1
|
Burt CH. Polygenic Indices (a.k.a. Polygenic Scores) in Social Science: A Guide for Interpretation and Evaluation. SOCIOLOGICAL METHODOLOGY 2024; 54:300-350. [PMID: 39091537 PMCID: PMC11293310 DOI: 10.1177/00811750241236482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Polygenic indices (PGI)-the new recommended label for polygenic scores (PGS) in social science-are genetic summary scales often used to represent an individual's liability for a disease, trait, or behavior based on the additive effects of measured genetic variants. Enthusiasm for linking genetic data with social outcomes and the inclusion of premade PGIs in social science datasets have facilitated increased uptake of PGIs in social science research-a trend that will likely continue. Yet, most social scientists lack the expertise to interpret and evaluate PGIs in social science research. Here, we provide a primer on PGIs for social scientists focusing on key concepts, unique statistical genetic considerations, and best practices in calculation, estimation, reporting, and interpretation. We summarize our recommended best practices as a checklist to aid social scientists in evaluating and interpreting studies with PGIs. We conclude by discussing the similarities between PGIs and standard social science scales and unique interpretative considerations.
Collapse
|
2
|
Blanc J, Berg JJ. Testing for differences in polygenic scores in the presence of confounding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.12.532301. [PMID: 36993707 PMCID: PMC10055004 DOI: 10.1101/2023.03.12.532301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Polygenic scores have become an important tool in human genetics, enabling the prediction of individuals' phenotypes from their genotypes. Understanding how the pattern of differences in polygenic score predictions across individuals intersects with variation in ancestry can provide insights into the evolutionary forces acting on the trait in question, and is important for understanding health disparities. However, because most polygenic scores are computed using effect estimates from population samples, they are susceptible to confounding by both genetic and environmental effects that are correlated with ancestry. The extent to which this confounding drives patterns in the distribution of polygenic scores depends on patterns of population structure in both the original estimation panel and in the prediction/test panel. Here, we use theory from population and statistical genetics, together with simulations, to study the procedure of testing for an association between polygenic scores and axes of ancestry variation in the presence of confounding. We use a general model of genetic relatedness to describe how confounding in the estimation panel biases the distribution of polygenic scores in a way that depends on the degree of overlap in population structure between panels. We then show how this confounding can bias tests for associations between polygenic scores and important axes of ancestry variation in the test panel. Specifically, for any given test, there exists a single axis of population structure in the GWAS panel that needs to be controlled for in order to protect the test. Based on this result, we propose a new approach for directly estimating this axis of population structure in the GWAS panel. We then use simulations to compare the performance of this approach to the standard approach in which the principal components of the GWAS panel genotypes are used to control for stratification.
Collapse
Affiliation(s)
- Jennifer Blanc
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Jeremy J. Berg
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Nivard MG, Belsky DW, Harden KP, Baier T, Andreassen OA, Ystrøm E, van Bergen E, Lyngstad TH. More than nature and nurture, indirect genetic effects on children's academic achievement are consequences of dynastic social processes. Nat Hum Behav 2024; 8:771-778. [PMID: 38225408 PMCID: PMC11569812 DOI: 10.1038/s41562-023-01796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Families transmit genes and environments across generations. When parents' genetics affect their children's environments, these two modes of inheritance can produce an 'indirect genetic effect'. Such indirect genetic effects may account for up to half of the estimated genetic variance in educational attainment. Here we tested if indirect genetic effects reflect within-nuclear-family transmission ('genetic nurture') or instead a multi-generational process of social stratification ('dynastic effects'). We analysed indirect genetic effects on children's academic achievement in their fifth to ninth years of schooling in N = 37,117 parent-offspring trios in the Norwegian Mother, Father, and Child Cohort Study (MoBa). We used pairs of genetically related families (parents were siblings, children were cousins; N = 10,913) to distinguish within-nuclear-family genetic-nurture effects from dynastic effects shared by cousins in different nuclear families. We found that indirect genetic effects on children's academic achievement cannot be explained by processes that operate exclusively within the nuclear family.
