1
|
El-Banna AA, Eltamany EE, Yassen ASA, Lotfy A, El-Tanahy AHH, Badr JM, Algandaby MM, Murshid SS, Elhady SS, Abdelhameed RFA. Integrated Network Pharmacology, Molecular Modeling, LC-MS Profiling, and Semisynthetic Approach for the Roots of Rubia tinctorum L. Metabolites in Cancer Treatment. ACS OMEGA 2025; 10:13027-13045. [PMID: 40224436 PMCID: PMC11983213 DOI: 10.1021/acsomega.4c09853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
Rubia tinctorum L. is one of the most widely used plants in folk medicine, with many reported pharmacological activities. One of these valuable activities is its anticancer efficacy. The aim of this study is to explore the multilevel mechanisms of R. tinctorum metabolites in cancer treatment using network pharmacology, together with molecular docking and in vitro studies. The network pharmacology analysis enabled us to reveal the hit anticancer R. tinctorum constituents, which were found to be acacetin, alizarin, anthragallol, 2-hydroxyanthraquinone, and xanthopurpurin. The most enriched cancer-linked target genes were PLCG1, BCL2, CYP1B1, NSD2, and ESR2. The pathways that were mostly involved in the anticancer mechanism of R. tinctorum metabolites were found to be metabolic pathways as well as pathways in cancer and apoptosis. Molecular docking of the identified hit anticancer constituents on the active sites of the most enriched genes unveiled that acacetin and alizarin possessed the lowest binding energies on the active sites of NSD2 and BCL2, respectively. While anthragallol showed the most stabilized interaction on the active sites of PLCG1, CYP1B1, and ESR2. Consequently, R. tinctorum extracts were evaluated for their in vitro cytotoxicity on a panel of cancerous cells. Among the tested R. tinctorum extracts, the chloroform extract was the strongest one with an IC50 = 3.987 μg/mL on the MCF-7 breast cancer cell line. Consequently, it was subjected to chromatographic separation and purification to isolate its major components with reported anticancer activity (scopoletin, rubiadin, chrysophanic acid, alizarin, purpurin, nor-damnacanthal, emodin, and rutin). Alizarin and purpurin constituted the main anthraquinones in R. tinctorum . Thus, they were quantified using LC/MS analysis. Moreover, a semisynthetic approach of alizarin toward the enhancement of its anticancer effect on the tested cancer cells was attained. Among the synthesized compounds, 2-methyl alizarin was the most active one with an IC50 = 8.878 μg/mL against the HepG2 cell line. This study provides deep insights into the anticancer mechanisms of R. tinctorum metabolites for the first time using network pharmacology and valorizes their significance as valuable anticancer agents.
Collapse
Affiliation(s)
- Alaa A. El-Banna
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21521, Egypt
- Department
of Pharmacognosy, College of Pharmacy, Najran
University, Najran 66454, Saudi Arabia
| | - Enas E. Eltamany
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Asmaa S. A. Yassen
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Lotfy
- Egyptian
Liver Research Institute and Hospital (ELRIAH), Mansoura 35111, Egypt
- Department
of Surgery, Medical University of South
Carolina, Charleston, South Carolina 29425, United States
| | - Aya H. H. El-Tanahy
- Department
of Pharmacognosy, Faculty of Pharmacy, Delta
University for Science and Technology, Gamasa 7730103, Egypt
| | - Jihan M. Badr
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Mardi M. Algandaby
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S. Murshid
- Department
of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sameh S. Elhady
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda F. A. Abdelhameed
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
- Department of Pharmacognosy, Faculty of
Pharmacy, Galala University, New Galala 43713, Egypt
| |
Collapse
|
2
|
Chen D, Chen X, Yang M, Li Q, Weng S, Kou S, Liu X, Jiang G, Liu H. H3K36me2 methyltransferase NSD2/WHSC1 promotes triple-negative breast cancer metastasis via activation of ULK1-dependent autophagy. Autophagy 2025:1-19. [PMID: 40097917 DOI: 10.1080/15548627.2025.2479995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
Metastasis is the primary cause for treatment failure and poor prognosis in patients with triple-negative breast cancer (TNBC). Macroautophagy/autophagy plays a crucial role in tumor growth and metastasis. Genetic or epigenetic regulation of autophagy-related factors alters autophagy levels, which subsequently promotes cancer progression and affects the therapeutic effectiveness. However, the molecular basis for the transcriptional and epigenetic regulation of autophagy in TNBC progression is poorly understood. In this study, we reveal the histone methyltransferase NSD2/WHSC1 (nuclear receptor binding SET domain protein 2) as a novel epigenetic regulator of autophagy in TNBC progression. We demonstrate that the expression of NSD2 is significantly upregulated in TNBC cells and high NSD2 expression is correlated with poor TNBC survival. Elevated expression of NSD2 significantly promotes TNBC metastasis in multiple TNBC models. Mechanistically, ULK1 (unc-51 like autophagy activating kinase 1) is identified as a novel target of NSD2 and NSD2-mediated histone H3K36me2 methylation directly activates ULK1 transcription in TNBC cells. Notably, NSD2-induced ULK1 expression facilitates autophagosome maturation and increases autophagic flux, thus promoting autophagy-related malignancy progression in TNBC. Furthermore, pharmacological inhibition of NSD2 using MS159 and MCTP-39 significantly suppresses TNBC autophagy, growth, and metastasis both in vivo and in vitro. In conclusion, our findings demonstrate a pivotal epigenetic role for the NSD2-H3K36me2 axis in regulating ULK1 expression and identify a novel NSD2-ULK1-autophagy signaling axis in the promotion of TNBC progression, suggesting that NSD2 inhibition may be an effective treatment strategy for TNBC.Abbreviations: CDH2/N-cadherin: cadherin 2; ChIP: chromatin immunoprecipitation; EMT: epithelial-mesenchymal transition; ESR: estrogen receptor; FN1: fibronectin 1; GEPIA: Gene Expression Profiling Interactive Analysis; H3K36me2: di-methylation at lysine 36 of histone 3; H&E: hematoxylin and eosin; HDM: histone demethylase; HMT: histone methyltransferase; HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha; IF: Immunofluorescence; IHC: Immunohistochemistry; NSD: nuclear receptor binding SET domain protein; PGR: progesterone receptor; qRT-PCR: quantitative RT-PCR; TCGA: The Cancer Genome Atlas; TNBC: triple-negative breast cancer; TSS: transcription start site; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Danyang Chen
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Mingqiang Yang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiunuo Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shaojuan Weng
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyue Kou
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xi Liu
- The Molecular Diagnosis Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Peking University Cancer Hospital, Kunming, Yunnan, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hao Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Li J, Li Z, Yin J, Wang Y, Zheng D, Cai L, Wang GG. The Sotos syndrome gene Nsd1 safeguards developmental gene enhancers poised for transcription by maintaining the precise deposition of histone methylation. J Biol Chem 2025:108423. [PMID: 40118455 DOI: 10.1016/j.jbc.2025.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Germline haploinsufficiency of NSD1 is implicated as the etiology of Sotos syndrome; however, the underlying mechanism remains far from being clear. Here, we use mouse embryonic stem cell (mESC) differentiation as a model system to address this question. We found Nsd1 to be indispensable for the faithful differentiation of mESCs into three primary germ layers, particularly, various meso-endodermal cell lineages related to development of the heart and the skeletal system. Time-course transcriptomic profiling following the mESC differentiation revealed that Nsd1 not only facilitates the basal expression but also permits the differentiation-accompanied rapid induction of a suite of meso-endoderm lineage-specifying transcription factor (TF) genes such as T and Gata4. Mechanistically, Nsd1 directly occupies putative distal enhancers of the lineage TF genes under the pluripotent cell state, where it deposits H3K36me2 to antagonizes the excessive H3K27me3 and maintain the basal H3K27ac level, thereby safeguarding these gene enhancers at a primed state that responds readily to differentiation cues. In agreement, gene rescue assays using the Nsd1 knockout mESCs showed that the H3K36me2 catalysis by Nsd1 requires several functional modules within Nsd1 (namely, PHD1-4, PWWP2 and SET) to a similar degree. Disruption of either one of these Nsd1 modules severely abrogated H3K36me2 in mESCs and significantly impaired appropriate induction of developmental genes upon mESC differentiation. Altogether, our study provides novel molecular insight into how the NSD1 perturbation derails normal development and causes the disease.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jiekai Yin
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Gang Greg Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Krishnamoorthy VK, Hamdani F, Shukla P, Rao RA, Anaitullah S, Biligiri KK, Kadumuri RV, Pothula PR, Chavali S, Rampalli S. NSD3 protein methylation and stabilization transforms human ES cells into variant state. Life Sci Alliance 2025; 8:e202402871. [PMID: 39741006 PMCID: PMC11707394 DOI: 10.26508/lsa.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
Cultured human embryonic stem cells (hESCs) can develop genetic anomalies that increase their susceptibility to transformation. In this study, we characterized a variant hESC (vhESC) line and investigated the molecular mechanisms leading to the drift towards a transformed state. Our findings revealed that vhESCs up-regulate EMT-specific markers, accelerate wound healing, exhibit compromised lineage differentiation, and retain pluripotency gene expression in teratomas. Furthermore, we discovered an altered epigenomic landscape and overexpression of the lysine methyltransferases EHMT1, EHMT2, and NSD group of proteins in vhESCs. Remarkably, depleting NSD3 oncogene reversed the molecular and phenotypic changes in vhESCs. We identified a detailed mechanism where EHMT2 interacts and methylates NSD3 at lysine 477, stabilizing its protein levels in vhESCs. In addition, we showed that NSD3 levels are regulated by protein degradation in hESCs, and its stabilization leads to the emergence of the variant state. Overall, our study identify that misregulation of NSD3 in pluripotent stem cells, through methylation-mediated abrogation of its protein degradation, drives hESCs towards oncogenic transformation.
