1
|
Harrison BR, Partida-Aguilar M, Marye A, Djukovic D, Kauffman M, Dunbar MD, Mariner BL, McCoy BM, Algavi YM, Muller E, Baum S, Bamberger T, Raftery D, Creevy KE, Avery A, Borenstein E, Snyder-Mackler N, Promislow DE. Protein catabolites as blood-based biomarkers of aging physiology: Findings from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618956. [PMID: 39484426 PMCID: PMC11526923 DOI: 10.1101/2024.10.17.618956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Our understanding of age-related physiology and metabolism has grown through the study of systems biology, including transcriptomics, single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers and to develop aging interventions that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) is designed to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing information, we were able to overcome the limitations inherent in breed-based estimates of genetic and physiological effects, and to probe the physiological and dietary basis of the age-related metabolome. We identified a significant effect of age on approximately 40% of measured metabolites. Among other insights, we discovered a potentially novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which can only be generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the higher ptmAA levels in older dogs. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.
Collapse
|
2
|
Polacchini G, Venerando A, Colitti M. Antioxidant and anti-ageing effects of oleuropein aglycone in canine skeletal muscle cells. Tissue Cell 2024; 88:102369. [PMID: 38555794 DOI: 10.1016/j.tice.2024.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Reactive oxygen species (ROS) are normally produced in skeletal muscle. However, an imbalance in their regulatory systems can lead to their accumulation and ultimately to oxidative stress, which is one of the causes of the ageing process. Companion dogs share the same environment and lifestyle as humans, making them an excellent comparative model for the study of ageing, as well as they constitute a growing market for bioactive molecules that improve the quality of life of pets. The anti-ageing properties of oleuropein aglycone (OLE), a bioactive compound from olive leaves known for its antioxidant properties, were investigated in Myok9 canine muscle cell model. After incubation with OLE, senescence was induced in the canine cellular model by hydrogen peroxide (H2O2). Analyses were performed on cells after seven days of differentiation. The oxidative stress induced by H2O2 treatment on differentiated canine muscle cells led to a significant increase in ROS formation, which was reduced by OLE pretreatment alone or in combination with H2O2 by about 34% and 32%, respectively. Cells treated with H2O2 showed a 48% increase the area of senescent cells stained by SA-β-gal, while OLE significantly reduced the coloured area by 52%. OLE, alone or in combination with H2O2, showed a significant antioxidant activity, possibly through autophagy activation, as indicated by the expression of autophagic markers.
Collapse
Affiliation(s)
- Giulia Polacchini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Monica Colitti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy.
| |
Collapse
|
3
|
Simon KE, Russell K, Mondino A, Yang CC, Case BC, Anderson Z, Whitley C, Griffith E, Gruen ME, Olby NJ. A randomized, controlled clinical trial demonstrates improved owner-assessed cognitive function in senior dogs receiving a senolytic and NAD+ precursor combination. Sci Rep 2024; 14:12399. [PMID: 38811634 PMCID: PMC11137034 DOI: 10.1038/s41598-024-63031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Age-related decline in mobility and cognition are associated with cellular senescence and NAD + depletion in dogs and people. A combination of a novel NAD + precursor and senolytic, LY-D6/2, was examined in this randomized controlled trial. Seventy dogs with mild to moderate cognitive impairment were enrolled and allocated into placebo, low or full dose groups. Primary outcomes were change in cognitive impairment measured with the owner-reported Canine Cognitive Dysfunction Rating (CCDR) scale and change in activity measured with physical activity monitors. Fifty-nine dogs completed evaluations at the 3-month primary endpoint, and 51 reached the 6-month secondary endpoint. There was a significant difference in CCDR score across treatment groups from baseline to the primary endpoint (p = 0.02) with the largest decrease in the full dose group. No difference was detected between groups using in house cognitive testing. There were no significant differences between groups in changes in measured activity. The proportion of dogs that improved in frailty and owner-reported activity levels and happiness was higher in the full dose group than other groups, however this difference was not significant. Adverse events occurred equally across groups. All groups showed improvement in cognition, frailty, and activity suggesting placebo effect and benefits of trial participation. We conclude that LY-D6/2 improves owner-assessed cognitive function over a 3-month period and may have broader, but more subtle effects on frailty, activity and happiness as reported by owners.
Collapse
Affiliation(s)
- Katherine E Simon
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Katharine Russell
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
- Southeast Veterinary Neurology, Miami, FL, USA
| | - Alejandra Mondino
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Chin-Chieh Yang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Beth C Case
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Zachary Anderson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Christine Whitley
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Emily Griffith
- Department of Statistics, College of Sciences, North Carolina State University, Raleigh, NC, USA
| | - Margaret E Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Turcsán B, Kubinyi E. Differential behavioral aging trajectories according to body size, expected lifespan, and head shape in dogs. GeroScience 2024; 46:1731-1754. [PMID: 37740140 PMCID: PMC10828231 DOI: 10.1007/s11357-023-00945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The twofold life expectancy difference between dog breeds predicts differential behavioral and cognitive aging patterns between short- and long-lived dogs. To investigate this prediction, we conducted a cross-sectional analysis using survey data from over 15,000 dogs. We examined the effect of expected lifespan and three related factors (body size, head shape, and purebred status) on the age trajectory of various behavioral characteristics and the prevalence of canine cognitive dysfunction (CCD). Our findings reveal that, although age-related decline in most behavioral characteristics began around 10.5 years of age, the proportion of dogs considered "old" by their owners began to increase uniformly around 6 years of age. From the investigated factors, only body size had a systematic, although not gradual, impact on the aging trajectories of all behavioral characteristics. Dogs weighing over 30 kg exhibited an earlier onset of decline by 2-3 years and a slower rate of decline compared to smaller dogs, probably as a byproduct of their faster age-related physical decline. Larger sized dogs also showed a lower prevalence of CCD risk in their oldest age group, whereas smaller-sized dogs, dolichocephalic breeds, and purebreds had a higher CCD risk prevalence. The identification of differential behavioral and cognitive aging trajectories across dog groups, and the observed associations between body size and the onset, rate, and degree of cognitive decline in dogs have significant translational implications for human aging research, providing valuable insights into the interplay between morphology, physiological ageing, and cognitive decline, and unravelling the trade-off between longevity and relative healthspan.
