1
|
Beytut E, Sözmen M, Karakurt E, Nuhoğlu H. Investigation of surfactant apoproteins and Brucella sp. antigens in the lungs of aborted bovine fetuses and neonatal calves delivered weak. Res Vet Sci 2024; 181:105445. [PMID: 39531869 DOI: 10.1016/j.rvsc.2024.105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The main objectives of this study were to investigate surfactant apoprotein expression (SP) and to detect Brucella sp. antigens in the lungs of aborted bovine fetuses and neonatal calves delivered weak. The Avidin-Biotin-Peroxidase Complex (ABC) and the indirect immunofluorescence (IF) techniques were applied, using antibodies to the lung surfactant apoproteins (SP-A, SP-B, SP-C) and Brucella sp. antigens. Hyperplasia of type II cells was also assessed by evaluating Thyroid Transcription Factor-1 (TTF-1), Proliferating Cell Nuclear Antigen (PCNA), and Cytokeratin Pan Type I/II (CK-P) markers. The study materials were the lungs of 46 aborted bovine fetuses and 20 neonatal calves delivered weak. Brucella sp.-positive fetal lungs displayed bronchopneumonia in 24 cases. The lungs of the weak-delivered neonates which were positive for Brucella sp. also showed pneumonia. Bacterial culture detected positivity in 11 of 46 fetuses and two neonates. IHC for Brucella sp. antigens found positivity in 22 of 46 fetuses and four neonates. Thus, our research revealed that the IHC technique using anti-Brucella sp. antibodies was useful for detecting Brucella sp. in autolytic and culture-negative fetuses. The study also found that surfactant synthesis begins close to the 7th month of gestation in bovine fetuses. Immunolabeling to SPs occurred in the cytoplasm of both type II and Clara cells, along with SP-C only in type II pneumocytes. The IF yielded dense labeling for Brucella sp. antigens, SP-B, and CK-P, respectively, in the phagocytic cells and epithelium of the airways. Also, pneumonia in newborn calves indicates an intrauterine infection by Brucella sp.
Collapse
Affiliation(s)
- Enver Beytut
- Department of Pathology, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey.
| | - Mahmut Sözmen
- Department of Pathology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Emin Karakurt
- Department of Pathology, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey
| | - Hilmi Nuhoğlu
- Department of Pathology, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey
| |
Collapse
|
2
|
Cheon J, Kim B, Park J, Shin J, Kim TH. Unveiling Biomarkers in Head and Neck Squamous Cell Carcinoma through Bioinformatics: The Role of SPP1 and KRT78. Int J Mol Sci 2024; 25:12062. [PMID: 39596132 PMCID: PMC11594244 DOI: 10.3390/ijms252212062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common form of head and neck cancer, ranking sixth in global cancer incidence. Identifying molecular drivers of tumorigenesis and metastasis is essential for early detection and treatment. This study analyzed gene expression profiles from three datasets (GSE6791, GSE29330, and GSE58911) to identify differentially expressed genes (DEGs) in HNSCC. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were employed to functionally annotate these DEGs. A protein-protein interaction (PPI) network was constructed for selecting hub genes using the STRING database. Finally, hub gene and protein expression levels were evaluated in patients with HNSCC, along with their association with overall survival. Our analysis identified twenty-eight co-DEGs comprising eight up-regulated and twenty down-regulated genes, primarily involved in extracellular matrix (ECM) organization, proteolysis, ECM disassembly, and keratinization processes. Furthermore, the PPI network revealed eight hub genes based on their high degree of connectivity. Notably, SPP1 demonstrated up-regulation, while KRT78 was down-regulated in HNSCC. Remarkably, the expression levels of these hub genes correlated with tumor grade, clinical cancer stage, and poor prognosis in HNSCC. Our findings hold significant clinical potential for early diagnosis and the development of novel therapeutic targets for patients with HNSCC.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Science, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaehyung Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaemin Shin
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The rat bladder umbrella cell keratin network: Organization, dependence on the plectin cytolinker, and responses to bladder filling. Mol Biol Cell 2024; 35:ar139. [PMID: 39356795 PMCID: PMC11617100 DOI: 10.1091/mbc.e24-06-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in native bladder umbrella cells and their responses to bladder filling are poorly understood. Using whole rat bladders in conjunction with confocal microscopy, super-resolution image processing, three-dimensional image reconstruction, and platinum replica electron microscopy, we identified a cortical cytoskeleton network in umbrella cells that was organized as a dense tile-like mesh comprised of tesserae bordered by cortical actin filaments, filled with keratin filaments, and cross-linked by plectin. Below these tesserae, keratin formed a subapical meshwork and at the cell periphery a band of keratin was linked via plectin to the junction-associated actin ring. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated keratin, and defects in cell-cell adhesion. During bladder filling, a junction-localized necklace of desmosomes expanded, and a subjacent girded layer formed linking the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Our studies reveal a novel tile- and mesh-like organization of the umbrella cell keratin network that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15213
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15213
| |
Collapse
|
4
|
Dixit M, Burclaff J. The keratin cytoskeleton emerges as a regulator of mitochondria in the colonic epithelium. Am J Physiol Gastrointest Liver Physiol 2024; 327:G699-G700. [PMID: 39076081 DOI: 10.1152/ajpgi.00228.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Affiliation(s)
- Michelle Dixit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
5
|
Barone GD, Tagliaro I, Oliver-Simancas R, Radice M, Kalossaka LM, Mattei M, Biundo A, Pisano I, Jiménez-Quero A. Keratinous and corneous-based products towards circular bioeconomy: A research review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100444. [PMID: 39183760 PMCID: PMC11342888 DOI: 10.1016/j.ese.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Keratins and corneous proteins are key components of biomaterials used in a wide range of applications and are potential substitutes for petrochemical-based products. Horns, hooves, feathers, claws, and similar animal tissues are abundant sources of α-keratin and corneous β-proteins, which are by-products of the food industry. Their close association with the meat industry raises environmental and ethical concerns regarding their disposal. To promote an eco-friendly and circular use of these materials in novel applications, efforts have focused on recovering these residues to develop sustainable, non-animal-related, affordable, and scalable procedures. Here, we review and examine biotechnological methods for extracting and expressing α-keratins and corneous β-proteins in microorganisms. This review highlights consolidated research trends in biomaterials, medical devices, food supplements, and packaging, demonstrating the keratin industry's potential to create innovative value-added products. Additionally, it analyzes the state of the art of related intellectual property and market size to underscore the potential within a circular bioeconomic model.
Collapse
Affiliation(s)
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20126, Milano, Italy
| | - Rodrigo Oliver-Simancas
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Matteo Radice
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Livia M. Kalossaka
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom
| | - Michele Mattei
- Libera Università Internazionale Degli Studi Sociali “Guido Carli”, I-00198, Rome, Italy
| | - Antonino Biundo
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Isabella Pisano
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
- CIRCC – Interuniversity Consortium Chemical Reactivity and Catalysis, Via C. Ulpiani 27, 70126, Bari, Italy
| | - Amparo Jiménez-Quero
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, 41296, Sweden
| |
Collapse
|
6
|
Yan J, Yang A, Tu S. The relationship between keratin 18 and epithelial-derived tumors: as a diagnostic marker, prognostic marker, and its role in tumorigenesis. Front Oncol 2024; 14:1445978. [PMID: 39502314 PMCID: PMC11534658 DOI: 10.3389/fonc.2024.1445978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
As a structural protein, keratin is mainly expressed in epithelial cells and skin appendages to provide mechanical support and external resistance. The keratin family has a total of 54 members, which are divided into type I and type II. Two types of keratins connect to each other to form keratin intermediate filaments and participate in the construction of the cytoskeleton. K18 is a non-hair keratin, which is widely expressed in simple epithelial tissues with its partner, K8. Compared with mechanical support, K8/K18 pairs play more important roles in biological regulation, such as mediating anti-apoptosis, regulating cell cycle progression, and transmitting signals. Mutations in K18 can cause a variety of non-neoplastic diseases of the visceral epithelium. In addition, the expression levels of K18 are frequently altered in various epithelial-derived tumors, especially adenocarcinomas, which suggests that K18 may be involved in tumorigenesis. Due to the specific expression pattern of K18 in tumor tissues and its serum level reflecting tumor cell death, apply K18 to diagnose tumors and predict its prognosis have the potential to be simple and effective alternative methods. However, these potential roles of K18 in tumors have not been fully summarized. In this review, we focus on the relationship between K18 and epithelial-derived tumors, discuss the value of K18 as a diagnostic and prognostic marker, and summarize the interactions of K18 with various related proteins in tumorigenesis, with examples of simple epithelial tumors such as lung, breast, liver, and gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiazhi Yan
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Aiwei Yang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shuo Tu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Cho Y, Koyama-Honda I, Tanimura A, Matsuzawa K, Ikenouchi J. A sustained calcium response mediated by IP3 receptor anchoring to the desmosome is essential for apoptotic cell elimination. Curr Biol 2024; 34:4835-4844.e4. [PMID: 39317193 DOI: 10.1016/j.cub.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/08/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Efficient elimination of apoptotic cells within epithelial cell sheets is crucial for preserving epithelial barrier integrity.1 It is well established that immediate neighbors of an apoptotic cell actively participate in its removal by enclosing it within a wall of actomyosin, pushing it out in a purse-string manner in a process called apical extrusion.2,3,4,5,6,7 Here, we found that sustained elevation of calcium ions in neighboring epithelial cells is necessary to generate the contractility required for apoptotic cell elimination. This phenomenon, which we call calcium response in effectors of apical extrusion (CaRE), highlights the disparate calcium dynamics within the epithelial sheet. Furthermore, we elucidate the essential role of desmosomes in CaRE. Specifically, we identify a subset of IP3 receptors within the endoplasmic reticulum that is recruited to the desmosome by K-Ras-induced actin-binding protein as the core component of this process. The interplay between these cellular structures heightens actomyosin contractility to drive apoptotic cell removal. Our findings underscore the physiological significance of integrating desmosomes with the endoplasmic reticulum in epithelial sheet homeostasis, shedding new light on cell-cell communication and tissue maintenance.