Collapse
Affiliation(s)
- Vignesh K Krishnamoorthy
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Fariha Hamdani
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Pooja Shukla
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Radhika Arasala Rao
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Campus, Bangalore, India
| | - Shaikh Anaitullah
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Campus, Bangalore, India
| | - Kriti Kestur Biligiri
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | | | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Shravanti Rampalli
- https://ror.org/05ef28661 Council of Scientific and Industrial Research (CSIR) - Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Berardi A, Kaestner C, Ghitti M, Quilici G, Cocomazzi P, Li J, Ballabio F, Zucchelli C, Knapp S, Licht J, Musco G. The C-terminal PHDVC5HCH tandem domain of NSD2 is a combinatorial reader of unmodified H3K4 and tri-methylated H3K27 that regulates transcription of cell adhesion genes in multiple myeloma. Nucleic Acids Res 2025; 53:gkae1121. [PMID: 39656918 PMCID: PMC11724302 DOI: 10.1093/nar/gkae1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Histone methyltransferase NSD2 (MMSET) overexpression in multiple myeloma (MM) patients plays an important role in the development of this disease subtype. Through the expansion of transcriptional activating H3K36me2 and the suppression of repressive H3K27me3 marks, NSD2 activates an aberrant set of genes that contribute to myeloma growth, adhesive and invasive activities. NSD2 transcriptional activity also depends on its non-catalytic domains, which facilitate its recruitment to chromatin through histone binding. In this study, using NMR, ITC and molecular dynamics simulations, we show that the tandem PHD domain of NSD2 (PHDVC5HCHNSD2) is a combinatorial reader of unmodified histone H3K4 and tri-methylated H3K27 (H3K27me3). This is the first PHD tandem cassette known to decode the methylation status of H3K27. Importantly, in a NSD2-dependent MM cellular model, we show that expression of NSD2 mutants, engineered to disrupt the interaction between H3K27me3 and PHDVC5HCH, display in comparison to wild-type NSD2: incomplete loss of H3K27 methylation throughout the genome, decreased activation of adhesive properties and cell adhesion genes, and a decrease of the corresponding H3K27ac signal at promoters. Collectively, these data suggest that the PHDVC5HCH domain of NSD2 plays an important role in modulating gene expression and chromatin modification, providing new opportunities for pharmacological intervention.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Charlotte Leonie Kaestner
- Division of Hematology/Oncology, The University of Florida Health Cancer, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Michela Ghitti
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Paolo Cocomazzi
- Biophysics Institute, CNR-IBF, Via Corti 12, 20133 Milan, Italy
| | - Jianping Li
- Division of Hematology/Oncology, The University of Florida Health Cancer, 2033 Mowry Road, Gainesville, FL 32610, USA
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federico Ballabio
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, 60438 Frankfurt am Main, Germany
| | - Jonathan D Licht
- Division of Hematology/Oncology, The University of Florida Health Cancer, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology c/o IRCCS Ospedale San Raffaele Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
6
|
Feng Q, Yu L, Li L, Zhang Q. Covalent inhibitors meet epigenetics: New opportunities. Eur J Med Chem 2024; 280:116951. [PMID: 39406112 DOI: 10.1016/j.ejmech.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 11/25/2024]
Abstract
Epigenetic intervention has become an important therapeutic strategy for a variety of diseases, such as cancer. Although a small number of epigenetic drugs have been marketed, most of these inhibitors are limited by their poor efficacy, dose-dependent toxicity, poor selectivity, and drug resistance. The development of covalent inhibitors has progressed from questioning to resurgence. Its slow dissociation is expected to inject new vitality into epigenetic drugs. In this review, more than 40 covalent inhibitors of 29 epigenetic targets were collated, focusing on their design strategies, reaction mechanisms, covalent warheads and targeted amino acids, and covalent verification methods. Furthermore, this review presented new opportunities based on the current development of covalent inhibitors targeting epigenetic regulators. It is believed that epigenetic covalent inhibitors will lead to more breakthroughs.
Collapse
Affiliation(s)
- Qiang Feng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, And Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Lu Li
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, And Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China; Department of Pharmacy, West China Second University Hospital, Sichuan University, Children's Medicine Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
7
|
Shen Y, Zhang Y, Wu T, Zhang L, Belviso BD. Identification of potential methyltransferase NSD2 enzymatic inhibitors through a multi-step structure-based drug design. Mol Divers 2024:10.1007/s11030-024-11072-8. [PMID: 39644397 DOI: 10.1007/s11030-024-11072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Reversing aberrant protein methylation levels is widely recognized as a key focus in cancer therapy. As an essential lysine methylation regulator, NSD2 (Nuclear receptor-binding SET Domain 2, also known as WHSC1/MMSET) regulates chromatin structural sparsity and DNA repair processes. Abnormal enhancement of NSD2 methylation activity (caused by NSD2 overexpression and point mutations) has been closely related to the initiation and development of various cancers and diseases. However, the lack of selective inhibitors hinders further therapeutic intervention and limits the exploration of its biological mechanism. Therefore, this study developed an integrated approach that includes binding feature pharmacophore modeling, gradient database screening of 120 million compounds, flexible docking, and molecular dynamic simulation. This approach was used to identify hit compounds targeting the substrate/coenzyme binding site of NSD2. Subsequently, 20 lead compounds were retrieved by using molecular docking analysis and ADMET prediction. Finally, MD simulations were performed to validate the binding stability of selected drug candidates. The findings indicated that these newly obtained compounds might be potent NSD2 inhibitors. We hope the integrated virtual screening approach will provide a valuable idea for discovering novel H3K36 methyltransferase inhibitors.