Collapse
Affiliation(s)
- Borbála Turcsán
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
- Senior Family Dog Project, Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
| | - Enikő Kubinyi
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Senior Family Dog Project, Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
5
|
Nam Y, White M, Karlsson EK, Creevy KE, Promislow DEL, McClelland RL. Dog size and patterns of disease history across the canine age spectrum: Results from the Dog Aging Project. PLoS One 2024; 19:e0295840. [PMID: 38232117 PMCID: PMC10793924 DOI: 10.1371/journal.pone.0295840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Age in dogs is associated with the risk of many diseases, and canine size is a major factor in that risk. However, the size patterns are complex. While small size dogs tend to live longer, some diseases are more prevalent among small dogs. In this study we seek to quantify how the pattern of disease history varies across the spectrum of dog size, dog age, and their interaction. Utilizing owner-reported data on disease history from a substantial number of companion dogs enrolled in the Dog Aging Project, we investigate how body size, as measured by weight, associates with the lifetime prevalence of a reported condition and its pattern across age for various disease categories. We found significant positive associations between dog size and the lifetime prevalence of skin, bone/orthopedic, gastrointestinal, ear/nose/throat, cancer/tumor, brain/neurologic, endocrine, and infectious diseases. Similarly, dog size was negatively associated with lifetime prevalence of ocular, cardiac, liver/pancreas, and respiratory disease categories. Kidney/urinary disease prevalence did not vary by size. We also found that the association between age and lifetime disease prevalence varied by dog size for many conditions including ocular, cardiac, orthopedic, ear/nose/throat, and cancer. Controlling for sex, purebred vs. mixed-breed status, and geographic region made little difference in all disease categories we studied. Our results align with the reduced lifespan in larger dogs for most of the disease categories and suggest potential avenues for further examination.
Collapse
Affiliation(s)
- Yunbi Nam
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Michelle White
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
| | - Elinor K. Karlsson
- The Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States of America
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States of America
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States of America
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Robyn L. McClelland
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | | |
Collapse
|
6
|
Abstract
Aging is often associated with chronic inflammation and declining health. Both veterinarians and owners of aging dogs and cats are interested in nutritional solutions and strategies to prevent signs of age-related disease, increase longevity, and improve quality of life. Physiological decreases in muscle mass, decreased immunity, and a decrease in sense acuity are some of the changes often seen in otherwise healthy senior pets; however, there may also be an increase in risk for pathologies such as renal, cardiovascular, musculoskeletal, and neoplastic diseases. Aging may also lead to cognitive decline and even cognitive dysfunction. Some nutritional strategies that may be helpful with the prevention and treatment of age-related diseases include supplementation with ω3 polyunsaturated fatty acids and antioxidant nutrients that can help modulate inflammation and benefit osteoarthritis, renal disease, cancer, and more. Supplementation with medium-chain triglycerides shows promise in the treatment of canine cognitive dysfunction as these may be metabolized to ketone bodies that are utilized as an alternative energy source for the central nervous system. Additionally, a high intake of dietary phosphorus in soluble and bioavailable forms can lead to renal disease, which is of greater concern in senior pets. There are no published guidelines for nutritional requirements specific to senior pets and as a result, products marketed for senior dogs and cats are highly variable.
Collapse
Affiliation(s)
- Jonathan Stockman
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Long Island University, Old Brookville, NY, 11548, US.
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences at Colorado State University, Fort Collins, CO, 80523, US.
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences at Colorado State University, Fort Collins, CO, 80523, US.
| |
Collapse
|
7
|
Demeli A, Urfer SR. "Is free-roaming a key factor determining lifespan? An epidemiological study on the life expectancy of Turkish companion dogs". Res Vet Sci 2023; 162:104953. [PMID: 37506536 DOI: 10.1016/j.rvsc.2023.104953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Companion dog lifespan data has exclusively been studied in developed economies. Here we report results from n = 1312 privately owned Turkish companion dogs (Free-roaming and non Free-roaming) from an online survey analyzed through Kaplan-Meier analysis and Cox regression. Median survival time (MST) was 13 years. Most common causes of death were viral infections (n = 126), cancer (n = 60), and cardiovascular disease (n = 36). Desexing (χ2 = 31.6, P = 2E-8), being a mixed breed (χ2 = 6.4, P = 0.01), and regular preventative care (χ2 = 5.3, P = 0.02) significantly increased lifespan. Roaming freely significantly decreased lifespan (χ2 = 19.5, P = 1E-5). Dogs living in duplexes and single-family homes lived longer than dogs living in apartments and houses on acreage (χ2 = 10.5, P = 0.01). Owner income or education levels did not correlate with lifespan. In a Cox model, only desexing (HR = 0.478, P = 0.0006), living in a house on acreage (HR = 2.30, P = 0.0064) and being allowed to roam freely (HR = 1.59, P = 0.041) remained significant. Even though there are studies that contain information about dog demographics and mortality data outside of the western countries, to our knowledge, this is the first study of factors that influence companion dog lifespan in a middle income economy. While much of our findings correlate with those from developed economies, our sample also lets us study the effects of factors not commonly found in developed economies on dog lifespan, such as being allowed to roam freely.