Collapse
Affiliation(s)
- Yuma Cho
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Tanimura
- Division of Pharmacology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari, Tobetsu 061-0293, Hokkaido, Japan
| | - Kenji Matsuzawa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| |
Collapse
|
8
|
Williams AL, Bohnsack BL. Keratin 8/18a.1 Expression Influences Embryonic Neural Crest Cell Dynamics and Contributes to Postnatal Corneal Regeneration in Zebrafish. Cells 2024; 13:1473. [PMID: 39273043 PMCID: PMC11394277 DOI: 10.3390/cells13171473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
A complete understanding of neural crest cell mechanodynamics during ocular development will provide insight into postnatal neural crest cell contributions to ophthalmic abnormalities in adult tissues and inform regenerative strategies toward injury repair. Herein, single-cell RNA sequencing in zebrafish during early eye development revealed keratin intermediate filament genes krt8 and krt18a.1 as additional factors expressed during anterior segment development. In situ hybridization and immunofluorescence microscopy confirmed krt8 and krt18a.1 expression in the early neural plate border and migrating cranial neural crest cells. Morpholino oligonucleotide (MO)-mediated knockdown of K8 and K18a.1 markedly disrupted the migration of neural crest cell subpopulations and decreased neural crest cell marker gene expression in the craniofacial region and eye at 48 h postfertilization (hpf), resulting in severe phenotypic defects reminiscent of neurocristopathies. Interestingly, the expression of K18a.1, but not K8, is regulated by retinoic acid (RA) during early-stage development. Further, both keratin proteins were detected during postnatal corneal regeneration in adult zebrafish. Altogether, we demonstrated that both K8 and K18a.1 contribute to the early development and postnatal repair of neural crest cell-derived ocular tissues.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA;
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Chicago, IL 60611, USA
| |
Collapse
|
9
|
van der Velden JJAJ, van Gisbergen MW, Kamps MAF, Janssen R, Diercks GFH, Steijlen PM, van Geel M, Bolling MC. Variants in the L12 linker domain of KRT10 are causal to atypical epidermolytic ichthyosis. J Dermatol 2024; 51:1180-1186. [PMID: 39072839 PMCID: PMC11484123 DOI: 10.1111/1346-8138.17395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Epidermolytic ichthyosis (EI) is a type of congenital ichthyosis, characterized by erythema and blistering at birth followed by hyperkeratosis. EI is caused by pathogenic variants in the genes KRT1 and KRT10, encoding the proteins keratin 1 (KRT1) and keratin 10 (KRT10), respectively, and is primarily transmitted by autosomal-dominant inheritance, although recessive inheritance caused by nonsense variants in KRT10 is also described. The keratins form a network of intermediate filaments and are a structural component of the cytoskeleton, giving strength and resilience to the skin. We present three cases of mild EI caused by pathogenic KRT10 variations in the L12 linker domain. To our knowledge, this is the first time L12 linker domain pathogenic variants are identified in KRT10 for EI. The aim of this study was to identify gene variants for patients with EI in KRT1 or KRT10. To establish the pathogenicity of the found variations in KRT10, we evaluated all patients and available family members clinically. Genetic analyses were performed using Sanger sequencing. Vectors containing wild-type or mutated forms of KRT10 were transfected into HaCaT cells and analyzed by high-resolution confocal microscopy. Genetic analysis of KRT10 identified a heterozygous de novo variant c.910G>A p.(Val304Met) in family 1, a familial heterozygous variant c.911T>C p.(Val304Ala) in family 2, and a familial heterozygous variant c.917T>C p.(Met306Thr) in family 3. All identified missense variants were located in the L12 linker domain of KRT10. In vitro study of aggregate formation of the missense variants in KRT10 only showed a very mild and not quantifiable aggregate formation in the KRT10 network, compared with the wild-type sequence. We report three different novel missense variants in the L12 linker domain of KRT10 in patients with an atypical, milder form of EI resembling peeling skin syndrome.
Collapse
Affiliation(s)
- J. J. A. J. van der Velden
- Department of DermatologyMaastricht University Medical Centre+MaastrichtThe Netherlands
- GROW‐School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - M. W. van Gisbergen
- Department of DermatologyMaastricht University Medical Centre+MaastrichtThe Netherlands
- GROW‐School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - M. A. F. Kamps
- Department of DermatologyMaastricht University Medical Centre+MaastrichtThe Netherlands
- GROW‐School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - R. Janssen
- Department of DermatologyMaastricht University Medical Centre+MaastrichtThe Netherlands
- GROW‐School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - G. F. H. Diercks
- Department of Dermatology, UMCG Center of Expertise for Blistering DiseasesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of Pathology, UMCG Center of Expertise for Blistering DiseasesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - P. M. Steijlen
- Department of DermatologyMaastricht University Medical Centre+MaastrichtThe Netherlands
- GROW‐School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - M. van Geel
- Department of DermatologyMaastricht University Medical Centre+MaastrichtThe Netherlands
- GROW‐School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - M. C. Bolling
- Department of Dermatology, UMCG Center of Expertise for Blistering DiseasesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
10
|
Fang Y, Kang Z, Zhang W, Xiang Y, Cheng X, Gui M, Fang D. Core biomarkers analysis benefit for diagnosis on human intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2024; 24:525. [PMID: 39127651 DOI: 10.1186/s12884-024-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The pregnant women with intrahepatic cholestasis were at high risk of fetal distress, preterm birth and unexpected stillbirth. Intrahepatic cholestasis of pregnancy (ICP) was mainly caused by disorder of bile acid metabolism, whereas the specific mechanism was obscure. METHODS We performed proteomics analysis of 10 ICP specimens and 10 placenta specimens from patients without ICP through data-independent acquisition (DIA) technique to disclose differentially expressed proteins. We executed metabolomic analysis of 30 ICP specimens and 30 placenta specimens from patients without ICP through UPLC-MS/MS to identify differentially expressed metabolites. Enrichment and correlation analysis was used to obtain the direct molecular insights of ICP development. The ICP rat models were constructed to validate pathological features. RESULTS The heatmap of proteomics analysis showed the top 30 up-regulated and 30 down-regulated proteins. The metabolomic analysis revealed 20 richer and 4 less abundant metabolites in ICP samples compared with placenta specimens from patients without ICP, and enrichment pathways by these metabolites included primary bile acid biosynthesis, cholesterol metabolism, bile secretion, nicotinate and nicotinamide metabolism, purine metabolism and metabolic pathways. Combined analysis of multiple omics results demonstrated that bile acids such as Glycohyocholic acid, Glycine deoxycholic acid, beta-Muricholic acid, Noncholic acid, cholic acid, Gamma-Mercholic Acid, alpha-Muricholic acid and Glycochenodeoxycholic Aicd were significantly associated with the expression of GLRX3, MYL1, MYH7, PGGT1B, ACTG1, SP3, LACTB2, C2CD5, APBB2, IPO9, MYH2, PPP3CC, PIN1, BLOC1S1, DNAJC7, RASAL2 and ATCN3 etc. The core protein ACAT2 was involved in lipid metabolic process and animal model showed that ACAT2 was up-regulated in placenta and liver of pregnant rats and fetal rats. The neonates had low birth weight and Safranin O-Fast green FCF staining of animal models showed that poor osteogenic and chondrogenic differentiation of fetal rats. CONCLUSION Multiple metabolites-alpha-Muricholic acid, beta-Muricholic acid, Glycine deoxycholic acid and Glycochenodeoxycholic Acid etc. were perfect biomarkers to predict occurrence of ICP. Bile acids were significantly associated with varieties of protein expression and these proteins were differentially expressed in ICP samples. Our study provided several biomarkers for ICP detection and potential therapeutic targets for ICP development.
Collapse
Affiliation(s)
- Yan Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Zhe Kang
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Weiqiang Zhang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Yun Xiang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Mian Gui
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Dajun Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China.
| |
Collapse
|
11
|
Romashin DD, Tolstova TV, Varshaver AM, Kozhin PM, Rusanov AL, Luzgina NG. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings. Curr Issues Mol Biol 2024; 46:8627-8641. [PMID: 39194725 DOI: 10.3390/cimb46080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Keratins 6, 16, and 17 occupy unique positions within the keratin family. These proteins are not commonly found in the healthy, intact epidermis, but their expression increases in response to damage, inflammation, and hereditary skin conditions, as well as cancerous cell transformations and tumor growth. As a result, there is an active investigation into the potential use of these proteins as biomarkers for different pathologies. Recent studies have revealed the role of these keratins in regulating keratinocyte migration, proliferation, and growth, and more recently, their nuclear functions, including their role in maintaining nuclear structure and responding to DNA damage, have also been identified. This review aims to summarize the latest research on keratins 6, 16, and 17, their regulation in the epidermis, and their potential use as biomarkers in various skin conditions.
Collapse
Affiliation(s)
| | | | | | - Peter M Kozhin
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | | |
Collapse
|
12
|
Tripathi A, Bartosh A, Mata J, Jacks C, Madeshiya AK, Hussein U, Hong LE, Zhao Z, Pillai A. Microglial type I interferon signaling mediates chronic stress-induced synapse loss and social behavior deficits. Mol Psychiatry 2024:10.1038/s41380-024-02675-6. [PMID: 39095477 DOI: 10.1038/s41380-024-02675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Inflammation and synapse loss have been associated with deficits in social behavior and are involved in pathophysiology of many neuropsychiatric disorders. Synapse loss, characterized by reduction in dendritic spines can significantly disrupt synaptic connectivity and neural circuitry underlying social behavior. Chronic stress is known to induce loss of spines and dendrites in the prefrontal cortex (PFC), a brain region implicated in social behavior. However, the underlying mechanisms are not well understood. In the present study, we investigated the role of type I Interferon (IFN-I) signaling in chronic unpredictable stress (CUS)-induced synapse loss and behavior deficits in mice. We found increased expression of type I IFN receptor (IFNAR) in microglia following CUS. Conditional knockout of microglial IFNAR in adult mice rescued CUS-induced social behavior deficits and synapse loss. Bulk RNA sequencing data show that microglial IFNAR deletion attenuated CUS-mediated changes in the expression of genes such as Keratin 20 (Krt20), Claudin-5 (Cldn5) and Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1) in the PFC. Cldn5 and Nr4a1 are known for their roles in synaptic plasticity. Krt20 is an intermediate filament protein responsible for the structural integrity of epithelial cells. The reduction in Krt20 following CUS presents a novel insight into the potential contribution of cytokeratin in stress-induced alterations in neuroplasticity. Overall, these results suggest that microglial IFNAR plays a critical role in regulating synaptic plasticity and social behavior deficits associated with chronic stress conditions.
