1
|
Gogte K, Mamashli F, Herrera MG, Kriegler S, Bader V, Kamps J, Grover P, Winter R, Winklhofer KF, Tatzelt J. Topological confinement by a membrane anchor suppresses phase separation into protein aggregates: Implications for prion diseases. Proc Natl Acad Sci U S A 2025; 122:e2415250121. [PMID: 39739794 DOI: 10.1073/pnas.2415250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/14/2024] [Indexed: 01/02/2025] Open
Abstract
Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation. Inherited prion diseases in humans and neurodegeneration in transgenic mice are linked to the expression of anchorless prion protein (PrP), suggesting that the C-terminal glycosylphosphatidylinositol (GPI) anchor of native PrP impedes spontaneous formation of neurotoxic and infectious PrP species. Combining unique in vitro and in vivo approaches, we demonstrate that anchoring to membranes prevents LLPS and spontaneous aggregation of PrP. Upon release from the membrane, PrP undergoes a conformational transition to detergent-insoluble aggregates. Our study demonstrates an essential role of the GPI anchor in preventing spontaneous misfolding of PrPC and provides a mechanistic basis for inherited prion diseases associated with anchorless PrP.
Collapse
Affiliation(s)
- Kalpshree Gogte
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Fatemeh Mamashli
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Maria Georgina Herrera
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Simon Kriegler
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Prerna Grover
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
- Cluster of Excellence RESOLV, Bochum 44801, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
- Cluster of Excellence RESOLV, Bochum 44801, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
- Cluster of Excellence RESOLV, Bochum 44801, Germany
| |
Collapse
|
2
|
Zimbone S, Giuffrida ML, Sciacca MFM, Carrotta R, Librizzi F, Milardi D, Grasso G. A VEGF Fragment Encompassing Residues 10-30 Inhibits Aβ1-42 Amyloid Aggregation and Exhibits Neuroprotective Properties Matching the Full-Length Protein. ACS Chem Neurosci 2024; 15:4580-4590. [PMID: 39587417 DOI: 10.1021/acschemneuro.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
The intricate relationship between brain vascular diseases and neurodegeneration has garnered increased attention in the scientific community. With an aging population, the incidence of these two conditions is likely to increase, making it imperative to understand the underlying common molecular mechanisms and unveiling novel avenues for therapy. Prompted by the observation that Aβ peptide aggregation has been implicated in the development of cerebral amyloid angiopathy (CAA) and that elevated concentrations of vascular endothelial growth factor (VEGF) in the cerebrospinal fluid (CSF) have been correlated with less cognitive decline in Alzheimer's disease (AD), we demonstrate that a small peptide (Pep9) encompassing the 10-30 sequence of VEGF exhibits significant ability to inhibit the aggregation of the Aβ1-42 peptide, as well as the formation of toxic oligomers. AFM studies confirmed this inhibitory capacity, which is also paralleled by a significant reduction of the random coil to a beta-sheet conformational transition. Further studies have shown that Pep9 protects differentiated neuroblastoma SH-SY5Y cells from Aβ toxicity, being even more effective than full-length protein in preventing amyloid-induced neuronal death. The use of a control peptide wherein two histidines are substituted with glycines (H11G and H12G) suggests a close relationship between the peptide amino acid sequence and its antiaggregating/neuroprotective activity. Overall, this study provides insight into the role of VEGF in AD and suggests that specific VEGF fragments could be beneficial in the treatment of this condition.
Collapse
Affiliation(s)
- Stefania Zimbone
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - M Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Rita Carrotta
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo 90146, Italy
| | - Fabio Librizzi
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo 90146, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| |
Collapse
|
3
|
Colom-Cadena M, Toombs J, Simzer E, Holt K, McGeachan R, Tulloch J, Jackson RJ, Catterson JH, Spires-Jones MP, Rose J, Waybright L, Caggiano AO, King D, Gobbo F, Davies C, Hooley M, Dunnett S, Tempelaar R, Meftah S, Tzioras M, Hamby ME, Izzo NJ, Catalano SM, Durrant CS, Smith C, Dando O, Spires-Jones TL. Transmembrane protein 97 is a potential synaptic amyloid beta receptor in human Alzheimer's disease. Acta Neuropathol 2024; 147:32. [PMID: 38319380 PMCID: PMC10847197 DOI: 10.1007/s00401-023-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/07/2024]
Abstract
Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aβ) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aβ leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aβ and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aβ binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aβ generates a FRET signal with transmembrane protein 97. Further, Aβ generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aβ/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aβ. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aβ when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aβ including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aβ in human Alzheimer's disease brain where it may mediate synaptotoxicity.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Toombs
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Elizabeth Simzer
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Kristjan Holt
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert McGeachan
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Rosemary J Jackson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - James H Catterson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | | | | | - Declan King
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Monique Hooley
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Sophie Dunnett
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert Tempelaar
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Makis Tzioras
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- Scottish Brain Sciences, Edinburgh, EH12 9DQ, UK
| | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, USA
| | | | | | - Claire S Durrant
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh, EH16 4HB, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
4
|
Kell DB, Khan MA, Kane B, Lip GYH, Pretorius E. Possible Role of Fibrinaloid Microclots in Postural Orthostatic Tachycardia Syndrome (POTS): Focus on Long COVID. J Pers Med 2024; 14:170. [PMID: 38392604 PMCID: PMC10890060 DOI: 10.3390/jpm14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Muhammed Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester M23 9LT, UK;
| | - Binita Kane
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Manchester University Foundation Trust and School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
5
|
Mandino F, Shen X, Desrosiers-Gregoire G, O'Connor D, Mukherjee B, Owens A, Qu A, Onofrey J, Papademetris X, Chakravarty MM, Strittmatter SM, Lake EM. Aging-Dependent Loss of Connectivity in Alzheimer's Model Mice with Rescue by mGluR5 Modulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571715. [PMID: 38260465 PMCID: PMC10802481 DOI: 10.1101/2023.12.15.571715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Amyloid accumulation in Alzheimer's disease (AD) is associated with synaptic damage and altered connectivity in brain networks. While measures of amyloid accumulation and biochemical changes in mouse models have utility for translational studies of certain therapeutics, preclinical analysis of altered brain connectivity using clinically relevant fMRI measures has not been well developed for agents intended to improve neural networks. Here, we conduct a longitudinal study in a double knock-in mouse model for AD ( App NL-G-F /hMapt ), monitoring brain connectivity by means of resting-state fMRI. While the 4-month-old AD mice are indistinguishable from wild-type controls (WT), decreased connectivity in the default-mode network is significant for the AD mice relative to WT mice by 6 months of age and is pronounced by 9 months of age. In a second cohort of 20-month-old mice with persistent functional connectivity deficits for AD relative to WT, we assess the impact of two-months of oral treatment with a silent allosteric modulator of mGluR5 (BMS-984923) known to rescue synaptic density. Functional connectivity deficits in the aged AD mice are reversed by the mGluR5-directed treatment. The longitudinal application of fMRI has enabled us to define the preclinical time trajectory of AD-related changes in functional connectivity, and to demonstrate a translatable metric for monitoring disease emergence, progression, and response to synapse-rescuing treatment.
Collapse
|
6
|
Kozin SA, Kechko OI, Adzhubei AA, Makarov AA, Mitkevich VA. Switching On/Off Amyloid Plaque Formation in Transgenic Animal Models of Alzheimer's Disease. Int J Mol Sci 2023; 25:72. [PMID: 38203242 PMCID: PMC10778642 DOI: 10.3390/ijms25010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A hallmark of Alzheimer's disease (AD) are the proteinaceous aggregates formed by the amyloid-beta peptide (Aβ) that is deposited inside the brain as amyloid plaques. The accumulation of aggregated Aβ may initiate or enhance pathologic processes in AD. According to the amyloid hypothesis, any agent that has the capability to inhibit Aβ aggregation and/or destroy amyloid plaques represents a potential disease-modifying drug. In 2023, a humanized IgG1 monoclonal antibody (lecanemab) against the Aβ-soluble protofibrils was approved by the US FDA for AD therapy, thus providing compelling support to the amyloid hypothesis. To acquire a deeper insight on the in vivo Aβ aggregation, various animal models, including aged herbivores and carnivores, non-human primates, transgenic rodents, fish and worms were widely exploited. This review is based on the recent data obtained using transgenic animal AD models and presents experimental verification of the critical role in Aβ aggregation seeding of the interactions between zinc ions, Aβ with the isomerized Asp7 (isoD7-Aβ) and the α4β2 nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- Sergey A. Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| | | | | | | | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.I.K.); (A.A.A.); (A.A.M.)
| |
Collapse
|
7
|
Stoner A, Fu L, Nicholson L, Zheng C, Toyonaga T, Spurrier J, Laird W, Cai Z, Strittmatter SM. Neuronal transcriptome, tau and synapse loss in Alzheimer's knock-in mice require prion protein. Alzheimers Res Ther 2023; 15:201. [PMID: 37968719 PMCID: PMC10647125 DOI: 10.1186/s13195-023-01345-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Progression of Alzheimer's disease leads to synapse loss, neural network dysfunction and cognitive failure. Accumulation of protein aggregates and brain immune activation have triggering roles in synaptic failure but the neuronal mechanisms underlying synapse loss are unclear. On the neuronal surface, cellular prion protein (PrPC) is known to be a high-affinity binding site for Amyloid-β oligomers (Aβo). However, PrPC's dependence in knock-in AD models for tau accumulation, transcriptomic alterations and imaging biomarkers is unknown. METHODS The necessity of PrPC was examined as a function of age in homozygous AppNL-G-F/hMapt double knock-in mice (DKI). Phenotypes of AppNL-G-F/hMapt mice with a deletion of Prnp expression (DKI; Prnp-/-) were compared with DKI mice with intact Prnp, mice with a targeted deletion of Prnp (Prnp-/-), and mice with intact Prnp (WT). Phenotypes examined included behavioral deficits, synapse loss by PET imaging, synapse loss by immunohistology, tau pathology, gliosis, inflammatory markers, and snRNA-seq transcriptomic profiling. RESULTS By 9 months age, DKI mice showed learning and memory impairment, but DKI; Prnp-/- and Prnp-/- groups were indistinguishable from WT. Synapse loss in DKI brain, measured by [18F]SynVesT-1 SV2A PET or anti-SV2A immunohistology, was prevented by Prnp deletion. Accumulation of Tau phosphorylated at aa 217 and 202/205, C1q tagging of synapses, and dystrophic neurites were all increased in DKI mice but each decreased to WT levels with Prnp deletion. In contrast, astrogliosis, microgliosis and Aβ levels were unchanged between DKI and DKI; Prnp-/- groups. Single-nuclei transcriptomics revealed differential expression in neurons and glia of DKI mice relative to WT. For DKI; Prnp-/- mice, the majority of neuronal genes differentially expressed in DKI mice were no longer significantly altered relative to WT, but most glial DKI-dependent gene expression changes persisted. The DKI-dependent neuronal genes corrected by Prnp deletion associated bioinformatically with synaptic function. Additional genes were uniquely altered only in the Prnp-/- or the DKI; Prnp-/- groups. CONCLUSIONS Thus, PrPC-dependent synapse loss, phospho-tau accumulation and neuronal gene expression in AD mice can be reversed without clearing Aβ plaque or preventing gliotic reaction. This supports targeting the Aβo-PrPC interaction to prevent Aβo-neurotoxicity and pathologic tau accumulation in AD.