Collapse
Affiliation(s)
- Anil Demeli
- General Directorate of Food and Control, Department of Animal Health and Quarantine, Ankara, Türkiye.
| | - Silvan R Urfer
- University of Washington, Department of Laboratory Medicine and Pathology, Seattle, WA, USA
| |
Collapse
|
8
|
Hampton CE, da Cunha A, Desselle A, Queiroz-Williams P, Hofmeister EH. The effect of age on the induction dose of propofol for general anesthesia in dogs. PLoS One 2023; 18:e0288088. [PMID: 37399166 DOI: 10.1371/journal.pone.0288088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
OBJECTIVE In people, the dose of propofol (DOP) required for procedural sedation and anesthesia decreases significantly with age. The objective of this study was to determine if the DOP required to perform endotracheal intubation decreases with age in dogs. STUDY DESIGN Retrospective case series. ANIMALS 1397 dogs. METHODS Data from dogs anesthetized at referral center (2017-2020) were analyzed with three multivariate linear regression models with backward elimination using a combination of either absolute age, physiologic age, or life expectancy (ratio between age at the time of anesthetic event and expected age of death for each breed obtained from previous literature) as well as other factors as independent variables, and DOP as the dependent variable. The DOP for each quartile of life expectancy (<25%, 25-50%, 50-75%, 75-100%, >100%) was compared using one-way ANOVA. Significance was set at alpha = 0.025. RESULTS Mean age was 7.2 ± 4.1 years, life expectancy 59.8 ± 33%, weight 19 ± 14 kg, and DOP 3.76 ± 1.8 mg kg-1. Among age models, only life expectancy was a predictor of DOP (-0.37 mg kg-1; P = 0.013) but of minimal clinical importance. The DOP by life age expectancy quartile was 3.9 ± 2.3, 3.8 ± 1.8, 3.6 ± 1.8, 3.7 ± 1.7, and 3.4 ± 1.6 mg kg-1, respectively (P = 0.20). Yorkshire Terrier, Chihuahua, Maltese, mixed breed dogs under 10 kg, and Shih Tzu required higher DOP. Status of neutered male, ASA E, and Boxer, Labrador and Golden Retriever breeds decreased DOP, along with certain premedication drugs. CONCLUSIONS AND CLINICAL RELEVANCE In contrast to what is observed in people, an age cut-off predictive of DOP does not exist. Percentage of elapsed life expectancy along with other factors such as breed, premedication drug, emergency procedure, and reproductive status significantly alter DOP. In older dogs, the dose of propofol can be adjusted based on their elapsed life expectancy.
Collapse
Affiliation(s)
- Chiara E Hampton
- School of Veterinary Medicine, Department of Veterinary Medical Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Anderson da Cunha
- College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| | - Amber Desselle
- School of Veterinary Medicine, Department of Veterinary Medical Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Patricia Queiroz-Williams
- School of Veterinary Medicine, Department of Veterinary Medical Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Erik H Hofmeister
- College of Veterinary Medicine, Department of Clinical Sciences, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
9
|
Mondino A, Khan M, Case B, Fefer G, Panek WK, Gruen ME, Olby NJ. Winning the race with aging: age-related changes in gait speed and its association with cognitive performance in dogs. Front Vet Sci 2023; 10:1150590. [PMID: 37396989 PMCID: PMC10309205 DOI: 10.3389/fvets.2023.1150590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction In humans, gait speed is a crucial component in geriatric evaluation since decreasing speed can be a harbinger of cognitive decline and dementia. Aging companion dogs can suffer from age-related mobility impairment, cognitive decline and dementia known as canine cognitive dysfunction syndrome. We hypothesized that there would be an association between gait speed and cognition in aging dogs. Methods We measured gait speed on and off leash in 46 adult and 49 senior dogs. Cognitive performance in senior dogs was assessed by means of the Canine Dementia Scale and a battery of cognitive tests. Results We demonstrated that dogs' food-motivated gait speed off leash is correlated with fractional lifespan and cognitive performance in dogs, particularly in the domains of attention and working memory. Discussion Food-motivated gait speed off leash represents a relatively easy variable to measure in clinical settings. Moreover, it proves to be a more effective indicator of age-related deterioration and cognitive decline than gait speed on leash.
Collapse
|
10
|
Kraus C, Snyder-Mackler N, Promislow DEL. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience 2023; 45:627-643. [PMID: 36066765 PMCID: PMC9886701 DOI: 10.1007/s11357-022-00653-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 02/03/2023] Open
Abstract
While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs - the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.
Collapse
Affiliation(s)
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, School for Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
11
|
LaLonde-Paul D, Mouttham L, Promislow DEL, Castelhano MG. Banking on a new understanding: translational opportunities from veterinary biobanks. GeroScience 2023:10.1007/s11357-023-00763-z. [PMID: 36890420 PMCID: PMC10400517 DOI: 10.1007/s11357-023-00763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023] Open
Abstract
Current advances in geroscience are due in part to the discovery of biomarkers with high predictive ability in short-lived laboratory animals such as flies and mice. These model species, however, do not always adequately reflect human physiology and disease, highlighting the need for a more comprehensive and relevant model of human aging. Domestic dogs offer a solution to this obstacle, as they share many aspects not only of the physiological and pathological trajectories of their human counterpart, but also of their environment. Furthermore, they age at a considerably faster rate. Studying aging in the companion dog provides an opportunity to better understand the biological and environmental determinants of healthy lifespan in our pets, and to translate those findings to human aging. Biobanking, the systematic collection, processing, storage, and distribution of biological material and associated data has contributed to basic, clinical, and translational research by streamlining the management of high-quality biospecimens for biomarker discovery and validation. In this review, we discuss how veterinary biobanks can support research on aging, particularly when integrated into large-scale longitudinal studies. As an example of this concept, we introduce the Dog Aging Project Biobank.