Collapse
Affiliation(s)
- Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alona Bartosh
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jocelyn Mata
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chale Jacks
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Amit Kumar Madeshiya
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Usama Hussein
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Elliot Hong
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
13
|
Ma YS, Kuo FM, Liu TH, Lin YT, Yu J, Wei Y. Exploring keratin composition variability for sustainable thermal insulator design. Int J Biol Macromol 2024; 275:133690. [PMID: 38971280 DOI: 10.1016/j.ijbiomac.2024.133690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In pursuing sustainable thermal insulation solutions, this study explores the integration of human hair and feather keratin with alginate. The aim is to assess its potential in thermal insulation materials, focusing on the resultant composites' thermal and mechanical characteristics. The investigation uncovers that the type and proportion of keratin significantly influence the composites' porosity and thermal conductivity. Specifically, higher feather keratin content is associated with lesser sulfur and reduced crosslinking due to shorter amino acids, leading to increased porosity and pore sizes. This, in turn, results in a decrease in β-structured hydrogen bond networks, raising non-ordered protein structures and diminishing thermal conductivity from 0.044 W/(m·K) for pure alginate matrices to between 0.033 and 0.038 W/(m·K) for keratin-alginate composites, contingent upon the specific ratio of feather to hair keratin used. Mechanical evaluations further indicate that composites with a higher ratio of hair keratin exhibit an enhanced compressive modulus, ranging from 60 to 77 kPa, demonstrating the potential for tailored mechanical properties to suit various applications. The research underscores the critical role of sulfur content and the crosslinking index within keratin's structures, significantly impacting the thermal and mechanical properties of the matrices. The findings position keratin-based composites as environmentally friendly alternatives to traditional insulation materials.
Collapse
Affiliation(s)
- Yu-Shuan Ma
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Fang-Mei Kuo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| | - Tai-Hung Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ting Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, 10608, Taiwan.
| |
Collapse
|
14
|
Baghestani S, Haldin C, Kosijer P, Alam CM, Toivola DM. β-Cell keratin 8 maintains islet mechanical integrity, mitochondrial ultrastructure, and β-cell glucose transporter 2 plasma membrane targeting. Am J Physiol Cell Physiol 2024; 327:C462-C476. [PMID: 38912736 DOI: 10.1152/ajpcell.00123.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Islet β-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in β-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main β-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in β-cells, mice with targeted deletion of β-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in β-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of β-cell K8 leads to a major reduction in K18. Islets without β-cell K8 are more fragile, and these β-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of β-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in β-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. β-Cell K8 is required for islet and β-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in β-cells. Here for the first time, we assessed the β-cell autonomous mechanical and nonmechanical roles of keratin 8 in β-cell function. We demonstrated the importance of keratin 8 in islet and β-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.
Collapse
Affiliation(s)
- Sarah Baghestani
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Caroline Haldin
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Petar Kosijer
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
| | - Catharina M Alam
- School of Applied Sciences, Edinburgh Napier University, Edinburg, United Kingdom
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
15
|
Unger BA, Wu CY, Choi AA, He C, Xu K. Hypersensitivity of the vimentin cytoskeleton to net-charge states and Coulomb repulsion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602555. [PMID: 39026705 PMCID: PMC11257561 DOI: 10.1101/2024.07.08.602555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor. Further modulating the pH and expressing differently charged constructs, we converge on a model in which the vimentin cytoskeleton is destabilized by Coulomb repulsion when its mass-accumulated negative charges (-18 per vimentin protein) along the filament are less screened or otherwise intensified, and stabilized when the charges are better screened or otherwise reduced. Generalizing this model to other intermediate filaments, we further show that whereas the negatively charged GFAP cytoskeleton is similarly subject to fast disassembly under hypotonic stress, the cytokeratin, as a copolymer of negatively and positively charged subunits, does not exhibit this behavior. Thus, in cells containing both vimentin and keratin cytoskeletons, hypotonic stress disassembles the former but not the latter. Together, our results both provide new handles for modulating cell behavior and call for new attention to the effects of net charges in intracellular protein interactions.
Collapse
Affiliation(s)
- Bret A. Unger
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Chun Ying Wu
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Alexander A. Choi
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Changdong He
- Department of Chemistry & California Institute for Quantitative Biosciences
- University of California, Berkeley, California 94720, United States
| | - Ke Xu
- Corresponding author: (K.X.)
| |
Collapse
|
16
|
Liu M, Chen M, Tan J, Chen A, Guo J. Plasma proteins and inflammatory dermatoses: proteome-wide Mendelian randomization and colocalization analyses. Arch Dermatol Res 2024; 316:443. [PMID: 38951247 DOI: 10.1007/s00403-024-03191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024]
Abstract
Current genome-wide association studies (GWAS) of plasma proteomes provide additional possibilities for finding new drug targets for inflammatory dermatoses. We performed proteome-wide Mendelian randomization (MR) and colocalization analyses to identify novel potential drug targets for inflammatory dermatoses. We performed MR and colocalization analysis using genetic variation as instrumental variables to determine the causal relationship between circulating plasma proteins and inflammatory dermatoses. 5 plasma proteins were found to be causally associated with dermatitis eczematosa, SLE, urticaria and psoriasis using cis-pQTLs as instrumental variables, but not found in AD and LP. 19 candidate genes with high colocalization evidence were identified. These potential drug targets still require more research and rigorous validation in future trials.
Collapse
Affiliation(s)
- Mengsong Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Mulan Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Junwen Tan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Anjing Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Guo
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
17
|
Zhang X, Mai Z, Gao Y, Zhao X, Zhang Y. Selecting potential biomarkers of plasma proteins in mares with endometritis. Equine Vet J 2024; 56:660-669. [PMID: 38616335 DOI: 10.1111/evj.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Endometritis is a common condition in mares that causes significant economic loss. Lacking obvious clinical signs, the clinical diagnosis of endometritis in mares relies on case-by-case clinical examinations, which can be particularly inefficient in large-scale farms. Therefore, the identification of potential biomarkers can serve as a non-invasive and efficient screening technique for endometritis in mares. OBJECTIVES To compare the blood proteome between fertile mares and mares with endometritis to identify biomarkers potentially associated with the development of endometritis and validate their predictive potential. STUDY DESIGN Observational and experimental study. METHODS Differentially expressed proteins were identified via Data Independent Acquisition (DIA) proteomic profiling in a screening cohort composed of eight healthy mares and eight mares with endometritis. Subsequently, enzyme-linked immunosorbent assay was employed that included a validation cohort of 40 healthy mares and 40 mares with endometritis to verify the accuracy and sensitivity of the identified proteins, thereby establishing a diagnostic threshold. RESULTS In the screening cohort, 12 proteins were significantly differentially expressed between endometritis mares and healthy controls (p < 0.05, outside the 1/1.2 to 1.2-fold). In the validation experiment, all six screened proteins were assessed with area under the curve (AUC) >0.8. MAIN LIMITATIONS The samples displayed certain levels of individual heterogeneity, and the number of samples analysed was limited. Additionally, the identified biomarkers were primarily associated with generalised inflammation, which potentially limited their specificity for endometritis. CONCLUSION Levels of plasma proteins are sensitive indicators of equine endometritis and potential tools for endometritis screening. In plasma, fetuin B, von Willebrand factor, vitamin K-dependent protein C, insulin-like growth factor binding protein 3, interleukin 1 receptor accessory protein, and type II cell cytoskeleton showed great predictive ability, with fetuin B being the best predictor (AUC = 0.93, 95% CI: 0.89-0.98), which performs better when combined with all six detected proteins (AUC = 1, 95% CI: 0.99-1.00).
