1
|
Leung YY, Lee WP, Kuzma AB, Nicaretta H, Valladares O, Gangadharan P, Qu L, Zhao Y, Ren Y, Cheng PL, Kuksa PP, Wang H, White H, Katanic Z, Bass L, Saravanan N, Greenfest-Allen E, Kirsch M, Cantwell L, Iqbal T, Wheeler NR, Farrell JJ, Zhu C, Turner SL, Gunasekaran TI, Mena PR, Jin J, Carter L, Zhang X, Vardarajan BN, Toga A, Cuccaro M, Hohman TJ, Bush WS, Naj AC, Martin E, Dalgard C, Kunkle BW, Farrer LA, Mayeux RP, Haines JL, Pericak-Vance MA, Schellenberg GD, Wang LS. Alzheimer's Disease Sequencing Project Release 4 Whole Genome Sequencing Dataset. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24317000. [PMID: 39677464 PMCID: PMC11643159 DOI: 10.1101/2024.12.03.24317000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Alzheimer's Disease Sequencing Project (ADSP) is a national initiative to understand the genetic architecture of Alzheimer's Disease and Related Dementias (AD/ADRD) by sequencing whole genomes of affected participants and age-matched cognitive controls from diverse populations. The Genome Center for Alzheimer's Disease (GCAD) processed whole-genome sequencing data from 36,361 ADSP participants, including 35,014 genetically unique participants of which 45% are from non-European ancestry, across 17 cohorts in 14 countries in this fourth release (R4). This sequencing effort identified 387 million bi-allelic variants, 42 million short insertions/deletions, and 2.2 million structural variants. Annotations and quality control data are available for all variants and samples. Additionally, detailed phenotypes from 15,927 participants across 10 domains are also provided. A linkage disequilibrium panel was created using unrelated AD cases and controls. Researchers can access and analyze the genetic data via NIAGADS Data Sharing Service, the VariXam tool, or NIAGADS GenomicsDB.
Collapse
Affiliation(s)
- Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Heather Nicaretta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Prabhakaran Gangadharan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Liming Qu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Yi Zhao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Youli Ren
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Pavel P Kuksa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Heather White
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Zivadin Katanic
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Lauren Bass
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Naveen Saravanan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Emily Greenfest-Allen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Maureen Kirsch
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Laura Cantwell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Taha Iqbal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas R Wheeler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - John J. Farrell
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Shannon L Turner
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tamil I Gunasekaran
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pedro R Mena
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jimmy Jin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Luke Carter
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | | | - Xiaoling Zhang
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Badri N Vardarajan
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Arthur Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California
| | - Michael Cuccaro
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eden Martin
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Clifton Dalgard
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Brian W Kunkle
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Department of Medicine, Biostatistics & Bioinformatics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Richard P Mayeux
- Columbia University Irving Medical Center, New York, NY, USA
- Gertrude H. Sergievsky Center, Taub Institute for Research on the Aging Brain, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jonathan L Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Margaret A Pericak-Vance
- Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
2
|
Tesi N, Salazar A, Zhang Y, van der Lee S, Hulsman M, Knoop L, Wijesekera S, Krizova J, Schneider AF, Pennings M, Sleegers K, Kamsteeg EJ, Reinders M, Holstege H. Characterizing tandem repeat complexities across long-read sequencing platforms with TREAT and otter. Genome Res 2024; 34:1942-1953. [PMID: 39406499 DOI: 10.1101/gr.279351.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 11/09/2024]
Abstract
Tandem repeats (TRs) play important roles in genomic variation and disease risk in humans. Long-read sequencing allows for the accurate characterization of TRs; however, the underlying bioinformatics perspectives remain challenging. We present otter and TREAT: otter is a fast targeted local assembler, cross-compatible across different sequencing platforms. It is integrated in TREAT, an end-to-end workflow for TR characterization, visualization, and analysis across multiple genomes. In a comparison with existing tools based on long-read sequencing data from both Oxford Nanopore Technology (ONT, Simplex and Duplex) and Pacific Bioscience (PacBio, Sequel II and Revio), otter and TREAT achieve state-of-the-art genotyping and motif characterization accuracy. Applied to clinically relevant TRs, TREAT/otter significantly identify individuals with pathogenic TR expansions. When applied to a case-control setting, we replicate previously reported associations of TRs with Alzheimer's disease, including those near or within APOC1 (P = 2.63 × 10-9), SPI1 (P = 6.5 × 10-3), and ABCA7 (P = 0.04) genes. Finally, we use TREAT/otter to systematically evaluate potential biases when genotyping TRs using diverse ONT and PacBio long-read sequencing data sets. We show that, in rare cases (0.06%), long-read sequencing from coverage drops in TRs, including the disease-associated TRs in ABCA7 and RFC1 genes. Such coverage drops can lead to TR misgenotyping, hampering the accurate characterization of TR alleles. Taken together, our tools can accurately genotype TRs across different sequencing technologies and with minimal requirements, allowing end-to-end analysis and comparisons of TRs in human genomes, with broad applications in research and clinical fields.