Collapse
Affiliation(s)
- D LaLonde-Paul
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - L Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - D E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - M G Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Raza T, Abbas M, Amna, Imran S, Khan MY, Rebi A, Rafie-Rad Z, Eash NS. Impact of Silicon on Plant Nutrition and Significance of Silicon Mobilizing Bacteria in Agronomic Practices. SILICON 2023; 15:3797-3817. [PMCID: PMC9876760 DOI: 10.1007/s12633-023-02302-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/13/2023] [Indexed: 08/01/2023]
Abstract
Globally, rejuvenation of soil health is a major concern due to the continuous loss of soil fertility and productivity. Soil degradation decreases crop yields and threatens global food security. Improper use of chemical fertilizers coupled with intensive cultivation further reduces both soil health and crop yields. Plants require several nutrients in varying ratios that are essential for the plant to complete a healthy growth and development cycle. Soil, water, and air are the sources of these essential macro- and micro-nutrients needed to complete plant vegetative and reproductive cycles. Among the essential macro-nutrients, nitrogen (N) plays a significant in non-legume species and without sufficient plant access to N lower yields result. While silicon (Si) is the 2nd most abundant element in the Earth’s crust and is the backbone of soil silicate minerals, it is an essential micro-nutrient for some plants. Silicon is just beginning to be recognized as an important micronutrient to some plant species and, while it is quite abundant, Si is often not readily available for plant uptake. The manufacturing cost of synthetic silica-based fertilizers is high, while absorption of silica is quite slow in soil for many plants. Rhizosphere biological weathering processes includes microbial solubilization processes that increase the dissolution of minerals and increases Si availability for plant uptake. Therefore, an important strategy to improve plant silicon uptake could be field application of Si-solubilizing bacteria. In this review, we evaluate the role of Si in seed germination, growth, and morphological development and crop yield under various biotic and abiotic stresses, different pools and fluxes of silicon (Si) in soil, and the bacterial genera of the silicon solubilizing microorganisms. We also elaborate on the detailed mechanisms of Si-solubilizing/mobilizing bacteria involved in silicate dissolution and uptake by a plant in soil. Last, we discuss the potential of silicon and silicon solubilizing/mobilizing to achieve environmentally friendly and sustainable crop production.
Collapse
Affiliation(s)
- Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| | | | - Amna
- Department of Plant Sciences, Quaid-I-Azam University Islamabad, Islamabad, Pakistan
| | - Shakeel Imran
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yahya Khan
- UAF Sub Campus Burewala, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Zeinab Rafie-Rad
- Department of Soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Neal S. Eash
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, USA
| |
Collapse
|
13
|
Dias-Pereira P. Morbidity and mortality in elderly dogs - a model for human aging. BMC Vet Res 2022; 18:457. [PMID: 36581919 PMCID: PMC9798575 DOI: 10.1186/s12917-022-03518-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022] Open
Abstract
Over the last decades, canines have experienced a marked increase in their lifespan, mirroring human populations. Several authors have pointed out the domestic dog as a suitable animal model for geropathology translational research. The aim of this study is to assess age-related morbidities and mortality in a population of 269 elderly canines (130 males and 139 females) submitted to necropsy. The organic systems exhibiting the higher number of age-related morbidities were the reproductive, cardiovascular and urinary systems and, in females, also the mammary gland. The prevalence of cardiovascular and urinary disease was significantly higher in males and mammary lesions were exclusively found in females. Urinary disease was more frequent in small breeds dogs, while peritoneum and male genital morbidities were significantly higher in larger breeds. Hyperplastic and degenerative lesions were common morbidities found in this elderly dog population. The main cause of death was neoplasia, which accounted for almost half of the deaths. Cardiovascular and urinary pathology also emerged as a frequent cause of mortality. These findings partially parallel data obtained for human species, displaying cancer and cardiovascular pathology as major causes of disease and death in elderlies. Our data reinforce the potential of the domestic dog for further translational investigations on gerontology, meeting the concept of One Health.
Collapse
Affiliation(s)
- Patrícia Dias-Pereira
- grid.5808.50000 0001 1503 7226Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
14
|
McKenzie BA, Chen F, LaCroix-Fralish ML. The phenotype of aging in the dog: how aging impacts the health and well-being of dogs and their caregivers. J Am Vet Med Assoc 2022; 260:963-970. [DOI: 10.2460/javma.22.02.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging is the single most important cause of disease, disability, and death in adult dogs. Contrary to the common view of aging as a mysterious and inevitable natural event, it is more usefully understood as a set of complex but comprehensible biological processes that are highly conserved across species. Although the phenotypic expression of these processes is variable, there are consistent patterns both within and between species.
The purpose of this feature is to describe the patterns currently recognized in the physical and behavioral manifestations of aging in the dog and how these impact the health and welfare of companion dogs and their human caregivers. Important gaps in our knowledge of the canine aging phenotype will be identified, and current research efforts to better characterize aging in the dog will be discussed. This will help set the context for future efforts to develop clinical assessments and treatments to mitigate the negative impact of aging on dogs and humans.
Collapse
Affiliation(s)
| | - Frances Chen
- Cellular Longevity Inc dba Loyal, San Francisco, CA
| | | |
Collapse
|
15
|
Fleyshman DI, Wakshlag JJ, Huson HJ, Loftus JP, Olby NJ, Brodsky L, Gudkov AV, Andrianova EL. Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging (Albany NY) 2021; 13:21814-21837. [PMID: 34587118 PMCID: PMC8507265 DOI: 10.18632/aging.203600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.
Collapse
Affiliation(s)
| | - Joseph J Wakshlag
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Heather J Huson
- Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - John P Loftus
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Natasha J Olby
- North Carolina State University College of Veterinary Medicine, Raleigh, NC 27606, USA
| | - Leonid Brodsky
- Tauber Bioinformatic Research Center, University of Haifa, Haifa, Israel
| | - Andrei V Gudkov
- Vaika, Inc., East Aurora, NY 14052, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | | |
Collapse
|
16
|
Gibbs NH, Michalski H, Promislow DEL, Kaeberlein M, Creevy KE. Reasons for Exclusion of Apparently Healthy Mature Adult and Senior Dogs From a Clinical Trial. Front Vet Sci 2021; 8:651698. [PMID: 34150883 PMCID: PMC8206478 DOI: 10.3389/fvets.2021.651698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Interventional clinical trials intended to maintain health in aging dogs are unusual and require particular attention to exclusion criteria. Objectives: To describe reasons for exclusion when a mature adult and senior canine population with normal health status was sought. Animals: Fifty six companion dogs nominated for a randomized controlled trial (RCT). Procedures: Exclusions occurred within Stage 1 (S1): owner-provided survey information; Stage 2 (S2): medical records review; and Stage 3 (S3): screening examination and within Owner, Dog, or Other factor categories. Results: Of 56 nominated dogs, 39 were excluded at S1 (n = 19), S2 (n = 5), and S3 (n = 15), respectively. Dogs were excluded for Owner (n = 4), Dog (n = 27), Other (n = 6), and concurrent (Owner + Dog; n = 2) factors. The most common exclusion period was S1 (n = 19), with weight outside the target range being the most common exclusion factor in that stage (n = 10). Heart murmurs were the second most common exclusion factor (S1: n = 1; S3: n = 5); suspected or confirmed systemic illness was third most common (S1: n = 2; S2: n = 3; S3: n = 2). Among dogs who passed S1 and S2 screening (n = 32), 15 dogs (48%) were excluded at S3, for heart murmur > grade II/VI (n = 5), cardiac arrhythmias (n = 2), and clinicopathologic abnormalities (n = 2). Conclusions and Clinical Relevance: Dogs nominated for a clinical trial for healthy mature adult and senior dogs were excluded for size, previous diagnoses, and newly discovered cardiac abnormalities. For future interventions in mature adult and senior dogs of normal health status, it is important to define expected age-related abnormalities to ensure that meaningful exclusion criteria are used.
