1
|
Teruya K, Oguma A, Iwabuchi S, Nishizawa K, Doh-Ura K. Improvement of anti-prion efficacy with stearoxy conjugation of hydroxypropyl methylcellulose in prion-infected mice. Carbohydr Polym 2024; 337:122163. [PMID: 38710557 DOI: 10.1016/j.carbpol.2024.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders. Among known anti-prions, hydroxypropyl methylcellulose compounds (HPMCs) are unique in their chemical structure and action. They have several excellent anti-prion properties but the effectiveness depends on the prion-infected mouse model. In the present study, we investigated the effects of stearoxy-modified HPMCs on prion-infected cells and mice. Stearoxy modification improved the anti-prion efficacy of HPMCs in prion-infected cells and significantly prolonged the incubation period in a lower HPMC-responding mouse model. However, stearoxy modification showed no improvement over nonmodified HPMCs in an HPMC-responding mouse model. These results offer a new line of inquiry for use with prion-infected mice that do not respond well to HPMCs.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Sara Iwabuchi
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Teruya K, Oguma A, Iwabuchi S, Nishizawa K, Doh-Ura K. Combination of Styrylbenzoazole Compound and Hydroxypropyl Methylcellulose Enhances Therapeutic Effect in Prion-Infected Mice. Mol Neurobiol 2024; 61:4705-4711. [PMID: 38114760 PMCID: PMC11236910 DOI: 10.1007/s12035-023-03852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders. Tremendous efforts have been made for prion diseases; however, no effective treatment is available. Several anti-prion compounds have a preference for which prion strains or prion-infected animal models to target. Styrylbenzoazole compound called cpd-B is effective in RML prion-infected mice but less so in 263K prion-infected mice, whereas hydroxypropyl methylcellulose is effective in 263K prion-infected mice but less so in RML prion-infected mice. In the present study, we developed a combination therapy of cpd-B and hydroxypropyl methylcellulose expecting synergistic effects in both RML prion-infected mice and 263K prion-infected mice. A single subcutaneous administration of this combination had substantially a synergistic effect in RML prion-infected mice but had no additive effect in 263K prion-infected mice. These results showed that the effect of cpd-B was enhanced by hydroxypropyl methylcellulose. The complementary nature of the two compounds in efficacy against prion strains, chemical properties, pharmacokinetics, and physical properties appears to have contributed to the effective combination therapy. Our results pave the way for the strategy of new anti-prion agents.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Sara Iwabuchi
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
- Faculty of Medical Science & Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Walsh DJ, Rees JR, Mehra S, Bourkas MEC, Kaczmarczyk L, Stuart E, Jackson WS, Watts JC, Supattapone S. Anti-prion drugs do not improve survival in novel knock-in models of inherited prion disease. PLoS Pathog 2024; 20:e1012087. [PMID: 38557815 PMCID: PMC10984475 DOI: 10.1371/journal.ppat.1012087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrPSc propagation in vitro. None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrPSc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions, as well as anti-prion strategies that are not strain-dependent.
Collapse
Affiliation(s)
- Daniel J. Walsh
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Judy R. Rees
- Department of Epidemiology Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Community and Family Medicine Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E. C. Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walker S. Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
4
|
Walsh DJ, Rees JR, Mehra S, Bourkas MEC, Kaczmarczyk L, Stuart E, Jackson WS, Watts JC, Supattapone S. Anti-prion drugs do not improve survival in knock-in models of inherited prion disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559951. [PMID: 37808761 PMCID: PMC10557747 DOI: 10.1101/2023.09.28.559951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrP Sc propagation in vitro . None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrP Sc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Paradoxically, the combination of Anle138b and IND24 appeared to accelerate disease by 16% and 26% in kiBVI E200K and kiBVI D178N mice, respectively, and accelerated the aggregation of mutant PrP molecules in vitro . Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions.
Collapse
|
5
|
Prions: a threat to health security and the need for effective medical countermeasures. GLOBAL HEALTH JOURNAL 2023. [DOI: 10.1016/j.glohj.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
6
|
Triller G, Garyfallos DA, Papavasiliou FN, Sklaviadis T, Stavropoulos P, Xanthopoulos K. Immunization with Genetically Modified Trypanosomes Provides Protection against Transmissible Spongiform Encephalopathies. Int J Mol Sci 2022; 23:ijms231810629. [PMID: 36142526 PMCID: PMC9503410 DOI: 10.3390/ijms231810629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Transmissible spongiform encephalopathies are incurable neurodegenerative diseases, associated with the conversion of the physiological prion protein to its disease-associated counterpart. Even though immunization against transmissible spongiform encephalopathies has shown great potential, immune tolerance effects impede the use of active immunization protocols for successful prophylaxis. In this study, we evaluate the use of trypanosomes as biological platforms for the presentation of a prion antigenic peptide to the host immune system. Using the engineered trypanosomes in an immunization protocol without the use of adjuvants led to the development of a humoral immune response against the prion protein in wild type mice, without the appearance of adverse reactions. The immune reaction elicited with this protocol displayed in vitro therapeutic potential and was further evaluated in a bioassay where immunized mice were partially protected in a representative murine model of prion diseases. Further studies are underway to better characterize the immune reaction and optimize the immunization protocol.
Collapse
Affiliation(s)
- Gianna Triller
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
| | - Dimitrios A. Garyfallos
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - F. Nina Papavasiliou
- Division of Immune Diversity, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Pete Stavropoulos
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
- Correspondence: (P.S.); (K.X.); Tel.: +30-2310-997-654 (Κ.Χ.)
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thermi, Greece
- Correspondence: (P.S.); (K.X.); Tel.: +30-2310-997-654 (Κ.Χ.)
