequencing were used to weekly monitor the viral load and to detect SARS-CoV-2 mutations in wastewater, respectively. In addition, own statistical models were applied to estimate the real number of infected people and the frequency of each emerging variant circulating in the community, which considerable improved the surveillance strategy. Our analysis detected 6 viral load waves in A Coruña with concentrations between 103 and 106 SARS-CoV-2 RNA copies/L. Our system was able to anticipate community outbreaks during the pandemic with 8-36 days in advance with respect to clinical reports and, to detect the emergence of new SARS-CoV-2 variants in A Coruña such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529 and BA.2) in wastewater with 42, 30, and 27 days, respectively, before the health system did. Data generated here helped local authorities and health managers to give a faster and more efficient response to the pandemic situation, and also allowed important industrial companies to adapt their production to each situation. The wastewater-based epidemiology program developed in our metropolitan area of A Coruña (Spain) during the SARS-CoV-2 pandemic served as a powerful early warning system combining statistical models with mutations and viral load monitoring in wastewater over time.
Collapse
Affiliation(s)
- Noelia Trigo-Tasende
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Juan A Vallejo
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Soraya Rumbo-Feal
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Kelly Conde-Pérez
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Manuel Vaamonde
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ángel López-Oriona
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Inés Barbeito
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Mohammed Nasser-Ali
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Rubén Reif
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Bruno K Rodiño-Janeiro
- BFlow, University of Santiago de Compostela (USC) and Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15706, Santiago de Compostela, A Coruña, Spain
| | - Elisa Fernández-Álvarez
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Iago Iglesias-Corrás
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Borja Freire
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Javier Tarrío-Saavedra
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Germán Bou
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Ignacio López-de-Ullibarri
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ricardo Cao
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Susana Ladra
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Margarita Poza
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain.
| |
Collapse
|
2
|
Amman F, Markt R, Endler L, Hupfauf S, Agerer B, Schedl A, Richter L, Zechmeister M, Bicher M, Heiler G, Triska P, Thornton M, Penz T, Senekowitsch M, Laine J, Keszei Z, Klimek P, Nägele F, Mayr M, Daleiden B, Steinlechner M, Niederstätter H, Heidinger P, Rauch W, Scheffknecht C, Vogl G, Weichlinger G, Wagner AO, Slipko K, Masseron A, Radu E, Allerberger F, Popper N, Bock C, Schmid D, Oberacher H, Kreuzinger N, Insam H, Bergthaler A. Viral variant-resolved wastewater surveillance of SARS-CoV-2 at national scale. Nat Biotechnol 2022; 40:1814-1822. [PMID: 35851376 DOI: 10.1038/s41587-022-01387-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/07/2022] [Indexed: 01/14/2023]
Abstract
SARS-CoV-2 surveillance by wastewater-based epidemiology is poised to provide a complementary approach to sequencing individual cases. However, robust quantification of variants and de novo detection of emerging variants remains challenging for existing strategies. We deep sequenced 3,413 wastewater samples representing 94 municipal catchments, covering >59% of the population of Austria, from December 2020 to February 2022. Our system of variant quantification in sewage pipeline designed for robustness (termed VaQuERo) enabled us to deduce the spatiotemporal abundance of predefined variants from complex wastewater samples. These results were validated against epidemiological records of >311,000 individual cases. Furthermore, we describe elevated viral genetic diversity during the Delta variant period, provide a framework to predict emerging variants and measure the reproductive advantage of variants of concern by calculating variant-specific reproduction numbers from wastewater. Together, this study demonstrates the power of national-scale WBE to support public health and promises particular value for countries without extensive individual monitoring.
Collapse
Affiliation(s)
- Fabian Amman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Markt
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Hupfauf
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Schedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lukas Richter
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | | | - Martin Bicher
- dwh GmbH, Vienna, Austria.,Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Georg Heiler
- Complexity Science Hub, Vienna, Austria.,Institute of Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Petr Triska
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Matthew Thornton
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jan Laine
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Zsofia Keszei
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Klimek
- Complexity Science Hub, Vienna, Austria.,Section for Science of Complex Systems, Medical University of Vienna, Vienna, Austria
| | - Fabiana Nägele
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Markus Mayr
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Beatrice Daleiden
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Steinlechner
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Niederstätter
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Heidinger
- Austrian Centre of Industrial Biotechnology GmbH, Graz, Austria
| | - Wolfgang Rauch
- Department of Infrastructure, Universität Innsbruck, Innsbruck, Austria
| | | | - Gunther Vogl
- Institut für Lebensmittelsicherheit, Veterinärmedizin und Umwelt des Landes Kärnten, Klagenfurt am Wörthersee, Austria
| | - Günther Weichlinger
- Abteilung 12 - Wasserwirtschaft, Amt der Kärntner Landesregierung, Klagenfurt am Wörthersee, Austria
| | | | - Katarzyna Slipko
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Amandine Masseron
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Elena Radu
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria.,Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | | - Niki Popper
- dwh GmbH, Vienna, Austria.,Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Daniela Schmid
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Technische Universität Wien, Vienna, Austria
| | - Heribert Insam
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH, Ke FY, Su SC, Liang KH, Yuan JPY, Chiang HL, Sun CP, Lee IJ, Li WS, Hsieh HP, Tao MH, Wu HC. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci 2022; 29:68. [PMID: 36096815 PMCID: PMC9465653 DOI: 10.1186/s12929-022-00852-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/01/2022] [Indexed: 12/12/2022] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Monika Kumari
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Mu-Chun Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jhih-Liang Huang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Fu-Fei Hsu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiao-Ling Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Cheng-Pu Sun
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Jung Lee
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Pang Hsieh
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Mi-Hua Tao
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan.