Collapse
Affiliation(s)
- Michel G Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Daniel W Belsky
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Robert N. Butler Columbia Aging Center, Columbia University, New York, NY, USA
| | - K Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Tina Baier
- Department of Sociology and Human Geography, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eivind Ystrøm
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Elsje van Bergen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
- Research Institute LEARN!, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Torkild H Lyngstad
- Department of Sociology and Human Geography, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Frach L, Barkhuizen W, Allegrini AG, Ask H, Hannigan LJ, Corfield EC, Andreassen OA, Dudbridge F, Ystrom E, Havdahl A, Pingault JB. Examining intergenerational risk factors for conduct problems using polygenic scores in the Norwegian Mother, Father and Child Cohort Study. Mol Psychiatry 2024; 29:951-961. [PMID: 38225381 PMCID: PMC11176059 DOI: 10.1038/s41380-023-02383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
The aetiology of conduct problems involves a combination of genetic and environmental factors, many of which are inherently linked to parental characteristics given parents' central role in children's lives across development. It is important to disentangle to what extent links between parental heritable characteristics and children's behaviour are due to transmission of genetic risk or due to parental indirect genetic influences via the environment (i.e., genetic nurture). We used 31,290 genotyped mother-father-child trios from the Norwegian Mother, Father and Child Cohort Study (MoBa), testing genetic transmission and genetic nurture effects on conduct problems using 13 polygenic scores (PGS) spanning psychiatric conditions, substance use, education-related factors, and other risk factors. Maternal or self-reports of conduct problems at ages 8 and 14 years were available for up to 15,477 children. We found significant genetic transmission effects on conduct problems for 12 out of 13 PGS at age 8 years (strongest association: PGS for smoking, β = 0.07, 95% confidence interval = [0.05, 0.08]) and for 4 out of 13 PGS at age 14 years (strongest association: PGS for externalising problems, β = 0.08, 95% confidence interval = [0.05, 0.11]). Conversely, we did not find genetic nurture effects for conduct problems using our selection of PGS. Our findings provide evidence for genetic transmission in the association between parental characteristics and child conduct problems. Our results may also indicate that genetic nurture via traits indexed by our polygenic scores is of limited aetiological importance for conduct problems-though effects of small magnitude or effects via parental traits not captured by the included PGS remain a possibility.
Collapse
Affiliation(s)
- Leonard Frach
- Department of Clinical, Educational & Health Psychology, Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, UK.
| | - Wikus Barkhuizen
- Department of Clinical, Educational & Health Psychology, Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, UK
| | - Andrea G Allegrini
- Department of Clinical, Educational & Health Psychology, Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Helga Ask
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Laurie J Hannigan
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Elizabeth C Corfield
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Frank Dudbridge
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Eivind Ystrom
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Jean-Baptiste Pingault
- Department of Clinical, Educational & Health Psychology, Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Clapp Sullivan ML, Schwaba T, Harden KP, Grotzinger AD, Nivard MG, Tucker-Drob EM. Beyond the factor indeterminacy problem using genome-wide association data. Nat Hum Behav 2024; 8:205-218. [PMID: 38225407 PMCID: PMC10922726 DOI: 10.1038/s41562-023-01789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Latent factors, such as general intelligence, depression and risk tolerance, are invoked in nearly all social science research where a construct is measured via aggregation of symptoms, question responses or other measurements. Because latent factors cannot be directly observed, they are inferred by fitting a specific model to empirical patterns of correlations among measured variables. A long-standing critique of latent factor theories is that the correlations used to infer latent factors can be produced by alternative data-generating mechanisms that do not include latent factors. This is referred to as the factor indeterminacy problem. Researchers have recently begun to overcome this problem by using information on the associations between individual genetic variants and measured variables. We review historical work on the factor indeterminacy problem and describe recent efforts in genomics to rigorously test the validity of latent factors, advancing the understanding of behavioural science constructs.