Collapse
Affiliation(s)
- Xijun Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yujin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
18
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The umbrella cell keratin network: organization as a tile-like mesh, formation of a girded layer in response to bladder filling, and dependence on the plectin cytolinker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598498. [PMID: 38915686 PMCID: PMC11195278 DOI: 10.1101/2024.06.11.598498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in bladder umbrella cells and their responses to bladder filling are poorly understood. Using super-resolution confocal microscopy, along with 3D image reconstruction and platinum replica electron microscopy, we observed that the apical keratin network of umbrella cells was organized as a dense tile-like mesh comprised of tesserae bordered on their edges by cortical actin filaments, filled with woven keratin filaments, and crosslinked by plectin. A band of keratin was also observed at the cell periphery that was linked to the junction-associated actin ring by plectin. During bladder filling, the junction-localized desmosomal necklace expanded, and a subjacent girded layer was formed that linked the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated band of keratin, perturbation of tight junction continuity, and loss of cell-cell cohesion. Our studies reveal a novel tile-like organization of the umbrella cell keratin cytoskeleton that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Meng X, Zhou Y, Xu L, Hu L, Wang C, Tian X, Zhang X, Hao Y, Cheng B, Ma J, Wang L, Liu J, Xie R. O-GlcNAcylation Facilitates the Interaction between Keratin 18 and Isocitrate Dehydrogenases and Potentially Influencing Cholangiocarcinoma Progression. ACS CENTRAL SCIENCE 2024; 10:1065-1083. [PMID: 38799671 PMCID: PMC11117311 DOI: 10.1021/acscentsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Glycosylation plays a pivotal role in the intricate landscape of human cholangiocarcinoma (CCA), actively participating in key pathophysiological processes driving tumor progression. Among the various glycosylation modifications, O-linked β-N-acetyl-glucosamine modification (O-GlcNAcylation) emerges as a dynamic regulator influencing diverse tumor-associated biological activities. In this study, we employed a state-of-the-art chemical proteomic approach to analyze intact glycopeptides, unveiling the critical role of O-GlcNAcylation in orchestrating Keratin 18 (K18) and its interplay with tricarboxylic acid (TCA) cycle enzymes, specifically isocitrate dehydrogenases (IDHs), to propel CCA progression. Our findings shed light on the mechanistic intricacies of O-GlcNAcylation, revealing that site-specific modification of K18 on Ser 30 serves as a stabilizing factor, amplifying the expression of cell cycle checkpoints. This molecular event intricately fosters cell cycle progression and augments cellular growth in CCA. Notably, the interaction between O-GlcNAcylated K18 and IDHs orchestrates metabolic reprogramming by down-regulating citrate and isocitrate levels while elevating α-ketoglutarate (α-KG). These metabolic shifts further contribute to the overall tumorigenic potential of CCA. Our study thus expands the current understanding of protein O-GlcNAcylation and introduces a new layer of complexity to post-translational control over metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhou
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lei Xu
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Limu Hu
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Changjiang Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao Tian
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yi Hao
- College
of
Chemistry and Molecular Engineering, Peking
University, Beijing 100871, China
| | - Bo Cheng
- School
of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Ma
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Collaborative
Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lei Wang
- Department
of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated, Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jialin Liu
- State
Key Laboratory of Medical Proteomics, Beijing Proteome Research Center,
National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ran Xie
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100191, China
| |
Collapse
|
20
|
Yadav RB, Pathak DP, Varshney R, Arora R. Elucidation of the Role of TRPV1, VEGF-A, TXA2, Redox Homeostasis, and Inflammatory Cascades in Protection against Cold Injuries by Herbosomal-Loaded PEG-Poloxamer Topical Formulation. ACS APPLIED BIO MATERIALS 2024; 7:2836-2850. [PMID: 38717017 DOI: 10.1021/acsabm.3c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1β, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.
Collapse
Affiliation(s)
- Renu Bala Yadav
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Dharam Pal Pathak
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Rajeev Varshney
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Rajesh Arora
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| |
Collapse
|
21
|
Veraguas-Dávila D, Zapata-Rojas C, Aguilera C, Saéz-Ruiz D, Saravia F, Castro FO, Rodriguez-Alvarez L. Proteomic Analysis of Domestic Cat Blastocysts and Their Secretome Produced in an In Vitro Culture System without the Presence of the Zona Pellucida. Int J Mol Sci 2024; 25:4343. [PMID: 38673927 PMCID: PMC11050229 DOI: 10.3390/ijms25084343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Domestic cat blastocysts cultured without the zona pellucida exhibit reduced implantation capacity. However, the protein expression profile has not been evaluated in these embryos. The objective of this study was to evaluate the protein expression profile of domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were generated: (1) domestic cat embryos generated by IVF and cultured in vitro (zona intact, (ZI)) and (2) domestic cat embryos cultured in vitro without the zona pellucida (zona-free (ZF group)). The cleavage, morula, and blastocyst rates were estimated at days 2, 5 and 7, respectively. Day 7 blastocysts and their culture media were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The UniProt Felis catus database was used to identify the standard proteome. No significant differences were found in the cleavage, morula, or blastocyst rates between the ZI and ZF groups (p > 0.05). Proteomic analysis revealed 22 upregulated and 20 downregulated proteins in the ZF blastocysts. Furthermore, 14 proteins involved in embryo development and implantation were present exclusively in the culture medium of the ZI blastocysts. In conclusion, embryo culture without the zona pellucida did not affect in vitro development, but altered the protein expression profile and release of domestic cat blastocysts.
Collapse
Affiliation(s)
- Daniel Veraguas-Dávila
- Escuela de Medicina Veterinaria, Departamento de Ciencias Agrarias, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Km 6 Los Niches, Curicó 3340000, Chile
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Méndez 595, Chillan 3780000, Chile; (C.Z.-R.); (D.S.-R.); (F.S.); (F.O.C.); (L.R.-A.)
| | - Camila Zapata-Rojas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Méndez 595, Chillan 3780000, Chile; (C.Z.-R.); (D.S.-R.); (F.S.); (F.O.C.); (L.R.-A.)
| | - Constanza Aguilera
- School of Veterinary Medicine, Faculty of Natural Sciences, San Sebastián University, Concepción 4081339, Chile;
| | - Darling Saéz-Ruiz
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Méndez 595, Chillan 3780000, Chile; (C.Z.-R.); (D.S.-R.); (F.S.); (F.O.C.); (L.R.-A.)
| | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Méndez 595, Chillan 3780000, Chile; (C.Z.-R.); (D.S.-R.); (F.S.); (F.O.C.); (L.R.-A.)
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Méndez 595, Chillan 3780000, Chile; (C.Z.-R.); (D.S.-R.); (F.S.); (F.O.C.); (L.R.-A.)
| | - Lleretny Rodriguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Méndez 595, Chillan 3780000, Chile; (C.Z.-R.); (D.S.-R.); (F.S.); (F.O.C.); (L.R.-A.)
| |
Collapse
|
22
|
Liang J, Li R, Liu C, Cai Y, Liu Y, Chen P, Zeng K, Li C. A novel heterozygous frameshift mutation in the KRT6A gene responsible for an uncommon phenotype of pachyonychia congenita: One case report and review of literature. Heliyon 2024; 10:e27195. [PMID: 38468954 PMCID: PMC10926126 DOI: 10.1016/j.heliyon.2024.e27195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Pachyonychia congenita is an uncommon autosomal dominant skin disorder characterized by hypertrophic nail dystrophy, palmoplantar keratoderma, oral leukokeratosis, and cutaneous cysts. And fissured tongue is rarely reported in patients with pachyonychia congenita. The disease is primarily associated with mutations in five keratin genes, namely KRT6A, KRT6B, KRT6C, KRT16 or KRT17. Herein we report a 9-year-old Chinese girl who has thickened nails, keratinized plaques, and fissured tongue since birth. To investigate the underlying genetic cause, whole-exome sequencing and Sanger sequencing were performed in this patient and her family members. We identified a candidate variant c.1460-2_1460del (p.S487Lfs*21) in the KRT6A gene (NM_005554.4) by whole-exome sequencing. Sanger sequencing revealed the absence of the mutation in both parents, indicating that it is a de novo variant. Thus, the novel heterozygous frameshift mutation c.1460-2_1460del (p.S487Lfs*21) within exon 9 of KRT6A was identified as the genetic cause of the patient. Our study identified a rare de novo heterozygous frameshift mutation in the KRT6A gene in a patient with pachyonychia congenita presenting fissured tongue. Our findings expand the KRT6A gene mutation spectrum of Pachyonychia congenita, and will contribute to the future genetic counseling and gene therapy for this disease.
Collapse
Affiliation(s)
- Jiali Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Ronghua Li
- Department of Dermatology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362002, China
| | - Chenmei Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yan Cai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yifei Liu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| |
Collapse
|
23
|
Nanda A, Chang YH, Cheng HC, Lai IT, Al-Lafi A, McGrath JA, Hsu CK. Autosomal recessive plantar keratoderma with ragged periungual hyperkeratosis caused by a homozygous missense variant in KRT16. Br J Dermatol 2024; 190:588-590. [PMID: 38170465 DOI: 10.1093/bjd/ljae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 01/05/2024]
Abstract
In the present study, we report a consanguineous Kuwaiti pedigree with pseudo-dominant inheritance of a recessive KRT16 variant in which homozygotes had focal nonepidermolytic palmoplantar keratoderma accompanied by ragged periungual hyperkeratosis. The key value of this submission is that we believe we have identified the first autosomal recessive inherited skin disorder resulting from pathogenic variants in the keratin 16 gene, KRT16. Our findings expand both the genetic basis and phenotypic expression of inherited KRT16-related disorders.
Collapse
Affiliation(s)
- Arti Nanda
- As'ad Al-Hamad Dermatology Center, Kuwait
| | - Yi-Han Chang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine
| | - Hui-Ching Cheng
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine
| | - I Tzu Lai
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine
| | | | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine
- International Research Center of Wound Repair and Regeneration (iWRR)
- Institute of Clinical Medicine, College of Medicine; National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
Constantinescu DR, Sorop A, Ghionescu AV, Lixandru D, Herlea V, Bacalbasa N, Dima SO. EM-transcriptomic signature predicts drug response in advanced stages of high-grade serous ovarian carcinoma based on ascites-derived primary cultures. Front Pharmacol 2024; 15:1363142. [PMID: 38510654 PMCID: PMC10953505 DOI: 10.3389/fphar.2024.1363142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction: High-grade serous ovarian carcinoma (HGSOC) remains a medical challenge despite considerable improvements in the treatment. Unfortunately, over 75% of patients have already metastasized at the time of diagnosis. Advances in understanding the mechanisms underlying how ascites cause chemoresistance are urgently needed to derive novel therapeutic strategies. This study aimed to identify the molecular markers involved in drug sensitivity and highlight the use of ascites as a potential model to investigate HGSOC treatment options. Methods: After conducting an in silico analysis, eight epithelial-mesenchymal (EM)-associated genes related to chemoresistance were identified. To evaluate differences in EM-associated genes in HGSOC samples, we analyzed ascites-derived HGSOC primary cell culture (AS), tumor (T), and peritoneal nodule (NP) samples. Moreover, in vitro experiments were employed to measure tumor cell proliferation and cell migration in AS, following treatment with doxorubicin (DOX) and cisplatin (CIS) and expression of these markers. Results: Our results showed that AS exhibits a mesenchymal phenotype compared to tumor and peritoneal nodule samples. Moreover, DOX and CIS treatment leads to an invasive-intermediate epithelial-to-mesenchymal transition (EMT) state of the AS by different EM-associated marker expression. For instance, the treatment of AS showed that CDH1 and GATA6 decreased after CIS exposure and increased after DOX treatment. On the contrary, the expression of KRT18 has an opposite pattern. Conclusion: Taken together, our study reports a comprehensive investigation of the EM-associated genes after drug exposure of AS. Exploring ascites and their associated cellular and soluble components is promising for understanding the HGSOC progression and treatment response at a personalized level.