Collapse
Affiliation(s)
- Yunpeng Shen
- Department of Biotechnology, School of Biological Engineering, Henan University of Technology, Henan Province, Zhengzhou, 450001, People's Republic of China.
| | - Yingying Zhang
- Department of Biotechnology, School of Biological Engineering, Henan University of Technology, Henan Province, Zhengzhou, 450001, People's Republic of China
| | - Tongyi Wu
- Department of Biotechnology, School of Biological Engineering, Henan University of Technology, Henan Province, Zhengzhou, 450001, People's Republic of China
| | - Lixue Zhang
- Department of Biotechnology, School of International Education, Henan University of Technology, Henan Province, Zhengzhou, 450001, People's Republic of China
| | - Benny Danilo Belviso
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche (CNR), 70126, Bari, Italy
| |
Collapse
|
8
|
Micallef I, Fenech K, Baron B. Therapeutic targeting potential of the protein lysine and arginine methyltransferases to reverse cancer chemoresistance. Front Mol Biosci 2024; 11:1455415. [PMID: 39703687 PMCID: PMC11656028 DOI: 10.3389/fmolb.2024.1455415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer treatments have continued to improve tremendously over the past decade, but therapy resistance is still a common, major factor encountered by patients diagnosed with cancer. Chemoresistance arises due to various circumstances and among these causes, increasing evidence has shown that enzymes referred to as protein methyltransferases (PMTs) play a significant role in the development of chemoresistance in various cancers. These enzymes are responsible for the methylation of different amino acids, particularly lysine and arginine, via protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs), respectively. Various PMTs have been identified to be dysregulated in the development of cancer and chemoresistance. Nonetheless, the functional role of these PMTs in the development of chemoresistance is poorly characterised. This advocates the need for innovative approaches and technologies suitable for better characterisation of these PMTs and their potential clinical inhibitors. In the case of a handful of PMTs, inhibitory small molecules which can function as anticancer drugs have been developed and have also entered clinical trials. Considering all this, PMTs have become a promising and valuable target in cancer chemoresistance related research. This review will give a small introduction on the different PKMTs and PRMTs families which are dysregulated in different cancers and the known proteins targeted by the respective enzymes. The focus will then shift towards PMTs known to be involved in chemoresistance development and the inhibitors developed against these, together with their mode of action. Lastly, the current obstacles and future perspectives of PMT inhibitors in cancer chemoresistance will be discussed.
Collapse
Affiliation(s)
- Isaac Micallef
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimberly Fenech
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
9
|
Ghiani L, Chiocca S. The oncogenic role of the NSD histone methyltransferases in head and neck and cervical cancers. Tumour Virus Res 2024; 19:200301. [PMID: 39645166 DOI: 10.1016/j.tvr.2024.200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024] Open
Abstract
Understanding the role of NSD proteins in virus-induced cancers could reveal new therapeutic strategies. Targeting NSD proteins may not only disrupt the epigenetic changes triggered by viruses but also help restore normal cellular function. For instance, developing NSD inhibitors could counteract abnormal histone modifications caused by viral infections and slow cancer progression. Our review on the NSD protein family emphasizes its critical role in epigenetic regulation and cancer progression, also in virus-induced cancers. As research on the molecular mechanisms of NSD proteins advances, these proteins are emerging as promising candidates for targeted cancer therapies, particularly in cancers driven by histone modifications and transcriptional dysregulation.
Collapse
Affiliation(s)
- Lavinia Ghiani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
10
|
Iwasaki K, Tojo A, Kobayashi H, Shimizu K, Kamimura Y, Horikoshi Y, Fukuto A, Sun J, Yasui M, Honma M, Okabe A, Fujiki R, Nakajima NI, Kaneda A, Tashiro S, Sassa A, Ura K. Dose-dependent effects of histone methyltransferase NSD2 on site-specific double-strand break repair. Genes Cells 2024; 29:951-965. [PMID: 39245559 DOI: 10.1111/gtc.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.
Collapse
Affiliation(s)
- Koh Iwasaki
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Akari Tojo
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Haruka Kobayashi
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Kai Shimizu
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Yoshitaka Kamimura
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu City, Chiba, Japan
| | - Nakako Izumi Nakajima
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Sciences and Technology (iQMS, QST), Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akira Sassa
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Kiyoe Ura
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Caeiro LD, Verdun RE, Morey L. Histone H3 mutations and their impact on genome stability maintenance. Biochem Soc Trans 2024; 52:2179-2191. [PMID: 39248209 PMCID: PMC11580799 DOI: 10.1042/bst20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Histones are essential for maintaining chromatin structure and function. Histone mutations lead to changes in chromatin compaction, gene expression, and the recruitment of DNA repair proteins to the DNA lesion. These disruptions can impair critical DNA repair pathways, such as homologous recombination and non-homologous end joining, resulting in increased genomic instability, which promotes an environment favorable to tumor development and progression. Understanding these mechanisms underscores the potential of targeting DNA repair pathways in cancers harboring mutated histones, offering novel therapeutic strategies to exploit their inherent genomic instability for better treatment outcomes. Here, we examine how mutations in histone H3 disrupt normal chromatin function and DNA damage repair processes and how these mechanisms can be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Lucas D. Caeiro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
- Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, Miami, FL, U.S.A
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, U.S.A
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| |
Collapse
|
12
|
Abate-Shen C. Context-specific targeting of the androgen receptor in prostate cancer. Nat Genet 2024; 56:2000-2001. [PMID: 39333765 DOI: 10.1038/s41588-024-01935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Affiliation(s)
- Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Mohamed GA, Abdallah HM, Sindi IA, Ibrahim SRM, Alzain AA. Unveiling the potential of phytochemicals to inhibit nuclear receptor binding SET domain protein 2 for cancer: Pharmacophore screening, molecular docking, ADME properties, and molecular dynamics simulation investigations. PLoS One 2024; 19:e0308913. [PMID: 39163297 PMCID: PMC11335128 DOI: 10.1371/journal.pone.0308913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Nuclear receptor binding SET domain protein 2 (NSD2) significantly contributes to the development of cancer, making it a promising target for cancer drug discovery. This research explores natural compounds as potential selective inhibitors for NSD2 in cancer treatment. Employing a comprehensive in silico approach, the study utilized pharmacophore modeling, molecular docking, pharmacokinetic profiling, and molecular dynamics simulations. An e-pharmacophore model-based screening using the first selective and potent ligand bound to NSD2 identified 49,248 natural compounds from the SuperNatural 3.0 database (containing 449,008 molecules) with acceptable alignment with the developed pharmacophore hypotheses. Subsequently, molecular docking was executed to assess the standout compounds which led to the selection of ten candidates that surpassed the reference inhibitor in accordance w the binding affinity expressed as a G score. Ligand-residue interaction analyses of the top three hits (SN0450102, SN0410255, and SN0142336) revealed diverse crucial interactions with the NSD2 active site, including hydrogen bonds, pi-pi stacking, and hydrophobic contacts with key amino acid residues in the NSD2-PWWP1 domain. Pharmacokinetic profiling confirmed the drug-likability for the refined hits, indicating good cellular permeability and minimal blood-brain barrier penetration. Molecular dynamics simulations for 200 nanoseconds affirmed the stability of protein-ligand complexes, with minimal fluctuations in root mean square deviation and root mean square fluctuation analyses. Overall, this study identified promising natural compounds as potential pharmaceutical agents in the treatment of NSD2-associated cancers.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| |
Collapse
|
14
|
Ma S, Long G, Jiang Z, Zhang Y, Sun L, Pan Y, You Q, Guo X. Recent advances in targeting histone H3 lysine 36 methyltransferases for cancer therapy. Eur J Med Chem 2024; 274:116532. [PMID: 38805937 DOI: 10.1016/j.ejmech.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.
