1
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. J Invest Dermatol 2024; 144:2488-2500.e4. [PMID: 38642800 DOI: 10.1016/j.jid.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 04/22/2024]
Abstract
Three-dimensional human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in preclinical investigative dermatology and regulatory toxicology. In this study, we investigated the utility of electrical impedance spectroscopy (EIS) for noninvasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for 7 consecutive days did not impact epidermal morphology, and readouts showed comparable trends with HEEs measured only once. We determined 2 frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9-engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR, or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to proinflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a noninvasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects, and repair.
Collapse
Affiliation(s)
| | - Felicitas Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | | | - Hanna Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jos P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands; Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Chattopadhyay D, Sinha M, Kapoor A, Kumar M, Singh K, Mathew-Steiner SS, Sen CK. Deficient functional wound closure as measured by elevated trans-epidermal water loss predicts chronic wound recurrence: An exploratory observational study. Sci Rep 2024; 14:23593. [PMID: 39384891 PMCID: PMC11464781 DOI: 10.1038/s41598-024-74426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
A single-center, prospective, observational pilot study was performed to evaluate wound healing endpoint and recurrence by measuring transepidermal water loss (TEWL) post-closure at the site of wound repair. Patients with clinically-defined chronic wounds (such as pressure ulcers, diabetic ulcers, and trauma wounds) who visited the Plastic Surgery outpatient department or were in-patients at the All India Institute of Medical Sciences, Rishikesh, India, and were referred for chronic wound management, were enrolled. Non-invasive point-of-care TEWL measurements were obtained, from closed wound-site and contralateral healthy skin site, starting from confirmation of closure (post-closure, V0) continuing every 2 weeks for a maximum of five visits or until the wound recurred. Statistical analyses of the data involved logistic regression and likelihood ratio chi-square tests to assess differences in TEWL at visit 0 (V0) between the closed wound site and reference skin, with the TEWL score as the sole predictor of recurrence. Of the 72 subjects that completed the study, 44 (61%) showed no recurrence and 28 (39%) had wounds that recurred over a period of 12 weeks. A significant association was found between the V0 (post-closure) TEWL score and the odds of wound recurrence, both in univariate analysis (OR [95%CI] = 1.26[1.14,1.42] (p < 0.001) and after adjusting for covariates in multivariable analysis (OR [95%CI] = 1.34[1.19,1.61] (p < 0.001). The likelihood ratio chi-square analysis demonstrated that the V0 TEWL score is a significant universal predictor of recurrence across all wound types studied. Cases of closed wounds with subsequent recurrence showed an overall higher post-closure V0 TEWL score, compared to those who did not have a wound recurrence, across visits. The TEWL score cut-off value predictive of recurrence was 24.1 g.m-2.h-1 (AUC = 0.967). The outcome of this pilot study on a wide range of chronic wounds leads to the hypothesis that post-closure TEWL at the site of wound healing is a reliable biomarker of wound recurrence. It also raises the question whether the clinical endpoint of wound closure should include re-establishment of skin barrier function as additional criterion. The current standard of care wound closure endpoint calls for re-epithelialization of the wound with no discharge for two consecutive weeks disregarding the functional parameter of restoration of skin barrier function at the wound-site.
Collapse
Affiliation(s)
| | - Mithun Sinha
- Department of Surgery, Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Akshay Kapoor
- All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Manoj Kumar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Economic Studies and Planning, Jawaharlal Nehru University, New Delhi, India
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chandan K Sen
- Department of Surgery, Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Szukala W, Lichawska-Cieslar A, Zawada R, Rumienczyk I, Mikula M, Goryca K, Jura J. Keratinocyte and myeloid MCPIP1 have distinct roles in maintaining skin homeostasis. Biochim Biophys Acta Gen Subj 2024; 1868:130671. [PMID: 39032853 DOI: 10.1016/j.bbagen.2024.130671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The skin is a complex organ, and the intricate network between keratinocytes and immune cells is critical for ensuring skin function. Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) is a ribonuclease that functions as a key negative modulator of inflammation. We previously reported that conditional deletion of MCPIP1 in keratinocytes (Mcpip1EKO) impairs skin integrity in adult mice. A similar phenotype was observed following the depletion of MCPIP1 in the myeloid compartment (Mcpip1MKO). The aim of this study was to develop a keratinocyte and myeloid double-MCPIP1 knockout mouse model to clarify the specific roles of myeloid and epidermal MCPIP1 in skin biology. Histological analyses indicated that the skin morphology changed after depletion of MCPIP1 in cells of myeloid origin as well as in keratinocytes. The thicknesses of the epidermal and subcutaneous fat layers increased in the mice with a loss of epidermal MCPIP1, whereas the loss of myeloid MCPIP1 had the opposite effect. In addition, both types of mice showed opposite responses to stimulation with 12-O-tetradecanoylphorbol-13-acetate. Transcriptomic profiling of whole-skin lysates revealed some common target transcripts in all the knockout mice. Further analyses revealed that distinct pathways are modulated following the loss of epidermal or myeloid MCPIP1. The skin morphology and inflammatory phenotype of keratinocyte and myeloid double-MCPIP1 knockout mice resembled those of mice with only keratinocyte-specific knockout of MCPIP1. Overall, myeloid and epidermal MCPIP1 play important but distinct roles in the modulation of skin-related processes.
Collapse
Affiliation(s)
- Weronika Szukala
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland
| | - Agata Lichawska-Cieslar
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland
| | - Roza Zawada
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland
| | - Izabela Rumienczyk
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Krzysztof Goryca
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Jolanta Jura
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Cho J, Bejaoui M, Tominaga K, Isoda H. Comparative Analysis of Olive-Derived Phenolic Compounds' Pro-Melanogenesis Effects on B16F10 Cells and Epidermal Human Melanocytes. Int J Mol Sci 2024; 25:4479. [PMID: 38674064 PMCID: PMC11050296 DOI: 10.3390/ijms25084479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.
Collapse
Affiliation(s)
- Juhee Cho
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
| | - Meriem Bejaoui
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Kenichi Tominaga
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-0006, Japan; (J.C.)
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
5
|
van den Brink NJM, Pardow F, Meesters LD, van Vlijmen-Willems I, Rodijk-Olthuis D, Niehues H, Jansen PAM, Roelofs SH, Brewer MG, van den Bogaard EH, Smits JPH. Electrical Impedance Spectroscopy Quantifies Skin Barrier Function in Organotypic In Vitro Epidermis Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585587. [PMID: 38562885 PMCID: PMC10983962 DOI: 10.1101/2024.03.18.585587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
3 D human epidermal equivalents (HEEs) are a state-of-the-art organotypic culture model in pre-clinical investigative dermatology and regulatory toxicology. Here, we investigated the utility of electrical impedance spectroscopy (EIS) for non-invasive measurement of HEE epidermal barrier function. Our setup comprised a custom-made lid fit with 12 electrode pairs aligned on the standard 24-transwell cell culture system. Serial EIS measurements for seven consecutive days did not impact epidermal morphology and readouts showed comparable trends to HEEs measured only once. We determined two frequency ranges in the resulting impedance spectra: a lower frequency range termed EISdiff correlated with keratinocyte terminal differentiation independent of epidermal thickness and a higher frequency range termed EISSC correlated with stratum corneum thickness. HEEs generated from CRISPR/Cas9 engineered keratinocytes that lack key differentiation genes FLG, TFAP2A, AHR or CLDN1 confirmed that keratinocyte terminal differentiation is the major parameter defining EISdiff. Exposure to pro-inflammatory psoriasis- or atopic dermatitis-associated cytokine cocktails lowered the expression of keratinocyte differentiation markers and reduced EISdiff. This cytokine-associated decrease in EISdiff was normalized after stimulation with therapeutic molecules. In conclusion, EIS provides a non-invasive system to consecutively and quantitatively assess HEE barrier function and to sensitively and objectively measure barrier development, defects and repair.
Collapse
Affiliation(s)
| | - F Pardow
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - L D Meesters
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | | | - D Rodijk-Olthuis
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - H Niehues
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | - P A M Jansen
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
| | | | - M G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - J P H Smits
- Department of Dermatology, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, Heinrich Heine University, University Hospital Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
6
|
Imafuku K, Iwata H, Natsuga K, Okumura M, Kobayashi Y, Kitahata H, Kubo A, Nagayama M, Ujiie H. Zonula occludens-1 distribution and barrier functions are affected by epithelial proliferation and turnover rates. Cell Prolif 2023; 56:e13441. [PMID: 36919255 PMCID: PMC10472521 DOI: 10.1111/cpr.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Zonula occludens-1 (ZO-1) is a scaffolding protein of tight junctions, which seal adjacent epithelial cells, that is also expressed in adherens junctions. The distribution pattern of ZO-1 differs among stratified squamous epithelia, including that between skin and oral buccal mucosa. However, the causes for this difference, and the mechanisms underlying ZO-1 spatial regulation, have yet to be elucidated. In this study, we showed that epithelial turnover and proliferation are associated with ZO-1 distribution in squamous epithelia. We tried to verify the regulation of ZO-1 by comparing normal skin and psoriasis, known as inflammatory skin disease with rapid turnover. We as well compared buccal mucosa and oral lichen planus, known as an inflammatory oral disease with a longer turnover interval. The imiquimod (IMQ) mouse model, often used as a psoriasis model, can promote cell proliferation. On the contrary, we peritoneally injected mice mitomycin C, which reduces cell proliferation. We examined whether IMQ and mitomycin C cause changes in the distribution and appearance of ZO-1. Human samples and mouse pharmacological models revealed that slower epithelial turnover/proliferation led to the confinement of ZO-1 to the uppermost part of squamous epithelia. In contrast, ZO-1 was widely distributed under conditions of faster cell turnover/proliferation. Cell culture experiments and mathematical modelling corroborated these ZO-1 distribution patterns. These findings demonstrate that ZO-1 distribution is affected by epithelial cell dynamics.