Collapse
Affiliation(s)
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | | | - Daniela Lixandru
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Vlad Herlea
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Department of Pathology-Fundeni Clinical Institute, Bucharest, Romania
| | - Nicolae Bacalbasa
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
25
|
Kong D, Qian Y, Yu B, Hu Z, Cheng C, Wang Y, Fang Z, Yu J, Xiang S, Cao L, He Y. Interaction of human dendritic cell receptor DEC205/CD205 with keratins. J Biol Chem 2024; 300:105699. [PMID: 38301891 PMCID: PMC10914487 DOI: 10.1016/j.jbc.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.
Collapse
Affiliation(s)
- Dandan Kong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanying Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Yu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhenzheng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Fang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Tianjin, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Tianjin, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yongning He
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Ibáñez-Cortés M, Martín-Piedra MÁ, Blanco-Elices C, García-García ÓD, España-López A, Fernández-Valadés R, Sánchez-Quevedo MDC, Alaminos M, Chato-Astrain J, Garzón I. Histological characterization of the human masticatory oral mucosa. A histochemical and immunohistochemical study. Microsc Res Tech 2023; 86:1712-1724. [PMID: 37650503 DOI: 10.1002/jemt.24398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Histology of human oral mucosa is closely related with its function and anatomical location, and a proper characterization of the human masticatory oral mucosa could be very useful in periodontal pathology. OBJECTIVE In the present work, we have carried out a comprehensive study in order to determine the main histological features of parakeratinized (POM) and orthokeratinized (OOM) masticatory human oral mucosa using light and electron microscopy. METHODS To perform this, we have used several histological, histochemical and immunohistochemical methods to detect key markets at the epithelial, basement membrane and connective tissue levels. RESULTS Our results demonstrated that POM and OOM share many histological similarities, as expected. However, important differences were observed at the epithelial layer of POM, that was significantly thicker than the epithelial layer found in OOM, especially due to a higher number of cells at the stratum spinosum. The expression pattern of CK10 and filaggrin revealed intense signal expression in OOM as compared to POM. Collagen and proteoglycans were more abundant in OOM stroma than in POM. No differences were found for blood vessels and basement membrane. CONCLUSION These results may contribute to a better understanding of the pathological conditions affecting the human masticatory oral mucosa. In addition, these findings could be useful for the generation of different types of oral mucosa by tissue engineering techniques. RESEARCH HIGHLIGHTS Microscopical features of parakeratinized and orthokeratinized masticatory human oral mucosa showed important differences at both, epithelial and stromal levels. Parakeratinized masticatory human oral mucosa exert thicker epithelial layer, especially, at the stratum spinosum in comparison to orthokeratinized human oral mucosa. Cytokeratin 10 and filaggrin human epithelial markers were intensively expressed in orthokeratinized masticatory human oral mucosa in comparison to parakeratinized masticatory human oral mucosa. At the stromal level, orthokeratinized masticatory human oral mucosa exhibit higher levels of collagen and proteoglycans than parakeratinized masticatory oral mucosa. The deep knowledge of histological features of masticatory oral mucosa could lead to a better understanding of oral mucosa pathology and advanced treatments.
Collapse
Affiliation(s)
- Miguel Ibáñez-Cortés
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Antonio España-López
- Craniofacial Malformations and Cleft Lip and Palate Management Unit, University Hospital Virgen de las Nieves, Granada, Spain
| | - Ricardo Fernández-Valadés
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - María Del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| |
Collapse
|
27
|
Yue Z, Lin J, Lu X, Gao Q, Pan M, Zhang Y, Shen S, Zhu WG, Paus R. Keratin 17 Impacts Global Gene Expression and Controls G2/M Cell Cycle Transition in Ionizing Radiation-Induced Skin Damage. J Invest Dermatol 2023; 143:2436-2446.e13. [PMID: 37414246 DOI: 10.1016/j.jid.2023.02.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 07/08/2023]
Abstract
Keratin 17 (K17) is a cytoskeletal protein that is part of the intermediate filaments in epidermal keratinocytes. In K17-/- mice, ionizing radiation induced more severe hair follicle damage, whereas the epidermal inflammatory response was attenuated compared with that in wild-type mice. Both p53 and K17 have a major impact on global gene expression because over 70% of the differentially expressed genes in the skin of wild-type mice showed no expression change in p53-/- or K17-/- skin after ionizing radiation. K17 does not interfere with the dynamics of p53 activation; rather, global p53 binding in the genome is altered in K17-/- mice. The absence of K17 leads to aberrant cell cycle progression and mitotic catastrophe in epidermal keratinocytes, which is due to nuclear retention, thus reducing the degradation of B-Myb, a key regulator of the G2/M cell cycle transition. These results expand our understanding of the role of K17 in regulating global gene expression and ionizing radiation-induced skin damage.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China.
| | - JianQiong Lin
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - XiaoPeng Lu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China; Department of Biochemistry & Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - MeiPing Pan
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - YaFei Zhang
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - SiTing Shen
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - Wei-Guo Zhu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China; Department of Biochemistry & Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Ralf Paus
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Center for Dermatology Research, School of Biological Sciences, The University of Manchester and NIHR Biomedical Research Center, Manchester, United Kingdom
| |
Collapse
|
28
|
Di Russo J, Magin TM, Leube RE. A keratin code defines the textile nature of epithelial tissue architecture. Curr Opin Cell Biol 2023; 85:102236. [PMID: 37708744 DOI: 10.1016/j.ceb.2023.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
We suggest that the human body can be viewed as of textile nature whose fabric consists of interconnected fiber systems. These fiber systems form highly dynamic scaffolds, which respond to environmental changes at different temporal and spatial scales. This is especially relevant at sites where epithelia border on connective tissue regions that are exposed to dynamic microenvironments. We propose that the enormous heterogeneity and adaptability of epithelia are based on a "keratin code", which results from the cell-specific expression and posttranslational modification of keratin isotypes. It thereby defines unique cytoskeletal intermediate filament networks that are coupled across cells and to the correspondingly heterogeneous fibers of the underlying extracellular matrix. The resulting fabric confers unique local properties.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany; DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
29
|
El Marrahi A, Lipreri F, Kang Z, Gsell L, Eroglu A, Alber D, Hausser J. NIPMAP: niche-phenotype mapping of multiplex histology data by community ecology. Nat Commun 2023; 14:7182. [PMID: 37935691 PMCID: PMC10630431 DOI: 10.1038/s41467-023-42878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
Advances in multiplex histology allow surveying millions of cells, dozens of cell types, and up to thousands of phenotypes within the spatial context of tissue sections. This leads to a combinatorial challenge in (a) summarizing the cellular and phenotypic architecture of tissues and (b) identifying phenotypes with interesting spatial architecture. To address this, we combine ideas from community ecology and machine learning into niche-phenotype mapping (NIPMAP). NIPMAP takes advantage of geometric constraints on local cellular composition imposed by the niche structure of tissues in order to automatically segment tissue sections into niches and their interfaces. Projecting phenotypes on niches and their interfaces identifies previously-reported and previously-unreported spatially-driven phenotypes, concisely summarizes the phenotypic architecture of tissues, and reveals fundamental properties of tissue architecture. NIPMAP is applicable to both protein and RNA multiplex histology of healthy and diseased tissue. An open-source R/Python package implements NIPMAP.
Collapse
Affiliation(s)
- Anissa El Marrahi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
- SciLifeLab; Solna, Stockholm, 171 65, Sweden
| | - Fabio Lipreri
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
- SciLifeLab; Solna, Stockholm, 171 65, Sweden
| | - Ziqi Kang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
- SciLifeLab; Solna, Stockholm, 171 65, Sweden
| | - Louise Gsell
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
- SciLifeLab; Solna, Stockholm, 171 65, Sweden
| | - Alper Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
- SciLifeLab; Solna, Stockholm, 171 65, Sweden
| | - David Alber
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
- SciLifeLab; Solna, Stockholm, 171 65, Sweden
| | - Jean Hausser
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, 171 77, Sweden.
- SciLifeLab; Solna, Stockholm, 171 65, Sweden.
| |
Collapse
|
30
|
Rich KD, Srivastava S, Muthye VR, Wasmuth JD. Identification of potential molecular mimicry in pathogen-host interactions. PeerJ 2023; 11:e16339. [PMID: 37953771 PMCID: PMC10637249 DOI: 10.7717/peerj.16339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Pathogens have evolved sophisticated strategies to manipulate host signaling pathways, including the phenomenon of molecular mimicry, where pathogen-derived biomolecules imitate host biomolecules. In this study, we resurrected, updated, and optimized a sequence-based bioinformatics pipeline to identify potential molecular mimicry candidates between humans and 32 pathogenic species whose proteomes' 3D structure predictions were available at the start of this study. We observed considerable variation in the number of mimicry candidates across pathogenic species, with pathogenic bacteria exhibiting fewer candidates compared to fungi and protozoans. Further analysis revealed that the candidate mimicry regions were enriched in solvent-accessible regions, highlighting their potential functional relevance. We identified a total of 1,878 mimicked regions in 1,439 human proteins, and clustering analysis indicated diverse target proteins across pathogen species. The human proteins containing mimicked regions revealed significant associations between these proteins and various biological processes, with an emphasis on host extracellular matrix organization and cytoskeletal processes. However, immune-related proteins were underrepresented as targets of mimicry. Our findings provide insights into the broad range of host-pathogen interactions mediated by molecular mimicry and highlight potential targets for further investigation. This comprehensive analysis contributes to our understanding of the complex mechanisms employed by pathogens to subvert host defenses and we provide a resource to assist researchers in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kaylee D. Rich
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Shruti Srivastava
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - Viraj R. Muthye
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| | - James D. Wasmuth
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Research Training Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
He Q, Zuo Z, Song K, Wang W, Yu L, Tang Z, Hu S, Li L, Luo H, Chen Z, Liu J, Lin B, Luo J, Jiang Y, Huang Q, Guo X. Keratin7 and Desmoplakin are involved in acute lung injury induced by sepsis through RAGE. Int Immunopharmacol 2023; 124:110867. [PMID: 37660597 DOI: 10.1016/j.intimp.2023.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Keratin 7 (Krt7) is a member of the keratin family and is primarily involved in cytoskeleton composition. It has been shown that Krt7 is able to influence its own remodeling and interactions with other signaling molecules via phosphorylation at specific sites unique to Krt7. However, its molecular mechanism in acute lung injury (ALI) remains unclear. In this study, differential proteomics was used to analyze lung samples from the receptor for advanced glycation end products (RAGE)-deficient and (wild-type)WT-septic mice. We screened for the target protein Krt7 and identified Ser53 as the phosphorylation site using mass spectrometry (MS), and this phosphorylation further triggered the deformation and disintegration of Desmoplakin (Dsp), ultimately leading to epithelial barrier dysfunction. Furthermore, we demonstrated that in sepsis, mDia1/Cdc42/p38 MAPK signaling activation plays a role in septic lung injury. We also explored the mechanism of alveolar dysfunction of the Krt7-Dsp complex in the epithelial cell barrier. In summary, the present findings increase our understanding of the pathogenesis of septic acute lung injury.