Collapse
Affiliation(s)
- Sai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangkui Sun
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
15
|
Feng W, Niu N, Lu P, Chen Z, Rao H, Zhang W, Ma C, Liu C, Xu Y, Gao W, Xue J, Li L. Multilevel Regulation of NF-κB Signaling by NSD2 Suppresses Kras-Driven Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309387. [PMID: 38889281 PMCID: PMC11321637 DOI: 10.1002/advs.202309387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/27/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer with a dismal overall prognosis. NSD2 is an H3K36-specific di-methyltransferase that has been reported to play a crucial role in promoting tumorigenesis. Here, the study demonstrates that NSD2 acts as a putative tumor suppressor in Kras-driven pancreatic tumorigenesis. NSD2 restrains the mice from inflammation and Kras-induced ductal metaplasia, while NSD2 loss facilitates pancreatic tumorigenesis. Mechanistically, NSD2-mediated H3K36me2 promotes the expression of IκBα, which inhibits the phosphorylation of p65 and NF-κB nuclear translocation. More importantly, NSD2 interacts with the DNA binding domain of p65, attenuating NF-κB transcriptional activity. Furthermore, inhibition of NF-κB signaling relieves the symptoms of Nsd2-deficient mice and sensitizes Nsd2-null PDAC to gemcitabine. Clinically, NSD2 expression decreased in PDAC patients and negatively correlated to nuclear p65 expression. Together, the study reveals the important tumor suppressor role of NSD2 and multiple mechanisms by which NSD2 suppresses both p65 phosphorylation and downstream transcriptional activity during pancreatic tumorigenesis. This study opens therapeutic opportunities for PDAC patients with NSD2 low/loss by combined treatment with gemcitabine and NF-κBi.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Zhuo Chen
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
16
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
17
|
Carlino L, Astles PC, Ackroyd B, Ahmed A, Chan C, Collie GW, Dale IL, O'Donovan DH, Fawcett C, di Fruscia P, Gohlke A, Guo X, Hao-Ru Hsu J, Kaplan B, Milbradt AG, Northall S, Petrović D, Rivers EL, Underwood E, Webb A. Identification of Novel Potent NSD2-PWWP1 Ligands Using Structure-Based Design and Computational Approaches. J Med Chem 2024; 67:8962-8987. [PMID: 38748070 DOI: 10.1021/acs.jmedchem.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Dysregulation of histone methyl transferase nuclear receptor-binding SET domain 2 (NSD2) has been implicated in several hematological and solid malignancies. NSD2 is a large multidomain protein that carries histone writing and histone reading functions. To date, identifying inhibitors of the enzymatic activity of NSD2 has proven challenging in terms of potency and SET domain selectivity. Inhibition of the NSD2-PWWP1 domain using small molecules has been considered as an alternative approach to reduce NSD2-unregulated activity. In this article, we present novel computational chemistry approaches, encompassing free energy perturbation coupled to machine learning (FEP/ML) models as well as virtual screening (VS) activities, to identify high-affinity NSD2 PWWP1 binders. Through these activities, we have identified the most potent NSD2-PWWP1 binder reported so far in the literature: compound 34 (pIC50 = 8.2). The compounds identified herein represent useful tools for studying the role of PWWP1 domains for inhibition of human NSD2.
Collapse
Affiliation(s)
- Luca Carlino
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Peter C Astles
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Bryony Ackroyd
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Afshan Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Christina Chan
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Gavin W Collie
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ian L Dale
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Daniel H O'Donovan
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Caroline Fawcett
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Paolo di Fruscia
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Xiaoxiao Guo
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jessie Hao-Ru Hsu
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Bethany Kaplan
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Sarah Northall
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Dušan Petrović
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Emma L Rivers
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Elizabeth Underwood
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alice Webb
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
18
|
Weirich S, Kusevic D, Schnee P, Reiter J, Pleiss J, Jeltsch A. Discovery of NSD2 non-histone substrates and design of a super-substrate. Commun Biol 2024; 7:707. [PMID: 38851815 PMCID: PMC11162472 DOI: 10.1038/s42003-024-06395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
The human protein lysine methyltransferase NSD2 catalyzes dimethylation at H3K36. It has very important roles in development and disease but many mechanistic features and its full spectrum of substrate proteins are unclear. Using peptide SPOT array methylation assays, we investigate the substrate sequence specificity of NSD2 and discover strong readout of residues between G33 (-3) and P38 (+2) on H3K36. Unexpectedly, we observe that amino acid residues different from natural ones in H3K36 are preferred at some positions. Combining four preferred residues led to the development of a super-substrate which is methylated much faster by NSD2 at peptide and protein level. Molecular dynamics simulations demonstrate that this activity increase is caused by distinct hyperactive conformations of the enzyme-peptide complex. To investigate the substrate spectrum of NSD2, we conducted a proteome wide search for nuclear proteins matching the specificity profile and discovered 22 peptide substrates of NSD2. In protein methylation studies, we identify K1033 of ATRX and K819 of FANCM as NSD2 methylation sites and also demonstrate their methylation in human cells. Both these proteins have important roles in DNA repair strengthening the connection of NSD2 and H3K36 methylation to DNA repair.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Denis Kusevic
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jessica Reiter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
19
|
Liu L, Parolia A, Liu Y, Hou C, He T, Qiao Y, Eyunni S, Luo J, Li C, Wang Y, Zhou F, Huang W, Ren X, Wang Z, Chinnaiyan AM, Ding K. Discovery of LLC0424 as a Potent and Selective in Vivo NSD2 PROTAC Degrader. J Med Chem 2024; 67:6938-6951. [PMID: 38687638 PMCID: PMC11094793 DOI: 10.1021/acs.jmedchem.3c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Nuclear receptor-binding SET domain-containing 2 (NSD2), a methyltransferase that primarily installs the dimethyl mark on lysine 36 of histone 3 (H3K36me2), has been recognized as a promising therapeutic target against cancer. However, existing NSD2 inhibitors suffer from low activity or inferior selectivity, and none of them can simultaneously remove the methyltransferase activity and chromatin binding function of NSD2. Herein we report the discovery of a novel NSD2 degrader LLC0424 by leveraging the proteolysis-targeting chimera technology. LLC0424 potently degraded NSD2 protein with a DC50 value of 20 nM and a Dmax value of 96% in acute lymphoblastic leukemia (ALL) RPMI-8402 cells. Mechanistic studies revealed LLC0424 to selectively induce NSD2 degradation in a cereblon- and proteasome-dependent fashion. LLC0424 also caused continuous downregulation of H3K36me2 and growth inhibition of ALL cell lines with NSD2 mutation. Importantly, intravenous or intraperitoneal injection of LLC0424 showed potent NSD2 degradation in vivo.