Collapse
Affiliation(s)
- Austin Stoner
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Li Fu
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - LaShae Nicholson
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Chao Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Spurrier
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Will Laird
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
8
|
Bouvet P, de Gea P, Aimard M, Chounlamountri N, Honnorat J, Delcros JG, Salin PA, Meissirel C. A novel peptide derived from vascular endothelial growth factor prevents amyloid beta aggregation and toxicity. Aging Cell 2023; 22:e13907. [PMID: 37415305 PMCID: PMC10497828 DOI: 10.1111/acel.13907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Amyloid-β oligomers (Aβo) are the most pathologically relevant Aβ species in Alzheimer's disease (AD), because they induce early synaptic dysfunction that leads to learning and memory impairments. In contrast, increasing VEGF (Vascular Endothelial Growth Factor) brain levels have been shown to improve learning and memory processes, and to alleviate Aβ-mediated synapse dysfunction. Here, we designed a new peptide, the blocking peptide (BP), which is derived from an Aβo-targeted domain of the VEGF protein, and investigated its effect on Aβ-associated toxicity. Using a combination of biochemical, 3D and ultrastructural imaging, and electrophysiological approaches, we demonstrated that BP strongly interacts with Aβo and blocks Aβ fibrillar aggregation process, leading to the formation of Aβ amorphous aggregates. BP further impedes the formation of structured Aβo and prevents their pathogenic binding to synapses. Importantly, acute BP treatment successfully rescues long-term potentiation (LTP) in the APP/PS1 mouse model of AD, at an age when LTP is highly impaired in hippocampal slices. Moreover, BP is also able to block the interaction between Aβo and VEGF, which suggests a dual mechanism aimed at both trapping Aβo and releasing VEGF to alleviate Aβo-induced synaptic damage. Our findings provide evidence for a neutralizing effect of the BP on Aβ aggregation process and pathogenic action, highlighting a potential new therapeutic strategy.
Collapse
Affiliation(s)
- P. Bouvet
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - P. de Gea
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - M. Aimard
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - N. Chounlamountri
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - J. Honnorat
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - J. G. Delcros
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
- Centre de Recherche en Cancérologie de Lyon, Apoptosis, Cancer and Development, Institut PLAsCAN, INSERM U1052, CNRS UMR5286Centre Léon BérardLyonFrance
- Centre de Recherche en Cancérologie de Lyon, Small Molecules for Biological TargetsINSERM U1052 – CNRS UMR5286, ISPB RockefellerLyonFrance
| | - P. A. Salin
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
- Centre de Recherche en Neurosciences de Lyon, Forgetting Processes and Cortical DynamicsINSERM U1028, CNRS UMR5292BronFrance
| | - C. Meissirel
- MeLiS, Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1314Centre National de la Recherche Scientifique (CNRS), UMR5284LyonFrance
- Univ LyonUniversité Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
9
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
10
|
Carús-Cadavieco M, Berenguer López I, Montoro Canelo A, Serrano-Lope MA, González-de la Fuente S, Aguado B, Fernández-Rodrigo A, Saido TC, Frank García A, Venero C, Esteban JA, Guix F, Dotti CG. Cognitive decline in diabetic mice predisposed to Alzheimer's disease is greater than in wild type. Life Sci Alliance 2023; 6:e202201789. [PMID: 37059474 PMCID: PMC10105330 DOI: 10.26508/lsa.202201789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023] Open
Abstract
In this work, we tested the hypothesis that the development of dementia in individuals with type 2 diabetes (T2DM) requires a genetic background of predisposition to neurodegenerative disease. As a proof of concept, we induced T2DM in middle-aged hAPP NL/F mice, a preclinical model of Alzheimer's disease. We show that T2DM produces more severe behavioral, electrophysiological, and structural alterations in these mice compared with wild-type mice. Mechanistically, the deficits are not paralleled by higher levels of toxic forms of Aβ or by neuroinflammation but by a reduction in γ-secretase activity, lower levels of synaptic proteins, and by increased phosphorylation of tau. RNA-seq analysis of the cerebral cortex of hAPP NL/F and wild-type mice suggests that the former could be more susceptible to T2DM because of defects in trans-membrane transport. The results of this work, on the one hand, confirm the importance of the genetic background in the severity of the cognitive disorders in individuals with T2DM and, on the other hand, suggest, among the involved mechanisms, the inhibition of γ-secretase activity.
Collapse
Affiliation(s)
- Marta Carús-Cadavieco
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Inés Berenguer López
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Alba Montoro Canelo
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
- Escuela Técnica Superior (E.T.S) de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Miguel A Serrano-Lope
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | | | - Begoña Aguado
- Genomics and NGS Facility, Centro de Biología Molecular Severo Ochoa(CBM) CSIC-UAM, Madrid, Spain
| | - Alba Fernández-Rodrigo
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ana Frank García
- Department of Neurology, Division Neurodegenerative Disease, University Hospital La Paz, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - José A Esteban
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| | - Francesc Guix
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
- Department of Bioengineering, Institut Químic de Sarrià (IQS) - Universitat Ramón Llull (URL), Barcelona, Spain
| | - Carlos G Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa(CBM), CSIC-UAM, Madrid, Spain
| |
Collapse
|
11
|
Afsar A, Chacon Castro MDC, Soladogun AS, Zhang L. Recent Development in the Understanding of Molecular and Cellular Mechanisms Underlying the Etiopathogenesis of Alzheimer's Disease. Int J Mol Sci 2023; 24:7258. [PMID: 37108421 PMCID: PMC10138573 DOI: 10.3390/ijms24087258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and patient death. AD is characterized by intracellular neurofibrillary tangles, extracellular amyloid beta (Aβ) plaque deposition, and neurodegeneration. Diverse alterations have been associated with AD progression, including genetic mutations, neuroinflammation, blood-brain barrier (BBB) impairment, mitochondrial dysfunction, oxidative stress, and metal ion imbalance.Additionally, recent studies have shown an association between altered heme metabolism and AD. Unfortunately, decades of research and drug development have not produced any effective treatments for AD. Therefore, understanding the cellular and molecular mechanisms underlying AD pathology and identifying potential therapeutic targets are crucial for AD drug development. This review discusses the most common alterations associated with AD and promising therapeutic targets for AD drug discovery. Furthermore, it highlights the role of heme in AD development and summarizes mathematical models of AD, including a stochastic mathematical model of AD and mathematical models of the effect of Aβ on AD. We also summarize the potential treatment strategies that these models can offer in clinical trials.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
12
|
Lizama BN, Kahle J, Catalano SM, Caggiano AO, Grundman M, Hamby ME. Sigma-2 Receptors—From Basic Biology to Therapeutic Target: A Focus on Age-Related Degenerative Diseases. Int J Mol Sci 2023; 24:ijms24076251. [PMID: 37047224 PMCID: PMC10093856 DOI: 10.3390/ijms24076251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
There is a large unmet medical need to develop disease-modifying treatment options for individuals with age-related degenerative diseases of the central nervous system. The sigma-2 receptor (S2R), encoded by TMEM97, is expressed in brain and retinal cells, and regulates cell functions via its co-receptor progesterone receptor membrane component 1 (PGRMC1), and through other protein–protein interactions. Studies describing functions of S2R involve the manipulation of expression or pharmacological modulation using exogenous small-molecule ligands. These studies demonstrate that S2R modulates key pathways involved in age-related diseases including autophagy, trafficking, oxidative stress, and amyloid-β and α-synuclein toxicity. Furthermore, S2R modulation can ameliorate functional deficits in cell-based and animal models of disease. This review summarizes the current evidence-based understanding of S2R biology and function, and its potential as a therapeutic target for age-related degenerative diseases of the central nervous system, including Alzheimer’s disease, α-synucleinopathies, and dry age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | | | - Michael Grundman
- Global R&D Partners, LLC., San Diego, CA 92130, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Mary E. Hamby
- Cognition Therapeutics, Inc., Pittsburgh, PA 15203, USA
- Correspondence:
| |
Collapse
|
13
|
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34:49-62. [PMID: 35793556 DOI: 10.1515/revneuro-2022-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases (NDDs) are age-related disorders characterized by progressive neurodegeneration and neuronal cell loss in the central nervous system. Neuropathological conditions such as the accumulation of misfolded proteins can cause neuroinflammation, apoptosis, and synaptic dysfunction in the brain, leading to the development of NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression post-transcriptionally via RNA interference. Recently, some studies have reported that some miRNAs play an important role in the development of NDDs by regulating target gene expression. MiRNA-485 (miR-485) is a highly conserved brain-enriched miRNA. Accumulating clinical reports suggest that dysregulated miR-485 may be involved in the pathogenesis of AD and PD. Emerging studies have also shown that miR-485 plays a novel role in the regulation of neuroinflammation, apoptosis, and synaptic function in the pathogenesis of NDDs. In this review, we introduce the biological characteristics of miR-485, provide clinical evidence of the dysregulated miR-485 in NDDs, novel roles of miR-485 in neuropathological events, and discuss the potential of targeting miR-485 as a diagnostic and therapeutic marker for NDDs.