| |
Collapse
|
7
|
Han ZZ, Kang SG, Arce L, Westaway D. Prion-like strain effects in tauopathies. Cell Tissue Res 2022; 392:179-199. [PMID: 35460367 PMCID: PMC9034081 DOI: 10.1007/s00441-022-03620-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Tau is a microtubule-associated protein that plays crucial roles in physiology and pathophysiology. In the realm of dementia, tau protein misfolding is associated with a wide spectrum of clinicopathologically diverse neurodegenerative diseases, collectively known as tauopathies. As proposed by the tau strain hypothesis, the intrinsic heterogeneity of tauopathies may be explained by the existence of structurally distinct tau conformers, “strains”. Tau strains can differ in their associated clinical features, neuropathological profiles, and biochemical signatures. Although prior research into infectious prion proteins offers valuable lessons for studying how a protein-only pathogen can encompass strain diversity, the underlying mechanism by which tau subtypes are generated remains poorly understood. Here we summarize recent advances in understanding different tau conformers through in vivo and in vitro experimental paradigms, and the implications of heterogeneity of pathological tau species for drug development.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Luis Arce
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Carnosic Acid and Carnosol Display Antioxidant and Anti-Prion Properties in In Vitro and Cell-Free Models of Prion Diseases. Antioxidants (Basel) 2022; 11:antiox11040726. [PMID: 35453411 PMCID: PMC9027925 DOI: 10.3390/antiox11040726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are transmissible encephalopathies associated with the conversion of the physiological form of the prion protein (PrPC) to the disease-associated (PrPSc). Despite intense research, no therapeutic or prophylactic agent is available. The catechol-type diterpene Carnosic acid (CA) and its metabolite Carnosol (CS) from Rosmarinus officinalis have well-documented anti-oxidative and neuroprotective effects. Since oxidative stress plays an important role in the pathogenesis of prion diseases, we investigated the potential beneficial role of CA and CS in a cellular model of prion diseases (N2a22L cells) and in a cell-free prion amplification assay (RT-QuIC). The antioxidant effects of the compounds were confirmed when N2a22L were incubated with CA or CS. Furthermore, CA and CS reduced the accumulation of the disease-associated form of PrP, detected by Western Blotting, in N2a22L cells. This effect was validated in RT-QuIC assays, indicating that it is not associated with the antioxidant effects of CA and CS. Importantly, cell-free assays revealed that these natural products not only prevent the formation of PrP aggregates but can also disrupt already formed aggregates. Our results indicate that CA and CS have pleiotropic effects against prion diseases and could evolve into useful prophylactic and/or therapeutic agents against prion and other neurodegenerative diseases.
Collapse
|
9
|
Activities of curcumin-related compounds in two cell lines persistently infected with different prion strains. Biochim Biophys Acta Gen Subj 2022; 1866:130094. [DOI: 10.1016/j.bbagen.2022.130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
10
|
Beauchemin KS, Rees JR, Supattapone S. Alternating anti-prion regimens reduce combination drug resistance but do not further extend survival in scrapie-infected mice. J Gen Virol 2021; 102:001705. [PMID: 34904943 PMCID: PMC8744272 DOI: 10.1099/jgv.0.001705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases in humans and other mammals caused by templated misfolding of the endogenous prion protein (PrP). Although there is currently no vaccine or therapy against prion disease, several classes of small-molecule compounds have been shown to increase disease-free incubation time in prion-infected mice. An apparent obstacle to effective anti-prion therapy is the emergence of drug-resistant strains during static therapy with either single compounds or multi-drug combination regimens. Here, we treated scrapie-infected mice with dynamic regimens that alternate between different classes of anti-prion drugs. The results show that alternating regimens containing various combinations of Anle138b, IND24 and IND116135 reduce the incidence of combination drug resistance, but do not significantly increase long-term disease-free survival compared to monotherapy. Furthermore, the alternating regimens induced regional vacuolation profiles resembling those generated by a single component of the alternating regimen, suggesting the emergence of strain dominance.
Collapse
Affiliation(s)
- Kathryn S. Beauchemin
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Judy R. Rees
- Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Surachai Supattapone
- Departments of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA,Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA,*Correspondence: Surachai Supattapone,
| |
Collapse
|
11
|
Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. Green Tea Polyphenol Epigallocatechin-Gallate in Amyloid Aggregation and Neurodegenerative Diseases. Front Neurosci 2021; 15:718188. [PMID: 34594185 PMCID: PMC8477582 DOI: 10.3389/fnins.2021.718188] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
The accumulation of protein aggregates in human tissues is a hallmark of more than 40 diseases called amyloidoses. In seven of these disorders, the aggregation is associated with neurodegenerative processes in the central nervous system such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The aggregation occurs when certain soluble proteins lose their physiological function and become toxic amyloid species. The amyloid assembly consists of protein filament interactions, which can form fibrillar structures rich in β-sheets. Despite the frequent incidence of these diseases among the elderly, the available treatments are limited and at best palliative, and new therapeutic approaches are needed. Among the many natural compounds that have been evaluated for their ability to prevent or delay the amyloidogenic process is epigallocatechin-3-gallate (EGCG), an abundant and potent polyphenolic molecule present in green tea that has extensive biological activity. There is evidence for EGCG’s ability to inhibit the aggregation of α-synuclein, amyloid-β, and huntingtin proteins, respectively associated with PD, AD, and HD. It prevents fibrillogenesis (in vitro and in vivo), reduces amyloid cytotoxicity, and remodels fibrils to form non-toxic amorphous species that lack seed propagation. Although it is an antioxidant, EGCG in an oxidized state can promote fibrils’ remodeling through formation of Schiff bases and crosslinking the fibrils. Moreover, microparticles to drug delivery were synthesized from oxidized EGCG and loaded with a second anti-amyloidogenic molecule, obtaining a synergistic therapeutic effect. Here, we describe several pre-clinical and clinical studies involving EGCG and neurodegenerative diseases and their related mechanisms.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thyago R Cardim-Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Volatile Anesthetic Sevoflurane Precursor 1,1,1,3,3,3-Hexafluoro-2-Propanol (HFIP) Exerts an Anti-Prion Activity in Prion-Infected Culture Cells. Neurochem Res 2021; 46:2056-2065. [PMID: 34043140 PMCID: PMC8254714 DOI: 10.1007/s11064-021-03344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022]
Abstract
Prion disease is a neurodegenerative disorder with progressive neurologic symptoms and accelerated cognitive decline. The causative protein of prion disease is the prion protein (PrP), and structural transition of PrP from the normal helix rich form (PrPC) to the abnormal β-sheet rich form (PrPSc) occurs in prion disease. While so far numerous therapeutic agents for prion diseases have been developed, none of them are still useful. A fluorinated alcohol, hexafluoro isopropanol (HFIP), is a precursor to the inhalational anesthetic sevoflurane and its metabolites. HFIP is also known as a robust α-helix inducer and is widely used as a solvent for highly aggregated peptides. Here we show that the α-helix-inducing activity of HFIP caused the conformational transformation of the fibrous structure of PrP into amorphous aggregates in vitro. HFIP added to the ScN2a cell medium, which continuously expresses PrPSc, reduced PrPSc protease resistance after 24-h incubation. It was also clarified that ScN2a cells are more susceptible to HFIP than any of the cells being compared. Based on these findings, HFIP is expected to develop as a therapeutic agent for prion disease.