Collapse
Affiliation(s)
- Lianchao Liu
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Abhijit Parolia
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yihan Liu
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Cancer
Biology
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caiyun Hou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Tongchen He
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuanyuan Qiao
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sanjana Eyunni
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Molecular
and Cellular Pathology Program, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jie Luo
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chungen Li
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Yongxing Wang
- Livzon
Research Institute, Livzon Pharmaceutical
Group Inc., no. 38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Fengtao Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Weixue Huang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Xiaomei Ren
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Zhen Wang
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
| | - Arul M. Chinnaiyan
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- State
Key Laboratory of Chemical Biology, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, no. 345 Lingling Road., Shanghai 200032, People’s Republic of China
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- Hangzhou Institute
of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
20
|
Selvam K, Wyrick JJ, Parra MA. DNA Repair in Nucleosomes: Insights from Histone Modifications and Mutants. Int J Mol Sci 2024; 25:4393. [PMID: 38673978 PMCID: PMC11050016 DOI: 10.3390/ijms25084393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
DNA repair pathways play a critical role in genome stability, but in eukaryotic cells, they must operate to repair DNA lesions in the compact and tangled environment of chromatin. Previous studies have shown that the packaging of DNA into nucleosomes, which form the basic building block of chromatin, has a profound impact on DNA repair. In this review, we discuss the principles and mechanisms governing DNA repair in chromatin. We focus on the role of histone post-translational modifications (PTMs) in repair, as well as the molecular mechanisms by which histone mutants affect cellular sensitivity to DNA damage agents and repair activity in chromatin. Importantly, these mechanisms are thought to significantly impact somatic mutation rates in human cancers and potentially contribute to carcinogenesis and other human diseases. For example, a number of the histone mutants studied primarily in yeast have been identified as candidate oncohistone mutations in different cancers. This review highlights these connections and discusses the potential importance of DNA repair in chromatin to human health.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael A. Parra
- Department of Chemistry, Susquehanna University, Selinsgrove, PA 17870, USA
| |
Collapse
|
21
|
Riccardi F, Tangredi C, Dal Bo M, Toffoli G. Targeted therapy for multiple myeloma: an overview on CD138-based strategies. Front Oncol 2024; 14:1370854. [PMID: 38655136 PMCID: PMC11035824 DOI: 10.3389/fonc.2024.1370854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Multiple myeloma (MM) is an incurable hematological disease characterized by the uncontrolled growth of plasma cells primarily in the bone marrow. Although its treatment consists of the administration of combined therapy regimens mainly based on immunomodulators and proteosome inhibitors, MM remains incurable, and most patients suffer from relapsed/refractory disease with poor prognosis and survival. The robust results achieved by immunotherapy targeting MM-associated antigens CD38 and CD319 (also known as SLAMF7) have drawn attention to the development of new immune-based strategies and different innovative compounds in the treatment of MM, including new monoclonal antibodies, antibody-drug conjugates, recombinant proteins, synthetic peptides, and adaptive cellular therapies. In this context, Syndecan1 (CD138 or SDC1), a transmembrane heparan sulfate proteoglycan that is upregulated in malignant plasma cells, has gained increasing attention in the panorama of MM target antigens, since its key role in MM tumorigenesis, progression and aggressiveness has been largely reported. Here, our aim is to provide an overview of the most important aspects of MM disease and to investigate the molecular functions of CD138 in physiologic and malignant cell states. In addition, we will shed light on the CD138-based therapeutic approaches currently being tested in preclinical and/or clinical phases in MM and discuss their properties, mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Carmela Tangredi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|
22
|
Parolia A, Eyunni S, Verma BK, Young E, Liu L, George J, Aras S, Das CK, Mannan R, Rasool RU, Luo J, Carson SE, Mitchell-Velasquez E, Liu Y, Xiao L, Gajjala PR, Jaber M, Wang X, He T, Qiao Y, Pang M, Zhang Y, Alhusayan M, Cao X, Tavana O, Hou C, Wang Z, Ding K, Chinnaiyan AM, Asangani IA. NSD2 is a requisite subunit of the AR/FOXA1 neo-enhanceosome in promoting prostate tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581560. [PMID: 38464251 PMCID: PMC10925163 DOI: 10.1101/2024.02.22.581560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The androgen receptor (AR) is a ligand-responsive transcription factor that binds at enhancers to drive terminal differentiation of the prostatic luminal epithelia. By contrast, in tumors originating from these cells, AR chromatin occupancy is extensively reprogrammed to drive hyper-proliferative, metastatic, or therapy-resistant phenotypes, the molecular mechanisms of which remain poorly understood. Here, we show that the tumor-specific enhancer circuitry of AR is critically reliant on the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2), a histone 3 lysine 36 di-methyltransferase. NSD2 expression is abnormally gained in prostate cancer cells and its functional inhibition impairs AR trans-activation potential through partial off-loading from over 40,000 genomic sites, which is greater than 65% of the AR tumor cistrome. The NSD2-dependent AR sites distinctly harbor a chimeric AR-half motif juxtaposed to a FOXA1 element. Similar chimeric motifs of AR are absent at the NSD2-independent AR enhancers and instead contain the canonical palindromic motifs. Meta-analyses of AR cistromes from patient tumors uncovered chimeric AR motifs to exclusively participate in tumor-specific enhancer circuitries, with a minimal role in the physiological activity of AR. Accordingly, NSD2 inactivation attenuated hallmark cancer phenotypes that were fully reinstated upon exogenous NSD2 re-expression. Inactivation of NSD2 also engendered increased dependency on its paralog NSD1, which independently maintained AR and MYC hyper-transcriptional programs in cancer cells. Concordantly, a dual NSD1/2 PROTAC degrader, called LLC0150, was preferentially cytotoxic in AR-dependent prostate cancer as well as NSD2-altered hematologic malignancies. Altogether, we identify NSD2 as a novel subunit of the AR neo-enhanceosome that wires prostate cancer gene expression programs, positioning NSD1/2 as viable paralog co-targets in advanced prostate cancer.
Collapse
Affiliation(s)
- Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Brijesh Kumar Verma
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lianchao Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - James George
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shweta Aras
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Reyaz ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie Luo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sandra E. Carson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yihan Liu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Prathibha R. Gajjala
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mustapha Jaber
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Pang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammed Alhusayan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omid Tavana
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Caiyun Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ke Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irfan A. Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
23
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
24
|
Zhang J, Xie W, Ni B, Li Z, Feng D, Zhang Y, Han Q, Zhou H, Gu M, Tan R. NSD2 modulates Drp1-mediated mitochondrial fission in chronic renal allograft interstitial fibrosis by methylating STAT1. Pharmacol Res 2024; 200:107051. [PMID: 38190956 DOI: 10.1016/j.phrs.2023.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Renal interstitial fibrosis/tubular atrophy (IF/TA) is a prominent pathological feature of chronic allograft dysfunction (CAD). Our previous study has demonstrated that epithelial-mesenchymal transition (EMT) plays a significant role in shaping the development of IF/TA. Nuclear SET domain (NSD2), a histone methyltransferase catalyzing methylation at lysine 36 of histone 3, is crucially involved in the development and progression of solid tumors. But its role in the development of renal allograft interstitial fibrosis has yet to be elucidated. Here, we characterize NSD2 as a crucial mediator in the mouse renal transplantation model in vivo and a model of tumor necrosis factor-α (TNF-α) stimulated-human renal tubular epithelial cells (HK-2) in vitro. Functionally, NSD2 knockdown inhibits EMT, dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in mice. Conversely, NSD2 overexpression exacerbates fibrosis-associated phenotypes and mitochondrial fission in tubular cells. Mechanistically, tubular NSD2 aggravated the Drp-1 mediated mitochondrial fission via STAT1/ERK/PI3K/Akt signaling pathway in TNF-α-induced epithelial cell models. Momentously, mass spectrometry (MS) Analysis and site-directed mutagenesis assays revealed that NSD2 interacted with and induced Mono-methylation of STAT1 on K173, leading to its phosphorylation, IMB1-dependent nuclear translocation and subsequent influence on TNF-α-induced EMT and mitochondrial fission in NSD2-dependent manner. Collectively, these findings shed light on the mechanisms and suggest that targeting NSD2 could be a promising therapeutic approach to enhance tubular cell survival and alleviate interstitial fibrosis in renal allografts during CAD.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Ni
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuohang Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dengyuan Feng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yao Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Qianguang Han
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.