Collapse
Affiliation(s)
| | - Ted Schwaba
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - K Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Grotzinger
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Michel G Nivard
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Veller C, Przeworski M, Coop G. Causal interpretations of family GWAS in the presence of heterogeneous effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566950. [PMID: 38014124 PMCID: PMC10680648 DOI: 10.1101/2023.11.13.566950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Family-based genome-wide association studies (GWAS) have emerged as a gold standard for assessing causal effects of alleles and polygenic scores. Notably, family studies are often claimed to provide an unbiased estimate of the average causal effect (or average treatment effect; ATE) of an allele, on the basis of an analogy between the random transmission of alleles from parents to children and a randomized controlled trial. Here, we show that this interpretation does not hold in general. Because Mendelian segregation only randomizes alleles among children of heterozygotes, the effects of alleles in the children of homozygotes are not observable. Consequently, if an allele has different average effects in the children of homozygotes and heterozygotes, as can arise in the presence of gene-by-environment interactions, gene-by-gene interactions, or differences in LD patterns, family studies provide a biased estimate of the average effect in the sample. At a single locus, family-based association studies can be thought of as providing an unbiased estimate of the average effect in the children of heterozygotes (i.e., a local average treatment effect; LATE). This interpretation does not extend to polygenic scores, however, because different sets of SNPs are heterozygous in each family. Therefore, other than under specific conditions, the within-family regression slope of a PGS cannot be assumed to provide an unbiased estimate for any subset or weighted average of families. Instead, family-based studies can be reinterpreted as enabling an unbiased estimate of the extent to which Mendelian segregation at loci in the PGS contributes to the population-level variance in the trait. Because this estimate does not include the between-family variance, however, this interpretation applies to only (roughly) half of the sample PGS variance. In practice, the potential biases of a family-based GWAS are likely smaller than those arising from confounding in a standard, population-based GWAS, and so family studies remain important for the dissection of genetic contributions to phenotypic variation. Nonetheless, the causal interpretation of family-based GWAS estimates is less straightforward than has been widely appreciated.
Collapse
Affiliation(s)
- Carl Veller
- Department of Ecology and Evolution, University of Chicago
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University
- Department of Systems Biology, Columbia University
| | - Graham Coop
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis
| |
Collapse
|
7
|
Young AS. Estimation of indirect genetic effects and heritability under assortative mating. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548458. [PMID: 37503158 PMCID: PMC10369881 DOI: 10.1101/2023.07.10.548458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Both direct genetic effects (effects of alleles in an individual on that individual) and indirect genetic effects - effects of alleles in an individual (e.g. parents) on another individual (e.g. offspring) - can contribute to phenotypic variation and genotype-phenotype associations. Here, we consider a phenotype affected by direct and parental indirect genetic effects under assortative mating at equilibrium. We generalize classical theory to derive a decomposition of the equilibrium phenotypic variance in terms of direct and indirect genetic effect components. We extend this theory to show that popular methods for estimating indirect genetic effects or 'genetic nurture' through analysis of parental and offspring polygenic predictors (called polygenic indices or scores - PGIs or PGSs) are substantially biased by assortative mating. We propose an improved method for estimating indirect genetic effects while accounting for assortative mating that can also correct heritability estimates for bias due to assortative mating. We validate our method in simulations and apply it to PGIs for height and educational attainment (EA), estimating that the equilibrium heritability of height is 0.699 (S.E. = 0.075 ) and finding no evidence for indirect genetic effects on height. We estimate a very high correlation between parents' underlying genetic components for EA, 0.755 (S.E. = 0.035), which is inconsistent with twin based estimates of the heritability of EA, possibly due to confounding in the EA PGI and/or in twin studies. We implement our method in the software package snipar, enabling researchers to apply the method to data including observed and/or imputed parental genotypes. We provide a theoretical framework for understanding the results of PGI analyses and a practical methodology for estimating heritability and indirect genetic effects while accounting for assortative mating.