Collapse
|
13
|
Cali I, Espinosa JC, Nemani SK, Marin-Moreno A, Camacho MV, Aslam R, Kitamoto T, Appleby BS, Torres JM, Gambetti P. Two distinct conformers of PrP D type 1 of sporadic Creutzfeldt-Jakob disease with codon 129VV genotype faithfully propagate in vivo. Acta Neuropathol Commun 2021; 9:55. [PMID: 33766126 PMCID: PMC7995586 DOI: 10.1186/s40478-021-01132-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
Current classifications of sporadic Creutzfeldt–Jakob disease (sCJD) identify five subtypes associated with different disease phenotypes. Most of these histopathological phenotypes (histotypes) co-distribute with distinct pairings of methionine (M)/valine (V) genotypes at codon 129 of the prion protein (PrP) gene and the type (1 or 2) of the disease-associated PrP (PrPD). Types 1 and 2 are defined by the molecular mass (~ 21 kDa and ~ 19 kDa, respectively) of the unglycosylated isoform of the proteinase K-resistant PrPD (resPrPD). We recently reported that the sCJDVV1 subtype (129VV homozygosity paired with PrPD type 1, T1) shows an electrophoretic profile where the resPrPD unglycosylated isoform is characterized by either one of two single bands of ~ 20 kDa (T120) and ~ 21 kDa (T121), or a doublet of ~ 21–20 kDa (T121−20). We also showed that T120 and T121 in sCJDVV have different conformational features but are associated with indistinguishable histotypes. The presence of three distinct molecular profiles of T1 is unique and raises the issue as to whether T120 and T121 represent distinct prion strains. To answer this question, brain homogenates from sCJDVV cases harboring each of the three resPrPD profiles, were inoculated to transgenic (Tg) mice expressing the human PrP-129M or PrP-129V genotypes. We found that T120 and T121 were faithfully replicated in Tg129V mice. Electrophoretic profile and incubation period of mice challenged with T121−20 resembled those of mice inoculated with T121 and T120, respectively. As in sCJDVV1, Tg129V mice challenged with T121 and T120 generated virtually undistinguishable histotypes. In Tg129M mice, T121 was not replicated while T120 and T121−20 generated a ~ 21–20 kDa doublet after lengthier incubation periods. On second passage, Tg129M mice incubation periods and regional PrP accumulation significantly differed in T120 and T121−20 challenged mice. Combined, these data indicate that T121 and T120 resPrPD represent distinct human prion strains associated with partially overlapping histotypes.
Collapse
|
14
|
Abrams J, Arhar T, Mok SA, Taylor IR, Kampmann M, Gestwicki JE. Functional genomics screen identifies proteostasis targets that modulate prion protein (PrP) stability. Cell Stress Chaperones 2021; 26:443-452. [PMID: 33547632 PMCID: PMC7925731 DOI: 10.1007/s12192-021-01191-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Prion protein (PrP) adopts either a helical conformation (PrPC) or an alternative, beta sheet-rich, misfolded conformation (PrPSc). The PrPSc form has the ability to "infect" PrPC and force it into the misfolded state. Accumulation of PrPSc is associated with a number of lethal neurodegenerative disorders, including Creutzfeldt-Jacob disease (CJD). Knockout of PrPC protects cells and animals from PrPSc infection; thus, there is interest in identifying factors that regulate PrPC stability, with the therapeutic goal of reducing PrPC levels and limiting infection by PrPSc. Here, we assembled a short-hairpin RNA (shRNA) library composed of 25+ shRNA sequences for each of 133 protein homeostasis (aka proteostasis) factors, such as molecular chaperones and co-chaperones. This Proteostasis shRNA Library was used to identify regulators of PrPC stability in HEK293 Hu129M cells. Strikingly, the screen identified a number of Hsp70 family members and their co-chaperones as putative targets. Indeed, a chemical pan-inhibitor of Hsp70s reduced PrPC levels and limited conversion to PrPSc in N2a cells. These results implicate specific proteostasis sub-networks, especially the Hsp70 system, as potential new targets for the treatment of CJD. More broadly, the Proteostasis shRNA Library might be a useful tool for asking which proteostasis factors are important for a given protein.
Collapse
Affiliation(s)
- Jennifer Abrams
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Taylor Arhar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Sue Ann Mok
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Isabelle R Taylor
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
15
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Hara H, Sakaguchi S. N-Terminal Regions of Prion Protein: Functions and Roles in Prion Diseases. Int J Mol Sci 2020; 21:ijms21176233. [PMID: 32872280 PMCID: PMC7504422 DOI: 10.3390/ijms21176233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/30/2023] Open
Abstract
The normal cellular isoform of prion protein, designated PrPC, is constitutively converted to the abnormally folded, amyloidogenic isoform, PrPSc, in prion diseases, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. PrPC is a membrane glycoprotein consisting of the non-structural N-terminal domain and the globular C-terminal domain. During conversion of PrPC to PrPSc, its 2/3 C-terminal region undergoes marked structural changes, forming a protease-resistant structure. In contrast, the N-terminal region remains protease-sensitive in PrPSc. Reverse genetic studies using reconstituted PrPC-knockout mice with various mutant PrP molecules have revealed that the N-terminal domain has an important role in the normal function of PrPC and the conversion of PrPC to PrPSc. The N-terminal domain includes various characteristic regions, such as the positively charged residue-rich polybasic region, the octapeptide repeat (OR) region consisting of five repeats of an octapeptide sequence, and the post-OR region with another positively charged residue-rich polybasic region followed by a stretch of hydrophobic residues. We discuss the normal functions of PrPC, the conversion of PrPC to PrPSc, and the neurotoxicity of PrPSc by focusing on the roles of the N-terminal regions in these topics.