| |
Collapse
|
25
|
Gong X, Du J, Peng RW, Chen C, Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel) 2024; 16:460. [PMID: 38275900 PMCID: PMC10814442 DOI: 10.3390/cancers16020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland;
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
26
|
Lui JC, Baron J. Epigenetic Causes of Overgrowth Syndromes. J Clin Endocrinol Metab 2024; 109:312-320. [PMID: 37450557 PMCID: PMC11032252 DOI: 10.1210/clinem/dgad420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Human overgrowth disorders are characterized by excessive prenatal and/or postnatal growth of various tissues. These disorders often present with tall stature, macrocephaly, and/or abdominal organomegaly and are sometimes associated with additional phenotypic abnormalities such as intellectual disability and increased cancer risk. As the genetic etiology of these disorders have been elucidated, a surprising pattern has emerged. Multiple monogenic overgrowth syndromes result from variants in epigenetic regulators: variants in histone methyltransferases NSD1 and EZH2 cause Sotos syndrome and Weaver syndrome, respectively, variants in DNA methyltransferase DNMT3A cause Tatton-Brown-Rahman syndrome, and variants in chromatin remodeler CHD8 cause an autism spectrum disorder with overgrowth. In addition, very recently, a variant in histone reader protein SPIN4 was identified in a new X-linked overgrowth disorder. In this review, we discuss the genetics of these overgrowth disorders and explore possible common underlying mechanisms by which epigenetic pathways regulate human body size.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Velez J, Kaniskan HÜ, Jin J. Recent advances in developing degraders & inhibitors of lysine methyltransferases. Curr Opin Chem Biol 2023; 76:102356. [PMID: 37379717 PMCID: PMC10527319 DOI: 10.1016/j.cbpa.2023.102356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Over the last several decades, there has been continued interest in developing novel therapeutic approaches targeting protein lysine methyltransferases (PKMTs). Along with PKMT inhibitors, targeted protein degradation (TPD) has emerged as a promising strategy to attenuate aberrant PKMT activity. Particularly, proteolysis targeting chimeras (PROTACs) effectively eliminate PKMTs of interest, suppressing all enzymatic and non-enzymatic functions. PROTACs and other TPD approaches add new depth to PKMT research and novel therapeutics discovery. This review focuses on recent advances in PKMT degrader and inhibitor development over the last several years.
Collapse
Affiliation(s)
- Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
28
|
Guichard A, Lu S, Kanca O, Bressan D, Huang Y, Ma M, Sanz Juste S, Andrews JC, Jay KL, Sneider M, Schwartz R, Huang MC, Bei D, Pan H, Ma L, Lin WW, Auradkar A, Bhagwat P, Park S, Wan KH, Ohsako T, Takano-Shimizu T, Celniker SE, Wangler MF, Yamamoto S, Bellen HJ, Bier E. A comprehensive Drosophila resource to identify key functional interactions between SARS-CoV-2 factors and host proteins. Cell Rep 2023; 42:112842. [PMID: 37480566 PMCID: PMC10962759 DOI: 10.1016/j.celrep.2023.112842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023] Open
Abstract
Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins. We demonstrate the utility of the DCR to functionally assess SARS-CoV-2 genes and candidate human binding partners. We show that NSP8 engages in strong genetic interactions with several human candidates, most prominently with the ATE1 arginyltransferase to induce actin arginylation and cytoskeletal disorganization, and that two ATE1 inhibitors can reverse NSP8 phenotypes. The DCR enables parallel global-scale functional analysis of SARS-CoV-2 components in a prime genetic model system.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel Bressan
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sara Sanz Juste
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Department of Epigenetics & Molecular Carcinogenesis at MD Anderson, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Marketta Sneider
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Ruth Schwartz
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Mei-Chu Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Danqing Bei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hongling Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Liwen Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wen-Wen Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ankush Auradkar
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Soo Park
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth H Wan
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Takashi Ohsako
- Advanced Technology Center, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Toshiyuki Takano-Shimizu
- Kyoto Drosophila Stock Center and Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 616-8354, Japan
| | - Susan E Celniker
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego (UCSD), La Jolla, CA 92093, USA; Tata Institute for Genetics and Society - UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
30
|
Li D, Tian T, Ko CN, Yang C. Prospect of targeting lysine methyltransferase NSD3 for tumor therapy. Pharmacol Res 2023; 194:106839. [PMID: 37400043 DOI: 10.1016/j.phrs.2023.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Nuclear receptor binding SET domain protein 3 (NSD3) has recently been recognized as a new epigenetic target in the fight against cancer. NSD3, which is amplified, overexpressed or mutated in a variety of tumors, promotes tumor development by regulating the cell cycle, apoptosis, DNA repair and EMT. Therefore, the inhibition, silencing or knockdown of NSD3 are highly promising antitumor strategies. This paper summarizes the structure and biological functions of NSD3 with an emphasis on its carcinogenic or cancer-promoting activity. The development of NSD3-specific inhibitors or degraders is also discussed and reviewed in this paper.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China.
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|
31
|
Li JJ, Vasciaveo A, Karagiannis D, Sun Z, Chen X, Socciarelli F, Frankenstein Z, Zou M, Pannellini T, Chen Y, Gardner K, Robinson BD, de Bono J, Abate-Shen C, Rubin MA, Loda M, Sawyers CL, Califano A, Lu C, Shen MM. NSD2 maintains lineage plasticity and castration-resistance in neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549585. [PMID: 37502956 PMCID: PMC10370123 DOI: 10.1101/2023.07.18.549585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.
Collapse
|
32
|
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that induce the ternary complex formation between a protein-of-interest (POI) and an E3 ligase, leading to targeted polyubiquitination and degradation of the POI. Particularly, PROTACs have the distinct advantage of targeting both canonical and noncanonical functions of epigenetic targets over traditional inhibitors, which typically target canonical functions only, resulting in greater therapeutic efficacy. In this review, we methodically analyze published PROTAC degraders of epigenetic writer, reader, and eraser proteins and their in vitro and in vivo effects. We highlight the mechanism of action of these degraders and their advantages in targeting both canonical and noncanonical functions of epigenetic targets in the context of cancer treatment. Furthermore, we present a future outlook for this exciting field. Overall, pharmacological degradation of epigenetic targets has emerged as an effective and attractive strategy to thwart cancer progression and growth.
Collapse
Affiliation(s)
- Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| |
Collapse
|
33
|
Xiu S, Chi X, Jia Z, Shi C, Zhang X, Li Q, Gao T, Zhang L, Liu Z. NSD3: Advances in cancer therapeutic potential and inhibitors research. Eur J Med Chem 2023; 256:115440. [PMID: 37182335 DOI: 10.1016/j.ejmech.2023.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Nuclear receptor-binding SET domain 3, otherwise known as NSD3, is a member of the group of lysine methyltransferases and is involved in a variety of cellular processes, including transcriptional regulation, DNA damage repair, non-histone related functions and several others. NSD3 gene is mutated or loss of function in a variety of cancers, including breast, lung, pancreatic, and osteosarcoma. These mutations produce dysfunction of the corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemoresistance, and unfavorable prognosis, which suggests that the development of NSD3 probe molecules is important for understanding the specific role of NSD3 in disease and drug discovery. In recent years, NSD3 has been increasingly reported, demonstrating that this target is a very hot epigenetic target. However, the number of NSD3 inhibitors available for cancer therapy is limited and none of the drugs that target NSD3 are currently available on the market. In addition, there are very few reviews describing NSD3. Within this review, we highlight the role of NSD3 in tumorigenesis and the development of NSD3 targeted small-molecule inhibitors over the last decade. We hope that this publication can serve as a guide for the development of potential drug candidates for various diseases in the field of epigenetics, especially for the NSD3 target.
Collapse
Affiliation(s)
- Siyu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhenyu Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiangyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
34
|
Khella MS, Schnee P, Weirich S, Bui T, Bröhm A, Bashtrykov P, Pleiss J, Jeltsch A. The T1150A cancer mutant of the protein lysine dimethyltransferase NSD2 can introduce H3K36 trimethylation. J Biol Chem 2023:104796. [PMID: 37150325 DOI: 10.1016/j.jbc.2023.104796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to thee methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In molecular dynamics simulations, we determine key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.