Collapse
Affiliation(s)
- Qi He
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zirui Zuo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ke Song
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiju Wang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Yu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhaoliang Tang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuiwang Hu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haihua Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenfeng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinlian Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingqi Lin
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiaqi Luo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
32
|
Habib R, Fahim S, Wahid M, Ainuddin J. Optimisation of a Method for the Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Toward Renal Epithelial-like Cells. Altern Lab Anim 2023; 51:363-375. [PMID: 37831588 DOI: 10.1177/02611929231207774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) can differentiate into multiple cell lineages, but few methods have been developed to generate kidney lineage cells. Due to their human origin, pluripotent nature and immunomodulatory properties, these stem cells are attractive candidates for clinical applications such as the repair or regeneration of damaged organs. This study evaluated the renal differentiation potential of hucMSCs, when exposed for 10 days to optimised concentrations of retinoic acid, activin-A and bone morphogenetic protein-7 (BMP-7) in various combinations, with and without the priming of the cells with a Wnt signalling pathway activator (CHIR99021). The hucMSCs were isolated and characterised according to surface marker expression (CD73, CD90, CD44, CD146 and CD8) and tri-lineage differentiation potential. The expression of key marker genes (OSR1, TBXT, HOXA13, SIX2, PAX2, KRT18 and ZO1) was examined by qRT-PCR. Specific marker protein expression (E-cadherin, cytokeratin-8 and cytokeratin-19) was analysed by immunocytochemistry. CHIR99021-primed cells treated with the retinoic acid, activin-A and BMP-7 cocktail showed epithelial cell-like differentiation - i.e. distinct phenotypic changes, as well as upregulated gene and protein expression, were observed that were consistent with an epithelial cell phenotype. Thus, our results showed that hucMSCs can efficiently differentiate into renal epithelial-like cells. This work may help in the development of focused therapeutic strategies, in which lineage-defined human stem cells can be used for renal regeneration.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Shumaila Fahim
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Mohsin Wahid
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Jahanara Ainuddin
- Department of Gynaecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| |
Collapse
|
33
|
Zhou P, Feng H, Qin W, Li Q. KRT17 from skin cells with high glucose stimulation promotes keratinocytes proliferation and migration. Front Endocrinol (Lausanne) 2023; 14:1237048. [PMID: 37929023 PMCID: PMC10622786 DOI: 10.3389/fendo.2023.1237048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023] Open
Abstract
Impaired diabetic wound healing is an important issue in diabetic complications. Proliferation and migration of keratinocytes are major processes of skin wound repair after injury. However, hyperkeratosis can affect the speed of wound healing. Based on the results of preliminary experiments on increased KRT17 expression after high glucose stimulation of human skin tissue cells, a cell model of human immortalized keratinocyte (HaCaT) stimulation with different concentrations of KRT17 was established in vitro, and the promotion in cell proliferation and migration were discovered. KRT17 silencing promoted diabetic wound healing in the db/db diabetic wound model. Transcriptome sequencing (RNA-seq) was performed on HaCaT cells after KRT17 stimulation, and analysis showed significant enrichment in the PI3K-AKT signaling pathway, in which the regulation of cell c-MYB mRNA, a key molecule regulating cell proliferation and migration, was significantly upregulated. In vitro assays showed increased c-MYB expression and enhanced pAKT activity after HaCaT cell stimulation by KRT17. We speculate that KRT17 is upregulated under high glucose and promotes keratinocyte proliferation and migration caused hyperkeratosis, through the c-MYB/PI3K-AKT pathway, contributing to delayed wound healing.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Feng
- Department of Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhui Qin
- Department of Endocrinology, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
35
|
Doganyigit Z, Eroglu E, Okan A. Intermediate filament proteins are reliable immunohistological biomarkers to help diagnose multiple tissue-specific diseases. Anat Histol Embryol 2023; 52:655-672. [PMID: 37329162 DOI: 10.1111/ahe.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Cytoskeletal networks are proteins that effectively maintain cell integrity and provide mechanical support to cells by actively transmitting mechanical signals. Intermediate filaments, which are from the cytoskeleton family and are 10 nanometres in diameter, are unlike actin and microtubules, which are highly dynamic cytoskeletal elements. Intermediate filaments are flexible at low strain, harden at high strain and resist breaking. For this reason, these filaments fulfil structural functions by providing mechanical support to the cells through their different strain-hardening properties. Intermediate filaments are suitable in that cells both cope with mechanical forces and modulate signal transmission. These filaments are composed of fibrous proteins that exhibit a central α-helical rod domain with a conserved substructure. Intermediate filament proteins are divided into six groups. Type I and type II include acidic and basic keratins, type III, vimentin, desmin, peripheralin and glial fibrillary acidic protein (GFAP), respectively. Type IV intermediate filament group includes neurofilament proteins and a fourth neurofilament subunit, α-internexin proteins. Type V consists of lamins located in the nucleus, and the type VI group consists of lens-specific intermediate filaments, CP49/phakinin and filen. Intermediate filament proteins show specific immunoreactivity in differentiating cells and mature cells of various types. Various carcinomas such as colorectal, urothelial and ovarian, diseases such as chronic pancreatitis, cirrhosis, hepatitis and cataract have been associated with intermediate filaments. Accordingly, this section reviews available immunohistochemical antibodies to intermediate filament proteins. Identification of intermediate filament proteins by methodological methods may contribute to the understanding of complex diseases.
Collapse
Affiliation(s)
- Zuleyha Doganyigit
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Ece Eroglu
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
36
|
Xia L, Li C, Zhao Y, Zhang W, Hu C, Qu Y, Li H, Yan J, Zhou K, Li P. Expression analysis of alpha keratins and corneous beta-protein genes during embryonic development of Gekko japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101116. [PMID: 37567027 DOI: 10.1016/j.cbd.2023.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Epidermal appendages of birds and reptiles, including claws, feathers, scales, and setae, are primarily composed of alpha keratins (KRTs) and corneous beta-proteins (CBPs). A comprehensive and systematic knowledge of KRTs and CBPs in Schlegel's Japanese gecko (Gekko japonicus) is still lacking. In this study, 22 candidate Gecko japonicus keratin (GjKRT) family genes (12 type I genes, 10 type II genes) were identified in the G. japonicus genome. The majority of GjKRT genes across various subgroups had undergone a prolonged and highly conservative evolutionary process. Through a combination of morphological observation, RNA-seq analysis, and qRT-PCR assay, it was possible to discern the dynamic alterations in the expression of GjKRTs and Gecko japonicus corneous beta-proteins genes (GjCBPs). These findings strongly indicate that GjKRTs gradually accumulate to constitute an α-layer, which is subsequently succeeded by the formation of the corneous beta layer containing GjCBPs at late stages (40-42) of embryonic development. The epidermal appendages in G. japonicus may result from the joint accumulation of KRTs and CBPs, with stages 40-42 being critical for their development. These findings provide novel insights into KRTs and CBPs of G. japonicus and offer a foundation for investigating the functions of GjKRT and GjCBP gene families. Furthermore, this knowledge contributes to unraveling the molecular mechanisms underlying the formation of epidermal appendages in G. japonicus.
Collapse
Affiliation(s)
- Longjie Xia
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Chao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yue Zhao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Wenyi Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Chaochao Hu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Yanfu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Kaiya Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
37
|
Wang JL, Zhang L, Xu CZ, Qin XQ, Liu SJ, Wen BJ, Ren HZ. KRT17 serves as an oncogene biomarker of poor survival in patients with hepatocellular carcinoma. BIOMEDICAL TECHNOLOGY 2023; 3:18-25. [DOI: 10.1016/j.bmt.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
|
38
|
Zhang C, Yu N, Qin Q, Wu X, Gu Y, Liu T, Zhang Q, Liu X, Chen M, Wang K. Keratin8 Deficiency Aggravates Retinal Ganglion Cell Damage Under Acute Ocular Hypertension. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 37656477 PMCID: PMC10479409 DOI: 10.1167/iovs.64.12.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Purpose Keratin 8/18 (KRT8/18), paired members of the intermediate filament family, have shown vital functions in regulating physiological activities more than supporting the mechanic strength for cells and organelles. However, the KRT8/18 presence in retinal ganglion cells (RGCs) and functions on neuroprotection in a mouse model of acute ocular hypertension (AOH) are unknown and worthy of exploration. Methods We identified the existence of KRT8/18 in normal human and mouse retinas and primary RGCs. KRT8/18 levels were detected after AOH modeling. The adeno-associated virus (AAV) system was intravitreally used for selective KRT8 knockdown in RGCs. The histological changes, the loss and dysfunction of RGCs, and the gliosis in retinas were detected. The markers of cell apoptosis and MAPK pathways were investigated. Results KRT8/18 existed in all retinal layers and was highly expressed in RGCs, and they increased after AOH induction. The KRT8 knockdown in RGCs caused no histopathological changes and RGC loss in retinas without AOH modeling. However, after the KRT8 deficiency, AOH significantly promoted the loss of whole retina and inner retina thickness, the reduction, apoptosis, and dysfunction of RGCs, and the glial activation. Besides, downregulated Bcl-2 and upregulated cleaved-Caspase 3 were found in the AOH retinas with KRT8 knockdown, which may be caused by the increased phosphorylation level of MAPK pathways (JNK, p38, and ERK). Conclusions The KRT8 deficiency promoted RGC apoptosis and neurodegeneration by abnormal activation of MAPK pathways in AOH retinas. Targeting KRT8 may serve as a novel treatment for saving RCGs from glaucomatous injuries.