Collapse
|
17
|
Burke CM, Mark KMK, Kun J, Beauchemin KS, Supattapone S. Emergence of prions selectively resistant to combination drug therapy. PLoS Pathog 2020; 16:e1008581. [PMID: 32421750 PMCID: PMC7259791 DOI: 10.1371/journal.ppat.1008581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/29/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
Prions are unorthodox infectious agents that replicate by templating misfolded conformations of a host-encoded glycoprotein, collectively termed PrPSc. Prion diseases are invariably fatal and currently incurable, but oral drugs that can prolong incubation times in prion-infected mice have been developed. Here, we tested the efficacy of combination therapy with two such drugs, IND24 and Anle138b, in scrapie-infected mice. The results indicate that combination therapy was no more effective than either IND24 or Anle138b monotherapy in prolonging scrapie incubation times. Moreover, combination therapy induced the formation of a new prion strain that is specifically resistant to the combination regimen but susceptible to Anle138b. To our knowledge, this is the first report of a pathogen with specific resistance to combination therapy despite being susceptible to monotherapy. Our findings also suggest that combination therapy may be a less effective strategy for treating prions than conventional pathogens.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Kenneth M. K. Mark
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Judit Kun
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Kathryn S. Beauchemin
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Surachai Supattapone
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
18
|
Abdulrahman BA, Tahir W, Doh-Ura K, Gilch S, Schatzl HM. Combining autophagy stimulators and cellulose ethers for therapy against prion disease. Prion 2020; 13:185-196. [PMID: 31578923 PMCID: PMC6779372 DOI: 10.1080/19336896.2019.1670928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals and humans. Prions are proteinaceous infectious particles consisting of a misfolded isoform of the cellular prion protein PrPC, termed PrPSc. PrPSc accumulates in infected neurons due to partial resistance to proteolytic digestion. Using compounds that interfere with the production of PrPSc or enhance its degradation cure prion infection in vitro, but most drugs failed when used to treat prion-infected rodents. In order to synergize the effect of anti-prion drugs, we combined drugs interfering with the generation of PrPSc with compounds inducing PrPSc degradation. Here, we tested autophagy stimulators (rapamycin or AR12) and cellulose ether compounds (TC-5RW or 60SH-50) either as single or combination treatment of mice infected with RML prions. Single drug treatments significantly extended the survival compared to the untreated group. As anticipated, also all the combination therapy groups showed extended survival compared to the untreated group, but no combination treatment showed superior effects to 60SH-50 or TC-5RW treatment alone. Unexpectedly, we later found that combining autophagy stimulator and cellulose ether treatment in cultured neuronal cells mitigated the pro-autophagic activity of AR12 and rapamycin, which can in part explain the in vivo results. Overall, we show that it is critical to exclude antagonizing drug effects when attempting combination therapy. In addition, we identified AR-12 as a pro-autophagic drug that significantly extends survival of prion-infected mice, has no adverse side effects on the animals used in this study, and can be useful in future studies.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University , Cairo , Egypt
| | - Waqas Tahir
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Sabine Gilch
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary , Calgary , Alberta , Canada.,Calgary Prion Research Unit, University of Calgary , Calgary , Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
19
|
Ma Y, Ma J. Immunotherapy against Prion Disease. Pathogens 2020; 9:E216. [PMID: 32183309 PMCID: PMC7157205 DOI: 10.3390/pathogens9030216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
The term "prion disease" encompasses a group of neurodegenerative diseases affecting both humans and animals. Currently, there is no effective therapy and all forms of prion disease are invariably fatal. Because of (a) the outbreak of bovine spongiform encephalopathy in cattle and variant Creutzfeldt-Jakob disease in humans; (b) the heated debate about the prion hypothesis; and (c) the availability of a natural prion disease in rodents, the understanding of the pathogenic process in prion disease is much more advanced compared to that of other neurodegenerative disorders, which inspired many attempts to develop therapeutic strategies against these fatal diseases. In this review, we focus on immunotherapy against prion disease. We explain our rationale for immunotherapy as a plausible therapeutic choice, review previous trials using either active or passive immunization, and discuss potential strategies for overcoming the hurdles in developing a successful immunotherapy. We propose that immunotherapy is a plausible and practical therapeutic strategy and advocate more studies in this area to develop effective measures to control and treat these devastating disorders.
Collapse
Affiliation(s)
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA;
| |
Collapse
|
20
|
Hyeon JW, Noh R, Choi J, Lee SM, Lee YS, An SSA, No KT, Lee J. BMD42-2910, a Novel Benzoxazole Derivative, Shows a Potent Anti-prion Activity and Prolongs the Mean Survival in an Animal Model of Prion Disease. Exp Neurobiol 2020; 29:93-105. [PMID: 32122111 PMCID: PMC7075655 DOI: 10.5607/en.2020.29.1.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Prion diseases are a group of neurodegenerative and fatal central nervous system disorders. The pathogenic mechanism involves the conversion of cellular prion protein (PrPC) to an altered scrapie isoform (PrPSc), which accumulates in amyloid deposits in the brain. However, no therapeutic drugs have demonstrated efficacy in clinical trials. We previously reported that BMD42-29, a synthetic compound discovered in silico, is a novel anti-prion compound that inhibits the conversion of PrPC to protease K (PK)-resistant PrPSc fragments (PrPres). In the present study, 14 derivatives of BMD42-29 were obtained from BMD42-29 by modifying in the side chain by in silico feedback, with the aim to determine whether they improve anti-prion activity. These derivatives were assessed in a PrPSc-infected cell model and some derivatives were further tested using real time-quaking induced conversion (RT-QuIC). Among them, BMD42-2910 showed high anti-prion activity at low concentrations in vitro and also no toxic effects in a mouse model. Interestingly, abundant PrPres was reduced in brains of mice infected with prion strain when treated with BMD42-2910, and the mice survived longer than control mice and even that treated with BMD42-29. Finally, high binding affinity was predicted in the virtual binding sites (Asn159, Gln 160, Lys194, and Glu196) when PrPC was combined with BMD-42-2910. Our findings showed that BMD42-2910 sufficiently reduces PrPres generation in vitro and in vivo and may be a promising novel anti-prion compound.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| | - Ran Noh
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| | - Jiwon Choi
- Bioinformatics and Molecular Design Research Center, Yonsei University, Seoul 03722, Korea
| | - Sol Moe Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| | - Yeong Seon Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| | - Seong Soo A An
- Gachon Bio Nano Research Institute, Gachon University, Seongnam 13120, Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center, Yonsei University, Seoul 03722, Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jeongmin Lee
- Division of Research Planning, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju 28160, Korea
| |
Collapse
|
21
|
Affiliation(s)
- Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
22
|
Cali I, Puoti G, Smucny J, Curtiss PM, Cracco L, Kitamoto T, Occhipinti R, Cohen ML, Appleby BS, Gambetti P. Co-existence of PrP D types 1 and 2 in sporadic Creutzfeldt-Jakob disease of the VV subgroup: phenotypic and prion protein characteristics. Sci Rep 2020; 10:1503. [PMID: 32001774 PMCID: PMC6992672 DOI: 10.1038/s41598-020-58446-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/28/2019] [Indexed: 11/08/2022] Open
Abstract
We report a detailed study of a cohort of sporadic Creutzfeldt-Jakob disease (sCJD) VV1-2 type-mixed cases (valine homozygosity at codon 129 of the prion protein, PrP, gene harboring disease-related PrP, PrPD, types 1 and 2). Overall, sCJDVV1-2 subjects showed mixed clinical and histopathological features, which often correlated with the relative amounts of the corresponding PrPD type. However, type-specific phenotypic characteristics were only detected when the amount of the corresponding PrPD type exceeded 20-25%. Overall, original features of types 1 (T1) and 2 (T2) in sCJDVV1 and -VV2, including rostrocaudal relative distribution and conformational indicators, were maintained in sCJDVV1-2 except for one of the two components of T1 identified by electrophoretic mobility as T121. The T121 conformational characteristics shifted in the presence of T2, inferring a conformational effect of PrPD T2 on T121. The prevalence of sCJDVV1-2 was 23% or 57% of all sCJDVV cases, depending on whether standard or highly sensitive type-detecting procedures were adopted. This study, together with previous data from sCJDMM1-2 (methionine homozygosity at PrP gene codon 129) establishes the type-mixed sCJD variants as an important component of sCJD, which cannot be identified with current non-tissue based diagnostic tests of prion disease.