Collapse
Affiliation(s)
- Mina S Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Tan Bui
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexander Bröhm
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
35
|
Hanley RP, Nie DY, Tabor JR, Li F, Sobh A, Xu C, Barker NK, Dilworth D, Hajian T, Gibson E, Szewczyk MM, Brown PJ, Barsyte-Lovejoy D, Herring LE, Wang GG, Licht JD, Vedadi M, Arrowsmith CH, James LI. Discovery of a Potent and Selective Targeted NSD2 Degrader for the Reduction of H3K36me2. J Am Chem Soc 2023; 145:8176-8188. [PMID: 36976643 PMCID: PMC10116495 DOI: 10.1021/jacs.3c01421] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nuclear receptor-binding SET domain-containing 2 (NSD2) plays important roles in gene regulation, largely through its ability to dimethylate lysine 36 of histone 3 (H3K36me2). Despite aberrant activity of NSD2 reported in numerous cancers, efforts to selectively inhibit the catalytic activity of this protein with small molecules have been unsuccessful to date. Here, we report the development of UNC8153, a novel NSD2-targeted degrader that potently and selectively reduces the cellular levels of both NSD2 protein and the H3K36me2 chromatin mark. UNC8153 contains a simple warhead that confers proteasome-dependent degradation of NSD2 through a novel mechanism. Importantly, UNC8153-mediated reduction of H3K36me2 through the degradation of NSD2 results in the downregulation of pathological phenotypes in multiple myeloma cells including mild antiproliferative effects in MM1.S cells containing an activating point mutation and antiadhesive effects in KMS11 cells harboring the t(4;14) translocation that upregulates NSD2 expression.
Collapse
Affiliation(s)
- Ronan P Hanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John R Tabor
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Amin Sobh
- University of Florida Health Cancer Center, The University of Florida Cancer and Genetics Research Complex, Gainesville, Florida 32610, United States
| | - Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Natalie K Barker
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Elisa Gibson
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Jonathan D Licht
- University of Florida Health Cancer Center, The University of Florida Cancer and Genetics Research Complex, Gainesville, Florida 32610, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
36
|
Narang S, Evensen NA, Saliba J, Pierro J, Loh ML, Brown PA, Kolekar P, Mulder H, Shao Y, Easton J, Ma X, Tsirigos A, Carroll WL. NSD2 E1099K drives relapse in pediatric acute lymphoblastic leukemia by disrupting 3D chromatin organization. Genome Biol 2023; 24:64. [PMID: 37016431 PMCID: PMC10071675 DOI: 10.1186/s13059-023-02905-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The NSD2 p.E1099K (EK) mutation is shown to be enriched in patients with relapsed acute lymphoblastic leukemia (ALL), indicating a role in clonal evolution and drug resistance. RESULTS To uncover 3D chromatin architecture-related mechanisms underlying drug resistance, we perform Hi-C on three B-ALL cell lines heterozygous for NSD2 EK. The NSD2 mutation leads to widespread remodeling of the 3D genome, most dramatically in terms of compartment changes with a strong bias towards A compartment shifts. Systematic integration of the Hi-C data with previously published ATAC-seq, RNA-seq, and ChIP-seq data show an expansion in H3K36me2 and a shrinkage in H3K27me3 within A compartments as well as increased gene expression and chromatin accessibility. These results suggest that NSD2 EK plays a prominent role in chromatin decompaction through enrichment of H3K36me2. In contrast, we identify few changes in intra-topologically associating domain activity. While compartment changes vary across cell lines, a common core of decompacting loci are shared, driving the expression of genes/pathways previously implicated in drug resistance. We further perform RNA sequencing on a cohort of matched diagnosis/relapse ALL patients harboring the relapse-specific NSD2 EK mutation. Changes in patient gene expression upon relapse significantly correlate with core compartment changes, further implicating the role of NSD2 EK in genome decompaction. CONCLUSIONS In spite of cell-context-dependent changes mediated by EK, there appears to be a shared transcriptional program dependent on compartment shifts which could explain phenotypic differences across EK cell lines. This core program is an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Sonali Narang
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA
| | - Nikki A Evensen
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA
| | - Jason Saliba
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA
| | - Joanna Pierro
- Northwell Health, Staten Island University Hospital, Staten Island, NY, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and The Helen Diller Family Comprehensive Cancer Center University of California, San Francisco, San Francisco, CA, USA
| | - Patrick A Brown
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aristotelis Tsirigos
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA.
- Department of Pathology, NYU Langone Health, New York, NY, USA.
- Perlmutter Cancer Center, NYU Langone Health, Science Building 800, 435 East 30th Street, New York, NY, 10016, USA.
| | - William L Carroll
- Perlmutter Cancer Center, NYU Langone Health, Smilow 1211, 560 First Avenue, New York, NY, 10016, USA.
- Department of Pediatrics, NYU Langone Health, New York, NY, USA.
- Division of Pediatric Hematology/Oncology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
37
|
Rakheja D, Park JY, Yang MS, Martinez DP, Koduru P, Wilson KS, Garcia R, Uddin N. Rhabdomyosarcoma With Epithelioid Features And NSD3::FOXO1 Fusion: Evidence For Reconsideration Of Previously Reported FOXO1::FGFR1 Fusion. Int J Surg Pathol 2023; 31:213-220. [PMID: 35502835 DOI: 10.1177/10668969221098084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epithelioid rhabdomyosarcoma is a rare rhabdomyosarcoma variant for which no diagnostic recurrent driver genetic events have been identified. Here we report a rapidly progressive and widely metastatic rhabdomyosarcoma with epithelioid features that arose in the thigh of a male infant. Conventional cytogenetics revealed a t(8;13)(p11.2;q14) translocation. Fluorescence in situ hybridization studies showed rearrangement of FOXO1 and amplification of its 3" end, and rearrangement of NSD3 and amplification of its 5` end. Next generation sequencing identified a NSD3::FOXO1 fusion, which is a previously unreported gene fusion. We also review the historic report of a FOXO1::FGFR1 fusion in a solid variant of alveolar rhabdomyosarcoma and propose that NSD3::FOXO1 fusion may have been the more appropriate interpretation of the data presented in that report.
Collapse
Affiliation(s)
- Dinesh Rakheja
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Health, Dallas, TX, USA
| | - Jason Y Park
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Health, Dallas, TX, USA
| | - Mary S Yang
- Children's Health, Dallas, TX, USA.,Department of Radiology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana P Martinez
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prasad Koduru
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathleen S Wilson
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rolando Garcia
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naseem Uddin
- Department of Pathology, 12334University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Health, Dallas, TX, USA
| |
Collapse
|
38
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
39
|
Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem J 2023; 480:57-85. [PMID: 36630129 PMCID: PMC10152800 DOI: 10.1042/bcj20220550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Epigenetics, the inheritance of genomic information independent of DNA sequence, controls the interpretation of extracellular and intracellular signals in cell homeostasis, proliferation and differentiation. On the chromatin level, signal transduction leads to changes in epigenetic marks, such as histone post-translational modifications (PTMs), DNA methylation and chromatin accessibility to regulate gene expression. Crosstalk between different epigenetic mechanisms, such as that between histone PTMs and DNA methylation, leads to an intricate network of chromatin-binding proteins where pre-existing epigenetic marks promote or inhibit the writing of new marks. The recent technical advances in mass spectrometry (MS) -based proteomic methods and in genome-wide DNA sequencing approaches have broadened our understanding of epigenetic networks greatly. However, further development and wider application of these methods is vital in developing treatments for disorders and pathologies that are driven by epigenetic dysregulation.
Collapse
|
40
|
Rhodes C, Lin CH. Role of the histone methyltransferases Ezh2 and Suv4-20h1/Suv4-20h2 in neurogenesis. Neural Regen Res 2023; 18:469-473. [DOI: 10.4103/1673-5374.350188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Murali M, Saloura V. Understanding the Roles of the NSD Protein Methyltransferases in Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2022; 13:2013. [PMID: 36360250 PMCID: PMC9689908 DOI: 10.3390/genes13112013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 09/18/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent non-skin cancer in the world. While immunotherapy has revolutionized the standard of care treatment in patients with recurrent/metastatic HNSCC, more than 70% of patients do not respond to this treatment, making the identification of novel therapeutic targets urgent. Recently, research endeavors have focused on how epigenetic modifications may affect tumor initiation and progression of HNSCC. The nuclear receptor binding SET domain (NSD) family of protein methyltransferases NSD1-NSD3 is of particular interest for HNSCC, with NSD1 and NSD3 being amongst the most commonly mutated or amplified genes respectively in HNSCC. Preclinical studies have identified both oncogenic and tumor-suppressing properties across NSD1, NSD2, and NSD3 within the context of HNSCC. The purpose of this review is to provide a better understanding of the contribution of the NSD family of protein methyltransferases to the pathogenesis of HNSCC, underscoring their promise as novel therapeutic targets in this devastating disease.