Collapse
Affiliation(s)
- Chengshou Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Naiji Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Qiyu Qin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Xingdi Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Yuxiang Gu
- Department of Ophthalmology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang Province, China
| | - Tong Liu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Xin Liu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Min Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Kaijun Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Wang D, Shang Q, Mao J, Gao C, Wang J, Wang D, Wang H, Jia H, Peng P, Du M, Luo Z, Yang L. Phosphorylation of KRT8 (keratin 8) by excessive mechanical load-activated PKN (protein kinase N) impairs autophagosome initiation and contributes to disc degeneration. Autophagy 2023; 19:2485-2503. [PMID: 36897022 PMCID: PMC10392755 DOI: 10.1080/15548627.2023.2186099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Excessive mechanical load (overloading) is a well-documented pathogenetic factor for many mechano stress-induced pathologies, i.e. intervertebral disc degeneration (IDD). Under overloading, the balance between anabolism and catabolism within nucleus pulposus (NP) cells are badly thrown off, and NP cells undergo apoptosis. However, little is known about how the overloading is transduced to the NP cells and contributes to disc degeneration. The current study shows that conditional knockout of Krt8 (keratin 8) within NP aggravates load-induced IDD in vivo, and overexpression of Krt8 endows NP cells greater resistance to overloading-induced apoptosis and degeneration in vitro. Discovery-driven experiments shows that phosphorylation of KRT8 on Ser43 by overloading activated RHOA-PKN (protein kinase N) impedes trafficking of Golgi resident small GTPase RAB33B, suppresses the autophagosome initiation and contributes to IDD. Overexpression of Krt8 and knockdown of Pkn1 and Pkn2, at an early stage of IDD, ameliorates disc degeneration; yet only knockdown of Pkn1 and Pkn2, when treated at late stage of IDD, shows a therapeutic effect. This study validates a protective role of Krt8 during overloading-induced IDD and demonstrates that targeting overloading activation of PKNs could be a novel and effective approach to mechano stress-induced pathologies with a wider window of therapeutic opportunity.Abbreviations: AAV: adeno-associated virus; AF: anulus fibrosus; ANOVA: analysis of variance; ATG: autophagy related; BSA: bovine serum albumin; cDNA: complementary deoxyribonucleic acid; CEP: cartilaginous endplates; CHX: cycloheximide; cKO: conditional knockout; Cor: coronal plane; CT: computed tomography; Cy: coccygeal vertebra; D: aspartic acid; DEG: differentially expressed gene; DHI: disc height index; DIBA: dot immunobinding assay; dUTP: 2'-deoxyuridine 5'-triphosphate; ECM: extracellular matrix; EDTA: ethylene diamine tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GPS: group-based prediction system; GSEA: gene set enrichment analysis; GTP: guanosine triphosphate; HE: hematoxylin-eosin; HRP: horseradish peroxidase; IDD: intervertebral disc degeneration; IF: immunofluorescence staining; IL1: interleukin 1; IVD: intervertebral disc; KEGG: Kyoto encyclopedia of genes and genomes; KRT8: keratin 8; KD: knockdown; KO: knockout; L: lumbar vertebra; LBP: low back pain; LC/MS: liquid chromatograph mass spectrometer; LSI: mouse lumbar instability model; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP3: matrix metallopeptidase 3; MRI: nuclear magnetic resonance imaging; NC: negative control; NP: nucleus pulposus; PBS: phosphate-buffered saline; PE: p-phycoerythrin; PFA: paraformaldehyde; PI: propidium iodide; PKN: protein kinase N; OE: overexpression; PTM: post translational modification; PVDF: polyvinylidene fluoride; qPCR: quantitative reverse-transcriptase polymerase chain reaction; RHOA: ras homolog family member A; RIPA: radio immunoprecipitation assay; RNA: ribonucleic acid; ROS: reactive oxygen species; RT: room temperature; TCM: rat tail compression-induced IDD model; TCS: mouse tail suturing compressive model; S: serine; Sag: sagittal plane; SD rats: Sprague-Dawley rats; shRNA: short hairpin RNA; siRNA: small interfering RNA; SOFG: safranin O-fast green; SQSTM1: sequestosome 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VG/ml: viral genomes per milliliter; WCL: whole cell lysate.
Collapse
Affiliation(s)
- Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jianxin Mao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Chu Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Jie Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Pandi Peng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Mu Du
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, People’s Republic of China
| |
Collapse
|
40
|
Wang W, Zhu L, Zhou J, Liu X, Xiao M, Chen N, Huang X, Chen H, Pei X, Zhang H. Targeting the KRT16-vimentin axis for metastasis in lung cancer. Pharmacol Res 2023:106818. [PMID: 37315823 DOI: 10.1016/j.phrs.2023.106818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Lung cancer is the most diagnosed malignant cancer and the leading cause of cancer-related deaths worldwide, with advanced stage and metastasis being a major issue. The mechanism leading to metastasis is not yet understood. Here, we found that KRT16 is upregulated in metastatic lung cancer tissues and correlated with poor overall survival. Knockdown of KRT16 inhibits metastasis of lung cancer both in vitro and in vivo. Mechanistically, KRT16 interacts with vimentin, and depletion of KRT16 leads to downregulation of vimentin. KRT16 acquired its oncogenic ability by stabilizing vimentin, and vimentin is required for KRT16-driven metastasis. FBXO21 mediates the polyubiquitination and degradation of KRT16, and vimentin inhibits KRT16 ubiquitination and degradation by impairing its interaction with FBXO21. Significantly, IL-15 inhibits metastasis of lung cancer in a mouse model through upregulation of FBXO21, and the level of IL-15 in circulating serum was significantly higher in nonmetastatic lung cancer patients than in metastatic patients. Our findings indicate that targeting the FBXO21/KRT16/vimentin axis may benefit lung cancer patients with metastasis.
Collapse
Affiliation(s)
- Wen Wang
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, 519000(,) Zhuhai(,) China.
| | - Lifei Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, 510515(,) Guangzhou(,) China.
| | - Jiao Zhou
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, 519000(,) Zhuhai(,) China.
| | - Xiaoli Liu
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, 519000(,) Zhuhai(,) China.
| | - Mei Xiao
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, 519000(,) Zhuhai(,) China.
| | - Nan Chen
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, 519000(,) Zhuhai(,) China.
| | - Xiaodan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Hongtao Chen
- Department of Laboratory, The fifth Affiliated Hospital of Sun Yat-sen University, 519000(,) Zhuhai(,) China.
| | - Xiaofeng Pei
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, 519000(,) Zhuhai(,) China.
| | - Hongyu Zhang
- Department of Oncology, The fifth Affiliated Hospital of Sun Yat-sen University, 519000(,) Zhuhai(,) China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China.
| |
Collapse
|
41
|
Chen WC, Hsieh NC, Huang MC, Yang KC, Yu J, Wei Y. An in vitro analysis of the hemostatic efficacy of fibrinogen precipitation with varied keratin fraction compositions. Int J Biol Macromol 2023:125255. [PMID: 37295701 DOI: 10.1016/j.ijbiomac.2023.125255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
In preclinical studies, human hair has demonstrated effective hemostatic properties, potentially attributed to keratin proteins facilitating rapid conversion of fibrinogen to fibrin during coagulation. However, the rational use of human hair keratin for hemostasis remains unclear, given its complex mixture of proteins with diverse molecular weights and structures, leading to variable hemostatic capacity. To optimize the rational utilization of human hair keratin for hemostasis, we investigated the effects of different keratin fractions on keratin-mediated fibrinogen precipitation using a fibrin generation assay. Our study focused on high molecular weight keratin intermediate filaments (KIFs) and lower molecular weight keratin-associated proteins (KAPs) combined in various ratios during the fibrin generation. Scanning electron microscope analysis of the precipitates revealed a filamentous pattern with a broad distribution of fiber diameters, likely due to the diversity of keratin mixtures involved. An equal proportion of KIFs and KAPs in the mixture yielded the most extensive precipitation of soluble fibrinogen in an in vitro study, potentially due to structure-induced exposure of active sites. However, all hair protein samples exhibited diverse catalytic behaviors compared to thrombin, highlighting the potential of utilizing specific hair fractions to develop hair protein-based hemostatic materials with optimized capacity.
Collapse
Affiliation(s)
- Wei-Chieh Chen
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Nien-Chen Hsieh
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mao-Cong Huang
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| |
Collapse
|
42
|
Bharathan NK, Giang W, Hoffman CL, Aaron JS, Khuon S, Chew TL, Preibisch S, Trautman ET, Heinrich L, Bogovic J, Bennett D, Ackerman D, Park W, Petruncio A, Weigel AV, Saalfeld S, Wayne Vogl A, Stahley SN, Kowalczyk AP. Architecture and dynamics of a desmosome-endoplasmic reticulum complex. Nat Cell Biol 2023; 25:823-835. [PMID: 37291267 PMCID: PMC10960982 DOI: 10.1038/s41556-023-01154-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/24/2023] [Indexed: 06/10/2023]
Abstract
The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signalling and lipid transfer. Here, using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometre proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization, mobility and expression of ER stress transcripts. These findings indicate that desmosomes and the keratin cytoskeleton regulate the distribution, function and dynamics of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.