Collapse
Affiliation(s)
- Ignazio Cali
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Gianfranco Puoti
- Department of Advanced Medical and Surgical Sciences, University of Campania "L. Vanvitelli", Caserta, 81100, Italy
| | - Jason Smucny
- Department of Psychiatry, University of California, Davis, CA, 95616, USA
| | | | - Laura Cracco
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, 980-8576, Japan
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Mark Lloyd Cohen
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Brian Stephen Appleby
- Department of Neurology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Abdelaziz DH, Thapa S, Abdulrahman B, Vankuppeveld L, Schatzl HM. Metformin reduces prion infection in neuronal cells by enhancing autophagy. Biochem Biophys Res Commun 2019; 523:423-428. [PMID: 31874705 DOI: 10.1016/j.bbrc.2019.12.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in human and animals that are caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. No effective treatment is available for prion diseases. Metformin is a first-line medication for treatment of type 2 diabetes which is known to activate AMPK and induce autophagy through the inhibition of mammalian target of rapamycin (mTOR1) signaling. Metformin was reported to be beneficial in various protein misfolding and neurodegenerative diseases like Alzheimer's and Huntington's diseases. In this study we investigated the anti-prion effect of metformin in persistently prion-infected neuronal cells. Our data showed that metformin significantly decreased the PrPSc load in the treated cells, as shown by less PK resistant PrP in Western blots and reduced prion conversion activity in Real-Time Quaking-Induced Conversion (RT-QuIC) assay in both 22L-ScN2a and RML-ScCAD5 cells. Additionally, metformin induced autophagy as shown by higher levels of LC3-II in treated cells compared with control cells. On the other hand, our mouse bioassay showed that oral metformin at a dose of 2 mg/ml in drinking water had no effect on the survival of prion-infected mice. In conclusion, our findings describe the anti-prion effect of metformin in two persistently prion-infected neuronal cell lines. This effect can be explained at least partially by the autophagy inducing activity of metformin. This study sheds light on metformin as an anti-prion candidate for the combination therapy of prion diseases.
Collapse
Affiliation(s)
- Dalia H Abdelaziz
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Simrika Thapa
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Basant Abdulrahman
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Lauren Vankuppeveld
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Hermann M Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada; Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
24
|
Yeast Models for Amyloids and Prions: Environmental Modulation and Drug Discovery. Molecules 2019; 24:molecules24183388. [PMID: 31540362 PMCID: PMC6767215 DOI: 10.3390/molecules24183388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition) with human disease-related amyloids. Fundamental protein quality control pathways, including chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative diseases have become powerful tools for high-throughput screening for chemical compounds and FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions. Studies of environmental and physiological regulation of yeast prions open new possibilities for pharmacological intervention and/or prophylactic procedures aiming on common cellular systems rather than the properties of specific amyloids.
Collapse
|
25
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
26
|
Biggi S, Pancher M, Stincardini C, Luotti S, Massignan T, Dalle Vedove A, Astolfi A, Gatto P, Lolli G, Barreca ML, Bonetto V, Adami V, Biasini E. Identification of compounds inhibiting prion replication and toxicity by removing PrP C from the cell surface. J Neurochem 2019; 152:136-150. [PMID: 31264722 DOI: 10.1111/jnc.14805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrPSc , the aggregated and infectious isoform of the cellular prion protein (PrPC ), with largely unsuccessful results. Conversely, targeting PrPC expression, stability or cell surface localization are poorly explored strategies. We recently characterized the mode of action of chlorpromazine, an anti-psychotic drug known to inhibit prion replication and toxicity by inducing the re-localization of PrPC from the plasma membrane. Unfortunately, chlorpromazine possesses pharmacokinetic properties unsuitable for chronic use in vivo, namely low specificity and high toxicity. Here, we employed HEK293 cells stably expressing EGFP-PrP to carry out a semi-automated high content screening (HCS) of a chemical library directed at identifying non-cytotoxic molecules capable of specifically relocalizing PrPC from the plasma membrane as well as inhibiting prion replication in N2a cell cultures. We identified four candidate hits inducing a significant reduction in cell surface PrPC , one of which also inhibited prion propagation and toxicity in cell cultures in a strain-independent fashion. This study defines a new screening method and novel anti-prion compounds supporting the notion that removing PrPC from the cell surface could represent a viable therapeutic strategy for prion diseases.
Collapse
Affiliation(s)
- Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael Pancher
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvia Luotti
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Tania Massignan
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Andrea Dalle Vedove
- Laboratory of Protein Crystallography and Structure-Based Drug Design, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pamela Gatto
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Graziano Lolli
- Laboratory of Protein Crystallography and Structure-Based Drug Design, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Adami
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
27
|
Aguilar‐Calvo P, Bett C, Sevillano AM, Kurt TD, Lawrence J, Soldau K, Hammarström P, Nilsson KPR, Sigurdson CJ. Generation of novel neuroinvasive prions following intravenous challenge. Brain Pathol 2018; 28:999-1011. [PMID: 29505163 PMCID: PMC6123309 DOI: 10.1111/bpa.12598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/08/2018] [Accepted: 02/27/2018] [Indexed: 01/04/2023] Open
Abstract
Prions typically spread into the central nervous system (CNS), likely via peripheral nerves. Yet prion conformers differ in their capacity to penetrate the CNS; certain fibrillar prions replicate persistently in lymphoid tissues with no CNS entry, leading to chronic silent carriers. Subclinical carriers of variant Creutzfeldt-Jakob (vCJD) prions in the United Kingdom have been estimated at 1:2000, and vCJD prions have been transmitted through blood transfusion, however, the circulating prion conformers that neuroinvade remain unclear. Here we investigate how prion conformation impacts brain entry of transfused prions by challenging mice intravenously to subfibrillar and fibrillar strains. We show that most strains infiltrated the brain and caused terminal disease, however, the fibrillar prions showed reduced CNS entry in a strain-dependent manner. Strikingly, the highly fibrillar mCWD prion strain replicated in the spleen and emerged in the brain as a novel strain, indicating that a new neuroinvasive prion had been generated from a previously non-neuroinvasive strain. The new strain showed altered plaque morphology, brain regions targeted and biochemical properties and these properties were maintained upon intracerebral passage. Intracerebral passage of prion-infected spleen re-created the new strain. Splenic prions resembled the new strain biochemically and intracerebral passage of prion-infected spleen re-created the new strain, collectively suggesting splenic prion replication as a potential source. Taken together, these results indicate that intravenous exposure to prion-contaminated blood or blood products may generate novel neuroinvasive prion conformers and disease phenotypes, potentially arising from prion replication in non-neural tissues or from conformer selection.