Collapse
Affiliation(s)
- Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Makoto Okumura
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Yasuaki Kobayashi
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of ScienceChiba UniversityChibaJapan
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal RelatedKobe University Graduate School of MedicineKobeJapan
- Department of DermatologyKeio University School of MedicineTokyoJapan
| | - Masaharu Nagayama
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
7
|
Dragan M, Chen Z, Li Y, Le J, Sun P, Haensel D, Sureshchandra S, Pham A, Lu E, Pham KT, Verlande A, Vu R, Gutierrez G, Li W, Jang C, Masri S, Dai X. Ovol1/2 loss-induced epidermal defects elicit skin immune activation and alter global metabolism. EMBO Rep 2023; 24:e56214. [PMID: 37249012 PMCID: PMC10328084 DOI: 10.15252/embr.202256214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole-body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor-encoding Ovol1 and Ovol2 in adult epidermis results in barrier dysregulation through impacting epithelial-mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long-term consequences of epidermal-specific Ovol1/2 loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole-body metabolism that is in part mediated through aberrant immune activation.
Collapse
Affiliation(s)
- Morgan Dragan
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Zeyu Chen
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Department of Dermatology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
- Present address:
Institute of PsoriasisTongji University School of MedicineShanghaiChina
| | - Yumei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Johnny Le
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Peng Sun
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Daniel Haensel
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- Present address:
Program in Epithelial BiologyStanford University School of MedicineStanfordCAUSA
| | - Suhas Sureshchandra
- Department of Physiology and Biophysics, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Anh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Eddie Lu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Katherine Thanh Pham
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Amandine Verlande
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Remy Vu
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Wei Li
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Selma Masri
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
| | - Xing Dai
- Department of Biological Chemistry, School of MedicineUniversity of CaliforniaIrvineCAUSA
- The NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Dermatology, School of MedicineUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
8
|
Zhou C, Hua C, Liang Q, Al Rudaisat M, Chen S, Song Y, Zhu J, Cheng H. 0.5-5% Supramolecular Salicylic Acid Hydrogel is Safe for Long-Term Topical Application and Improves the Expression of Genes Related to Skin Barrier Homeostasis in Mice Models. Drug Des Devel Ther 2023; 17:1593-1609. [PMID: 37260764 PMCID: PMC10228590 DOI: 10.2147/dddt.s397541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Background As a keratolytic, salicylic acid (SA) can be topically applied in various formulations and doses in dermatology. Supramolecular SA hydrogel, a new SA formulation with higher bioavailability, is developed and commercially available nowadays. However, there still remain concerns that the long-term and continual application of SA at low concentrations may jeopardize the cutaneous barrier properties. Aim of the Study To reveal the long-term effects of 0.5-5% supramolecular SA hydrogel on the skin barrier in normal mice models. Materials and Methods The 0.5%, 1%, 2%, and 5% supramolecular SA hydrogel or hydrogel vehicle without SA was applied to mice's shaved dorsal skin once per day respectively. Tissue samples of the dorsal skin were harvested on day 14 and 28 of the serial application of SA for histopathological observation and transcriptomic analysis. Results Following topical supramolecular SA hydrogel therapy with various concentrations of SA (0.5%, 1%, 2%, and 5%) for 14 days and 28 days, there were no obvious macroscopic signs of impaired cutaneous health and no inflammatory or degenerative abnormalities were observed in histological results. Additionally, the transcriptomic analysis revealed that on day 14, SA dramatically altered the expression of genes related to the extracellular matrix structural constituent. And on day 28, SA regulated gene expression profiles of keratinization, cornified envelope, and lipid metabolism remarkably. Furthermore, the expression of skin barrier related genes was significantly elevated after the application of SA based on RNA-seq results, and this is likely to be associated with the PPAR signaling pathway according to the enrichment analysis. Conclusion Our findings demonstrated that the sustained topical administration of the 0.5-5% supramolecular SA hydrogel for up to 28 days did no harm to normal murine skin and upregulated the expression of genes related to the epidermal barrier.
Collapse
Affiliation(s)
- Can Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qichang Liang
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Mus’ab Al Rudaisat
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jiang Zhu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Ahn J, Ohk K, Won J, Choi DH, Jung YH, Yang JH, Jun Y, Kim JA, Chung S, Lee SH. Modeling of three-dimensional innervated epidermal like-layer in a microfluidic chip-based coculture system. Nat Commun 2023; 14:1488. [PMID: 36932093 PMCID: PMC10023681 DOI: 10.1038/s41467-023-37187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Reconstruction of skin equivalents with physiologically relevant cellular and matrix architecture is indispensable for basic research and industrial applications. As skin-nerve crosstalk is increasingly recognized as a major element of skin physiological pathology, the development of reliable in vitro models to evaluate the selective communication between epidermal keratinocytes and sensory neurons is being demanded. In this study, we present a three-dimensional innervated epidermal keratinocyte layer as a sensory neuron-epidermal keratinocyte co-culture model on a microfluidic chip using the slope-based air-liquid interfacing culture and spatial compartmentalization. Our co-culture model recapitulates a more organized basal-suprabasal stratification, enhanced barrier function, and physiologically relevant anatomical innervation and demonstrated the feasibility of in situ imaging and functional analysis in a cell-type-specific manner, thereby improving the structural and functional limitations of previous coculture models. This system has the potential as an improved surrogate model and platform for biomedical and pharmaceutical research.
Collapse
Affiliation(s)
- Jinchul Ahn
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Kyungeun Ohk
- R&D center, Humedix, Co., Ltd., Seongnam, 13201, South Korea
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, South Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Dong-Hee Choi
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | - Yong Hun Jung
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea
- Next&Bio Inc., Seoul, 02841, South Korea
| | | | - Yesl Jun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Drug Discovery Platform Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jin-A Kim
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea.
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, 02841, South Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea.
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
| | - Sang-Hoon Lee
- Department of Bio-convergence Engineering, Korea University, Seoul, 02841, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
10
|
Wang Y, Kitahata H, Kosumi H, Watanabe M, Fujimura Y, Takashima S, Osada SI, Hirose T, Nishie W, Nagayama M, Shimizu H, Natsuga K. Collagen XVII deficiency alters epidermal patterning. J Transl Med 2022; 102:581-588. [PMID: 35145203 DOI: 10.1038/s41374-022-00738-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/09/2022] Open
Abstract
Vertebrates exhibit patterned epidermis, exemplified by scales/interscales in mice tails and grooves/ridges on the human skin surface (microtopography). Although the role of spatiotemporal regulation of stem cells (SCs) has been implicated in this process, the mechanism underlying the development of such epidermal patterns is poorly understood. Here, we show that collagen XVII (COL17), a niche for epidermal SCs, helps stabilize epidermal patterns. Gene knockout and rescue experiments revealed that COL17 maintains the width of the murine tail scale epidermis independently of epidermal cell polarity. Skin regeneration after wounding was associated with slender scale epidermis, which was alleviated by overexpression of human COL17. COL17-negative skin in human junctional epidermolysis bullosa showed a distinct epidermal pattern from COL17-positive skin that resulted from revertant mosaicism. These results demonstrate that COL17 contributes to defining mouse tail scale shapes and human skin microtopography. Our study sheds light on the role of the SC niche in tissue pattern formation.