Collapse
Affiliation(s)
- Niccoló Tesi
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands;
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Alex Salazar
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Yaran Zhang
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Sven van der Lee
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Marc Hulsman
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Lydian Knoop
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Sanduni Wijesekera
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Jana Krizova
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Anne-Fleur Schneider
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
| | - Maartje Pennings
- Department of Genome Diagnostics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Antwerp Center for Molecular Neurology, VIB, Antwerp B-2650, Belgium
| | - Erik-Jan Kamsteeg
- Department of Genome Diagnostics, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| | - Henne Holstege
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081HV Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2628CD Delft, The Netherlands
| |
Collapse
|
3
|
Wang H, Chang TS, Dombroski BA, Cheng PL, Patil V, Valiente-Banuet L, Farrell K, Mclean C, Molina-Porcel L, Rajput A, De Deyn PP, Le Bastard N, Gearing M, Kaat LD, Van Swieten JC, Dopper E, Ghetti BF, Newell KL, Troakes C, de Yébenes JG, Rábano-Gutierrez A, Meller T, Oertel WH, Respondek G, Stamelou M, Arzberger T, Roeber S, Müller U, Hopfner F, Pastor P, Brice A, Durr A, Le Ber I, Beach TG, Serrano GE, Hazrati LN, Litvan I, Rademakers R, Ross OA, Galasko D, Boxer AL, Miller BL, Seeley WW, Van Deerlin VM, Lee EB, White CL, Morris H, de Silva R, Crary JF, Goate AM, Friedman JS, Leung YY, Coppola G, Naj AC, Wang LS, Dalgard C, Dickson DW, Höglinger GU, Schellenberg GD, Geschwind DH, Lee WP. Whole-genome sequencing analysis reveals new susceptibility loci and structural variants associated with progressive supranuclear palsy. Mol Neurodegener 2024; 19:61. [PMID: 39152475 PMCID: PMC11330058 DOI: 10.1186/s13024-024-00747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). METHOD In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. RESULTS Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73 × 10-3) in PSP. CONCLUSIONS Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Chang
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leopoldo Valiente-Banuet
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurt Farrell
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catriona Mclean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit. Neurology Service, Hospital Clínic, Fundació Recerca Clínic Barcelona (FRCB). Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Alex Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk (Antwerp), Belgium
- Department of Neurology, University Medical Center Groningen, NL-9713 AV, Groningen, Netherlands
| | | | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura Donker Kaat
- Netherlands Brain Bank and Erasmus University, Rotterdam, Netherlands
| | | | - Elise Dopper
- Netherlands Brain Bank and Erasmus University, Rotterdam, Netherlands
| | - Bernardino F Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King's College London, London, UK
| | | | - Alberto Rábano-Gutierrez
- Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas) - Centro Alzheimer Fundación Reina Sofía, Madrid, Spain
| | - Tina Meller
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | | | - Gesine Respondek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
- European University of Cyprus, Nicosia, Cyprus
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sigrun Roeber
- German Brain Bank, Neurobiobank Munich, Munich, Germany
| | - Ulrich Müller
- German Brain Bank, Neurobiobank Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
- Neurosciences, The Germans Trias I Pujol Research Institute (IGTP) Badalona, Badalona, Spain