Collapse
Affiliation(s)
- In Soo Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea.,Biorchestra Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Ribarič S. Detecting Early Cognitive Decline in Alzheimer's Disease with Brain Synaptic Structural and Functional Evaluation. Biomedicines 2023; 11:355. [PMID: 36830892 PMCID: PMC9952956 DOI: 10.3390/biomedicines11020355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Early cognitive decline in patients with Alzheimer's (AD) is associated with quantifiable structural and functional connectivity changes in the brain. AD dysregulation of Aβ and tau metabolism progressively disrupt normal synaptic function, leading to loss of synapses, decreased hippocampal synaptic density and early hippocampal atrophy. Advances in brain imaging techniques in living patients have enabled the transition from clinical signs and symptoms-based AD diagnosis to biomarkers-based diagnosis, with functional brain imaging techniques, quantitative EEG, and body fluids sampling. The hippocampus has a central role in semantic and episodic memory processing. This cognitive function is critically dependent on normal intrahippocampal connections and normal hippocampal functional connectivity with many cortical regions, including the perirhinal and the entorhinal cortex, parahippocampal cortex, association regions in the temporal and parietal lobes, and prefrontal cortex. Therefore, decreased hippocampal synaptic density is reflected in the altered functional connectivity of intrinsic brain networks (aka large-scale networks), including the parietal memory, default mode, and salience networks. This narrative review discusses recent critical issues related to detecting AD-associated early cognitive decline with brain synaptic structural and functional markers in high-risk or neuropsychologically diagnosed patients with subjective cognitive impairment or mild cognitive impairment.
Collapse
Affiliation(s)
- Samo Ribarič
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Kozin SA. Role of Interaction between Zinc and Amyloid Beta in Pathogenesis of Alzheimer’s Disease. BIOCHEMISTRY (MOSCOW) 2023; 88:S75-S87. [PMID: 37069115 DOI: 10.1134/s0006297923140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Progression of Alzheimer's disease is accompanied by the appearance of extracellular deposits in the brain tissues of patients with characteristic supramolecular morphology (amyloid plaques) the main components of which are β-amyloid isoforms (Aβ) and biometal ions (zinc, copper, iron). For nearly 40 years and up to the present time, the vast majority of experimental data indicate critical role of formation and accumulation of amyloid plaques (cerebral amyloidogenesis) in pathogenesis of Alzheimer's disease, however, nature of the molecular agents that initiate cerebral amyloidogenesis, as well as causes of aggregation of the native Aβ molecules in vivo remained unknown for a long time. This review discusses the current level of fundamental knowledge about the molecular mechanisms of interactions of zinc ions with a number of Aβ isoforms present in amyloid plaques of the patients with Alzheimer's disease, and also shows how this knowledge made it possible to identify driving forces of the cerebral amyloidogenesis in Alzheimer's disease and made it possible to determine fundamentally new biomarkers and drug targets as part of development of innovative strategy for diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
16
|
Development of Alkaline Phosphatase-Fused Mouse Prion Protein and Its Application in Toxic Aβ Oligomer Detection. Int J Mol Sci 2022; 23:ijms232314588. [PMID: 36498917 PMCID: PMC9738830 DOI: 10.3390/ijms232314588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Amyloid β (Aβ) oligomers play a key role in the progression of Alzheimer's disease (AD). Multiple forms of Aβ assemblies have been identified by in vitro and in vivo analyses; however, it is uncertain which oligomer is highly neurotoxic. Thus, understanding the pathogenesis of AD by detecting toxic Aβ oligomers is crucial. In this study, we report a fusion protein of cellular prion protein (PrPc) and alkaline phosphatase (ALP) from Escherichia coli as a sensing element for toxic Aβ oligomers. Since the N-terminus domain of PrPc (residue 23-111) derived from mice is known to bind to toxic Aβ oligomers in vitro, we genetically fused PrPc23-111 to ALP. The developed fusion protein, PrP-ALP, retained both the binding ability of PrPc and enzymatic activity of ALP. We showed that PrP-ALP strongly bound to high molecular weight (HMW) oligomers but showed little or no affinity toward monomers. The observation that PrP-ALP neutralized the toxic effect of Aβ oligomers indicated an interaction between PrP-ALP and toxic HMW oligomers. Based on ALP activity, we succeeded in detecting Aβ oligomers. PrP-ALP may serve as a powerful tool for detecting toxic Aβ oligomers that may be related to AD progression.
Collapse
|
17
|
Zaretsky DV, Zaretskaia MV, Molkov YI. Patients with Alzheimer's disease have an increased removal rate of soluble beta-amyloid-42. PLoS One 2022; 17:e0276933. [PMID: 36315527 PMCID: PMC9621436 DOI: 10.1371/journal.pone.0276933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Senile plaques, which are mostly composed of beta-amyloid peptide, are the main signature of Alzheimer's disease (AD). Two main forms of beta-amyloid in humans are 40 and 42-amino acid, long; the latter is considered more relevant to AD etiology. The concentration of soluble beta-amyloid-42 (Aβ42) in cerebrospinal fluid (CSF-Aβ42) and the density of amyloid depositions have a strong negative correlation. However, AD patients have lower CSF-Aβ42 levels compared to individuals with normal cognition (NC), even after accounting for this correlation. The goal of this study was to infer deviations of Aβ42 metabolism parameters that underlie this difference using data from the Alzheimer's Disease Neuroimaging Initiative cohort. Aβ42 is released to the interstitial fluid (ISF) by cells and is removed by several processes. First, growth of insoluble fibrils by aggregation decreases the concentration of soluble beta-amyloid in the ISF. Second, Aβ42 is physically transferred from the brain to the CSF and removed with the CSF flow. Finally, there is an intratissue removal of Aβ42 ending in proteolysis, which can occur either in the ISF or inside the cells after the peptide is endocytosed. Unlike aggregation, which preserves the peptide in the brain, transfer to the CSF and intratissue proteolysis together represent amyloid removal. Using a kinetic model of Aβ42 turnover, we found that compared to NC subjects, AD patients had dramatically increased rates of amyloid removal. A group with late-onset mild cognitive impairment (LMCI) also exhibited a higher rate of amyloid removal; however, this was less pronounced than in the AD group. Estimated parameters in the early-onset MCI group did not differ significantly from those in the NC group. We hypothesize that increased amyloid removal is mediated by Aβ42 cellular uptake; this is because CSF flow is not increased in AD patients, while most proteases are intracellular. Aβ cytotoxicity depends on both the amount of beta-amyloid internalized by cells and its intracellular conversion into toxic products. We speculate that AD and LMCI are associated with increased cellular amyloid uptake, which leads to faster disease progression. The early-onset MCI (EMCI) patients do not differ from the NC participants in terms of cellular amyloid uptake. Therefore, EMCI may be mediated by the increased production of toxic amyloid metabolites.
Collapse
Affiliation(s)
| | | | - Yaroslav I. Molkov
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, GA, United States of America
| | | |
Collapse
|
18
|
Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D, Glatzel M. The prion protein and its ligands: Insights into structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119240. [PMID: 35192891 DOI: 10.1016/j.bbamcr.2022.119240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prion protein is a multifunctional protein that exists in at least two different folding states. It is subject to diverse proteolytic processing steps that lead to prion protein fragments some of which are membrane-bound whereas others are soluble. A multitude of ligands bind to the prion protein and besides proteinaceous binding partners, interaction with metal ions and nucleic acids occurs. Although of great importance, information on structural and functional consequences of prion protein binding to its partners is limited. Here, we will reflect on the structure-function relationship of the prion protein and its binding partners considering the different folding states and prion protein fragments.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Neelam Younas
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
19
|
Spurrier J, Nicholson L, Fang XT, Stoner AJ, Toyonaga T, Holden D, Siegert TR, Laird W, Allnutt MA, Chiasseu M, Brody AH, Takahashi H, Nies SH, Pérez-Cañamás A, Sadasivam P, Lee S, Li S, Zhang L, Huang YH, Carson RE, Cai Z, Strittmatter SM. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Sci Transl Med 2022; 14:eabi8593. [PMID: 35648810 PMCID: PMC9554345 DOI: 10.1126/scitranslmed.abi8593] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microglia-mediated synaptic loss contributes to the development of cognitive impairments in Alzheimer's disease (AD). However, the basis for this immune-mediated attack on synapses remains to be elucidated. Treatment with the metabotropic glutamate receptor 5 (mGluR5) silent allosteric modulator (SAM), BMS-984923, prevents β-amyloid oligomer-induced aberrant synaptic signaling while preserving physiological glutamate response. Here, we show that oral BMS-984923 effectively occupies brain mGluR5 sites visualized by [18F]FPEB positron emission tomography (PET) at doses shown to be safe in rodents and nonhuman primates. In aged mouse models of AD (APPswe/PS1ΔE9 overexpressing transgenic and AppNL-G-F/hMapt double knock-in), SAM treatment fully restored synaptic density as measured by [18F]SynVesT-1 PET for SV2A and by histology, and the therapeutic benefit persisted after drug washout. Phospho-TAU accumulation in double knock-in mice was also reduced by SAM treatment. Single-nuclei transcriptomics demonstrated that SAM treatment in both models normalized expression patterns to a far greater extent in neurons than glia. Last, treatment prevented synaptic localization of the complement component C1Q and synaptic engulfment in AD mice. Thus, selective modulation of mGluR5 reversed neuronal gene expression changes to protect synapses from damage by microglial mediators in rodents.
Collapse
Affiliation(s)
- Joshua Spurrier
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - LaShae Nicholson
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaotian T Fang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Austin J Stoner
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - William Laird
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mary Alice Allnutt
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Marius Chiasseu
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - A Harrison Brody
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sarah Helena Nies
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Azucena Pérez-Cañamás
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pragalath Sadasivam
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Supum Lee
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Songye Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Le Zhang
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yiyun H Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Marcatti M, Fracassi A, Montalbano M, Natarajan C, Krishnan B, Kayed R, Taglialatela G. Aβ/tau oligomer interplay at human synapses supports shifting therapeutic targets for Alzheimer's disease. Cell Mol Life Sci 2022; 79:222. [PMID: 35377002 PMCID: PMC8979934 DOI: 10.1007/s00018-022-04255-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive cognitive decline due to accumulating synaptic insults by toxic oligomers of amyloid beta (AβO) and tau (TauO). There is growing consensus that preventing these oligomers from interacting with synapses might be an effective approach to treat AD. However, recent clinical trial failures suggest low effectiveness of targeting Aβ in late-stage AD. Researchers have redirected their attention toward TauO as the levels of this species increase later in disease pathogenesis. Here we show that AβO and TauO differentially target synapses and affect each other's binding dynamics. METHODS Binding of labeled, pre-formed Aβ and tau oligomers onto synaptosomes isolated from the hippocampus and frontal cortex of mouse and postmortem cognitively intact elderly human brains was evaluated using flow-cytometry and western blot analyses. Binding of labeled, pre-formed Aβ and tau oligomers onto mouse primary neurons was assessed using immunofluorescence assay. The synaptic dysfunction was measured by fluorescence analysis of single-synapse long-term potentiation (FASS-LTP) assay. RESULTS We demonstrated that higher TauO concentrations effectively outcompete AβO and become the prevailing synaptic-associated species. Conversely, high concentrations of AβO facilitate synaptic TauO recruitment. Immunofluorescence analyses of mouse primary cortical neurons confirmed differential synaptic binding dynamics of AβO and TauO. Moreover, in vivo experiments using old 3xTgAD mice ICV injected with either AβO or TauO fully supported these findings. Consistent with these observations, FASS-LTP analyses demonstrated that TauO-induced suppression of chemical LTP was exacerbated by AβO. Finally, predigestion with proteinase K abolished the ability of TauO to compete off AβO without affecting the ability of high AβO levels to increase synaptic TauO recruitment. Thus, unlike AβO, TauO effects on synaptosomes are hampered by the absence of protein substrate in the membrane. CONCLUSIONS These results introduce the concept that TauO become the main synaptotoxic species at late AD, thus supporting the hypothesis that TauO may be the most effective therapeutic target for clinically manifest AD.