Collapse
Affiliation(s)
- Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shin-Ichi Osada
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Wang P, Hu G, Zhao W, Du J, You M, Xv M, Yang H, Zhang M, Yan F, Huang M, Wang X, Zhang L, Chen Y. Continuous ZnO nanoparticle exposure induces melanoma-like skin lesions in epidermal barrier dysfunction model mice through anti-apoptotic effects mediated by the oxidative stress–activated NF-κB pathway. J Nanobiotechnology 2022; 20:111. [PMID: 35248056 PMCID: PMC8898538 DOI: 10.1186/s12951-022-01308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Increasing interest in the hazardous properties of zinc oxide nanoparticles (ZnO NPs), commonly used as ultraviolet filters in sunscreen, has driven efforts to study the percutaneous application of ZnO NPs to diseased skin; however, in-depth studies of toxic effects on melanocytes under conditions of epidermal barrier dysfunction remain lacking. Methods Epidermal barrier dysfunction model mice were continuously exposed to a ZnO NP-containing suspension for 14 and 49 consecutive days in vivo. Melanoma-like change and molecular mechanisms were also verified in human epidermal melanocytes treated with 5.0 µg/ml ZnO NPs for 72 h in vitro. Results ZnO NP application for 14 and 49 consecutive days induced melanoma-like skin lesions, supported by pigmented appearance, markedly increased number of melanocytes in the epidermis and dermis, increased cells with irregular nuclei in the epidermis, recruited dendritic cells in the dermis and dysregulated expression of melanoma-associated gene Fkbp51, Trim63 and Tsp 1. ZnO NPs increased oxidative injury, inhibited apoptosis, and increased nuclear factor kappa B (NF-κB) p65 and Bcl-2 expression in melanocytes of skin with epidermal barrier dysfunction after continuously treated for 14 and 49 days. Exposure to 5.0 µg/ml ZnO NPs for 72 h increased cell viability, decreased apoptosis, and increased Fkbp51 expression in melanocytes, consistent with histological observations in vivo. The oxidative stress–mediated mechanism underlying the induction of anti-apoptotic effects was verified using the reactive oxygen species scavenger N-acetylcysteine. Conclusions The entry of ZnO NPs into the stratum basale of skin with epidermal barrier dysfunction resulted in melanoma-like skin lesions and an anti-apoptotic effect induced by oxidative stress, activating the NF-κB pathway in melanocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01308-w.
Collapse
|
12
|
Sim D, Brothers MC, Slocik JM, Islam AE, Maruyama B, Grigsby CC, Naik RR, Kim SS. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104426. [PMID: 35023321 PMCID: PMC8895156 DOI: 10.1002/advs.202104426] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Human health and performance monitoring (HHPM) is imperative to provide information necessary for protecting, sustaining, evaluating, and improving personnel in various occupational sectors, such as industry, academy, sports, recreation, and military. While various commercially wearable sensors are on the market with their capability of "quantitative assessments" on human health, physical, and psychological states, their sensing is mostly based on physical traits, and thus lacks precision in HHPM. Minimally or noninvasive biomarkers detectable from the human body, such as body fluid (e.g., sweat, tear, urine, and interstitial fluid), exhaled breath, and skin surface, can provide abundant additional information to the HHPM. Detecting these biomarkers with novel or existing sensor technologies is emerging as critical human monitoring research. This review provides a broad perspective on the state of the art biosensor technologies for HHPM, including the list of biomarkers and their physiochemical/physical characteristics, fundamental sensing principles, and high-performance sensing transducers. Further, this paper expands to the additional scope on the key technical challenges in applying the current HHPM system to the real field.
Collapse
Affiliation(s)
- Daniel Sim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Research Associateship Program (RAP)the National Academies of Sciences, Engineering and MedicineWashingtonDC20001USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Michael C. Brothers
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
- Integrative Health & Performance Sciences DivisionUES Inc.DaytonOH45432USA
| | - Joseph M. Slocik
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Ahmad E. Islam
- Air Force Research LaboratorySensors DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Benji Maruyama
- Air Force Research LaboratoryMaterials and Manufacturing DirectorateWright‐Patterson Air Force BaseOH 45433USA
| | - Claude C. Grigsby
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Rajesh R. Naik
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| | - Steve S. Kim
- Air Force Research Laboratory711th Human Performance WingWright‐Patterson Air Force BaseOH 45433USA
| |
Collapse
|
13
|
Diao X, Yamada K, Shibata Y, Imada C. Metabolites Produced by a New Lactiplantibacillus plantarum Strain BF1-13 Isolated from Deep Seawater of Izu-Akazawa Protect the Intestinal Epithelial Barrier from the Dysfunction Induced by Hydrogen Peroxide. Mar Drugs 2022; 20:md20020087. [PMID: 35200617 PMCID: PMC8878880 DOI: 10.3390/md20020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the protective effect of the metabolites produced by a new Lactiplantibacillus plantarum strain BF1-13, isolated from deep seawater (DSW), on the intestinal epithelial barrier against the dysfunction induced by hydrogen peroxide (H2O2) and to elucidate the mechanism underlying the effect. Protective effect of the metabolites by strain BF1-13 on the barrier function of the intestinal epithelial model treated with H2O2 was investigated by the transepithelial electrical resistance (TEER). The metabolites enhanced the Claudin-4 (CLDN-4) expression, including at the transcription level, indicated by immunofluorescence staining and quantitative RT-PCR. The metabolites also showed a suppression of aquaporin3 (AQP3) expression. Lactic acid (LA) produced by this strain of homofermentative lactic acid bacteria (LAB) had a similar enhancement on CLDN-4 expression. The metabolites of L. plantarum strain BF1-13 alleviated the dysfunction of intestinal epithelial barrier owing to its enhancement on the tight junctions (TJs) by LA, along with its suppression on AQP3-facilitating H2O2 intracellular invasion into Caco-2 cells. This is the first report on the enhancement of TJs by LA produced by LAB.
Collapse
Affiliation(s)
- Xiaozhen Diao
- Applied Microbiology Lab, Course of Applied Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (K.Y.); (C.I.)
- Correspondence:
| | - Katsuhisa Yamada
- Applied Microbiology Lab, Course of Applied Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (K.Y.); (C.I.)
- DSW Laboratory of DHC Co., Ltd., Tokyo 106-0047, Japan;
| | - Yuji Shibata
- DSW Laboratory of DHC Co., Ltd., Tokyo 106-0047, Japan;
| | - Chiaki Imada
- Applied Microbiology Lab, Course of Applied Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan; (K.Y.); (C.I.)
| |
Collapse
|
14
|
Tonti OR, Larson H, Lipp SN, Luetkemeyer CM, Makam M, Vargas D, Wilcox SM, Calve S. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater 2021; 132:83-102. [PMID: 33878474 PMCID: PMC8434955 DOI: 10.1016/j.actbio.2021.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is a complex network of biomolecules that mechanically and biochemically directs cell behavior and is crucial for maintaining tissue function and health. The heterogeneous organization and composition of the ECM varies within and between tissue types, directing mechanics, aiding in cell-cell communication, and facilitating tissue assembly and reassembly during development, injury and disease. As technologies like 3D printing rapidly advance, researchers are better able to recapitulate in vivo tissue properties in vitro; however, tissue-specific variations in ECM composition and organization are not given enough consideration. This is in part due to a lack of information regarding how the ECM of many tissues varies in both homeostatic and diseased states. To address this gap, we describe the components and organization of the ECM, and provide examples for different tissues at various states of disease. While many aspects of ECM biology remain unknown, our goal is to highlight the complexity of various tissues and inspire engineers to incorporate unique components of the native ECM into in vitro platform design and fabrication. Ultimately, we anticipate that the use of biomaterials that incorporate key tissue-specific ECM will lead to in vitro models that better emulate human pathologies. STATEMENT OF SIGNIFICANCE: Biomaterial development primarily emphasizes the engineering of new materials and therapies at the expense of identifying key parameters of the tissue that is being emulated. This can be partially attributed to the difficulty in defining the 3D composition, organization, and mechanics of the ECM within different tissues and how these material properties vary as a function of homeostasis and disease. In this review, we highlight a range of tissues throughout the body and describe how ECM content, cell diversity, and mechanical properties change in diseased tissues and influence cellular behavior. Accurately mimicking the tissue of interest in vitro by using ECM specific to the appropriate state of homeostasis or pathology in vivo will yield results more translatable to humans.
Collapse
Affiliation(s)
- Olivia R Tonti
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Hannah Larson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah N Lipp
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Callan M Luetkemeyer
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Megan Makam
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Diego Vargas
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sean M Wilcox
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, 1111 Engineering Center, 427 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
15
|
Systematic Review and Meta-Analysis on the Effects of Astaxanthin on Human Skin Ageing. Nutrients 2021; 13:nu13092917. [PMID: 34578794 PMCID: PMC8472736 DOI: 10.3390/nu13092917] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Context: Astaxanthin (ASX), a xanthophyll carotenoid derived from microalgae Haematococcus pluvialis, mitigating skin photoaging and age-related skin diseases by its antioxidant and anti-inflammatory effects in animal studies. Objective: The aim was to systematically evaluate if ASX applications have anti-ageing effects in humans. Methods: A comprehensive search of PubMed, Scopus and Web of Science found a total of eleven studies. Nine randomised, controlled human studies assessed oral ASX effects and two open-label, prospective studies evaluated topical, oral-topical ASX effects on skin ageing. GetData Graph Digitizer was used to extract mean values and standard deviations of baseline and endpoint, and Cochrane Collaboration’s tool assessed RoB for all included studies. Review Manager 5.4 was used to conduct meta-analysis of RCTs; the results were reported as effect size ± 95% confidence interval. Results: Oral ASX supplementation significantly restored moisture content (SMD = 0.53; 95% CI = 0.05, 1.01; I2 = 52%; p = 0.03) and improved elasticity (SMD = 0.77; 95% CI = 0.19, 1.35; I2 = 75%; p = 0.009) but did not significantly decrease wrinkle depth (SMD = −0.26; 95% CI = −0.58, 0.06; I2 = 0%; p = 0.11) compared to placebo. Open-label, prospective studies suggested slightly protective effects of topical and oral-topical ASX applications on skin ageing. Conclusions: Ingestion and/or topical usages of ASX may be effective in reducing skin ageing and have promising cosmetical potential, as it improves moisture content and elasticity and reduces wrinkles.