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Irene Litvan
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Vivanna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huw Morris
- Departmento of Clinical and Movement Neuroscience, University College of London, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - John F Crary
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Coppola
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clifton Dalgard
- Department of Anatomy Physiology and Genetics, the American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Daniel H Geschwind
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Cheng PL, Wang H, Dombroski BA, Farrell JJ, Horng I, Chung T, Tosto G, Kunkle BW, Bush WS, Vardarajan B, Schellenberg GD, Lee WP. A Specialized Reference Panel with Structural Variants Integration for Improving Genotype Imputation in Alzheimer's Disease and Related Dementias (ADRD). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310827. [PMID: 39108532 PMCID: PMC11302603 DOI: 10.1101/2024.07.22.24310827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
We developed an imputation panel for Alzheimer's disease (AD) and related dementias (ADRD) using whole-genome sequencing (WGS) data from the Alzheimer's Disease Sequencing Project (ADSP). Recognizing the significant associations between structural variants (SVs) and AD, and their underrepresentation in existing public reference panels, our panel uniquely integrates single nucleotide variants (SNVs), short insertions and deletions (indels), and SVs. This panel enhances the imputation of disease susceptibility, including rare AD-associated SNVs, indels, and SVs, onto genotype array data, offering a cost-effective alternative to whole-genome sequencing while significantly augmenting statistical power. Notably, we discovered 10 rare indels nominal significant related to AD that are absent in the TOPMed-r2 panel and identified three suggestive significant (p-value < 1E-05) AD-associated SVs in the genes EXOC3L2 and DMPK, were identified. These findings provide new insights into AD genetics and underscore the critical role of imputation panels in advancing our understanding of complex diseases like ADRD.
Collapse
Affiliation(s)
- Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John J Farrell
- Biomedical Genetics, Department of Medicine, Boston University Medical School, Boston, MA, USA
| | - Iris Horng
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tingting Chung
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Brian W Kunkle
- John P Hussman Institute for Human Genomics, Miami, FL, USA
- John T Macdonald Department of Human Genetics, Miami, FL, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Miano-Burkhardt A, Alvarez Jerez P, Daida K, Bandres Ciga S, Billingsley KJ. The Role of Structural Variants in the Genetic Architecture of Parkinson's Disease. Int J Mol Sci 2024; 25:4801. [PMID: 38732020 PMCID: PMC11084710 DOI: 10.3390/ijms25094801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD) significantly impacts millions of individuals worldwide. Although our understanding of the genetic foundations of PD has advanced, a substantial portion of the genetic variation contributing to disease risk remains unknown. Current PD genetic studies have primarily focused on one form of genetic variation, single nucleotide variants (SNVs), while other important forms of genetic variation, such as structural variants (SVs), are mostly ignored due to the complexity of detecting these variants with traditional sequencing methods. Yet, these forms of genetic variation play crucial roles in gene expression and regulation in the human brain and are causative of numerous neurological disorders, including forms of PD. This review aims to provide a comprehensive overview of our current understanding of the involvement of coding and noncoding SVs in the genetic architecture of PD.