| |
Collapse
|
4
|
Lou EG, Sapoval N, McCall C, Bauhs L, Carlson-Stadler R, Kalvapalle P, Lai Y, Palmer K, Penn R, Rich W, Wolken M, Brown P, Ensor KB, Hopkins L, Treangen TJ, Stadler LB. Direct comparison of RT-ddPCR and targeted amplicon sequencing for SARS-CoV-2 mutation monitoring in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022. [PMID: 35395314 DOI: 10.2139/ssrn.4022373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have emerged that are more contagious and more likely to cause breakthrough infections. Targeted amplicon sequencing approach is a gold standard for identification and analysis of variants. However, when applied to environmental samples such as wastewater, it remains unclear how sensitive this method is for detecting variant-associated mutations in environmental samples. Here we directly compare a targeted amplicon sequencing approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR quantification for the detection of five mutations that are characteristic of variants of concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed using both methods in parallel. When we observed positive mutation detections by RT-ddPCR, 42.6% of the detection events were missed by sequencing, due to negative detection or the limited read coverage at the mutation position. Further, when sequencing reported negative or depth-limited mutation detections, 26.7% of those events were instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of sequencing. No or weak associations were observed between quantitative measurements of target mutations determined by RT-ddPCR and sequencing. These findings caution the use of quantitative measurements of SARS-CoV-2 variants in wastewater samples determined solely based on sequencing.
Collapse
Affiliation(s)
- Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Camille McCall
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Lauren Bauhs
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Russell Carlson-Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Yanlai Lai
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Kyle Palmer
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Ryker Penn
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Whitney Rich
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Madeline Wolken
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Pamela Brown
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Katherine B Ensor
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Loren Hopkins
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America; Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America.
| |
Collapse
|
5
|
Lou EG, Sapoval N, McCall C, Bauhs L, Carlson-Stadler R, Kalvapalle P, Lai Y, Palmer K, Penn R, Rich W, Wolken M, Brown P, Ensor KB, Hopkins L, Treangen TJ, Stadler LB. Direct comparison of RT-ddPCR and targeted amplicon sequencing for SARS-CoV-2 mutation monitoring in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155059. [PMID: 35395314 PMCID: PMC8983075 DOI: 10.1016/j.scitotenv.2022.155059] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
Over the course of the COVID-19 pandemic, variants of SARS-CoV-2 have emerged that are more contagious and more likely to cause breakthrough infections. Targeted amplicon sequencing approach is a gold standard for identification and analysis of variants. However, when applied to environmental samples such as wastewater, it remains unclear how sensitive this method is for detecting variant-associated mutations in environmental samples. Here we directly compare a targeted amplicon sequencing approach (using ARTIC v3; hereafter referred to as sequencing) with RT-ddPCR quantification for the detection of five mutations that are characteristic of variants of concern (VoCs) in wastewater samples. In total, 547 wastewater samples were analyzed using both methods in parallel. When we observed positive mutation detections by RT-ddPCR, 42.6% of the detection events were missed by sequencing, due to negative detection or the limited read coverage at the mutation position. Further, when sequencing reported negative or depth-limited mutation detections, 26.7% of those events were instead positive detections by RT-ddPCR, highlighting the relatively poor sensitivity of sequencing. No or weak associations were observed between quantitative measurements of target mutations determined by RT-ddPCR and sequencing. These findings caution the use of quantitative measurements of SARS-CoV-2 variants in wastewater samples determined solely based on sequencing.
Collapse
Affiliation(s)
- Esther G Lou
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Camille McCall
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Lauren Bauhs
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Russell Carlson-Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Yanlai Lai
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Kyle Palmer
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Ryker Penn
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Whitney Rich
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Madeline Wolken
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America
| | - Pamela Brown
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America
| | - Katherine B Ensor
- Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Loren Hopkins
- Houston Health Department, 8000 N. Stadium Dr., Houston, TX 77054, United States of America; Department of Statistics, Rice University, 6100 Main Street MS 138, Houston, TX 77005, United States of America
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX 77005, United States of America
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, MS 519, Houston, TX 77005, United States of America.
| |
Collapse
|
6
|
Genome Sequencing of SARS-CoV-2 Allows Monitoring of Variants of Concern through Wastewater. WATER 2021. [DOI: 10.3390/w13213018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Monitoring SARS-CoV-2 in wastewater has shown to be an effective tool for epidemiological surveillance. More specifically, RNA levels determined with RT-qPCR have been shown to track with the infection dynamics within the population. However, the surveillance of individual lineages circulating in the population based on genomic sequencing of wastewater samples is challenging, as the genetic material constitutes a mixture of different viral haplotypes. Here, we identify specific signature mutations from individual SARS-CoV-2 lineages in wastewater samples to estimate lineages circulating in Luxembourg. We compare circulating lineages and mutations to those detected in clinical samples amongst infected individuals. We show that especially for dominant lineages, the allele frequencies of signature mutations correspond to the occurrence of particular lineages in the population. In addition, we provide evidence that regional clusters can also be discerned. We focused on the time period between November 2020 and March 2021 in which several variants of concern emerged and specifically traced the lineage B.1.1.7, which became dominant in Luxembourg during that time. During the subsequent time points, we were able to reconstruct short haplotypes, highlighting the co-occurrence of several signature mutations. Our results highlight the potential of genomic surveillance in wastewater samples based on amplicon short-read data. By extension, our work provides the basis for the early detection of novel SARS-CoV-2 variants.
Collapse
|