Collapse
|
16
|
A computational model of the epidermis with the deformable dermis and its application to skin diseases. Sci Rep 2021; 11:13234. [PMID: 34168195 PMCID: PMC8225835 DOI: 10.1038/s41598-021-92540-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
The skin barrier is provided by the organized multi-layer structure of epidermal cells, which is dynamically maintained by a continuous supply of cells from the basal layer. The epidermal homeostasis can be disrupted by various skin diseases, which often cause morphological changes not only in the epidermis but in the dermis. We present a three-dimensional agent-based computational model of the epidermis that takes into account the deformability of the dermis. Our model can produce a stable epidermal structure with well-organized layers. We show that its stability depends on the cell supply rate from the basal layer. Modeling the morphological change of the dermis also enables us to investigate how the stiffness of the dermis affects the structure and barrier functions of the epidermis. Besides, we show that our model can simulate the formation of a corn (clavus) by assuming hyperproliferation and rapid differentiation. We also provide experimental data for human corn, which supports the model assumptions and the simulation result.
Collapse
|
17
|
Fujimura Y, Watanabe M, Ohno K, Kobayashi Y, Takashima S, Nakamura H, Kosumi H, Wang Y, Mai Y, Lauria A, Proserpio V, Ujiie H, Iwata H, Nishie W, Nagayama M, Oliviero S, Donati G, Shimizu H, Natsuga K. Hair follicle stem cell progeny heal blisters while pausing skin development. EMBO Rep 2021; 22:e50882. [PMID: 34085753 DOI: 10.15252/embr.202050882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.
Collapse
Affiliation(s)
- Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Kota Ohno
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Valentina Proserpio
- Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects-A Randomized, Double-Blind, Placebo-Controlled Trial. Microorganisms 2021; 9:microorganisms9030563. [PMID: 33803200 PMCID: PMC8000884 DOI: 10.3390/microorganisms9030563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/26/2023] Open
Abstract
(1) Background: Lactococcus lactis strain Plasma (LC-Plasma) is a unique strain which directly activates plasmacytoid dendritic cells, resulting in the prevention against broad spectrum of viral infection. Additionally, we found that LC-Plasma intake stimulated skin immunity and prevents Staphylococcus aureus epicutaneous infection. The aim of this study was to investigate the effect of LC-Plasma dietary supplementation on skin microbiome, gene expression in the skin, and skin conditions in healthy subjects. (2) Method: A randomized, double-blind, placebo-controlled, parallel-group trial was conducted. Seventy healthy volunteers were enrolled and assigned into two groups receiving either placebo or LC-Plasma capsules (approximately 1 × 1011 cells/day) for 8 weeks. The skin microbiome was analyzed by NGS and qPCR. Gene expression was analyzed by qPCR and skin conditions were diagnosed by dermatologists before and after intervention. (3) Result: LC-Plasma supplementation prevented the decrease of Staphylococcus epidermidis and Staphylococcus pasteuri and overgrowth of Propionibacterium acnes. In addition, LC-Plasma supplementation suggested to increase the expression of antimicrobial peptide genes but not tight junction genes. Furthermore, the clinical scores of skin conditions were ameliorated by LC-Plasma supplementation. (4) Conclusions: Our findings provided the insights that the dietary supplementation of LC-Plasma might have stabilizing effects on seasonal change of skin microbiome and skin conditions in healthy subjects.
Collapse
|
19
|
Imafuku K, Kamaguchi M, Natsuga K, Nakamura H, Shimizu H, Iwata H. Zonula occludens-1 demonstrates a unique appearance in buccal mucosa over several layers. Cell Tissue Res 2021; 384:691-702. [PMID: 33635425 DOI: 10.1007/s00441-021-03425-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Tight junctions (TJs) firmly seal epithelial cells and are key players in the epithelial barrier. TJs consist of several proteins, including those of the transmembrane claudin family and the scaffold zonula occludens (ZO) family. Epithelial tissues are exposed to different conditions: to air in the stratified epithelium of the skin and to liquids in the monolayer of the intestine. The TJs in stratified oral mucosal epithelium have remained insufficiently elucidated in terms of distributions, appearances and barrier functions of TJ proteins in normal buccal mucosa. We investigated these and ZO-1 and claudin-1 were found to be expressed in the top third and in the bottom three quarters of the mucosal epithelium. ZO-1 in the buccal mucosa was found to have an irregular linear appearance. ZO-1 in the buccal mucosa continuously existed in several layers. Electron microscopy revealed the buccal mucosa to have kissing points. In a biotin permeation assay that sought to investigate inside-outside barrier function, the biotin tracer penetrated several ZO-1 layers but did not pass through all the ZO-1 layers. We found that the oral mucosal cell knockdown of TJP1 or CLDN1 resulted in decreases of TER but no significant change in FITC-dextran leakage. Our results suggest that the distribution and appearance of ZO-1 in the buccal mucosa differ from those in the skin. We were unable to prove barrier function in this study but we did show barrier function against small molecules in vivo and against ions in vitro.
Collapse
Affiliation(s)
- Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan
| | - Mayumi Kamaguchi
- Department of Oral Diagnosis and Medicine, Faculty of Medicine and Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, 060-8586, Japan.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Building B9 Ratzeburger Allee 160, 23562, Lubeck, Germany
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-ku, 060-8638, Sapporo, Japan.
| |
Collapse
|
20
|
Watanabe M, Kosumi H, Osada SI, Takashima S, Wang Y, Nishie W, Oikawa T, Hirose T, Shimizu H, Natsuga K. Type XVII collagen interacts with the aPKC-PAR complex and maintains epidermal cell polarity. Exp Dermatol 2021; 30:62-67. [PMID: 32970880 DOI: 10.1111/exd.14196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Type XVII collagen (COL17) is a transmembrane protein expressed in the basal epidermis. COL17 serves as a niche for epidermal stem cells, and although its reduction has been implicated in altering cell polarity and ageing of the epidermis, it is unknown how COL17 affects epidermal cell polarity. Here, we uncovered COL17 as a binding partner of the aPKC-PAR complex, which is a key regulating factor of cell polarity. Immunoprecipitation-immunoblot assay and protein-protein binding assay revealed that COL17 interacts with aPKC and PAR3. COL17 deficiency or epidermis-specific aPKCλ deletion destabilized PAR3 distribution in the epidermis, while aPKCζ knockout did not. Asymmetrical cell division was pronounced in COL17-null neonatal paw epidermis. These results show that COL17 is pivotal for maintaining epidermal cell polarity. Our study highlights the previously unrecognized role of COL17 in the basal keratinocytes.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shin-Ichi Osada
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Shota Takashima
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yunan Wang
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tsukasa Oikawa
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Epidermal Acyl-CoA-binding protein is indispensable for systemic energy homeostasis. Mol Metab 2020; 44:101144. [PMID: 33346070 PMCID: PMC7797911 DOI: 10.1016/j.molmet.2020.101144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The skin is the largest sensory organ of the human body and plays a fundamental role in regulating body temperature. However, adaptive alterations in skin functions and morphology have only vaguely been associated with physiological responses to cold stress or sensation of ambient temperatures. We previously found that loss of acyl-CoA-binding protein (ACBP) in keratinocytes upregulates lipolysis in white adipose tissue and alters hepatic lipid metabolism, suggesting a link between epidermal barrier functions and systemic energy metabolism. METHODS To assess the physiological responses to loss of ACBP in keratinocytes in detail, we used full-body ACBP-/- and skin-specific ACBP-/- knockout mice to clarify how loss of ACBP affects 1) energy expenditure by indirect calorimetry, 2) response to high-fat feeding and a high oral glucose load, and 3) expression of brown-selective gene programs by quantitative PCR in inguinal WAT (iWAT). To further elucidate the role of the epidermal barrier in systemic energy metabolism, we included mice with defects in skin structural proteins (ma/ma Flgft/ft) in these studies. RESULTS We show that the ACBP-/- mice and skin-specific ACBP-/- knockout mice exhibited increased energy expenditure, increased food intake, browning of the iWAT, and resistance to diet-induced obesity. The metabolic phenotype, including browning of the iWAT, was reversed by housing the mice at thermoneutrality (30 °C) or pharmacological β-adrenergic blocking. Interestingly, these findings were phenocopied in flaky tail mice (ma/ma Flgft/ft). Taken together, we demonstrate that a compromised epidermal barrier induces a β-adrenergic response that increases energy expenditure and browning of the white adipose tissue to maintain a normal body temperature. CONCLUSIONS Our findings show that the epidermal barrier plays a key role in maintaining systemic metabolic homeostasis. Thus, regulation of epidermal barrier functions warrants further attention to understand the regulation of systemic metabolism in further detail.