Collapse
Affiliation(s)
- Nicole H Gibbs
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Hannah Michalski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Daniel E L Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Biology, University of Washington, Seattle, WA, United States
| | - Matt Kaeberlein
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kate E Creevy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Man's best friend in life and death: scientific perspectives and challenges of dog brain banking. GeroScience 2021; 43:1653-1668. [PMID: 33970413 PMCID: PMC8492856 DOI: 10.1007/s11357-021-00373-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Biobanking refers to the systematic collection, storage, and distribution of pre- or post-mortem biological samples derived from volunteer donors. The demand for high-quality human specimens is clearly demonstrated by the number of newly emerging biobanking facilities and large international collaborative networks. Several animal species are relevant today in medical research; therefore, similar initiatives in comparative physiology could be fruitful. Dogs, in particular, are gaining increasing attention in translational research on complex phenomena, like aging, cancer, and neurodegenerative diseases. Therefore, biobanks gathering and storing dog biological materials together with related data could play a vital role in translational and veterinary research projects. To achieve these aims, a canine biobank should meet the same standards in sample quality and data management as human biobanks and should rely on well-designed collaborative networks between different professionals and dog owners. While efforts to create dog biobanks could face similar financial and technical challenges as their human counterparts, they can widen the spectrum of successful collaborative initiatives towards a better picture of dogs’ physiology, disease, evolution, and translational potential. In this review, we provide an overview about the current state of dog biobanking and introduce the “Canine Brain and Tissue Bank” (CBTB)—a new, large-scale collaborative endeavor in the field.
Collapse
|
18
|
Ader I, Pénicaud L, Andrieu S, Beard JR, Davezac N, Dray C, Fazilleau N, Gourdy P, Guyonnet S, Liblau R, Parini A, Payoux P, Rampon C, Raymond-Letron I, Rolland Y, de Souto Barreto P, Valet P, Vergnolle N, Sierra F, Vellas B, Casteilla L. Healthy Aging Biomarkers: The INSPIRE's Contribution. J Frailty Aging 2021; 10:313-319. [PMID: 34549244 PMCID: PMC8081649 DOI: 10.14283/jfa.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
The find solutions for optimizing healthy aging and increase health span is one of the main challenges for our society. A novel healthcare model based on integration and a shift on research and care towards the maintenance of optimal functional levels are now seen as priorities by the WHO. To address this issue, an integrative global strategy mixing longitudinal and experimental cohorts with an innovative transverse understanding of physiological functioning is missing. While the current approach to the biology of aging is mainly focused on parenchymal cells, we propose that age-related loss of function is largely determined by three elements which constitute the general ground supporting the different specific parenchyma: i.e. the stroma, the immune system and metabolism. Such strategy that is implemented in INSPIRE projects can strongly help to find a composite biomarker capable of predicting changes in capacity across the life course with thresholds signalling frailty and care dependence.
Collapse
Affiliation(s)
- I Ader
- Louis Casteilla, RESTORE, UMR 1301-Inserm 5070 Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse III, National Veterinary School of Toulouse (ENVT), CNRS, Toulouse, France;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hoffman JM, Valencak TG. A short life on the farm: aging and longevity in agricultural, large-bodied mammals. GeroScience 2020; 42:909-922. [PMID: 32361879 PMCID: PMC7286991 DOI: 10.1007/s11357-020-00190-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
As average human lifespans increase across the globe, companion animals, specifically dogs and cats, are also living longer with more age-related morbidities. However, a similar trend is not seen in mammalian livestock species. Cows, pigs, goats, and sheep, as well as more niche mammalian species raised across the world, have been primarily raised for their economic benefit to humans and are culled from the population once their production declines. To this end, we lack clear knowledge about the age-related morbidities and causes of death that afflict livestock animals due to natural aging, as well as detailed age-specific survival rates. Here, we review the current state of the field of agricultural mammal aging, as well as provide specific questions and directions that may provide novel resources for veterinarians and aging biologists. By raising awareness of the overall quality of life and ongoing health of individual livestock animals, we can potentially increase production into older life stages, leading to decreased costs to farmers and improved welfare for the animals themselves.
Collapse
Affiliation(s)
- Jessica M. Hoffman
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd.,CH464, Birmingham, AL 35294 USA
| | - Teresa G. Valencak
- College of Animal Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
20
|
The importance of diversity and outreach in geroscience research: Insights from the Annual Biomedical Research Conference for Minority Students. GeroScience 2020; 42:1005-1012. [PMID: 32363429 PMCID: PMC7287005 DOI: 10.1007/s11357-020-00191-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/02/2023] Open
Abstract
US academic science lacks racial, ethnic, sex, gender, disability, and socioeconomic diversity. Addressing this problem is essential to drive scientific progress but is confounded by broad misunderstandings regarding diverse groups. Increasing representation in science is particularly relevant in geroscience, where our research to maximize healthy human lifespan must also address existing racial and socioeconomic health disparities. The American Aging Association (AGE) is committed to addressing these issues as part of its larger mission to advance and promote geroscience research. Over the last three years, AGE has sponsored an exhibition booth staffed by trainee leaders to promote our society and research at the Annual Biomedical Research Conference for Minority Students (ABRCMS), an ideal venue to interact with diverse students from across the country. Through our interactions with students, advocates, and representatives from other institutions and societies, we have learned a great deal about how to engage and promote the success of diverse students in the sciences. Here, we share these insights that are helping shape our own outreach efforts. In addition to interacting with ABRCMS attendees, we also learned a great deal about how societies like AGE can partner with other organizations to advance our shared goals and the importance of reaching students early in their academic journey to promote their success. Finally, we consider how to grow our outreach efforts beyond ABRCMS to reach those in disadvantaged areas and support students navigating academic science.