Collapse
Affiliation(s)
| | - Cyrus Bett
- Departments of Pathology and MedicineUC San DiegoLa JollaCA
| | | | | | | | - Katrin Soldau
- Departments of Pathology and MedicineUC San DiegoLa JollaCA
| | - Per Hammarström
- Department of Physics, Chemistry, and BiologyLinköping UniversityLinköpingSweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry, and BiologyLinköping UniversityLinköpingSweden
| | - Christina J. Sigurdson
- Departments of Pathology and MedicineUC San DiegoLa JollaCA
- Department of Pathology, Microbiology, and ImmunologyUC DavisDavisCA
| |
Collapse
|
28
|
A Bioluminescent Cell Assay to Quantify Prion Protein Dimerization. Sci Rep 2018; 8:14178. [PMID: 30242186 PMCID: PMC6155003 DOI: 10.1038/s41598-018-32581-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
The prion protein (PrP) is a cell surface protein that in disease misfolds and becomes infectious causing Creutzfeldt-Jakob disease in humans, scrapie in sheep, and chronic wasting disease in deer and elk. Little is known regarding the dimerization of PrP and its role in disease. We developed a bioluminescent prion assay (BPA) to quantify PrP dimerization by bimolecular complementation of split Gaussia luciferase (GLuc) halves that are each fused to PrP. Fusion constructs between PrP and N- and C-terminal GLuc halves were expressed on the surface of RK13 cells (RK13-DC cells) and dimerized to yield a bioluminescent signal that was decreased in the presence of eight different antibodies to PrP. Dimerization of PrP was independent of divalent cations and was induced under stress. Challenge of RK13-DC cells with seven different prion strains did not lead to detectable infection but was measurable by bioluminescence. Finally, we used BPA to screen a compound library for compounds inhibiting PrP dimerization. One of the most potent compounds to inhibit PrP dimerization was JTC-801, which also inhibited prion replication in RML-infected ScN2a and SMB cells with an EC50 of 370 nM and 220 nM, respectively. We show here that BPA is a versatile tool to study prion biology and to identify anti-prion compounds.
Collapse
|
29
|
Choi J, Kim HJ, Jin X, Lim H, Kim S, Roh IS, Kang HE, No KT, Sohn HJ. Application of the fragment molecular orbital method to discover novel natural products for prion disease. Sci Rep 2018; 8:13063. [PMID: 30166585 PMCID: PMC6117342 DOI: 10.1038/s41598-018-31080-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/07/2018] [Indexed: 01/16/2023] Open
Abstract
Conformational conversion of the normal cellular isoform of the prion protein PrPC into an infectious isoform PrPSc causes pathogenesis in prion diseases. To date, numerous antiprion compounds have been developed to block this conversion and to detect the molecular mechanisms of prion inhibition using several computational studies. Thus far, no suitable drug has been identified for clinical use. For these reasons, more accurate and predictive approaches to identify novel compounds with antiprion effects are required. Here, we have applied an in silico approach that integrates our previously described pharmacophore model and fragment molecular orbital (FMO) calculations, enabling the ab initio calculation of protein-ligand complexes. The FMO-based virtual screening suggested that two natural products with antiprion activity exhibited good binding interactions, with hotspot residues within the PrPC binding site, and effectively reduced PrPSc levels in a standard scrapie cell assay. Overall, the outcome of this study will be used as a promising strategy to discover antiprion compounds. Furthermore, the SAR-by-FMO approach can provide extremely powerful tools in quickly establishing virtual SAR to prioritise compounds for synthesis in further studies.
Collapse
Affiliation(s)
- Jiwon Choi
- Bioinformatics and Molecular Design Research Center (BMDRC), Yonsei University, Seoul, 03722, Korea
| | - Hyo-Jin Kim
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, 39660, Korea
| | - Xuemei Jin
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hocheol Lim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Songmi Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Yonsei University, Seoul, 03722, Korea
| | - In-Soon Roh
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, 39660, Korea
| | - Hae-Eun Kang
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, 39660, Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center (BMDRC), Yonsei University, Seoul, 03722, Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Hyun-Joo Sohn
- OIE Reference Laboratory for CWD, Foreign Animal Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbukdo, 39660, Korea.
| |
Collapse
|
30
|
Honda R, Yamaguchi KI, Elhelaly AE, Fuji M, Kuwata K. Poly-L-histidine inhibits prion propagation in a prion-infected cell line. Prion 2018; 12:226-233. [PMID: 30074430 DOI: 10.1080/19336896.2018.1505395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of lethal neurodegenerative diseases involving the structural conversion of cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) for which no effective treatment is currently available. Previous studies have implicated that a polymeric molecule with a repeating unit, such as pentosane polysulfate and polyamidoamide dendrimers, exhibits a potent anti-prion activity, suggesting that poly-(amino acid)s could be a candidate molecule for inhibiting prion propagation. Here, by screening a series of poly-(amino acid)s in a prion-infected neuroblastoma cell line (GTFK), we identified poly-L-His as a novel anti-prion compound with an IC50 value of 1.8 µg/mL (0.18 µM). This potent anti-prion activity was specific to a high-molecular-weight poly-L-His and absent in monomeric histidine or low-molecular-weight poly-L-His. Solution NMR data indicated that poly-L-His directly binds to the loop region connecting Helix 2 and Helix 3 of PrPC and sterically blocks the structural conversion toward PrPSc. Poly-L-His, however, did not inhibit prion propagation in a prion-infected mouse when administered intraperitoneally, suggesting that the penetration of blood-brain barrier and/or the chemical stability of this polypeptide must be addressed before its application in vivo. Taken together, this study revealed the potential use of poly-L-His as a novel treatment against TSEs. (203 words).
Collapse
Affiliation(s)
- Ryo Honda
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | | | - Abdelazim Elsayed Elhelaly
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | - Mitsuhiko Fuji
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | - Kazuo Kuwata
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan.,c Department of Gene and Development , Graduate School of Medicine, Gifu University , Gifu , Japan
| |
Collapse
|
31
|
Flores-Fernández JM, Rathod V, Wille H. Comparing the Folds of Prions and Other Pathogenic Amyloids. Pathogens 2018; 7:E50. [PMID: 29734684 PMCID: PMC6027354 DOI: 10.3390/pathogens7020050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023] Open
Abstract
Pathogenic amyloids are the main feature of several neurodegenerative disorders, such as Creutzfeldt⁻Jakob disease, Alzheimer’s disease, and Parkinson’s disease. High resolution structures of tau paired helical filaments (PHFs), amyloid-β(1-42) (Aβ(1-42)) fibrils, and α-synuclein fibrils were recently reported using cryo-electron microscopy. A high-resolution structure for the infectious prion protein, PrPSc, is not yet available due to its insolubility and its propensity to aggregate, but cryo-electron microscopy, X-ray fiber diffraction, and other approaches have defined the overall architecture of PrPSc as a 4-rung β-solenoid. Thus, the structure of PrPSc must have a high similarity to that of the fungal prion HET-s, which is part of the fungal heterokaryon incompatibility system and contains a 2-rung β-solenoid. This review compares the structures of tau PHFs, Aβ(1-42), and α-synuclein fibrils, where the β-strands of each molecule stack on top of each other in a parallel in-register arrangement, with the β-solenoid folds of HET-s and PrPSc.