Collapse
|
22
|
Effects of a complex mixture prepared from agrimonia, houttuynia, licorice, peony, and phellodendron on human skin cells. Sci Rep 2020; 10:22132. [PMID: 33335246 PMCID: PMC7746697 DOI: 10.1038/s41598-020-79301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Active ingredients derived from natural sources are widely utilized in many industries. Cosmetic active ingredients are largely derived from various plants. In this study, we examined whether a mixture of plant extracts obtained from agrimonia, houttuynia, licorice, peony, and phellodendron (hereafter AHLPP), which are well-known for their effects on skin, could affect skin barrier function, inflammation, and aging in human skin cells. We also determined whether AHLPP extracts sterilized using γ-irradiation (to avoid preservatives) retained their skin cell regulating activity. The AHLPP mixture could downregulate representative pro-inflammatory cytokines including IL 1-β and IL 7. Procollagen peptide synthesis was also increased by AHLPP treatment along with mRNA upregulation of barrier proteins such as filaggrin and desmoplakin. The AHLPP mixture showed an anti-aging effect by significantly upregulating telomerase activity in human keratinocytes. We further observed TERT upregulation and CDKN1B downregulation, implying a weakening of pro-aging signal transduction. Co-cultivation of a hydrogel polymer containing the AHLPP mixture with human skin cells showed an alteration in skin-significant genes such as FLG, which encodes filaggrin. Thus, the AHLPP mixture with or without γ-irradiation can be utilized for skin protection as it alters the expression of some significant genes in human skin cells.
Collapse
|
23
|
Teramura T, Nomura T. Acute skin barrier disruption alters the secretion of lamellar bodies via the multilayered expression of ABCA12. J Dermatol Sci 2020; 100:50-57. [PMID: 32873425 DOI: 10.1016/j.jdermsci.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND The skin barrier consists of multiple lipid-enriched layers, which are characterized by lamellar repeated structures within the intercellular space. Sodium lauryl sulfate is a well-known substance that can disrupt the skin barrier. The mechanisms underlying the barrier repair process, especially the influence of topical sodium lauryl sulfate treatment on lipid transport in the barrier recovery phase, remain unresolved. OBJECTIVE To understand the process of reconstruction of the intercellular lipid layer of the skin after acute barrier disruption by sodium lauryl sulfate treatment in vivo. METHODS Female hairless mice were treated with 3 % sodium lauryl sulfate. Transepidermal water loss measurement, histopathological analysis, and gene expression analysis were performed from 1 to 288 h after the topical application of sodium lauryl sulfate. Western blot analysis, immunofluorescence staining, and transmission electron microscopy analysis were performed to examine the expression level of ATP-binding cassette, sub-family A, member 12 (ABCA12), and the secretion level of lamellar bodies. RESULTS We observed rapid hyper-keratinization at the stratum corneum and the subsequent concurrent secretion of lamellar bodies into the intercellular space of the stratum corneum during the process of skin barrier recovery. ABCA12 expression associated with lipid transportation into lamellar bodies was transiently upregulated and observed in multiple layers in the upper epidermis, especially in the stratum granulosum. CONCLUSION The skin reacts appropriately to maintain its barrier function by first initiating hyper-keratinization and then increasing lamellar body secretion. Activation of ABCA12 is an essential factor for the recovery of skin barrier function.
Collapse
Affiliation(s)
- Takashi Teramura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshifumi Nomura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
24
|
Vicetti Miguel RD, Quispe Calla NE, Cherpes TL. HIV, progestins, genital epithelial barrier function, and the burden of objectivity†. Biol Reprod 2020; 103:318-322. [PMID: 32561906 PMCID: PMC7401028 DOI: 10.1093/biolre/ioaa078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/04/2023] Open
Abstract
Contributions from a diverse set of scientific disciplines will be needed to help individuals make fully informed decisions regarding contraceptive choices least likely to promote HIV susceptibility. This commentary recaps contrasting interpretations of results from the Evidence for Contraceptive Options and HIV Outcomes (ECHO) Trial, a study that compared HIV risk in women using the progestin-only injectable contraceptive depot medroxyprogesterone acetate (DMPA) vs. two other contraceptive choices. It also summarizes results from basic and translational research that establish biological plausibility for earlier clinical studies that identified enhanced HIV susceptibility in women using DMPA.
Collapse
Affiliation(s)
| | - Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
Teshima H, Kato M, Tatsukawa H, Hitomi K. Analysis of the expression of transglutaminases in the reconstructed human epidermis using a three-dimensional cell culture. Anal Biochem 2020; 603:113606. [DOI: 10.1016/j.ab.2020.113606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
|
26
|
Sitarek P, Merecz-Sadowska A, Kowalczyk T, Wieczfinska J, Zajdel R, Śliwiński T. Potential Synergistic Action of Bioactive Compounds from Plant Extracts against Skin Infecting Microorganisms. Int J Mol Sci 2020; 21:ijms21145105. [PMID: 32707732 PMCID: PMC7403983 DOI: 10.3390/ijms21145105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023] Open
Abstract
The skin is an important organ that acts as a physical barrier to the outer environment. It is rich in immune cells such as keratinocytes, Langerhans cells, mast cells, and T cells, which provide the first line of defense mechanisms against numerous pathogens by activating both the innate and adaptive response. Cutaneous immunological processes may be stimulated or suppressed by numerous plant extracts via their immunomodulatory properties. Several plants are rich in bioactive molecules; many of these exert antimicrobial, antiviral, and antifungal effects. The present study describes the impact of plant extracts on the modulation of skin immunity, and their antimicrobial effects against selected skin invaders. Plant products remain valuable counterparts to modern pharmaceuticals and may be used to alleviate numerous skin disorders, including infected wounds, herpes, and tineas.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
- Correspondence:
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
27
|
Tsuji R, Fujii T, Nakamura Y, Yazawa K, Kanauchi O. Staphylococcus aureus Epicutaneous Infection Is Suppressed by Lactococcus lactis Strain Plasma via Interleukin 17A Elicitation. J Infect Dis 2020; 220:892-901. [PMID: 31107940 DOI: 10.1093/infdis/jiz204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Lactococcus lactis strain Plasma (LC-Plasma) was revealed to stimulate plasmacytoid dendritic cells and induce antiviral immunity in vitro and in vivo. In this study, we assessed the effects of LC-Plasma on skin immunity. METHODS To evaluate the effect of LC-Plasma on skin immunity and Staphylococcus aureus epicutaneous infection, lymphocyte activities in skin-draining lymph nodes (SLNs) and gene expression in skin were analyzed after 2 weeks of oral administration of LC-Plasma. To evaluate the mechanisms of interleukin 17A production, SLN lymphocytes were cultured with or without LC-Plasma, and the interleukin 17A concentrations in supernatants were measured. RESULTS Oral administration of LC-Plasma activated plasma dendritic cells in SLNs, augmented skin homeostasis, and elicited suppression of Staphylococcus aureus, Staphylococcus epidermidis, and Propionibacterium acnes proliferation. In addition, significant suppression of the S. aureus burden and reduced skin inflammation were observed following oral administration of LC-Plasma. Furthermore, a subsequent in vitro study revealed that LC-Plasma could elicit interleukin 17A production from CD8+ T cells and that its induction mechanism depended on the Toll-like receptor 9 signaling pathway, with type I interferon partially involved. CONCLUSIONS Our results suggest that LC-Plasma oral administration enhances skin homeostasis via plasma dendritic cell activation in SLNs, resulting in suppression of S. aureus epicutaneous infection and skin inflammation.