Collapse
Affiliation(s)
- Michela Marcatti
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Mauro Montalbano
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Chandramouli Natarajan
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Balaji Krishnan
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
21
|
Panes JD, Saavedra P, Pineda B, Escobar K, Cuevas ME, Moraga-Cid G, Fuentealba J, Rivas CI, Rezaei H, Muñoz-Montesino C. PrP C as a Transducer of Physiological and Pathological Signals. Front Mol Neurosci 2021; 14:762918. [PMID: 34880726 PMCID: PMC8648500 DOI: 10.3389/fnmol.2021.762918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
After the discovery of prion phenomenon, the physiological role of the cellular prion protein (PrP C ) remained elusive. In the past decades, molecular and cellular analysis has shed some light regarding interactions and functions of PrP C in health and disease. PrP C , which is located mainly at the plasma membrane of neuronal cells attached by a glycosylphosphatidylinositol (GPI) anchor, can act as a receptor or transducer from external signaling. Although the precise role of PrP C remains elusive, a variety of functions have been proposed for this protein, namely, neuronal excitability and viability. Although many issues must be solved to clearly define the role of PrP C , its connection to the central nervous system (CNS) and to several misfolding-associated diseases makes PrP C an interesting pharmacological target. In a physiological context, several reports have proposed that PrP C modulates synaptic transmission, interacting with various proteins, namely, ion pumps, channels, and metabotropic receptors. PrP C has also been implicated in the pathophysiological cell signaling induced by β-amyloid peptide that leads to synaptic dysfunction in the context of Alzheimer's disease (AD), as a mediator of Aβ-induced cell toxicity. Additionally, it has been implicated in other proteinopathies as well. In this review, we aimed to analyze the role of PrP C as a transducer of physiological and pathological signaling.
Collapse
Affiliation(s)
- Jessica D Panes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paulina Saavedra
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Benjamin Pineda
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Magdalena E Cuevas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Human Rezaei
- Virologie et Immunologie Moléculaires (VIM), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Jouy-en-Josas, France.,Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France.,Université Paris-Saclay, Jouy-en-Josas, France
| | - Carola Muñoz-Montesino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
22
|
Polido SA, Kamps J, Tatzelt J. Biological Functions of the Intrinsically Disordered N-Terminal Domain of the Prion Protein: A Possible Role of Liquid-Liquid Phase Separation. Biomolecules 2021; 11:1201. [PMID: 34439867 PMCID: PMC8391301 DOI: 10.3390/biom11081201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The mammalian prion protein (PrPC) is composed of a large intrinsically disordered N-terminal and a structured C-terminal domain, containing three alpha-helical regions and a short, two-stranded beta-sheet. Traditionally, the activity of a protein was linked to the ability of the polypeptide chain to adopt a stable secondary/tertiary structure. This concept has been extended when it became evident that intrinsically disordered domains (IDDs) can participate in a broad range of defined physiological activities and play a major functional role in several protein classes including transcription factors, scaffold proteins, and signaling molecules. This ability of IDDs to engage in a variety of supramolecular complexes may explain the large number of PrPC-interacting proteins described. Here, we summarize diverse physiological and pathophysiological activities that have been described for the unstructured N-terminal domain of PrPC. In particular, we focus on subdomains that have been conserved in evolution.
Collapse
Affiliation(s)
- Stella A. Polido
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany; (S.A.P.); (J.K.)
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
23
|
Romoli M, Sen A, Parnetti L, Calabresi P, Costa C. Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol 2021; 17:469-485. [PMID: 34117482 DOI: 10.1038/s41582-021-00505-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
People with epilepsy - in particular, late-onset epilepsy of unknown aetiology - have an elevated risk of dementia, and seizures have been detected in the early stages of Alzheimer disease (AD), supporting the concept of an epileptic AD prodrome. However, the relationship between epilepsy and cognitive decline remains controversial, with substantial uncertainties about whether epilepsy drives cognitive decline or vice versa, and whether shared pathways underlie both conditions. Here, we review evidence that amyloid-β (Aβ) forms part of a shared pathway between epilepsy and cognitive decline, particularly in the context of AD. People with epilepsy show an increased burden of Aβ pathology in the brain, and Aβ-mediated epileptogenic alterations have been demonstrated in experimental studies, with evidence suggesting that Aβ pathology might already be pro-epileptogenic at the soluble stage, long before plaque deposition. We discuss the hypothesis that Aβ mediates - or is at least a major determinant of - a continuum spanning epilepsy and cognitive decline. Serial cognitive testing and assessment of Aβ levels might be worthwhile to stratify the risk of developing dementia in people with late-onset epilepsy. If seizures are a clinical harbinger of dementia, people with late-onset epilepsy could be an ideal group in which to implement preventive or therapeutic strategies to slow cognitive decline.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.,Neurology and Stroke Unit, "Maurizio Bufalini" Hospital, Cesena, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Lucilla Parnetti
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
24
|
Mitostasis, Calcium and Free Radicals in Health, Aging and Neurodegeneration. Biomolecules 2021; 11:biom11071012. [PMID: 34356637 PMCID: PMC8301949 DOI: 10.3390/biom11071012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play key roles in ATP supply, calcium homeostasis, redox balance control and apoptosis, which in neurons are fundamental for neurotransmission and to allow synaptic plasticity. Their functional integrity is maintained by mitostasis, a process that involves mitochondrial transport, anchoring, fusion and fission processes regulated by different signaling pathways but mainly by the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α also favors Ca2+ homeostasis, reduces oxidative stress, modulates inflammatory processes and mobilizes mitochondria to where they are needed. To achieve their functions, mitochondria are tightly connected to the endoplasmic reticulum (ER) through specialized structures of the ER termed mitochondria-associated membranes (MAMs), which facilitate the communication between these two organelles mainly to aim Ca2+ buffering. Alterations in mitochondrial activity enhance reactive oxygen species (ROS) production, disturbing the physiological metabolism and causing cell damage. Furthermore, cytosolic Ca2+ overload results in an increase in mitochondrial Ca2+, resulting in mitochondrial dysfunction and the induction of mitochondrial permeability transition pore (mPTP) opening, leading to mitochondrial swelling and cell death through apoptosis as demonstrated in several neuropathologies. In summary, mitochondrial homeostasis is critical to maintain neuronal function; in fact, their regulation aims to improve neuronal viability and to protect against aging and neurodegenerative diseases.
Collapse
|
25
|
William CM, Stern MA, Pei X, Saqran L, Ramani M, Frosch MP, Hyman BT. Impairment of visual cortical plasticity by amyloid-beta species. Neurobiol Dis 2021; 154:105344. [PMID: 33766652 PMCID: PMC8113107 DOI: 10.1016/j.nbd.2021.105344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/06/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION A variety of transgenic and knock-in mice that express mutant alleles of Amyloid precursor protein (APP) have been used to model the effects of amyloid-beta (Aβ) on circuit function in Alzheimer's disease (AD); however phenotypes described in these mice may be affected by expression of mutant APP or proteolytic cleavage products independent of Aβ. In addition, the effects of mutant APP expression are attributed to elevated expression of the amyloidogenic, 42-amino acid-long species of Aβ (Aβ42) associated with amyloid plaque accumulation in AD, though elevated concentrations of Aβ40, an Aβ species produced with normal synaptic activity, may also affect neural function. METHODS To explore the effects of elevated expression of Aβ on synaptic function in vivo, we assessed visual system plasticity in transgenic mice that express and secrete Aβ throughout the brain in the absence of APP overexpression. Transgenic mice that express either Aβ40 or Aβ42 were assayed for their ability to appropriately demonstrate ocular dominance plasticity following monocular deprivation. RESULTS Using two complementary approaches to measure the plastic response to monocular deprivation, we find that male and female mice that express either 40- or 42-amino acid-long Aβ species demonstrate a plasticity defect comparable to that elicited in transgenic mice that express mutant alleles of APP and Presenilin 1 (APP/PS1 mice). CONCLUSIONS These data support the hypothesis that mutant APP-driven plasticity impairment in mouse models of AD is mediated by production and accumulation of Aβ. Moreover, these findings suggest that soluble species of Aβ are capable of modulating synaptic plasticity, likely independent of any aggregation. These findings may have implications for the role of soluble species of Aβ in both development and disease settings.
Collapse
Affiliation(s)
- Christopher M William
- New York University Grossman School of Medicine, Department of Pathology, 550 First Avenue, New York, NY 10016, United States.
| | - Matthew A Stern
- MassGeneral Institute for Neurodegenerative Disease, Neurology, Massachusetts General Hospital, 114 16th St., Charlestown, MA 02129, United States.
| | - Xuewei Pei
- New York University Grossman School of Medicine, Department of Pathology, 550 First Avenue, New York, NY 10016, United States
| | - Lubna Saqran
- MassGeneral Institute for Neurodegenerative Disease, Neurology, Massachusetts General Hospital, 114 16th St., Charlestown, MA 02129, United States
| | - Margish Ramani
- New York University Grossman School of Medicine, Department of Pathology, 550 First Avenue, New York, NY 10016, United States.
| | - Matthew P Frosch
- Neuropathology Service, Massachusetts General Hospital, 114 16th St., Charlestown, MA 02129, United States; MassGeneral Institute for Neurodegenerative Disease, Neurology, Massachusetts General Hospital, 114 16th St., Charlestown, MA 02129, United States.