Collapse
Affiliation(s)
- José Miguel Flores-Fernández
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Vineet Rathod
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Holger Wille
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| |
Collapse
|
32
|
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates in brain tissues of affected individuals. PrPSc is a self-catalytic protein assembly capable of recruiting native conformers of PrPC, and causing their rearrangement into new PrPSc molecules. Several previous attempts to identify therapeutic agents against prion diseases have targeted PrPSc, and a number of compounds have shown potent anti-prion effects in experimental models. Unfortunately, so far, none of these molecules has successfully been translated into effective therapies for prion diseases. Moreover, mounting evidence suggests that PrPSc might be a difficult pharmacological target because of its poorly defined structure, heterogeneous composition, and ability to generate different structural conformers (known as prion strains) that can elude pharmacological intervention. In the last decade, a less intuitive strategy to overcome all these problems has emerged: targeting PrPC, the common substrate of any prion strain replication. This alternative approach possesses several technical and theoretical advantages, including the possibility of providing therapeutic effects also for other neurodegenerative disorders, based on recent observations indicating a role for PrPC in delivering neurotoxic signals of different misfolded proteins. Here, we provide an overview of compounds claimed to exert anti-prion effects by directly binding to PrPC, discussing pharmacological properties and therapeutic potentials of each chemical class.
Collapse
Affiliation(s)
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.
| |
Collapse
|
33
|
A Promising Antiprion Trimethoxychalcone Binds to the Globular Domain of the Cellular Prion Protein and Changes Its Cellular Location. Antimicrob Agents Chemother 2018; 62:AAC.01441-17. [PMID: 29133563 DOI: 10.1128/aac.01441-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/02/2017] [Indexed: 12/28/2022] Open
Abstract
The search for antiprion compounds has been encouraged by the fact that transmissible spongiform encephalopathies (TSEs) share molecular mechanisms with more prevalent neurodegenerative pathologies, such as Parkinson's and Alzheimer's diseases. Cellular prion protein (PrPC) conversion into protease-resistant forms (protease-resistant PrP [PrPRes] or the scrapie form of PrP [PrPSc]) is a critical step in the development of TSEs and is thus one of the main targets in the screening for antiprion compounds. In this work, three trimethoxychalcones (compounds J1, J8, and J20) and one oxadiazole (compound Y17), previously identified in vitro to be potential antiprion compounds, were evaluated through different approaches in order to gain inferences about their mechanisms of action. None of them changed PrPC mRNA levels in N2a cells, as shown by reverse transcription-quantitative real-time PCR. Among them, J8 and Y17 were effective in real-time quaking-induced conversion reactions using rodent recombinant PrP (rPrP) from residues 23 to 231 (rPrP23-231) as the substrate and PrPSc seeds from hamster and human brain. However, when rPrP from residues 90 to 231 (rPrP90-231), which lacks the N-terminal domain, was used as the substrate, only J8 remained effective, indicating that this region is important for Y17 activity, while J8 seems to interact with the PrPC globular domain. J8 also reduced the fibrillation of mouse rPrP23-231 seeded with in vitro-produced fibrils. Furthermore, most of the compounds decreased the amount of PrPC on the N2a cell surface by trapping this protein in the endoplasmic reticulum. On the basis of these results, we hypothesize that J8, a nontoxic compound previously shown to be a promising antiprion agent, may act by different mechanisms, since its efficacy is attributable not only to PrP conversion inhibition but also to a reduction of the PrPC content on the cell surface.
Collapse
|
34
|
Woerman AL, Kazmi SA, Patel S, Aoyagi A, Oehler A, Widjaja K, Mordes DA, Olson SH, Prusiner SB. Familial Parkinson's point mutation abolishes multiple system atrophy prion replication. Proc Natl Acad Sci U S A 2018; 115:409-414. [PMID: 29279394 PMCID: PMC5777081 DOI: 10.1073/pnas.1719369115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the neurodegenerative disease multiple system atrophy (MSA), α-synuclein misfolds into a self-templating conformation to become a prion. To compare the biological activity of α-synuclein prions in MSA and Parkinson's disease (PD), we developed nine α-synuclein-YFP cell lines expressing point mutations responsible for inherited PD. MSA prions robustly infected wild-type, A30P, and A53T α-synuclein-YFP cells, but they were unable to replicate in cells expressing the E46K mutation. Coexpression of the A53T and E46K mutations was unable to rescue MSA prion infection in vitro, establishing that MSA α-synuclein prions are conformationally distinct from the misfolded α-synuclein in PD patients. This observation may have profound implications for developing treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda L Woerman
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158
| | - Sabeen A Kazmi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Smita Patel
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Atsushi Aoyagi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
- Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Kartika Widjaja
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
| | - Daniel A Mordes
- C. S. Kubik Laboratory for Neuropathology, Department of Pathology, Massachusetts General Hospital, Boston, MA 02114
| | - Steven H Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158
- Department of Neurology, University of California, San Francisco, CA 94158
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158;
- Department of Neurology, University of California, San Francisco, CA 94158
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| |
Collapse
|
35
|
Abstract
Currently all prion diseases are without effective treatment and are universally fatal. It is increasingly being recognized that the pathogenesis of many neurodegenerative diseases, such as Alzheimer disease (AD), includes "prion-like" properties. Hence, any effective therapeutic intervention for prion disease could have significant implications for other neurodegenerative diseases. Conversely, therapies that are effective in AD might also be therapeutically beneficial for prion disease. AD-like prion disease has no effective therapy. However, various vaccine and immunomodulatory approaches have shown great success in animal models of AD, with numerous ongoing clinical trials of these potential immunotherapies. More limited evidence suggests that immunotherapies may be effective in prion models and in naturally occurring prion disease. In particular, experimental data suggest that mucosal vaccination against prions can be effective for protection against orally acquired prion infection. Many prion diseases, including natural sheep scrapie, bovine spongiform encephalopathy, chronic wasting disease, and variant Creutzfeldt-Jakob disease, are thought to be acquired peripherally, mainly by oral exposure. Mucosal vaccination would be most applicable to this form of transmission. In this chapter we review various immunologically based strategies which are under development for prion infection.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States.