Collapse
Affiliation(s)
- Ryohei Tsuji
- Research Laboratories for Health Science and Food Technologies, Kirin, Kanagawa
| | - Toshio Fujii
- Research Laboratories for Health Science and Food Technologies, Kirin, Kanagawa
| | - Yuumi Nakamura
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kamiyu Yazawa
- Research Laboratories for Health Science and Food Technologies, Kirin, Kanagawa
| | - Osamu Kanauchi
- Research Laboratories for Health Science and Food Technologies, Kirin, Kanagawa
| |
Collapse
|
28
|
Kim HY, Ahn SH, Yang IJ, Park SY, Kim K. Effect of Hataedock Treatment on Epidermal Structure Maintenance through Intervention in the Endocannabinoid System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3605153. [PMID: 32063982 PMCID: PMC6998750 DOI: 10.1155/2020/3605153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the efficacy of Hataedock (HTD) on skin barrier maintenance through the endocannabinoid system (ECS) intervention in Dermatophagoides farinae-induced atopic dermatitis (AD) NC/Nga mice. Douchi (fermented Glycine max Merr.) extracts prepared for HTD were orally administered to NC/Nga mice at a 20 mg/kg dose. Then, Dermatophagoides farinae extract (DfE) was applied to induce AD-like skin lesions during the 4th-6th and 8th-10th weeks. Changes in the epidermal structure of the mice were observed by histochemistry, immunohistochemistry, and TUNEL assay. The results showed that HTD significantly reduced the clinical scores (p < 0.01) and effectively alleviated the histological features. In the experimental groups, increased expression of cannabinoid receptor type (CB) 1, CB2, and G protein-coupled receptor 55 (GPR55) and distribution of filaggrin, involucrin, loricrin, and longevity assurance homolog 2 (Lass2) indicated that HTD maintained the epidermal barrier through intervening in the ECS. The expression of E-cadherin and glutathione peroxidase 4 (GPx4) was increased, and the levels of cluster of differentiation 1a (CD1A) were low. Moreover, the apoptosis of inflammatory cells was elevated. The production of phosphorylated extracellular signal-related kinase (p-ERK), phosphorylated c-Jun amino-terminal kinase (p-JNK), and phosphorylated mammalian target of rapamycin (p-mTOR) was low, and epidermal thickness was decreased. Besides, the expression levels of involucrin were measured by treating genistein, an active ingredient of Douchi extract, and palmitoylethanolamide (PEA), one of the ECS agonists. The results showed that genistein had a better lipid barrier formation effect than PEA. In conclusion, HTD alleviates the symptoms of AD by maintaining skin homeostasis, improving skin barrier formation, and downregulating inflammation, through ECS intervention.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Korean Pediatrics, Pusan National University Korean Medicine Hospital, Geumo-ro 20, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
- Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Pusandaehak-ro 49, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| | - Sang-hyun Ahn
- Department of Anatomy, College of Korean Medicine, Semyung University, Semyung-ro 65, Jecheon-si, Chungcheongbuk-do 27136, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Dongdae-ro 123, Gyeongju-si, Gyeongsangbuk-do 38066, Republic of Korea
| | - Sun-Young Park
- Department of Physiology, College of Korean Medicine, Semyung University, Semyung-ro 65, Jecheon-si, Chungcheongbuk-do 27136, Republic of Korea
| | - Kibong Kim
- Department of Korean Pediatrics, Pusan National University Korean Medicine Hospital, Geumo-ro 20, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
- Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Pusandaehak-ro 49, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea
| |
Collapse
|
29
|
O'Sullivan JN, Rea MC, O'Connor PM, Hill C, Ross RP. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol Ecol 2019; 95:5259109. [PMID: 30590567 PMCID: PMC6340406 DOI: 10.1093/femsec/fiy241] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/23/2018] [Indexed: 12/16/2022] Open
Abstract
The demand for novel antimicrobial therapies due to the threat posed by antimicrobial resistance has resulted in a growing interest in the protective role of our skin bacteria and the importance of competition among bacteria on the skin. A survey of the cultivable bacteria on human skin was undertaken to identify the capacity of the skin microbiota to produce bacteriocins with activity against skin pathogens. Twenty-one bacteriocins produced by bacteria isolated from seven sites on the human body of each subject exhibited inhibition spectra ranging from broad to narrow range, inhibiting many Gram-positive bacteria, including opportunistic skin pathogens such as Propionibacterium acnes (recently renamed Cutibacterium acnes), Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus (MRSA). Sequencing indicated that the antimicrobial-producing isolates were predominately species/strains of the Staphylococcus genus. Colony mass spectrometry revealed peptide masses that do not correspond to known bacteriocins. In an era where antibiotic resistance is of major concern, the inhibitory effect of novel bacteriocins from the bacteria of skin origin demonstrates the antimicrobial potential that could be harnessed from within the human skin microbiota.
Collapse
Affiliation(s)
- Julie N O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.,School of Microbiology, Food Science & Technology Building, University College Cork, College road, Cork, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland, P61 C996.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - Colin Hill
- School of Microbiology, Food Science & Technology Building, University College Cork, College road, Cork, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| | - R Paul Ross
- School of Microbiology, Food Science & Technology Building, University College Cork, College road, Cork, T12 K8AF.,APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, Ireland, T12 YT20
| |
Collapse
|
30
|
Characterization of Reactive and Sensitive Skin Microbiota: Effect of Halymenia durvillei (HD) Extract Treatment. COSMETICS 2019. [DOI: 10.3390/cosmetics6040069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
After characterization of the reactive skin microbiota, we investigated whether the active Halymenia durvillei (HD), rich in polysaccharides, could modulate this microbiota after 28 days of treatment, act on neuroinflammation parameters, and calm feelings of discomfort and redness. Skin microbiota was assessed using next-generation sequencing experiments (16S RNA gene fragment sequencing) on samples collected from 30 volunteers suffering from reactive, sensitive skin. To evaluate the effect of the HD extract on neuroinflammation, we used an ex vivo model. Finally, an in vivo study was performed using a clinical assessment (blood microcirculation via videocapillaroscopy) of functional signs employing the Sensitive Scale and the soothing effect was evaluated and compared to a placebo treatment. At the phylum level, the samples were mostly composed of Actinobacteria, Proteobacteria, Firmicutes, and Bacteroidetes, which accounted for more than 97% of the total sequencing read in all samples, with no differences before or after treatment with the HD active ingredient. The Shannon Diversity index indicated lower microbial communities compared to healthy skin. Maintenance of the Shannon Diversity index was reported after 28 days of HD active ingredient treatment, wherein microbial communities continued to decrease in number during treatment with the placebo. The average taxonomic composition of associated skin microbial communities showed that reactive skin is characterized by a low proportion of the Chryseobacterium genus compared to a high proportion of the Corynebacterium genus. At the species level, Actinobacteria are mainly represented by Propionibacterium acnes (72.13%) and Corynebacterium kroppenstedtii (13.23%), representing species typically observed in clinical cases of redness, the main criteria for volunteer inclusion. Corynebacterium kroppenstedtii, with increased levels being associated with skin redness, decreased with HD treatment. This decrease coincided with the clinical improvement observed after 7 weeks of treatment. The ex vivo study revealed that the HD extract induced a significant decrease in the expression of TRPV-1 (−67%; p < 0.001) and NK1-R (−43%; p < 0.01) compared to the control after 6 days of treatment. These data support the use of polysaccharides, found in red alga, in the treatment of reactive and sensitive skin related to the modulation of skin microbiota.
Collapse
|
31
|
Konieczny P, Lichawska-Cieslar A, Kwiecinska P, Cichy J, Pietrzycka R, Szukala W, Declercq W, Devos M, Paziewska A, Rumienczyk I, Kulecka M, Mikula M, Fu M, Borowczyk J, Santamaria-Babí LF, Jura J. Keratinocyte-specific ablation of Mcpip1 impairs skin integrity and promotes local and systemic inflammation. J Mol Med (Berl) 2019; 97:1669-1684. [PMID: 31786670 DOI: 10.1007/s00109-019-01853-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
MCPIP1 (Regnase-1, encoded by the ZC3H12A gene) regulates the mRNA stability of several inflammatory cytokines. Due to the critical role of this RNA endonuclease in the suppression of inflammation, Mcpip1 deficiency in mice leads to the development of postnatal multiorgan inflammation and premature death. Here, we generated mice with conditional deletion of Mcpip1 in the epidermis (Mcpip1EKO). Mcpip1 loss in keratinocytes resulted in the upregulated expression of transcripts encoding factors related to inflammation and keratinocyte differentiation, such as IL-36α/γ cytokines, S100a8/a9 antibacterial peptides, and Sprr2d/2h proteins. Upon aging, the Mcpip1EKO mice showed impaired skin integrity that led to the progressive development of spontaneous skin pathology and systemic inflammation. Furthermore, we found that the lack of epidermal Mcpip1 expression impaired the balance of keratinocyte proliferation and differentiation. Overall, we provide evidence that keratinocyte-specific Mcpip1 activity is crucial for the maintenance of skin integrity as well as for the prevention of excessive local and systemic inflammation. KEY MESSAGES: Loss of murine epidermal Mcpip1 upregulates transcripts related to inflammation and keratinocyte differentiation. Keratinocyte Mcpip1 function is essential to maintain the integrity of skin in adult mice. Ablation of Mcpip1 in mouse epidermis leads to the development of local and systemic inflammation.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Patrycja Kwiecinska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Roza Pietrzycka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Weronika Szukala
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Michael Devos
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research Center, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Izabela Rumienczyk
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland
| | - Mingui Fu
- Department of Biomedical Science and Shock/Trauma Research Center, School of Medicine, University of Missouri-Kansas City, 5100 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Julia Borowczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Current address: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Gabrielle Perret-Gentil 4, 1211, Geneva, Switzerland
| | - Luis F Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University de Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
32
|
Wang J, Kaplan MH, Yang K. ResTORing barrier function in the skin. J Allergy Clin Immunol 2019; 145:111-113. [PMID: 31647965 DOI: 10.1016/j.jaci.2019.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Jocelyn Wang
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind
| | - Mark H Kaplan
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Ind.
| | - Kai Yang
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Ind; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
33
|
Ding X, Willenborg S, Bloch W, Wickström SA, Wagle P, Brodesser S, Roers A, Jais A, Brüning JC, Hall MN, Rüegg MA, Eming SA. Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. J Allergy Clin Immunol 2019; 145:283-300.e8. [PMID: 31401286 DOI: 10.1016/j.jaci.2019.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. OBJECTIVE Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. METHODS Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [RicEKO] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in RicEKO and control mice. RESULTS RicEKO newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in RicEKO mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. CONCLUSION Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.