Collapse
|
21
|
Neurotrophic effects of G M1 ganglioside, NGF, and FGF2 on canine dorsal root ganglia neurons in vitro. Sci Rep 2020; 10:5380. [PMID: 32214122 PMCID: PMC7096396 DOI: 10.1038/s41598-020-61852-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/04/2020] [Indexed: 01/26/2023] Open
Abstract
Dogs share many chronic morbidities with humans and thus represent a powerful model for translational research. In comparison to rodents, the canine ganglioside metabolism more closely resembles the human one. Gangliosides are components of the cell plasma membrane playing a role in neuronal development, intercellular communication and cellular differentiation. The present in vitro study aimed to characterize structural and functional changes induced by GM1 ganglioside (GM1) in canine dorsal root ganglia (DRG) neurons and interactions of GM1 with nerve growth factor (NGF) and fibroblast growth factor (FGF2) using immunofluorescence for several cellular proteins including neurofilaments, synaptophysin, and cleaved caspase 3, transmission electron microscopy, and electrophysiology. GM1 supplementation resulted in increased neurite outgrowth and neuronal survival. This was also observed in DRG neurons challenged with hypoxia mimicking neurodegenerative conditions due to disruptions of energy homeostasis. Immunofluorescence indicated an impact of GM1 on neurofilament phosphorylation, axonal transport, and synaptogenesis. An increased number of multivesicular bodies in GM1 treated neurons suggested metabolic changes. Electrophysiological changes induced by GM1 indicated an increased neuronal excitability. Summarized, GM1 has neurotrophic and neuroprotective effects on canine DRG neurons and induces functional changes. However, further studies are needed to clarify the therapeutic value of gangliosides in neurodegenerative diseases.
Collapse
|
22
|
Lucroy MD, Suckow MA. Predictive modeling for cancer drug discovery using canine models. Expert Opin Drug Discov 2020; 15:731-738. [PMID: 32176534 DOI: 10.1080/17460441.2020.1739644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Rodent models of cancer lack many features associated with the disease in humans. Because dogs closely share an environment with humans, as well as comparable pathophysiology of cancer, they represent a powerful model with which to study novel approaches to cancer treatment. AREAS COVERED The authors summarize the weaknesses of rodent models of cancer and the ongoing need for better animal models with which to study potential therapeutic approaches. The homology of cancer in dogs and humans is described, along with examples specific to several common cancer types. EXPERT OPINION Laboratory mice and rats will continue to play a central role in cancer research; however, because of a variety of limitations, pet dogs with spontaneous cancer offer unique opportunities for research and should be included in the preclinical development of therapeutic compounds. Environmental homology between dogs and humans, along with biological and molecular similarities present circumstances that strengthen the translational rigor of studies conducted using canine patients. Progress will depend on a sufficient number of dogs to be diagnosed with cancer and available for use in studies; and essential to this will be the availability of enhanced resources for diagnosis of cancer in canine patients and reliable coordination between research scientists, veterinarians, and physicians.
Collapse
Affiliation(s)
- Michael D Lucroy
- Vice President, Oncology, Torigen Pharmaceuticals, Inc , Farmington, CT, USA
| | - Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
23
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
24
|
Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: Lesson from Model Organisms. Genes (Basel) 2019; 10:genes10070518. [PMID: 31324014 PMCID: PMC6678192 DOI: 10.3390/genes10070518] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
Research on longevity and healthy aging promises to increase our lifespan and decrease the burden of degenerative diseases with important social and economic effects. Many aging theories have been proposed, and important aging pathways have been discovered. Model organisms have had a crucial role in this process because of their short lifespan, cheap maintenance, and manipulation possibilities. Yeasts, worms, fruit flies, or mammalian models such as mice, monkeys, and recently, dogs, have helped shed light on aging processes. Genes and molecular mechanisms that were found to be critical in simple eukaryotic cells and species have been confirmed in humans mainly by the functional analysis of mammalian orthologues. Here, we review conserved aging mechanisms discovered in different model systems that are implicated in human longevity as well and that could be the target of anti-aging interventions in human.
Collapse
Affiliation(s)
- Giusi Taormina
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Federica Ferrante
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Salvatore Vieni
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Nello Grassi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Antonio Russo
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy
| | - Mario G Mirisola
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università di Palermo, Via del Vespro 129, 90100 Palermo, Italy.