Collapse
Affiliation(s)
- Alexander Strudwick Young
- UCLA Anderson School of Management, Los Angeles, CA, USA
- Human Genetics Department, UCLA David Geffen School of Medicine, Los Angeles, CA, US
| |
Collapse
|
8
|
Tanksley PT, Brislin SJ, Wertz J, de Vlaming R, Courchesne-Krak NS, Mallard TT, Raffington LL, Linnér RK, Koellinger P, Palmer A, Sanchez-Roige A, Waldman I, Dick D, Moffitt TE, Caspi A, Harden KP. Do polygenic indices capture "direct" effects on child externalizing behavior? Within-family analyses in two longitudinal birth cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290802. [PMID: 37398155 PMCID: PMC10312898 DOI: 10.1101/2023.05.31.23290802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Behaviors and disorders characterized by difficulties with self-regulation, such as problematic substance use, antisocial behavior, and symptoms of attention-deficit/hyperactivity disorder (ADHD), incur high costs for individuals, families, and communities. These externalizing behaviors often appear early in the life course and can have far-reaching consequences. Researchers have long been interested in direct measurements of genetic risk for externalizing behaviors, which can be incorporated alongside other known risk factors to improve efforts at early identification and intervention. In a preregistered analysis drawing on data from the Environmental Risk (E-Risk) Longitudinal Twin Study (N = 862 twins) and the Millennium Cohort Study (MCS; N = 2,824 parent-child trios), two longitudinal cohorts from the UK, we leveraged molecular genetic data and within-family designs to test for genetic effects on externalizing behavior that are unbiased by the common sources of environmental confounding. Results are consistent with the conclusion that an externalizing polygenic index (PGI) captures causal effects of genetic variants on externalizing problems in children and adolescents, with an effect size that is comparable to those observed for other established risk factors in the research literature on externalizing behavior. Additionally, we find that polygenic associations vary across development (peaking from age 5-10 years), that parental genetics (assortment and parent-specific effects) and family-level covariates affect prediction little, and that sex differences in polygenic prediction are present but only detectable using within-family comparisons. Based on these findings, we believe that the PGI for externalizing behavior is a promising means for studying the development of disruptive behaviors across child development.
Collapse
Affiliation(s)
- Peter T Tanksley
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| | - Sarah J Brislin
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Newark, NJ, USA
| | - Jasmin Wertz
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ronald de Vlaming
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Travis T Mallard
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laurel L Raffington
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
- Max Planck Institute for Human Development, Berlin, Germany
| | | | - Philipp Koellinger
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Abraham Palmer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alexandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Irwin Waldman
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Danielle Dick
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Newark, NJ, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for the Study of Population Health & Aging, Duke University Population Research Institute, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Psychology, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for the Study of Population Health & Aging, Duke University Population Research Institute, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Psychology, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - K Paige Harden
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Population Research Center, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Link V, Schraiber JG, Fan C, Dinh B, Mancuso N, Chiang CW, Edge MD. Tree-based QTL mapping with expected local genetic relatedness matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536093. [PMID: 37066144 PMCID: PMC10104234 DOI: 10.1101/2023.04.07.536093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Understanding the genetic basis of complex phenotypes is a central pursuit of genetics. Genome-wide Association Studies (GWAS) are a powerful way to find genetic loci associated with phenotypes. GWAS are widely and successfully used, but they face challenges related to the fact that variants are tested for association with a phenotype independently, whereas in reality variants at different sites are correlated because of their shared evolutionary history. One way to model this shared history is through the ancestral recombination graph (ARG), which encodes a series of local coalescent trees. Recent computational and methodological breakthroughs have made it feasible to estimate approximate ARGs from large-scale samples. Here, we explore the potential of an ARG-based approach to quantitative-trait locus (QTL) mapping, echoing existing variance-components approaches. We propose a framework that relies on the conditional expectation of a local genetic relatedness matrix given the ARG (local eGRM). Simulations show that our method is especially beneficial for finding QTLs in the presence of allelic heterogeneity. By framing QTL mapping in terms of the estimated ARG, we can also facilitate the detection of QTLs in understudied populations. We use local eGRM to identify a large-effect BMI locus, the CREBRF gene, in a sample of Native Hawaiians in which it was not previously detectable by GWAS because of a lack of population-specific imputation resources. Our investigations can provide intuition about the benefits of using estimated ARGs in population- and statistical-genetic methods in general.
Collapse
Affiliation(s)
- Vivian Link
- Department of Quantitative and Computational Biology, University of Southern California
| | - Joshua G. Schraiber
- Department of Quantitative and Computational Biology, University of Southern California
| | - Caoqi Fan
- Department of Quantitative and Computational Biology, University of Southern California
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Bryan Dinh
- Department of Quantitative and Computational Biology, University of Southern California
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Nicholas Mancuso
- Department of Quantitative and Computational Biology, University of Southern California
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Charleston W.K. Chiang
- Department of Quantitative and Computational Biology, University of Southern California
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Michael D. Edge
- Department of Quantitative and Computational Biology, University of Southern California
| |
Collapse
|