Collapse
Affiliation(s)
- Xiaolei Ding
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany; Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Prerana Wagle
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alexander Jais
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Jens C Brüning
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany; Max Planck Institute for Metabolism Research, Cologne, Germany
| | | | | | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
34
|
Zhang M, Wang X, Guo F, Jia Q, Liu N, Chen Y, Yan Y, Huang M, Tang H, Deng Y, Huang S, Zhou Z, Zhang L, Zhang L. Cdc42 Deficiency Leads To Epidermal Barrier Dysfunction by Regulating Intercellular Junctions and Keratinization of Epidermal Cells during Mouse Skin Development. Am J Cancer Res 2019; 9:5065-5084. [PMID: 31410202 PMCID: PMC6691388 DOI: 10.7150/thno.34014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/08/2019] [Indexed: 01/19/2023] Open
Abstract
Rationale: Cdc42 is a Rho GTPase that regulates diverse cellular functions. Here, we used genetic techniques to investigate the role of Cdc42 in epidermal development and epidermal barrier formation. Methods: Keratinocyte-restricted Cdc42 knockout mice were generated with the Cre-LoxP system under the keratin 14 (K14) promoter. The skin and other tissues were collected from mutant and wild-type mice, and their cellular, molecular, morphological, and physiological features were analyzed. Results: Loss of Cdc42 in the epidermis in vivo resulted in neonatal lethality and impairment of epidermal barrier formation. Cdc42 deficiency led to the loss of epidermal stem cells. The absence of Cdc42 led to increased thickening of the epidermis, which was associated with increased proliferation and reduced apoptosis of keratinocytes. In addition, Cdc42 deficiency damaged tight junctions, adherens junctions and desmosomes. RNA sequencing results showed that the most significantly altered genes were enriched by the terms of “keratinization” and “cornified envelope” (CE). Among the differentially expressed genes in the CE term, several members of the small proline-rich protein (SPRR) family were upregulated. Further study revealed that there may be a Cdc42-SPRR pathway, which may correlate with epidermal barrier function. Conclusions: Our study indicates that Cdc42 is essential for epidermal development and epidermal barrier formation. Defects in Cdc42-SPRR signaling may be associated with skin barrier dysfunction and a variety of skin diseases.
Collapse
|
35
|
Kasza I, Adler D, Nelson DW, Eric Yen CL, Dumas S, Ntambi JM, MacDougald OA, Hernando D, Porter WP, Best FA, Alexander CM. Evaporative cooling provides a major metabolic energy sink. Mol Metab 2019; 27:47-61. [PMID: 31302039 PMCID: PMC6717770 DOI: 10.1016/j.molmet.2019.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/08/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022] Open
Abstract
Objective Elimination of food calories as heat could help redress the excess accumulation of metabolic energy exhibited as obesity. Prior studies have focused on the induction of thermogenesis in beige and brown adipose tissues as the application of this principle, particularly because the β-adrenergic environment associated with thermogenic activation has been shown to have positive health implications. The counterpoint to this strategy is the regulation of heat loss; we propose that mammals with inefficient heat conservation will require more thermogenesis to maintain body temperature. Methods Surface temperature thermography and rates of trans-epidermal water loss were integrated to profile the total heat transfer of genetically-engineered and genetically variable mice. Results These data were incorporated with energy expenditure data to generate a biophysical profile to test the significance of increased rates of evaporative cooling. Conclusions We show that mouse skins vary considerably in their heat retention properties, whether because of naturally occurring variation (SKH-1 mice), or genetic modification of the heat-retaining lipid lamellae (SCD1, DGAT1 or Agouti Ay obese mice). In particular, we turn attention to widely different rates of evaporative cooling as the result of trans-epidermal water loss; higher rates of heat loss by evaporative cooling leads to increased demand for thermogenesis. We speculate that this physiology could be harnessed to create an energy sink to assist with strategies aimed at treating metabolic diseases.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Doug Adler
- Space Science and Engineering Center, University of Wisconsin-Madison, United States
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - C-L Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Sabrina Dumas
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - James M Ntambi
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States; Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, United States
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, United States
| | - Warren P Porter
- Department of Zoology, University of Wisconsin-Madison, United States
| | - Fred A Best
- Space Science and Engineering Center, University of Wisconsin-Madison, United States
| | - C M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States.
| |
Collapse
|
36
|
Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature 2018; 553:427-436. [PMID: 29364286 DOI: 10.1038/nature25177] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
The skin is a complex and dynamic ecosystem that is inhabited by bacteria, archaea, fungi and viruses. These microbes-collectively referred to as the skin microbiota-are fundamental to skin physiology and immunity. Interactions between skin microbes and the host can fall anywhere along the continuum between mutualism and pathogenicity. In this Review, we highlight how host-microbe interactions depend heavily on context, including the state of immune activation, host genetic predisposition, barrier status, microbe localization, and microbe-microbe interactions. We focus on how context shapes the complex dialogue between skin microbes and the host, and the consequences of this dialogue for health and disease.
Collapse
Affiliation(s)
- Y Erin Chen
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA.,Department of Bioengineering and ChEM-H, Stanford University, Stanford, California, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, California, USA
| | - Yasmine Belkaid
- NIAID Microbiome Program, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland, USA.,Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, NIH, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Watanabe M, Natsuga K, Shinkuma S, Shimizu H. Epidermal aspects of type VII collagen: Implications for dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. J Dermatol 2018; 45:515-521. [PMID: 29352483 DOI: 10.1111/1346-8138.14222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/02/2023]
Abstract
Type VII collagen (COL7), a major component of anchoring fibrils in the epidermal basement membrane zone, has been characterized as a defective protein in dystrophic epidermolysis bullosa and as an autoantigen in epidermolysis bullosa acquisita. Although COL7 is produced and secreted by both epidermal keratinocytes and dermal fibroblasts, the role of COL7 with regard to the epidermis is rarely discussed. This review focuses on COL7 physiology and pathology as it pertains to epidermal keratinocytes. We summarize the current knowledge of COL7 production and trafficking, its involvement in keratinocyte dynamics, and epidermal carcinogenesis in COL7 deficiency and propose possible solutions to unsolved issues in this field.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
38
|
Transcription Factor CTIP1/ BCL11A Regulates Epidermal Differentiation and Lipid Metabolism During Skin Development. Sci Rep 2017; 7:13427. [PMID: 29044125 PMCID: PMC5647389 DOI: 10.1038/s41598-017-13347-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
The epidermal permeability barrier (EPB) prevents organisms from dehydration and infection. The transcriptional regulation of EPB development is poorly understood. We demonstrate here that transcription factor COUP-TF-interacting protein 1 (CTIP1/BCL11A; hereafter CTIP1) is highly expressed in the developing murine epidermis. Germline deletion of Ctip1 (Ctip1−/−) results in EPB defects accompanied by compromised epidermal differentiation, drastic reduction in profilaggrin processing, reduced lamellar bodies in granular layers and significantly altered lipid composition. Transcriptional profiling of Ctip1−/− embryonic skin identified altered expression of genes encoding lipid-metabolism enzymes, skin barrier-associated transcription factors and junctional proteins. CTIP1 was observed to interact with genomic elements within the regulatory region of the gene encoding the differentiation-associated gene, Fos-related antigen2 (Fosl2) and lipid-metabolism-related gene, Fatty acid elongase 4 (Elvol4), and the expression of both was altered in Ctip1−/− mice. CTIP1 appears to play a role in EPB establishment of via direct or indirect regulation of a subset of genes encoding proteins involved in epidermal differentiation and lipid metabolism. These results identify potential, CTIP1-regulated avenues for treatment of skin disorders involving EBP defects.