| |
Collapse
|
25
|
Lewis TW, Wiles BM, Llewellyn-Zaidi AM, Evans KM, O'Neill DG. Longevity and mortality in Kennel Club registered dog breeds in the UK in 2014. Canine Genet Epidemiol 2018; 5:10. [PMID: 30349728 PMCID: PMC6191922 DOI: 10.1186/s40575-018-0066-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/27/2018] [Indexed: 11/23/2022] Open
Abstract
Background The domestic dog is one of the most diverse mammalian species, exhibiting wide variations in morphology, behaviour and morbidity across breeds. Therefore, it is not unexpected that breeds should also exhibit variation in mortality and longevity. While shorter longevity per se may not necessarily be a welfare issue, a generally foreshortened lifespan in a breed that is accompanied by a high prevalence of a particular cause of death may reveal potentially serious welfare concerns and highlight scope to improve breed welfare. Survey data gathered directly from owners offer useful insights into canine longevity and mortality that can support the overall evidence base for welfare reforms within breeds. Results Mortality data on 5663 deceased dogs registered with the UK Kennel Club were collected from an owner-based survey. The most commonly reported causes of death were old age (13.8%), unspecified cancer (8.7%) and heart failure (4.9%); with 5.1% of deaths reported as unknown cause. Overall median age at death was 10.33 years (interquartile range: 7.17–12.83 years). Breeds varied widely in median longevity overall from the West Highland Terrier (12.71 years) to the Dobermann Pinscher (7.67 years). There was also wide variation in the prevalence of some common causes of death among breeds, and in median longevity across the causes of death. Conclusion Substantial variation in the median lifespan and the prominent causes of death exists across breeds. This study has identified some breeds with both a low median lifespan and also a high proportional mortality for one or more specific causes of death that should be considered as both potential welfare concerns as well as opportunities for improvement. Electronic supplementary material The online version of this article (10.1186/s40575-018-0066-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- T W Lewis
- The Kennel Club, Clarges Street, London, W1J 8AB UK.,2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, LE12 5RD UK
| | - B M Wiles
- The Kennel Club, Clarges Street, London, W1J 8AB UK
| | - A M Llewellyn-Zaidi
- International Partnership for Dogs, 504547 Grey Rd 1, Georgia Bluffs, ON Canada
| | - K M Evans
- The Kennel Club, Clarges Street, London, W1J 8AB UK.,2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, LE12 5RD UK
| | - D G O'Neill
- 4Pathobiology and Population Health, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA UK
| |
Collapse
|
26
|
O'Neill DG, Corah CH, Church DB, Brodbelt DC, Rutherford L. Lipoma in dogs under primary veterinary care in the UK: prevalence and breed associations. Canine Genet Epidemiol 2018; 5:9. [PMID: 30279993 PMCID: PMC6161450 DOI: 10.1186/s40575-018-0065-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022] Open
Abstract
Background Lipomas are masses of mesenchymal origin, comprising of adipocytes, and are often clinically unremarkable but can be alarming to owners. Although lipomas are reportedly common in dogs, no studies have specifically investigated risk factors associated with their occurrence. This study was a large-scale retrospective analysis of electronic patient records of dogs attending practices participating in VetCompass™. Univariable and multivariable logistic regression methods were used to evaluate associations between risk factors and primary-care veterinary diagnosis of lipoma. Results From 384,284 dogs under veterinary care during 2013 at 215 primary practice clinics in the UK, there were 2765 lipoma cases identified giving a one-year prevalence of 1.94% (95% CI: 1.87–2.01). Breeds with the highest lipoma prevalence included Weimaraner (7.84%, 95% CI 6.46–9.40), Dobermann Pinscher (6.96%, 95% CI 5.67–8.44), German Pointer (5.23%, 95% CI 3.93–6.80), Springer Spaniel (5.19%, 95% CI 4.76–5.66), and Labrador Retriever (5.15%, 95% CI 4.90–5.41). Dogs with an adult bodyweight equal or higher than their breed/sex mean had 1.96 (95% CI 1.81–2.14, P < 0.001) times the odds of lipoma compared with dogs that weighed below their breed/sex mean. The odds of lipoma increased as adult bodyweight increased. Increased age was strongly associated with increasing odds of lipoma. Compared with dogs aged 3.0 to < 6.0 years, dogs aged 9.0 - < 12.0 years had 17.52 times the odds (95% CI 14.71–20.85, P < 0.001) of lipoma. Neutered males (OR: 1.99, 95% CI 1.69–2.36, P < 0.001) and neutered females (OR: 1.62, 95% CI 1.37–1.91, P < 0.001) had higher odds than entire females. Insured dogs had 1.78 (95% CI 1.53–2.07, P < 0.001) times the odds of lipoma compared with uninsured dogs. Conclusions Lipomas appear to be a relatively common diagnosis in primary-care practice. Certain breeds were identified with remarkably high lipoma prevalence, highlighting the risk that owners should be prepared for. Lipoma predisposition of larger bodyweight individuals within breed/sex suggests that being overweight or obese may be a predisposing factor but would need further work to confirm.
Collapse
Affiliation(s)
- Dan G O'Neill
- 1Production and Population Health, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - Caroline H Corah
- 1Production and Population Health, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - David B Church
- 2Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - Dave C Brodbelt
- 1Production and Population Health, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| | - Lynda Rutherford
- 2Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA UK
| |
Collapse
|
27
|
Inoue M, Kwan NCL, Sugiura K. Estimating the life expectancy of companion dogs in Japan using pet cemetery data. J Vet Med Sci 2018; 80:1153-1158. [PMID: 29798968 PMCID: PMC6068313 DOI: 10.1292/jvms.17-0384] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The life expectancy provides valuable information about population health. The life expectancies were evaluated in 12,039 dogs which were buried or cremated during January 2012 to March 2015. The data of dogs were collected at the eight animal cemeteries in Tokyo. The overall life expectancy of dogs was 13.7 (95% confidence interval (CI): 13.7-13.8) years. The probability of death was high in the first year of life, lowest in the fourth year, and increased exponentially after four years of age like Gompertz curve in semilog graph. The life expectancy of companion dogs in Tokyo has increased 1.67 fold from 8.6 years to 13.7 years over the past three decades. Canine crossbreed life expectancy (15.1 years, 95% CI 14.9-15.3) was significantly greater than pure breed life expectancy (13.6 years, 95%CI 13.5-13.7, P-value <0.001). The life expectancy for male and for female dogs were 13.6 (95% CI: 13.5-13.7) and 13.5 (95% CI: 13.4-13.6) years, respectively, with no significant difference (P=0.097). In terms of the median age of death and life expectancy for major breeds, Shiba had the highest median age of death (15.7 years), life expectancy (15.5 years) and French Bulldog had the lowest median age of death (10.2 years), life expectancy (10.2 years). When considering life expectancy alone, these results suggest that the health of companion dogs in Japan has significantly improved over the past 30 years.