Collapse
Affiliation(s)
- Abigail Miano-Burkhardt
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Pilar Alvarez Jerez
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Sara Bandres Ciga
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Kimberley J. Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| |
Collapse
|
6
|
Wang H, Chang TS, Dombroski BA, Cheng PL, Patil V, Valiente-Banuet L, Farrell K, Mclean C, Molina-Porcel L, Rajput A, De Deyn PP, Bastard NL, Gearing M, Kaat LD, Swieten JCV, Dopper E, Ghetti BF, Newell KL, Troakes C, de Yébenes JG, Rábano-Gutierrez A, Meller T, Oertel WH, Respondek G, Stamelou M, Arzberger T, Roeber S, Müller U, Hopfner F, Pastor P, Brice A, Durr A, Ber IL, Beach TG, Serrano GE, Hazrati LN, Litvan I, Rademakers R, Ross OA, Galasko D, Boxer AL, Miller BL, Seeley WW, Deerlin VMV, Lee EB, White CL, Morris H, de Silva R, Crary JF, Goate AM, Friedman JS, Leung YY, Coppola G, Naj AC, Wang LS, Dickson DW, Höglinger GU, Schellenberg GD, Geschwind DH, Lee WP. Whole-Genome Sequencing Analysis Reveals New Susceptibility Loci and Structural Variants Associated with Progressive Supranuclear Palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.12.28.23300612. [PMID: 38234807 PMCID: PMC10793533 DOI: 10.1101/2023.12.28.23300612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Background Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Chang
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishakha Patil
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leopoldo Valiente-Banuet
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurt Farrell
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catriona Mclean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Laura Molina-Porcel
- Alzheimer's disease and other cognitive disorders unit. Neurology Service, Hospital Clínic, Fundació Recerca Clínic Barcelona (FRCB). Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Alex Rajput
- Movement Disorders Program, Division of Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk (Antwerp), Belgium
- Department of Neurology, University Medical Center Groningen, NL-9713 AV Groningen, Netherlands
| | | | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Elise Dopper
- Netherlands Brain Bank and Erasmus University, Netherlands
| | - Bernardino F Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King's College London, London, UK
| | | | - Alberto Rábano-Gutierrez
- Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas) - Centro Alzheimer Fundación Reina Sofía, Madrid, Spain
| | - Tina Meller
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | | | - Gesine Respondek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson's disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
- European University of Cyprus, Nicosia, Cyprus
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Germany
| | | | | | - Franziska Hopfner
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Spain
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Irene Litvan
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Vivanna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huw Morris
- Departmento of Clinical and Movement Neuroscience, University College of London, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - John F Crary
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey S Friedman
- Friedman Bioventure, Inc., Del Mar, CA, USA; Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Coppola
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Geschwind
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Guo MH, Lee WP, Vardarajan B, Schellenberg GD, Phillips-Cremins J. Polygenic burden of short tandem repeat expansions promote risk for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.16.23298623. [PMID: 38014121 PMCID: PMC10680900 DOI: 10.1101/2023.11.16.23298623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Studies of the genetics of Alzheimer's disease (AD) have largely focused on single nucleotide variants and short insertions/deletions. However, most of the disease heritability has yet to be uncovered, suggesting that there is substantial genetic risk conferred by other forms of genetic variation. There are over one million short tandem repeats (STRs) in the genome, and their link to AD risk has not been assessed. As pathogenic expansions of STR cause over 30 neurologic diseases, it is important to ascertain whether STRs may also be implicated in AD risk. Here, we genotyped 321,742 polymorphic STR tracts genome-wide using PCR-free whole genome sequencing data from 2,981 individuals (1,489 AD case and 1,492 control individuals). We implemented an approach to identify STR expansions as STRs with tract lengths that are outliers from the population. We then tested for differences in aggregate burden of expansions in case versus control individuals. AD patients had a 1.19-fold increase of STR expansions compared to healthy elderly controls (p=8.27×10-3, two-sided Mann Whitney test). Individuals carrying > 30 STR expansions had 3.62-fold higher odds of having AD and had more severe AD neuropathology. AD STR expansions were highly enriched within active promoters in post-mortem hippocampal brain tissues and particularly within SINE-VNTR-Alu (SVA) retrotransposons. Together, these results demonstrate that expanded STRs within active promoter regions of the genome promote risk of AD.
Collapse
Affiliation(s)
- Michael H Guo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Badri Vardarajan
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jennifer Phillips-Cremins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|