Collapse
|
39
|
Watanabe M, Natsuga K, Nishie W, Kobayashi Y, Donati G, Suzuki S, Fujimura Y, Tsukiyama T, Ujiie H, Shinkuma S, Nakamura H, Murakami M, Ozaki M, Nagayama M, Watt FM, Shimizu H. Type XVII collagen coordinates proliferation in the interfollicular epidermis. eLife 2017; 6:e26635. [PMID: 28693719 PMCID: PMC5505703 DOI: 10.7554/elife.26635] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Type XVII collagen (COL17) is a transmembrane protein located at the epidermal basement membrane zone. COL17 deficiency results in premature hair aging phenotypes and in junctional epidermolysis bullosa. Here, we show that COL17 plays a central role in regulating interfollicular epidermis (IFE) proliferation. Loss of COL17 leads to transient IFE hypertrophy in neonatal mice owing to aberrant Wnt signaling. The replenishment of COL17 in the neonatal epidermis of COL17-null mice reverses the proliferative IFE phenotype and the altered Wnt signaling. Physical aging abolishes membranous COL17 in IFE basal cells because of inactive atypical protein kinase C signaling and also induces epidermal hyperproliferation. The overexpression of human COL17 in aged mouse epidermis suppresses IFE hypertrophy. These findings demonstrate that COL17 governs IFE proliferation of neonatal and aged skin in distinct ways. Our study indicates that COL17 could be an important target of anti-aging strategies in the skin.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yu Fujimura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
40
|
Qin H, Jin J, Fischer H, Mildner M, Gschwandtner M, Mlitz V, Eckhart L, Tschachler E. The caspase-1 inhibitor CARD18 is specifically expressed during late differentiation of keratinocytes and its expression is lost in lichen planus. J Dermatol Sci 2017; 87:176-182. [PMID: 28506683 DOI: 10.1016/j.jdermsci.2017.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND CARD18 contains a caspase recruitment domain (CARD) via which it binds to caspase-1 and thereby inhibits caspase-1-mediated activation of the pro-inflammatory cytokine interleukin (IL)-1β. OBJECTIVES To determine the expression profile and the role of CARD18 during differentiation of keratinocytes and to compare the expression of CARD18 in normal skin and in inflammatory skin diseases. METHODS Human keratinocytes were induced to differentiate in monolayer and in 3D skin equivalent cultures. In some experiments, CARD18-specific siRNAs were used to knock down expression of CARD18. CARD18 mRNA levels were determined by quantitative real-time PCR, and CARD18 protein was detected by Western blot and immunofluorescence analyses. In situ expression was analyzed in skin biopsies obtained from healthy donors and patients with psoriasis and lichen planus. RESULTS CARD18 mRNA was expressed in the epidermis at more than 100-fold higher levels than in any other human tissue. Within the epidermis, CARD18 was specifically expressed in the granular layer. In vitro CARD18 was strongly upregulated at both mRNA and protein levels in keratinocytes undergoing terminal differentiation. In skin equivalent cultures the expression of CARD18 was efficiently suppressed by siRNAs without impairing stratum corneum formation. Epidermal expression of CARD18 was increased after ultraviolet (UV)B irradiation of skin explants. In skin biopsies of patients with psoriasis no consistent regulation of CARD18 expression was observed, however, in lesional epidermis of patients with lichen planus, CARD18 expression was either greatly diminished or entirely absent whereas in non-lesional areas expression was comparable to normal skin. CONCLUSIONS Our results identify CARD18 as a differentiation-associated keratinocyte protein that is altered in abundance by UV stress. Its downregulation in lichen planus indicates a potential role in inflammatory reactions of the epidermis in this disease.
Collapse
Affiliation(s)
- Haihong Qin
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiang Jin
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Heinz Fischer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Gschwandtner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
A Small Indel Mutant Mouse Model of Epidermolytic Palmoplantar Keratoderma and Its Application to Mutant-specific shRNA Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e299. [PMID: 27003758 PMCID: PMC5014458 DOI: 10.1038/mtna.2016.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022]
Abstract
Epidermolytic palmoplantar keratoderma (EPPK) is a relatively common autosomal-dominant skin disorder caused by mutations in the keratin 9 gene (KRT9), with few therapeutic options for the affected so far. Here, we report a knock-in transgenic mouse model that carried a small insertion–deletion (indel) mutant of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), corresponding to the human mutation KRT9/c.500delAinsGGCT (p.Tyr167delinsTrpLeu), which resulted in a human EPPK-like phenotype in the weight-stress areas of the fore- and hind-paws of both Krt9+/mut and Krt9mut/mut mice. The phenotype confirmed that EPPK is a dominant-negative condition, such that mice heterozygotic for the K9-mutant allele (Krt9+/mut) showed a clear EPPK-like phenotype. Then, we developed a mutant-specific short hairpin RNA (shRNA) therapy for EPPK mice. Mutant-specific shRNAs were systematically identified in vitro using a luciferase reporter gene assay and delivered into Krt9+/mut mice. shRNA-mediated knockdown of mutant protein resulted in almost normal morphology and functions of the skin, whereas the same shRNA had a negligible effect in wild-type K9 mice. Our results suggest that EPPK can be treated by gene therapy, and this has significant implications for future clinical application.
Collapse
|
42
|
Two Ancient Gene Families Are Critical for Maintenance of the Mammalian Skin Barrier in Postnatal Life. J Invest Dermatol 2016; 136:1438-1448. [PMID: 26975724 DOI: 10.1016/j.jid.2016.02.806] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/16/2023]
Abstract
The skin barrier is critical for mammalian survival in the terrestrial environment, affording protection against fluid loss, microbes, toxins, and UV exposure. Many genes indispensable for barrier formation in the embryo have been identified, but loss of these genes in adult mice does not induce barrier regression. We describe a complex regulatory network centered on two ancient gene families, the grainyhead-like (Grhl) transcription factors and the protein cross-linking enzymes (tissue transglutaminases [Tgms]), which are essential for skin permeability barrier maintenance in adult mice. Embryonic deletion of Grhl3 induces loss of Tgm1 expression, which disrupts the cornified envelope, thus preventing permeability barrier formation leading to neonatal death. However, gene deletion of Grhl3 in adult mice does not disrupt the preformed barrier, with cornified envelope integrity maintained by Grhl1 and Tgm5, which are up-regulated in response to postnatal loss of Grhl3. Concomitant deletion of both Grhl factors in adult mice induced loss of Tgm1 and Tgm5 expression, perturbation of the cornified envelope, and complete permeability barrier regression that was incompatible with life. These findings define the molecular safeguards for barrier function that accompany the transition from intrauterine to terrestrial life.
Collapse
|
43
|
Natsuga K, Cipolat S, Watt FM. Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility. J Invest Dermatol 2016; 136:99-106. [PMID: 26763429 PMCID: PMC4759621 DOI: 10.1038/jid.2015.383] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/24/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022]
Abstract
Mice lacking three epidermal barrier proteins-envoplakin, periplakin, and involucrin (EPI-/- mice)-have a defective cornified layer, reduced epidermal γδ T cells, and increased dermal CD4(+) T cells. They are also resistant to developing skin tumors. The tumor-protective mechanism involves signaling between Rae-1 expressing keratinocytes and the natural killer group 2D receptor on immune cells, which also plays a role in host defenses against infection. Given the emerging link between bacteria and cancer, we investigated whether EPI-/- mice have an altered skin microbiota. The bacterial phyla were similar in wild-type and EPI-/- skin. However, bacteria were threefold more abundant in EPI-/- skin and penetrated deeper into the epidermis. The major epithelial defense mechanism against bacteria is production of antimicrobial proteins (AMPs). EPI-/- skin exhibited enhanced expression of antimicrobial peptides. However, reducing the bacterial load by antibiotic treatment or breeding mice under specific pathogen-free conditions did not reduce AMP expression or alleviate the abnormalities in T-cell populations. We conclude that the atopic characteristics of EPI-/- skin are a consequence of the defective barrier rather than a response to the increased bacterial load. It is therefore unlikely that the increase in skin microbiota contributes directly to the observed cancer resistance.
Collapse
Key Words
- amp, antimicrobial protein
- epi-/- mice, mice lacking envoplakin, periplakin, and involucrin
- fish, fluorescence in situ hybridization
- mpo, myeloperoxidase
- nkg2d, natural killer group 2d
- spf, specific pathogen free
- tpa, tetradecanoylphorbol-13-acetate
- wt, wild-type
Collapse
Affiliation(s)
- Ken Natsuga
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom; Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sara Cipolat
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom; Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
44
|
Bosen F, Celli A, Crumrine D, vom Dorp K, Ebel P, Jastrow H, Dörmann P, Winterhager E, Mauro T, Willecke K. Altered epidermal lipid processing and calcium distribution in the KID syndrome mouse model Cx26S17F. FEBS Lett 2015; 589:1904-10. [PMID: 26070424 DOI: 10.1016/j.febslet.2015.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
Abstract
The keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome.
Collapse
Affiliation(s)
- Felicitas Bosen
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Anna Celli
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Debra Crumrine
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Katharina vom Dorp
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany
| | - Philipp Ebel
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany
| | - Holger Jastrow
- Electron Microscopy Unit, Imaging Center Essen, University Clinic Essen, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Germany
| | - Elke Winterhager
- Electron Microscopy Unit, Imaging Center Essen, University Clinic Essen, Germany
| | - Theodora Mauro
- Department of Dermatology, SF-VAMC and UCSF, San Francisco, CA, USA
| | - Klaus Willecke
- LIMES (Life and Medical Science Institute), Molecular Genetics, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|