Collapse
Affiliation(s)
- Mai Inoue
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nigel C L Kwan
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuaki Sugiura
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
Adams VJ, Ceccarelli K, Watson P, Carmichael S, Penell J, Morgan DM. Evidence of longer life; a cohort of 39 labrador retrievers. Vet Rec 2018; 182:408. [PMID: 29483149 PMCID: PMC5890640 DOI: 10.1136/vr.104167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - Penny Watson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Stuart Carmichael
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, Vet School Main Building (VSM), Guildford, UK
| | - Johanna Penell
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, SLU Institutionen for vatten och miljo, Uppsala, Sweden
| | - David M Morgan
- Spectrum Brands Schweiz GmbH, Wangen-Brüttisellen, Switzerland
| |
Collapse
|
29
|
An JY, Darveau R, Kaeberlein M. Oral health in geroscience: animal models and the aging oral cavity. GeroScience 2018; 40:1-10. [PMID: 29282653 PMCID: PMC5832657 DOI: 10.1007/s11357-017-0004-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/31/2022] Open
Abstract
Age is the single greatest risk factor for many diseases, including oral diseases. Despite this, a majority of preclinical oral health research has not adequately considered the importance of aging in research aimed at the mechanistic understanding of oral disease. Here, we have attempted to provide insights from animal studies in the geroscience field and apply them in the context of oral health research. In particular, we discuss the relationship between the biology of aging and mechanisms of oral disease. We also present a framework for defining and utilizing age-appropriate rodents and present experimental design considerations, such as the number of age-points used and the importance of genetic background. While focused primarily on rodent models, alternative animal models that may be particularly useful for studies of oral health during aging, such as companion dogs and marmoset monkeys, are also discussed. We hope that such information will aid in the design of future preclinical studies of geriatric dental health, thus allowing more reliability for translation of such studies to age-associated oral disease in people.
Collapse
Affiliation(s)
- Jonathan Y An
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Richard Darveau
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA, 98195, USA.
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
30
|
Lee MB, Kaeberlein M. Translational Geroscience: From invertebrate models to companion animal and human interventions. TRANSLATIONAL MEDICINE OF AGING 2018; 2:15-29. [PMID: 32368707 PMCID: PMC7198054 DOI: 10.1016/j.tma.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translational geroscience is an interdisciplinary field descended from basic gerontology that seeks to identify, validate, and clinically apply interventions to maximize healthy, disease-free lifespan. In this review, we describe a research pipeline for the identification and validation of lifespan extending interventions. Beginning in invertebrate model systems, interventions are discovered and then characterized using other invertebrate model systems (evolutionary translation), models of genetic diversity, and disease models. Vertebrate model systems, particularly mice, can then be utilized to validate interventions in mammalian systems. Collaborative, multi-site efforts, like the Interventions Testing Program (ITP), provide a key resource to assess intervention robustness in genetically diverse mice. Mouse disease models provide a tool to understand the broader utility of longevity interventions. Beyond mouse models, we advocate for studies in companion pets. The Dog Aging Project is an exciting example of translating research in dogs, both to develop a model system and to extend their healthy lifespan as a goal in itself. Finally, we discuss proposed and ongoing intervention studies in humans, unmet needs for validating interventions in humans, and speculate on how differences in survival among human populations may influence intervention efficacy.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA USA
| |
Collapse
|
31
|
Gunn‐Moore D, Kaidanovich‐Beilin O, Iradi MCG, Gunn‐Moore F, Lovestone S. Alzheimer's disease in humans and other animals: A consequence of postreproductive life span and longevity rather than aging. Alzheimers Dement 2017; 14:195-204. [DOI: 10.1016/j.jalz.2017.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/19/2017] [Accepted: 08/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Danièlle Gunn‐Moore
- University of Edinburgh Royal (Dick) School of Veterinary Studies and The Roslin Institute Easter Bush Campus Roslin UK
| | | | - María Carolina Gallego Iradi
- University of Florida, College of Medicine Department of Neuroscience, Center for Translational Research in Neurodegenerative Diseases Gainesville FL USA
| | | | | |
Collapse
|
32
|
Arden R, Bensky MK, Adams MJ. A Review of Cognitive Abilities in Dogs, 1911 Through 2016. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1177/0963721416667718] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this review, we pose and respond to three questions concerning canine cognition: How has the history of this field influenced what we currently know about dog cognition? How confident should we be about what we know? Finally, what should we find out next? We begin by presenting two perspectives on canine cognition. We then survey the existing literature by conducting a quantitative summary of over 100 years of empirical work, focusing on power and replicability. Last, we lament the dearth of individual-differences studies in dog cognition (only three since 1911). We claim that a test of dog IQ with good psychometric properties will benefit basic science on dog and human health (including aging and dementia research). As a complement to an existing rich program of ethological investigation, we argue that individual-differences work on dogs should be a research priority.
Collapse
Affiliation(s)
- Rosalind Arden
- Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science
| | - Miles K. Bensky
- School of Integrative Biology, University of Illinois at Urbana-Champaign
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh and Royal Edinburgh Hospital
| |
Collapse
|
33
|
Hamilton KL, Miller BF. What is the evidence for stress resistance and slowed aging? Exp Gerontol 2016; 82:67-72. [DOI: 10.1016/j.exger.2016.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/03/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
|
34
|
Kaeberlein M, Creevy KE, Promislow DEL. The dog aging project: translational geroscience in companion animals. Mamm Genome 2016; 27:279-88. [PMID: 27143112 DOI: 10.1007/s00335-016-9638-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Studies of the basic biology of aging have identified several genetic and pharmacological interventions that appear to modulate the rate of aging in laboratory model organisms, but a barrier to further progress has been the challenge of moving beyond these laboratory discoveries to impact health and quality of life for people. The domestic dog, Canis familiaris, offers a unique opportunity for surmounting this barrier in the near future. In particular, companion dogs share our environment and play an important role in improving the quality of life for millions of people. Here, we present a rationale for increasing the role of companion dogs as an animal model for both basic and clinical geroscience and describe complementary approaches and ongoing projects aimed at achieving this goal.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA.
| | - Kate E Creevy
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | |
Collapse
|