| | - Fernando Goñi
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
36
|
Charco JM, Eraña H, Venegas V, García-Martínez S, López-Moreno R, González-Miranda E, Pérez-Castro MÁ, Castilla J. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies. Pathogens 2017; 6:E67. [PMID: 29240682 PMCID: PMC5750591 DOI: 10.3390/pathogens6040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
The misfolding of the cellular prion protein (PrPC) into the disease-associated isoform (PrPSc) and its accumulation as amyloid fibrils in the central nervous system is one of the central events in transmissible spongiform encephalopathies (TSEs). Due to the proteinaceous nature of the causal agent the molecular mechanisms of misfolding, interspecies transmission, neurotoxicity and strain phenomenon remain mostly ill-defined or unknown. Significant advances were made using in vivo and in cellula models, but the limitations of these, primarily due to their inherent complexity and the small amounts of PrPSc that can be obtained, gave rise to the necessity of new model systems. The production of recombinant PrP using E. coli and subsequent induction of misfolding to the aberrant isoform using different techniques paved the way for the development of cell-free systems that complement the previous models. The generation of the first infectious recombinant prion proteins with identical properties of brain-derived PrPSc increased the value of cell-free systems for research on TSEs. The versatility and ease of implementation of these models have made them invaluable for the study of the molecular mechanisms of prion formation and propagation, and have enabled improvements in diagnosis, high-throughput screening of putative anti-prion compounds and the design of novel therapeutic strategies. Here, we provide an overview of the resultant advances in the prion field due to the development of recombinant PrP and its use in cell-free systems.
Collapse
Affiliation(s)
- Jorge M. Charco
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Vanessa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Sandra García-Martínez
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Rafael López-Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Ezequiel González-Miranda
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Miguel Ángel Pérez-Castro
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
37
|
Teruya K, Oguma A, Nishizawa K, Kamitakahara H, Doh-ura K. Pyrene conjugation and spectroscopic analysis of hydroxypropyl methylcellulose compounds successfully demonstrated a local dielectric difference associated with in vivo anti-prion activity. PLoS One 2017; 12:e0185357. [PMID: 28934337 PMCID: PMC5608368 DOI: 10.1371/journal.pone.0185357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022] Open
Abstract
Our previous study on prion-infected rodents revealed that hydroxypropyl methylcellulose compounds (HPMCs) with different molecular weights but similar composition and degree of substitution have different levels of long-lasting anti-prion activity. In this study, we searched these HPMCs for a parameter specifically associated with in vivo anti-prion activity by analyzing in vitro chemical properties and in vivo tissue distributions. Infrared spectroscopic and thermal analyses revealed no differences among HPMCs, whereas pyrene conjugation and spectroscopic analysis revealed that the fluorescence intensity ratio of peak III/peak I correlated with anti-prion activity. This correlation was more clearly demonstrated in the anti-prion activity of the 1-year pre-infection treatment than that of the immediate post-infection treatment. In addition, the intensity ratio of peak III/peak I negatively correlated with the macrophage uptake level of HPMCs in our previous study. However, the in vivo distribution pattern was apparently not associated with anti-prion activity and was different in the representative tissues. These findings suggest that pyrene conjugation and spectroscopic analysis are powerful methods to successfully demonstrate local dielectric differences in HPMCs and provide a feasible parameter denoting the long-lasting anti-prion activity of HPMCs in vivo.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ayumi Oguma
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Nishizawa
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Kamitakahara
- Division of Forest and Biomaterials Science, Kyoto University Graduate School of Agriculture, Kyoto, Kyoto, Japan
| | - Katsumi Doh-ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
38
|
Re RN. A Pathogenic Mechanism Potentially Operative in Multiple Progressive Diseases and Its Therapeutic Implications. J Clin Pharmacol 2017; 57:1507-1518. [DOI: 10.1002/jcph.997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/17/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Richard N. Re
- Division of Academics-Research; Ochsner Clinic Foundation; New Orleans LA USA
| |
Collapse
|
39
|
Stincardini C, Massignan T, Biggi S, Elezgarai SR, Sangiovanni V, Vanni I, Pancher M, Adami V, Moreno J, Stravalaci M, Maietta G, Gobbi M, Negro A, Requena JR, Castilla J, Nonno R, Biasini E. An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PLoS One 2017; 12:e0182589. [PMID: 28787011 PMCID: PMC5546605 DOI: 10.1371/journal.pone.0182589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/20/2017] [Indexed: 02/01/2023] Open
Abstract
Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions.
Collapse
Affiliation(s)
- Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saioa R. Elezgarai
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Michael Pancher
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Valentina Adami
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giulia Maietta
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medical Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- * E-mail:
| |
Collapse
|
40
|
Massignan T, Sangiovanni V, Biggi S, Stincardini C, Elezgarai SR, Maietta G, Andreev IA, Ratmanova NK, Belov DS, Lukyanenko ER, Belov GM, Barreca ML, Altieri A, Kurkin AV, Biasini E. A Small-Molecule Inhibitor of Prion Replication and Mutant Prion Protein Toxicity. ChemMedChem 2017; 12:1286-1292. [DOI: 10.1002/cmdc.201700302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/19/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology, CIBIO; University of Trento; 38123 Trento Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology, CIBIO; University of Trento; 38123 Trento Italy
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology, CIBIO; University of Trento; 38123 Trento Italy
| | - Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology, CIBIO; University of Trento; 38123 Trento Italy
| | - Saioa R. Elezgarai
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology, CIBIO; University of Trento; 38123 Trento Italy
- Department of Molecular Biochemistry and Pharmacology; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; 20156 Milan Italy
- Department of Neuroscience; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; 20156 Milan Italy
| | - Giulia Maietta
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology, CIBIO; University of Trento; 38123 Trento Italy
| | - Ivan A. Andreev
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Nina K. Ratmanova
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Dmitry S. Belov
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Evgeny R. Lukyanenko
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Grigory M. Belov
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
- EDASA Scientific srls; 66050 San Salvo CH Italy
| | | | - Andrea Altieri
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
- EDASA Scientific srls; 66050 San Salvo CH Italy
| | - Alexander V. Kurkin
- Department of Chemistry; Lomonosov Moscow State University; 119991 Moscow Russia
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology, CIBIO; University of Trento; 38123 Trento Italy
- Department of Molecular Biochemistry and Pharmacology; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; 20156 Milan Italy
- Department of Neuroscience; IRCCS-Istituto di Ricerche Farmacologiche Mario Negri; 20156 Milan Italy
| |
Collapse
|
41
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|