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Neurology, Massachusetts General Hospital, 114 16th St., Charlestown, MA 02129, United States.
| |
Collapse
|
26
|
Maciejewska K, Czarnecka K, Szymański P. A review of the mechanisms underlying selected comorbidities in Alzheimer's disease. Pharmacol Rep 2021; 73:1565-1581. [PMID: 34121170 PMCID: PMC8599320 DOI: 10.1007/s43440-021-00293-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) leading to mental deterioration and devastation, and eventually a fatal outcome. AD affects mostly the elderly. AD is frequently accompanied by hypercholesterolemia, hypertension, atherosclerosis, and diabetes mellitus, and these are significant risk factors of AD. Other conditions triggered by the progression of AD include psychosis, sleep disorders, epilepsy, and depression. One important comorbidity is Down’s syndrome, which directly contributes to the severity and rapid progression of AD. The development of new therapeutic strategies for AD includes the repurposing of drugs currently used for the treatment of comorbidities. A better understanding of the influence of comorbidities on the pathogenesis of AD, and the medications used in its treatment, might allow better control of disease progression, and more effective pharmacotherapy.
Collapse
Affiliation(s)
- Karolina Maciejewska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland.
| |
Collapse
|
27
|
Amin L, Harris DA. Aβ receptors specifically recognize molecular features displayed by fibril ends and neurotoxic oligomers. Nat Commun 2021; 12:3451. [PMID: 34103486 PMCID: PMC8187732 DOI: 10.1038/s41467-021-23507-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2021] [Indexed: 12/31/2022] Open
Abstract
Several cell-surface receptors for neurotoxic forms of amyloid-β (Aβ) have been described, but their molecular interactions with Aβ assemblies and their relative contributions to mediating Alzheimer's disease pathology have remained uncertain. Here, we used super-resolution microscopy to directly visualize Aβ-receptor interactions at the nanometer scale. We report that one documented Aβ receptor, PrPC, specifically inhibits the polymerization of Aβ fibrils by binding to the rapidly growing end of each fibril, thereby blocking polarized elongation at that end. PrPC binds neurotoxic oligomers and protofibrils in a similar fashion, suggesting that it may recognize a common, end-specific, structural motif on all of these assemblies. Finally, two other Aβ receptors, FcγRIIb and LilrB2, affect Aβ fibril growth in a manner similar to PrPC. Our results suggest that receptors may trap Aβ oligomers and protofibrils on the neuronal surface by binding to a common molecular determinant on these assemblies, thereby initiating a neurotoxic signal.
Collapse
Affiliation(s)
- Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
28
|
Kamps J, Lin YH, Oliva R, Bader V, Winter R, Winklhofer KF, Tatzelt J. The N-terminal domain of the prion protein is required and sufficient for liquid-liquid phase separation: A crucial role of the Aβ-binding domain. J Biol Chem 2021; 297:100860. [PMID: 34102212 PMCID: PMC8254114 DOI: 10.1016/j.jbc.2021.100860] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Formation of biomolecular condensates through liquid–liquid phase separation (LLPS) has been described for several pathogenic proteins linked to neurodegenerative diseases and is discussed as an early step in the formation of protein aggregates with neurotoxic properties. In prion diseases, neurodegeneration and formation of infectious prions is caused by aberrant folding of the cellular prion protein (PrPC). PrPC is characterized by a large intrinsically disordered N-terminal domain and a structured C-terminal globular domain. A significant fraction of mature PrPC is proteolytically processed in vivo into an entirely unstructured fragment, designated N1, and the corresponding C-terminal fragment C1 harboring the globular domain. Notably, N1 contains a polybasic motif that serves as a binding site for neurotoxic Aβ oligomers. PrP can undergo LLPS; however, nothing is known how phase separation of PrP is triggered on a molecular scale. Here, we show that the intrinsically disordered N1 domain is necessary and sufficient for LLPS of PrP. Similar to full-length PrP, the N1 fragment formed highly dynamic liquid-like droplets. Remarkably, a slightly shorter unstructured fragment, designated N2, which lacks the Aβ-binding domain and is generated under stress conditions, failed to form liquid-like droplets and instead formed amorphous assemblies of irregular structures. Through a mutational analysis, we identified three positively charged lysines in the postoctarepeat region as essential drivers of condensate formation, presumably largely via cation–π interactions. These findings provide insights into the molecular basis of LLPS of the mammalian prion protein and reveal a crucial role of the Aβ-binding domain in this process.
Collapse
Affiliation(s)
- Janine Kamps
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Yu-Hsuan Lin
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Rosario Oliva
- Division of Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Roland Winter
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany; Division of Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany; Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
29
|
Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, Costa C. An Unbalanced Synaptic Transmission: Cause or Consequence of the Amyloid Oligomers Neurotoxicity? Int J Mol Sci 2021; 22:ijms22115991. [PMID: 34206089 PMCID: PMC8199544 DOI: 10.3390/ijms22115991] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) 1-40 and 1-42 peptides are key mediators of synaptic and cognitive dysfunction in Alzheimer's disease (AD). Whereas in AD, Aβ is found to act as a pro-epileptogenic factor even before plaque formation, amyloid pathology has been detected among patients with epilepsy with increased risk of developing AD. Among Aβ aggregated species, soluble oligomers are suggested to be responsible for most of Aβ's toxic effects. Aβ oligomers exert extracellular and intracellular toxicity through different mechanisms, including interaction with membrane receptors and the formation of ion-permeable channels in cellular membranes. These damages, linked to an unbalance between excitatory and inhibitory neurotransmission, often result in neuronal hyperexcitability and neural circuit dysfunction, which in turn increase Aβ deposition and facilitate neurodegeneration, resulting in an Aβ-driven vicious loop. In this review, we summarize the most representative literature on the effects that oligomeric Aβ induces on synaptic dysfunction and network disorganization.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| | - Alfredo Megaro
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Giovanni Bellomo
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Michele Romoli
- Neurology Unit, Rimini “Infermi” Hospital—AUSL Romagna, 47923 Rimini, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| |
Collapse
|
30
|
Zaretsky DV, Zaretskaia MV. Mini-review: Amyloid degradation toxicity hypothesis of Alzheimer's disease. Neurosci Lett 2021; 756:135959. [PMID: 34000347 DOI: 10.1016/j.neulet.2021.135959] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia affecting millions of people. Neuronal death in AD is initiated by oligomeric amyloid-β (Aβ) peptides. The amyloid channel hypothesis readily explains the primary molecular damage but does not address major observations associated with AD such as autophagy failure and decreased metabolism. The amyloid degradation toxicity hypothesis provides the interpretation as a sequence of molecular events. Aβ enters a cell by endocytosis, and the endocytic vesicle is merged with a lysosome. Lysosomal peptidases degrade the peptide. Fragments form membrane channels in lysosomal membranes that have a significant negative charge due to the presence of acidic phospholipids. Amyloid channels can transfer various ions (including protons) and even relatively large compounds, which explains lysosomal permeabilization. The neutralization of lysosomal content inactivates degradation enzymes, results in an accumulation of undigested amyloid, and stalls autophagy. Inadequate quality control of mitochondria is associated with an increased production of reactive oxygen species and decreased energy production. Also, the passage of lysosomal proteases through rare extremely large channels results in cell death. Proposed hypothesis identifies biochemical pathways involved in the initiation and progression of cellular damage induced by beta-amyloid and provides new potential pharmacological targets to treat Alzheimer's disease.
Collapse
|
31
|
Fonar G, Polis B, Sams DS, Levi A, Malka A, Bal N, Maltsev A, Elliott E, Samson AO. Modified Snake α-Neurotoxin Averts β-Amyloid Binding to α7 Nicotinic Acetylcholine Receptor and Reverses Cognitive Deficits in Alzheimer's Disease Mice. Mol Neurobiol 2021; 58:2322-2341. [PMID: 33417228 PMCID: PMC8018932 DOI: 10.1007/s12035-020-02270-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of senile dementia and one of the greatest medical, social, and economic challenges. According to a dominant theory, amyloid-β (Aβ) peptide is a key AD pathogenic factor. Aβ-soluble species interfere with synaptic functions, aggregate gradually, form plaques, and trigger neurodegeneration. The AD-associated pathology affects numerous systems, though the substantial loss of cholinergic neurons and α7 nicotinic receptors (α7AChR) is critical for the gradual cognitive decline. Aβ binds to α7AChR under various experimental settings; nevertheless, the functional significance of this interaction is ambiguous. Whereas the capability of low Aβ concentrations to activate α7AChR is functionally beneficial, extensive brain exposure to high Aβ concentrations diminishes α7AChR activity, contributes to the cholinergic deficits that characterize AD. Aβ and snake α-neurotoxins competitively bind to α7AChR. Accordingly, we designed a chemically modified α-cobratoxin (mToxin) to inhibit the interaction between Aβ and α7AChR. Subsequently, we examined mToxin in a set of original in silico, in vitro, ex vivo experiments, and in a murine AD model. We report that mToxin reversibly inhibits α7AChR, though it attenuates Aβ-induced synaptic transmission abnormalities, and upregulates pathways supporting long-term potentiation and reducing apoptosis. Remarkably, mToxin demonstrates no toxicity in brain slices and mice. Moreover, its chronic intracerebroventricular administration improves memory in AD-model animals. Our results point to unique mToxin neuroprotective properties, which might be tailored for the treatment of AD. Our methodology bridges the gaps in understanding Aβ-α7AChR interaction and represents a promising direction for further investigations and clinical development.