Collapse
Affiliation(s)
- Navaneetha Krishnan Bharathan
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Coryn L Hoffman
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jesse S Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Satya Khuon
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephan Preibisch
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric T Trautman
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Larissa Heinrich
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - John Bogovic
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Davis Bennett
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - David Ackerman
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Woohyun Park
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Alyson Petruncio
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aubrey V Weigel
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephan Saalfeld
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - A Wayne Vogl
- Life Sciences Institute and the Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara N Stahley
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Andrew P Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
43
|
Frommherz L, Komlosi K, Hewel C, Kopp J, Dewenter M, Zimmer A, Bartsch O, Linke M, Technau-Hafsi K, Gerber S, Fischer J, Has C. Acral lamellar ichthyosis with amino acid substitution in the C-terminus of keratin 2. J Eur Acad Dermatol Venereol 2023; 37:817-822. [PMID: 36331357 DOI: 10.1111/jdv.18719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Most cases of hereditary ichthyoses present with generalized scaling and skin dryness. However, in some cases skin involvement is restricted to particular body regions as in acral lamellar ichthyosis. OBJECTIVES We report on the genetic basis of acral ichthyosis in two families presenting with a similar phenotype. METHODS Genetic testing was performed by targeted next generation sequencing and whole-exome sequencing. For identity-by-descent analysis, the parents were genotyped and data analysis was performed with the Chromosome Analysis Suite Software. RT-PCR with RNA extracted from skin samples was used to analyse the effect of variants on splicing. RESULTS Genetic testing identified a few heterozygous variants, but only the variant in KRT2 c.1912 T > C, p.Phe638Leu segregated with the disease and remained the strongest candidate. Pairwise identity-by-descent analysis revealed no indication of family relationship. Phenylalanine 638 is the second last amino acid upstream of the termination codon in the tail of K2, and substitution to leucine is predicted as probably damaging. Assessment of the variant is difficult, in part due to the lack of crystal structures of this region. CONCLUSIONS Altogether, we show that a type of autosomal dominant acral ichthyosis is most probably caused by an amino acid substitution in the C-terminus of keratin 2.
Collapse
Affiliation(s)
- Leonie Frommherz
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Katalin Komlosi
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Hewel
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Kopp
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Malin Dewenter
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Zimmer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristin Technau-Hafsi
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Computational Systems Genomics Group, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Judith Fischer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
45
|
Aydemir Celep N, Gedikli S. Protective Effect of Silymarin on Liver in Experimental in the Sepsis Model of Rats. Acta Histochem Cytochem 2023; 56:9-19. [PMID: 36890848 PMCID: PMC9986308 DOI: 10.1267/ahc.22-00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/16/2023] [Indexed: 03/03/2023] Open
Abstract
This study, it was investigated whether silymarin has a protective effect by performing histological, immunohistochemical, and biochemical evaluations on the liver damage induced by cecal ligation perforation (CLP). CLP model was established and silymarin was treated at a dose of 50 mg/kg, 100 mg/kg, and 200 mg/kg, by oral one hour before the CLP. As an effect of the histological evaluations of the liver tissues, venous congestion, inflammation, and necrosis in the hepatocytes were observed in the CLP group. A situation close to the control group was observed in the Silymarin (SM)100 and SM200 groups. As a result of the immunohistochemical evaluations, inducible nitric oxide synthase (iNOS), cytokeratine (CK)18, Tumor necrosis factor-alpha (TNF-α), and interleukine (IL)-6 immunoreactivities were intense in the CLP group. In the biochemical analysis, Alkaline Phosphatase (ALP), Aspartate Aminotransferase (AST), and Alanine Aminotransferase (ALT) levels were significantly increased in the CLP group, while a significant decrease was observed in the treatment groups. TNFα, IL-1β, and IL-6 concentrations were in parallel with histopathological evaluations. In the biochemical analysis, Malondialdehyte (MDA) level increased significantly in the CLP group, but there was a significant decrease in the SM100 and SM200 groups. Glutathione (GSH), Superoxide Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase (GSH-Px) activities were relatively low in the CLP group. According to these data, it was concluded that using silymarin reduces the existing liver damage in sepsis.
Collapse
Affiliation(s)
- Nevra Aydemir Celep
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Semin Gedikli
- Department of Histology and Embriology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
46
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
47
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
48
|
LncRNA NR120519 Blocks KRT17 to Promote Cell Proliferation and Migration in Hypopharyngeal Squamous Carcinoma. Cancers (Basel) 2023; 15:cancers15030603. [PMID: 36765563 PMCID: PMC9913485 DOI: 10.3390/cancers15030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Hypopharyngeal carcinoma is the worst type of head and neck squamous cell carcinoma. It is necessary to identify the key molecular targets related to the carcinogenesis and development of hypopharyngeal carcinoma. METHODS Differentially expressed lncRNAs in hypopharyngeal carcinoma were selected by microarray, and lncRNA-associated proteins were found by RIP assay. Colony formation, CCK-8, wound healing and Transwell assays were performed to detect the effects of lncRNA and its associated protein on cell proliferation and migration in vitro. Downstream pathways of lncRNA and its associated protein were detected by WB. Through a subcutaneous tumor model, the effects of lncRNA and its associated protein on cell proliferation were detected. The expressions of lncRNA and its associated protein in hypopharyngeal cancer tissues were detected by qRT-PCR and immunohistochemistry assays, respectively, and survival analyses were performed by Kaplan-Meier curve. RESULTS A total of 542 and 265 lncRNAs were upregulated and downregulated in microarrays, respectively. LncRNA NR120519 was upregulated and promoted cell proliferation and migration of hypopharyngeal carcinoma in vitro and cell proliferation in vivo. RIP and WB assays showed that KRT17 was associated with and blocked by NR120519.The silencing of KRT17 promoted cell proliferation and the migration of hypopharyngeal carcinoma in vitro and cell proliferation in vivo by activating the AKT/mTOR pathway and epithelial-mesenchymal transformation (EMT). Finally, the NR120519 high expression and KRT17 low expression groups showed shorter overall survival. CONCLUSION NR120519 activated the AKT/mTOR pathway and EMT by blocking KRT17 to promote cell proliferation and the migration of hypopharyngeal carcinoma.
Collapse
|
49
|
Takan I, Karakülah G, Louka A, Pavlopoulou A. "In the light of evolution:" keratins as exceptional tumor biomarkers. PeerJ 2023; 11:e15099. [PMID: 36949761 PMCID: PMC10026720 DOI: 10.7717/peerj.15099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Keratins (KRTs) are the intermediate filament-forming proteins of epithelial cells, classified, according to their physicochemical properties, into "soft" and "hard" keratins. They have a key role in several aspects of cancer pathophysiology, including cancer cell invasion and metastasis, and several members of the KRT family serve as diagnostic or prognostic markers. The human genome contains both, functional KRT genes and non-functional KRT pseudogenes, arranged in two uninterrupted clusters on chromosomes 12 and 17. This characteristic renders KRTs ideal for evolutionary studies. Herein, comprehensive phylogenetic analyses of KRT homologous proteins in the genomes of major taxonomic divisions were performed, so as to fill a gap in knowledge regarding the functional implications of keratins in cancer biology among tumor-bearing species. The differential expression profiles of KRTs in diverse types of cancers were investigated by analyzing high-throughput data, as well. Several KRT genes, including the phylogenetically conserved ones, were found to be deregulated across several cancer types and to participate in a common protein-protein interaction network. This indicates that, at least in cancer-bearing species, these genes might have been under similar evolutionary pressure, perhaps to support the same important function(s). In addition, semantic relations between KRTs and cancer were detected through extensive text mining. Therefore, by applying an integrative in silico pipeline, the evolutionary history of KRTs was reconstructed in the context of cancer, and the potential of using non-mammalian species as model organisms in functional studies on human cancer-associated KRT genes was uncovered.
Collapse
Affiliation(s)
- Işıl Takan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Aikaterini Louka
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
50
|
Transcriptome Analysis Reveals Vimentin-Induced Disruption of Cell-Cell Associations Augments Breast Cancer Cell Migration. Cells 2022; 11:cells11244035. [PMID: 36552797 PMCID: PMC9776984 DOI: 10.3390/cells11244035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In advanced metastatic cancers with reduced patient survival and poor prognosis, expression of vimentin, a type III intermediate filament protein is frequently observed. Vimentin appears to suppress epithelial characteristics and augments cell migration but the molecular basis for these changes is not well understood. Here, we have ectopically expressed vimentin in MCF-7 and investigated its genomic and functional implications. Vimentin changed the cell shape by decreasing major axis, major axis angle and increased cell migration, without affecting proliferation. Vimentin downregulated major keratin genes KRT8, KRT18 and KRT19. Transcriptome-coupled GO and KEGG analyses revealed that vimentin-affected genes were linked to either cell-cell/cell-ECM or cell cycle/proliferation specific pathways. Using shRNA mediated knockdown of vimentin in two cell types; MCF-7FV (ectopically expressing) and MDA-MB-231 (endogenously expressing), we identified a vimentin-specific signature consisting of 13 protein encoding genes (CDH5, AXL, PTPRM, TGFBI, CDH10, NES, E2F1, FOXM1, CDC45, FSD1, BCL2, KIF26A and WISP2) and two long non-coding RNAs, LINC00052 and C15ORF9-AS1. CDH5, an endothelial cadherin, which mediates cell-cell junctions, was the most downregulated protein encoding gene. Interestingly, downregulation of CDH5 by shRNA significantly increased cell migration confirming our RNA-Seq data. Furthermore, presence of vimentin altered the lamin expression in MCF-7. Collectively, we demonstrate, for the first time, that vimentin in breast cancer cells could change nuclear architecture by affecting lamin expression, which downregulates genes maintaining cell-cell junctions resulting in increased cell migration.
Collapse
|