Collapse
Affiliation(s)
- Gennadiy Fonar
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel.
| | - Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Dev Sharan Sams
- Laboratory of Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Almog Levi
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Assaf Malka
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Natalia Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Evan Elliott
- Laboratory of Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| |
Collapse
|
32
|
Martin L, Bouvet P, Chounlamountri N, Watrin C, Besançon R, Pinatel D, Meyronet D, Honnorat J, Buisson A, Salin PA, Meissirel C. VEGF counteracts amyloid-β-induced synaptic dysfunction. Cell Rep 2021; 35:109121. [PMID: 33979625 DOI: 10.1016/j.celrep.2021.109121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) pathway regulates key processes in synapse function, which are disrupted in early stages of Alzheimer's disease (AD) by toxic-soluble amyloid-beta oligomers (Aβo). Here, we show that VEGF accumulates in and around Aβ plaques in postmortem brains of patients with AD and in APP/PS1 mice, an AD mouse model. We uncover specific binding domains involved in direct interaction between Aβo and VEGF and reveal that this interaction jeopardizes VEGFR2 activation in neurons. Notably, we demonstrate that VEGF gain of function rescues basal synaptic transmission, long-term potentiation (LTP), and dendritic spine alterations, and blocks long-term depression (LTD) facilitation triggered by Aβo. We further decipher underlying mechanisms and find that VEGF inhibits the caspase-3-calcineurin pathway responsible for postsynaptic glutamate receptor loss due to Aβo. These findings provide evidence for alterations of the VEGF pathway in AD models and suggest that restoring VEGF action on neurons may rescue synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Laurent Martin
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Pauline Bouvet
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Naura Chounlamountri
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Chantal Watrin
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Roger Besançon
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Delphine Pinatel
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - David Meyronet
- Université Claude Bernard Lyon 1, 69000 Lyon, France; Cancer Research Center of Lyon, Cancer Cell Plasticity, INSERM U1052, CNRS UMR5286, 69000 Lyon, France; Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon 69000 Lyon, France
| | - Jérôme Honnorat
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Alain Buisson
- GIN, INSERM U1216, Université Grenoble Alpes, 38000 Grenoble, France
| | - Paul-Antoine Salin
- Université Claude Bernard Lyon 1, 69000 Lyon, France; Lyon Neuroscience Research Center, Forgetting processes and cortical dynamics, INSERM U1028, CNRS UMR5292, 69675 Bron, France
| | - Claire Meissirel
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France.
| |
Collapse
|
33
|
Limegrover CS, LeVine H, Izzo NJ, Yurko R, Mozzoni K, Rehak C, Sadlek K, Safferstein H, Catalano SM. Alzheimer's protection effect of A673T mutation may be driven by lower Aβ oligomer binding affinity. J Neurochem 2021; 157:1316-1330. [PMID: 33025581 PMCID: PMC8246829 DOI: 10.1111/jnc.15212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022]
Abstract
Several mutations conferring protection against Alzheimer's disease (AD) have been described, none as profound as the A673T mutation, where carriers are four times less likely to get AD compared to noncarriers. This mutation results in reduced amyloid beta (Aβ) protein production in vitro and lower lifetime Aβ concentration in carriers. Better understanding of the protective mechanisms of the mutation may provide important insights into AD pathophysiology and identify productive therapeutic intervention strategies for disease modification. Aβ(1-42) protein forms oligomers that bind saturably to a single receptor site on neuronal synapses, initiating the downstream toxicities observed in AD. Decreased formation, toxicity, or stability of soluble Aβ oligomers, or reduction of synaptic binding of these oligomers, may combine with overall lower Aβ concentration to underlie A673T's disease protecting mechanism. To investigate these possibilities, we compared the formation rate of soluble oligomers made from Icelandic A673T mutant and wild type (wt) Aβ(1-42) synthetic protein, the amount and intensity of oligomer bound to mature primary rat hippocampal/cortical neuronal synapses, and the potency of bound oligomers to impact trafficking rate in neurons in vitro using a physiologically relevant oligomer preparation method. At equal protein concentrations, mutant protein forms approximately 50% or fewer oligomers of high molecular weight (>50 kDa) compared to wt protein. Mutant oligomers are twice as potent at altering the cellular vesicle trafficking rate as wt at equivalent concentrations, however, mutant oligomers have a >4-fold lower binding affinity to synaptic receptors (Kd = 1,950 vs. 442 nM). The net effect of these differences is a lower overall toxicity at a given concentration. This study demonstrates for the first time that mutant A673T Aβ oligomers prepared with this method have fundamentally different assembly characteristics and biological impact from wt protein and indicates that its disease protecting mechanism may result primarily from the mutant protein's much lower binding affinity to synaptic receptors. This suggests that therapeutics that effectively reduce oligomer binding to synapses in the brain may be beneficial in AD.
Collapse
Affiliation(s)
| | - Harry LeVine
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKYUSA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
LaBarbera KM, Limegrover C, Rehak C, Yurko R, Izzo NJ, Knezovich N, Watto E, Waybright L, Catalano SM. Modeling the mature CNS: A predictive screening platform for neurodegenerative disease drug discovery. J Neurosci Methods 2021; 358:109180. [PMID: 33836174 PMCID: PMC8217273 DOI: 10.1016/j.jneumeth.2021.109180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
Background: Mature primary neuronal cultures are an important model of the nervous system, but limited scalability has been a major challenge in their use for drug discovery of neurodegenerative diseases. This work describes a method for improving scalability through the use of larger format microtiter plates while preserving culture quality. New Method: Here we describe a method and quality control procedures for growing embryonic day 18 rat hippocampal/cortical neuronal cultures in 384-well microtiter plates for three weeks in vitro. Results: We use these cultures in two assays measuring intracellular lipid vesicle trafficking and synapse density for routine screening of small molecule libraries. Together this culture system and screening platform have successfully identified therapeutics capable of improving cognitive function in transgenic models of Alzheimer’s disease that have advanced to clinical trials, validating their translational applicability. Comparison with Existing Methods: Our method enables the growth of healthy, mature neurons in larger format microtiter plates than in traditional primary neuronal culturing protocols, making it ideal for drug screening and mechanism of action studies. Conclusion: The predictive capacity of this culture system and screening platform provides a method for rapidly identifying novel disease-modifying neurodegenerative therapeutics.
Collapse
Affiliation(s)
| | | | - Courtney Rehak
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Raymond Yurko
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | | | - Nicole Knezovich
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Emily Watto
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Lora Waybright
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, United States.
| |
Collapse
|
35
|
Reichenstein M, Borovok N, Sheinin A, Brider T, Michaelevski I. Abelson Kinases Mediate the Depression of Spontaneous Synaptic Activity Induced by Amyloid Beta 1-42 Peptides. Cell Mol Neurobiol 2021; 41:431-448. [PMID: 32399753 DOI: 10.1007/s10571-020-00858-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Amyloid beta (Aβ) peptides represent one of the most studied etiological factors of Alzheimer's disease. Nevertheless, the effects elicited by different molecular forms of amyloid beta peptides widely vary between the studies, mostly depending on experimental conditions. Despite the enormous amount of accumulated evidences concerning the pathological effects of amyloid beta peptides, the exact identity of the amyloid beta species is still controversial, and even less is clear as regards to the downstream effectors that mediate the devastating impact of these peptides on synapses in the central nervous system. Recent publications indicate that some of the neurotoxic effects of amyloid beta peptides may be mediated via the activation of proteins belonging to the Abelson non-receptor tyrosine kinase (Abl) family, that are known to regulate actin cytoskeleton structure as well as phosphorylate microtubule-associated tau protein, a hallmark of Alzheimer's disease. By performing series of miniature excitatory postsynaptic currents (mEPSC) recordings in cultured hippocampal cells, we demonstrate that activation of Abl kinases by acute application of 42 amino acid-length monomeric amyloid beta (Aβ1-42) peptides reduces spontaneous synaptic release, while this effect can be rescued by pharmacologic inhibition of Abl kinase activity, or by reduction of Abl expression with small interfering RNAs. Our electrophysiological data are further reinforced by a subsequent biochemical analysis, showing enhanced phosphorylation of Abl kinase substrate CT10 Regulator of Kinase-homolog-Like (Crkl) upon treatment of hippocampal neurons with Aβ peptides. Thus, we conclude that Abl kinase activation may be involved in Aβ-induced weakening of synaptic transmission.
Collapse
Affiliation(s)
- M Reichenstein
- Dept. of Biochemistry and Molecular Biology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - N Borovok
- Dept. of Biochemistry and Molecular Biology, Tel Aviv University, 69978, Tel Aviv, Israel
| | - A Sheinin
- Dept. of Biochemistry and Molecular Biology, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - T Brider
- Department of Molecular Biology, Ariel University, 40700, Ariel, Israel
| | - I Michaelevski
- Department of Molecular Biology, Ariel University, 40700, Ariel, Israel.
- Integrative Brain Science Center Ariel, IBSCA, Ariel University, 40700, Ariel, Israel.
- The Adelson Medical School, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
36
|
Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer's Disease. Front Cell Neurosci 2021; 14:618986. [PMID: 33536876 PMCID: PMC7849053 DOI: 10.3389/fncel.2020.618986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with continual decline in cognition and ability to perform routine functions such as remembering familiar places or understanding speech. For decades, amyloid beta (Aβ) was viewed as the driver of AD, triggering neurodegenerative processes such as inflammation and formation of neurofibrillary tangles (NFTs). This approach has not yielded therapeutics that cure the disease or significant improvements in long-term cognition through removal of plaques and Aβ oligomers. Some researchers propose alternate mechanisms that drive AD or act in conjunction with amyloid to promote neurodegeneration. This review summarizes the status of AD research and examines research directions including and beyond Aβ, such as tau, inflammation, and protein clearance mechanisms. The effect of aging on microvasculature is highlighted, including its contribution to reduced blood flow that impairs cognition. Microvascular alterations observed in AD are outlined, emphasizing imaging studies of capillary malfunction. The review concludes with a discussion of two therapies to protect tissue without directly targeting Aβ for removal: (1) administration of growth factors to promote vascular recovery in AD; (2) inhibiting activity of a calcium-permeable ion channels to reduce microglial activation and restore cerebral vascular function.
Collapse
Affiliation(s)
- Joe Steinman
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
38
|
Kang DE, Woo JA. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer's Disease. J Alzheimers Dis 2020; 72:S131-S144. [PMID: 31594228 PMCID: PMC6971827 DOI: 10.3233/jad-190585] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The defining pathological hallmarks of Alzheimer’s disease (AD) are proteinopathies marked by the amyloid-β (Aβ) peptide and hyperphosphorylated tau. In addition, Hirano bodies and cofilin-actin rods are extensively found in AD brains, both of which are associated with the actin cytoskeleton. The actin-binding protein cofilin known for its actin filament severing, depolymerizing, nucleating, and bundling activities has emerged as a significant player in AD pathogenesis. In this review, we discuss the regulation of cofilin by multiple signaling events impinging on LIM kinase-1 (LIMK1) and/or Slingshot homolog-1 (SSH1) downstream of Aβ. Such pathophysiological signaling pathways impact actin dynamics to regulate synaptic integrity, mitochondrial translocation of cofilin to promote neurotoxicity, and formation of cofilin-actin pathology. Other intracellular signaling proteins, such as β-arrestin, RanBP9, Chronophin, PLD1, and 14-3-3 also impinge on the regulation of cofilin downstream of Aβ. Finally, we discuss the role of activated cofilin as a bridge between actin and microtubule dynamics by displacing tau from microtubules, thereby destabilizing tau-induced microtubule assembly, missorting tau, and promoting tauopathy.
Collapse
Affiliation(s)
- David E Kang
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, USA.,Division of Research, James A. Haley VA Hospital, Tampa, FL, USA
| | - Jung A Woo
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
39
|
Desplats P, Gutierrez AM, Antonelli MC, Frasch MG. Microglial memory of early life stress and inflammation: Susceptibility to neurodegeneration in adulthood. Neurosci Biobehav Rev 2020; 117:232-242. [PMID: 31703966 PMCID: PMC7198341 DOI: 10.1016/j.neubiorev.2019.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 09/15/2019] [Accepted: 10/20/2019] [Indexed: 02/08/2023]
Abstract
We review evidence supporting the role of early life programming in the susceptibility for adult neurodegenerative diseases while highlighting questions and proposing avenues for future research to advance our understanding of this fundamental process. The key elements of this phenomenon are chronic stress, neuroinflammation triggering microglial polarization, microglial memory and their connection to neurodegeneration. We review the mediating mechanisms which may function as early biomarkers of increased susceptibility for neurodegeneration. Can we devise novel early life modifying interventions to steer developmental trajectories to their optimum?
Collapse
Affiliation(s)
- Paula Desplats
- Department of Neurosciences, University of California San Diego, CA, USA; Department of Pathology, University of California San Diego, CA, USA
| | - Ashley M Gutierrez
- Department of Neurosciences, University of California San Diego, CA, USA
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina; Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Sheline YI, Snider BJ, Beer JC, Seok D, Fagan AM, Suckow RF, Lee JM, Waligorska T, Korecka M, Aselcioglu I, Morris JC, Shaw LM, Cirrito JR. Effect of escitalopram dose and treatment duration on CSF Aβ levels in healthy older adults: A controlled clinical trial. Neurology 2020; 95:e2658-e2665. [PMID: 32913021 DOI: 10.1212/wnl.0000000000010725] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/08/2020] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To determine whether treatment with escitalopram compared with placebo would lower CSF β-amyloid 42 (Aβ42) levels. RATIONALE Serotonin signaling suppresses Aβ42 in animal models of Alzheimer disease (AD) and young healthy humans. In a prospective study in older adults, we examined dose and treatment duration effects of escitalopram. METHODS Using lumbar punctures to sample CSF levels before and after a course of escitalopram treatment, cognitively normal older adults (n = 114) were assigned to placebo, 20 mg escitalopram × 2 weeks, 20 mg escitalopram × 8 weeks, or 30 mg escitalopram × 8 weeks; CSF sampled pretreatment and posttreatment and within-subject percent change in Aβ42 was used as the primary outcome in subsequent analyses. RESULTS An overall 9.4% greater reduction in CSF Aβ42 was found in escitalopram-treated compared with placebo-treated groups (p < 0.001, 95% confidence interval [CI] 4.9%-14.2%, d = 0.81). Positive baseline Aβ status (CSF Aβ42 levels <250 pg/mL) was associated with smaller Aβ42 reduction (p = 0.006, 95% CI -16.7% to 0.5%, d = -0.52) compared with negative baseline amyloid status (CSF Aβ42 levels >250 pg/mL). CONCLUSIONS Short-term longitudinal doses of escitalopram decreased CSF Aβ42 in cognitively normal older adults, the target group for AD prevention. CLINICALTRIALSGOV IDENTIFIER NCT02161458. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that for cognitively normal older adults, escitalopram decreases CSF Aβ42.
Collapse
Affiliation(s)
- Yvette I Sheline
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York.
| | - B Joy Snider
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Joanne C Beer
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Darsol Seok
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Anne M Fagan
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Raymond F Suckow
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Jin-Moo Lee
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Teresa Waligorska
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Magdalena Korecka
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Irem Aselcioglu
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - John C Morris
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - Leslie M Shaw
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| | - John R Cirrito
- From the Center for Neuromodulation in Depression and Stress, Department of Psychiatry (Y.I.S., D.S., I.A.), and Departments of Radiology (Y.I.S.), Neurology (Y.I.S.), Biostatistics, Epidemiology and Bioinformatics (J.C.B.), and Pathology (T.W., M.K., L.M.S.), University of Pennsylvania, Philadelphia; Department of Neurology, The Knight Alzheimer Disease Research Center, Hope Center for Neurological Disorders (B.J.S., A.M.F., J.-M.L., J.C.M., J.R.C.), Washington University School of Medicine, St Louis MO; and New York State Psychiatric Institute and Department of Psychiatry (R.F.S.), Columbia University, New York
| |
Collapse
|
41
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
42
|
Patnaik A, Zagrebelsky M, Korte M, Holz A. Signaling via the p75 neurotrophin receptor facilitates amyloid-β-induced dendritic spine pathology. Sci Rep 2020; 10:13322. [PMID: 32770070 PMCID: PMC7415136 DOI: 10.1038/s41598-020-70153-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Synapse and dendritic spine loss induced by amyloid-β oligomers is one of the main hallmarks of the early phases of Alzheimer's disease (AD) and is directly correlated with the cognitive decline typical of this pathology. The p75 neurotrophin receptor (p75NTR) binds amyloid-β oligomers in the nM range. While it was shown that µM concentrations of amyloid-β mediate cell death, the role and intracellular signaling of p75NTR for dendritic spine pathology induced by sublethal concentrations of amyloid-β has not been analyzed. We describe here p75NTR as a crucial binding partner in mediating effects of soluble amyloid-β oligomers on dendritic spine density and structure in non-apoptotic hippocampal neurons. Removing or over-expressing p75NTR in neurons rescues or exacerbates the typical loss of dendritic spines and their structural alterations observed upon treatment with nM concentrations of amyloid-β oligomers. Moreover, we show that binding of amyloid-β oligomers to p75NTR activates the RhoA/ROCK signaling cascade resulting in the fast stabilization of the actin spinoskeleton. Our results describe a role for p75NTR and downstream signaling events triggered by binding of amyloid-β oligomers and causing dendritic spine pathology. These observations further our understanding of the molecular mechanisms underlying one of the main early neuropathological hallmarks of AD.
Collapse
Affiliation(s)
- Abhisarika Patnaik
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38108, Braunschweig, Germany
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38108, Braunschweig, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, 38108, Braunschweig, Germany
- Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Andreas Holz
- Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, AG NIND, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|
43
|
Petrushina I, Hovakimyan A, Harahap-Carrillo IS, Davtyan H, Antonyan T, Chailyan G, Kazarian K, Antonenko M, Jullienne A, Hamer MM, Obenaus A, King O, Zagorski K, Blurton-Jones M, Cribbs DH, Lander H, Ghochikyan A, Agadjanyan MG. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol Dis 2020; 139:104823. [PMID: 32119976 PMCID: PMC8772258 DOI: 10.1016/j.nbd.2020.104823] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
The DNA vaccine, AV-1959D, targeting N-terminal epitope of Aβ peptide, has been proven immunogenic in mice, rabbits, and non-human primates, while its therapeutic efficacy has been shown in mouse models of Alzheimer's disease (AD). Here we report for the first time on IND-enabling biodistribution and safety/toxicology studies of cGMP-grade AV-1959D vaccine in the Tg2576 mouse model of AD. We also tested acute neuropathology safety profiles of AV-1959D in another AD disease model, Tg-SwDI mice with established vascular and parenchymal Aβ pathology in a pre-clinical translational study. Biodistribution studies two days after the injection demonstrated high copy numbers of AV-1959D plasmid after single immunization of Tg2576 mice at the injection sites but not in the tissues of distant organs. Plasmids persisted at the injection sites of some mice 60 days after vaccination. In Tg2576 mice with established amyloid pathology, we did not observe short- or long-term toxicities after multiple immunizations with three doses of AV-1959D. Assessment of the repeated dose acute safety of AV-1959D in cerebral amyloid angiopathy (CAA) prone Tg-SwDI mice did not reveal any immunotherapy-induced vasogenic edema detected by magnetic resonance imaging (MRI) or increased microhemorrhages. Multiple immunizations of Tg-SwDI mice with AV-1959D did not induce T and B cell infiltration, glial activation, vascular deposition of Aβ, or neuronal degeneration (necrosis and apoptosis) greater than that in the control group determined by immunohistochemistry of brain tissues. Taken together, the safety data from two different mouse models of AD substantiate a favorable safety profile of the cGMP grade AV-1959D vaccine supporting its progression to first-in-human clinical trials.
Collapse
Affiliation(s)
- Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | | | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Konstantin Kazarian
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Maxim Antonenko
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Amandine Jullienne
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mary M Hamer
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA; Preclinical and Translational Imaging Center, University of California, Irvine, CA, USA
| | - Olga King
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Harry Lander
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| |
Collapse
|
44
|
Lai CC, Lo H, Lin HG, Lin HH. Potentiation of NMDA-Mediated Responses by Amyloid-β Peptide 1-40 in Rat Sympathetic Preganglionic Neurons. J Alzheimers Dis 2020; 67:1291-1303. [PMID: 30714959 DOI: 10.3233/jad-180886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The abnormal accumulation of amyloid-β peptides (Aβ) is one of the main characteristics of Alzheimer's disease (AD). Cerebro- and cardiovascular diseases may be the risk factors for developing AD. The effect of Aβ on central sympathetic control of cardiovascular function remains unclear. The present study examines the acute effects of Aβ oligomers on the function of NMDA receptors, a subtype of ionotropic glutamate receptors, in rat sympathetic preganglionic neurons (SPNs). In the in vitro electrophysiological study, Aβ1-40 but not Aβ1-42 applied by superfusion for 5 min significantly potentiated NMDA-induced depolarizations in SPNs of neonatal rat spinal cord slice preparation. Application of Aβ1-40 had little effects on AMPA-induced depolarizations or GABA-induced hyperpolarizations. Treatment with a selective protein kinase C (PKC) inhibitor applied together with Aβ1-40 blocked the augmentation by Aβ1-40 of NMDA-induced depolarizations. Western blot analysis showed an increase in the levels of phosphoserine 896, selectively regulated by PKC, without significant changes in phosphoserine 897 on GluN1 subunits in lateral horn areas of spinal cord slices following treatment with Aβ1-40. In the in vivo study, intrathecal injection of Aβ1-40 (0.2 nmol) potentiated the pressor effects induced by NMDA (2 nmol) injected intrathecally in urethane-anesthetized rats. These results suggest that different fragments of Aβ may have differential effects on the NMDA receptor function and the selective augmentation of NMDA receptor function by Aβ1-40 may involve PKC-dependent mechanisms in sympathetic preganglionic neurons.
Collapse
Affiliation(s)
- Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsuan Lo
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hong-Guo Lin
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsun-Hsun Lin
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
45
|
Walton CC, Begelman D, Nguyen W, Andersen JK. Senescence as an Amyloid Cascade: The Amyloid Senescence Hypothesis. Front Cell Neurosci 2020; 14:129. [PMID: 32508595 PMCID: PMC7248249 DOI: 10.3389/fncel.2020.00129] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Due to their postmitotic status, the potential for neurons to undergo senescence has historically received little attention. This lack of attention has extended to some non-postmitotic cells as well. Recently, the study of senescence within the central nervous system (CNS) has begun to emerge as a new etiological framework for neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The presence of senescent cells is known to be deleterious to non-senescent neighboring cells via development of a senescence-associated secretory phenotype (SASP) which includes the release of inflammatory, oxidative, mitogenic, and matrix-degrading factors. Senescence and the SASP have recently been hailed as an alternative to the amyloid cascade hypothesis and the selective killing of senescence cells by senolytic drugs as a substitute for amyloid beta (Aß) targeting antibodies. Here we call for caution in rejecting the amyloid cascade hypothesis and to the dismissal of Aß antibody intervention at least in early disease stages, as Aß oligomers (AßO), and cellular senescence may be inextricably linked. We will review literature that portrays AßO as a stressor capable of inducing senescence. We will discuss research on the potential role of secondary senescence, a process by which senescent cells induce senescence in neighboring cells, in disease progression. Once this seed of senescent cells is present, the elimination of senescence-inducing stressors like Aß would likely be ineffective in abrogating the spread of senescence. This has potential implications for when and why AßO clearance may or may not be effective as a therapeutic for AD. The selective killing of senescent cells by the immune system via immune surveillance naturally curtails the SASP and secondary senescence outside the CNS. Immune privilege restricts the access of peripheral immune cells to the brain parenchyma, making the brain a safe harbor for the spread of senescence and the SASP. However, an increasingly leaky blood brain barrier (BBB) compromises immune privilege in aging AD patients, potentially enabling immune infiltration that could have detrimental consequences in later AD stages. Rather than an alternative etiology, senescence itself may constitute an essential component of the cascade in the amyloid cascade hypothesis.
Collapse
|
46
|
Rodin S, Kozin SA, Kechko OI, Mitkevich VA, Makarov AA. Aberrant interactions between amyloid-beta and alpha5 laminins as possible driver of neuronal disfunction in Alzheimer's disease. Biochimie 2020; 174:44-48. [PMID: 32311425 DOI: 10.1016/j.biochi.2020.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 12/28/2022]
Abstract
It has been widely accepted that laminins are involved in pathogenesis of Alzheimer's disease (AD). Amyloid plaques in AD patients are associated with immunostaining using antibodies raised against laminin-111, and laminin-111 has been shown to prevent aggregation of amyloid peptides. Although numerous articles describe small peptides from laminin-111 that are capable to disaggregate amyloid buildups and reduce neurotoxicity in in vitro and in vivo models, there is no approved laminin-111-based therapeutic approaches for treatment of AD. Also, it has been shown that immunoreactivity to laminin-111 appears late in development of cerebral amyloidosis. Based on the published data, we hypothesize that aberrant interaction between amyloid-beta and α5-laminins such as laminin-511 prevents the necessary laminin signaling into neurons leading to neurodegeneration and contributing to the early development of AD. Laminin-511 is the key extracellular protein that protects neurons from anoikis, inhibits excitoxicity and provides signaling that stabilizes dendritic spines and synapses in the developed brain. Absence of the signaling from laminin-511 leads to behavioral defects in mice. Laminin-511 and hippocampal neurons are in direct contact and accumulation of amyloid-beta that has been shown to avidly bind laminin-511 may physically decouple the interaction between α5-laminins and the neuronal membrane receptors inhibiting the signaling. Under this hypothesis, protein domains and peptides from laminin α5 chain may have a therapeutic potential in treatment of AD and the appearance of laminin-111 in the amyloid plaques is simply a consequence of the disease.
Collapse
Affiliation(s)
- Sergey Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia; Department of Surgical Sciences, Ångström Laboratory, Uppsala University, 752 37, Uppsala, Sweden.
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
47
|
Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. J Neurochem 2020; 154:583-597. [PMID: 32180217 DOI: 10.1111/jnc.15007] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Colom-Cadena M, Spires-Jones T, Zetterberg H, Blennow K, Caggiano A, DeKosky ST, Fillit H, Harrison JE, Schneider LS, Scheltens P, de Haan W, Grundman M, van Dyck CH, Izzo NJ, Catalano SM. The clinical promise of biomarkers of synapse damage or loss in Alzheimer's disease. Alzheimers Res Ther 2020; 12:21. [PMID: 32122400 PMCID: PMC7053087 DOI: 10.1186/s13195-020-00588-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Synapse damage and loss are fundamental to the pathophysiology of Alzheimer's disease (AD) and lead to reduced cognitive function. The goal of this review is to address the challenges of forging new clinical development approaches for AD therapeutics that can demonstrate reduction of synapse damage or loss. The key points of this review include the following: Synapse loss is a downstream effect of amyloidosis, tauopathy, inflammation, and other mechanisms occurring in AD.Synapse loss correlates most strongly with cognitive decline in AD because synaptic function underlies cognitive performance.Compounds that halt or reduce synapse damage or loss have a strong rationale as treatments of AD.Biomarkers that measure synapse degeneration or loss in patients will facilitate clinical development of such drugs.The ability of methods to sensitively measure synapse density in the brain of a living patient through synaptic vesicle glycoprotein 2A (SV2A) positron emission tomography (PET) imaging, concentrations of synaptic proteins (e.g., neurogranin or synaptotagmin) in the cerebrospinal fluid (CSF), or functional imaging techniques such as quantitative electroencephalography (qEEG) provides a compelling case to use these types of measurements as biomarkers that quantify synapse damage or loss in clinical trials in AD. CONCLUSION A number of emerging biomarkers are able to measure synapse injury and loss in the brain and may correlate with cognitive function in AD. These biomarkers hold promise both for use in diagnostics and in the measurement of therapeutic successes.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- Centre for Discovery Brain Sciences, UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Tara Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Steven T DeKosky
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Howard Fillit
- Alzheimer's Drug Discovery Foundation, New York, NY, USA
| | - John E Harrison
- Metis Cognition Ltd, Kilmington, UK
- Alzheimer Center, AUmc, Amsterdam, The Netherlands
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Phillip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology and MEG, VU University Medical Center, Amsterdam, Netherlands
| | | | - Christopher H van Dyck
- Alzheimer's Disease Research Unit and Departments of Psychiatry, Neurology, and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
49
|
APP Osaka Mutation in Familial Alzheimer's Disease-Its Discovery, Phenotypes, and Mechanism of Recessive Inheritance. Int J Mol Sci 2020; 21:ijms21041413. [PMID: 32093100 PMCID: PMC7073033 DOI: 10.3390/ijms21041413] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease is believed to begin with synaptic dysfunction caused by soluble Aβ oligomers. When this oligomer hypothesis was proposed in 2002, there was no direct evidence that Aβ oligomers actually disrupt synaptic function to cause cognitive impairment in humans. In patient brains, both soluble and insoluble Aβ species always coexist, and therefore it is difficult to determine which pathologies are caused by Aβ oligomers and which are caused by amyloid fibrils. Thus, no validity of the oligomer hypothesis was available until the Osaka mutation was discovered. This mutation, which was found in a Japanese pedigree of familial Alzheimer’s disease, is the deletion of codon 693 of APP gene, resulting in mutant Aβ lacking the 22nd glutamate. Only homozygous carriers suffer from dementia. In vitro studies revealed that this mutation has a very unique character that accelerates Aβ oligomerization but does not form amyloid fibrils. Model mice expressing this mutation demonstrated that all pathologies of Alzheimer’s disease can be induced by Aβ oligomers alone. In this review, we describe the story behind the discovery of the Osaka mutation, summarize the mutant’s phenotypes, and propose a mechanism of its recessive inheritance.
Collapse
|
50
|
Hillen H. The Beta Amyloid Dysfunction (BAD) Hypothesis for Alzheimer's Disease. Front Neurosci 2019; 13:1154. [PMID: 31787864 PMCID: PMC6853841 DOI: 10.3389/fnins.2019.01154] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Beta amyloid, Aβ 1–42, originally named as Amyloid A4 protein, is one of the most investigated peptides in neuroscience and has attracted substantial interest since its discovery as the main insoluble fibril-type protein in cerebrovascular amyloid angiopathy (Glenner and Wong, 1984; Masters et al., 1985) of Alzheimer’s disease (AD). From the very beginning, Aβ was regarded per se as a “bad molecule,” triggering the so-called “beta amyloid cascade hypothesis” (Hardy and Higgins, 1992). This hypothesis ignored any physiological function for in situ generated Aβ monomer with normal production and turnover rate (Bateman et al., 2006). Accordingly, pan-Aβ-related therapeutic approaches were designed to eliminate or lower the three structural isoforms in parallel: (1) the pre-amyloid monomer, (2) the misfolded oligomer, and (3) the final fibril. While we already knew about poor correlations between plaques and cognitive decline quite early (Terry et al., 1991), data for an essential benign physiological role for Aβ monomer at low concentrations were also not considered to be relevant. Here, a different Beta Amyloid hypothesis is described, the so-called “Beta Amyloid Dysfunction hypothesis,” which, in contrast to the “Beta Amyloid Cascade hypothesis,” builds on the homeostasis of essential Aβ monomer in the synaptic vesicle cycle (SVC). Disease-relevant early pathology emerges through disturbance of the Aβ homeostasis by so far unknown factors leading to the formation of misfolded Aβ oligomers. These early species interfere with the synaptic physiological Aβ monomer regulation and exert their neurotoxicity via various receptors for sticky oligomer-type Aβ aggregates. The Beta Amyloid Dysfunction (BAD) hypothesis is introduced and shown to explain negative clinical results of Gamma-secretase and Beta-secretase (BACE) inhibitors as well as pan-Aβ isotype unselective immunotherapies. This hypothesis gives guidance to what needs to be done therapeutically to revive successful clinical testing in AD for this highly validated target. The BAD hypothesis will need further refinement in particular through more detailed exploration for the role of physiological Aβ monomer.
Collapse
|