Collapse
Affiliation(s)
- Madhavi Murali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- School of Medicine, The University of Missouri-Kansas City, Kansas City, MO 64018, USA
| | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Berardi A, Botrugno OA, Quilici G, Manteiga JMG, Bachi A, Tonon G, Musco G. Nizp1 is a specific
NUP98
‐
NSD1
functional interactor that regulates
NUP98
‐
NSD1
‐dependent oncogenic programs. FEBS J 2022; 290:1782-1797. [PMID: 36271682 DOI: 10.1111/febs.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
NSD1, NSD2 and NSD3 proteins constitute a family of histone 3 lysine 36 (H3K36) methyltransferases with similar domain architecture, but diversified activities, in part, dependent on their non-enzymatic domains. These domains, despite their high sequence identity, recruit the hosting proteins to different chromatin regions through the recognition of diverse epigenetic marks and/or associations to distinct interactors. In this sense, the PHDvC5HCH finger tandem domain represents a paradigmatic example of functional divergence within the NSD family. In this work, we prove and give a structural rationale for the uniqueness of the PHDvC5HCH domain of NSD1 in recognizing the C2HR Zinc finger domain of Nizp1 (NSD1 interacting Zn finger protein). Importantly, we show that, in a leukaemogenic context, Nizp1 is pivotal in driving the unscheduled expression of HoxA genes and of genes involved in the type I IFN pathway, triggered by the expression of the fusion protein NUP98-NSD1. These data provide the first insight into the pathophysiological relevance of the Nizp1-NSD1 functional association. Targeting of this interaction might open new therapeutic windows to inhibit the NUP98-NSD1 oncogenic properties.
Collapse
Affiliation(s)
- Andrea Berardi
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | - Oronza A. Botrugno
- Functional Genomics of Cancer, Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
| | - Giacomo Quilici
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | | | - Angela Bachi
- Functional Proteomics Group IFOM‐FIRC Institute of Molecular Oncology Milan Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer, Division of Experimental Oncology IRCCS Ospedale San Raffaele Milan Italy
| | - Giovanna Musco
- Biomolecular NMR, Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| |
Collapse
|
43
|
Krossa I, Strub T, Aplin AE, Ballotti R, Bertolotto C. Lysine Methyltransferase NSD1 and Cancers: Any Role in Melanoma? Cancers (Basel) 2022; 14:cancers14194865. [PMID: 36230787 PMCID: PMC9563040 DOI: 10.3390/cancers14194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Epigenetic events, which comprise post-translational modifications of histone tails or DNA methylation, control gene expression by altering chromatin structure without change in the DNA sequence. Histone tails modifications are driven by specific cellular enzymes such as histone methyltransferases or histone acetylases, which play a key role in regulating diverse biological processes. Their alteration may have consequences on growth and tumorigenesis. Abstract Epigenetic regulations, that comprise histone modifications and DNA methylation, are essential to processes as diverse as development and cancer. Among the histone post-translational modifications, lysine methylation represents one of the most important dynamic marks. Here, we focused on methyltransferases of the nuclear binding SET domain 1 (NSD) family, that catalyze the mono- and di-methylation of histone H3 lysine 36. We review the loss of function mutations of NSD1 in humans that are the main cause of SOTOS syndrome, a disease associated with an increased risk of developing cancer. We then report the role of NSD1 in triggering tumor suppressive or promoter functions according to the tissue context and we discuss the role of NSD1 in melanoma. Finally, we examine the ongoing efforts to target NSD1 signaling in cancers.
Collapse
Affiliation(s)
- Imène Krossa
- Université Côte d’Azur, 06100 Nice, France
- Team 1, Biology and Pathologies of melanocytes, Inserm, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2022, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
- Correspondence: (I.K.); (C.B.)
| | - Thomas Strub
- Université Côte d’Azur, 06100 Nice, France
- Team 1, Biology and Pathologies of melanocytes, Inserm, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2022, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert Ballotti
- Université Côte d’Azur, 06100 Nice, France
- Team 1, Biology and Pathologies of melanocytes, Inserm, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2022, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
| | - Corine Bertolotto
- Université Côte d’Azur, 06100 Nice, France
- Team 1, Biology and Pathologies of melanocytes, Inserm, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2022, Centre Méditerranéen de Médecine Moléculaire, 06200 Nice, France
- Correspondence: (I.K.); (C.B.)
| |
Collapse
|
44
|
Azagra A, Cobaleda C. NSD2 as a Promising Target in Hematological Disorders. Int J Mol Sci 2022; 23:11075. [PMID: 36232375 PMCID: PMC9569587 DOI: 10.3390/ijms231911075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of the epigenetic machinery are critically involved in cancer development and maintenance; therefore, the proteins in charge of the generation of epigenetic modifications are being actively studied as potential targets for anticancer therapies. A very important and widespread epigenetic mark is the dimethylation of Histone 3 in Lysine 36 (H3K36me2). Until recently, it was considered as merely an intermediate towards the generation of the trimethylated form, but recent data support a more specific role in many aspects of genome regulation. H3K36 dimethylation is mainly carried out by proteins of the Nuclear SET Domain (NSD) family, among which NSD2 is one of the most relevant members with a key role in normal hematopoietic development. Consequently, NSD2 is frequently altered in several types of tumors-especially in hematological malignancies. Herein, we discuss the role of NSD2 in these pathological processes, and we review the most recent findings in the development of new compounds aimed against the oncogenic forms of this novel anticancer candidate.
Collapse
Affiliation(s)
| | - César Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CSIC–Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
45
|
Meng F, Xu C, Park KS, Kaniskan HÜ, Wang GG, Jin J. Discovery of a First-in-Class Degrader for Nuclear Receptor Binding SET Domain Protein 2 (NSD2) and Ikaros/Aiolos. J Med Chem 2022; 65:10611-10625. [PMID: 35895319 PMCID: PMC9378504 DOI: 10.1021/acs.jmedchem.2c00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression of nuclear receptor binding SET domain protein 2 (NSD2) is frequent in multiple myeloma (MM). However, existing NSD2 inhibitors are largely ineffective in suppressing MM cell proliferation. Here, we report the discovery of a first-in-class NSD2 proteolysis targeting chimera (PROTAC) degrader, 9 (MS159), and two structurally similar controls, 17 (MS159N1) and 18 (MS159N2), with diminished binding to the cereblon (CRBN) E3 ligase and NSD2, respectively. Compound 9, but not 17 and 18, effectively degraded NSD2 in a concentration-, time-, CRBN-, and proteasome-dependent manner. Compound 9 also effectively degraded CRBN neo-substrates IKZF1 and IKZF3, but not GSPT1. Importantly, compound 9 was much more effective in suppressing the growth in cancer cells than the parent NSD2 binder. Moreover, compound 9 was bioavailable in mice. Altogether, compound 9 and its two controls 17 and 18 are valuable chemical tools for exploring the roles of NSD2 in health and disease.
Collapse
Affiliation(s)
- Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
46
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
47
|
The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines 2022; 10:biomedicines10081778. [PMID: 35892678 PMCID: PMC9394279 DOI: 10.3390/biomedicines10081778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors in men. Initially, it is androgen-dependent, but it eventually develops into castration-resistant prostate cancer (CRPC), which is incurable with current androgen receptor signaling target therapy and chemotherapy. Immunotherapy, specifically with immune checkpoint inhibitors, has brought hope for the treatment of this type of prostate cancer. Approaches such as vaccines, adoptive chimeric antigen receptor-T (CAR-T) cells, and immune checkpoint inhibitors have been employed to activate innate and adaptive immune responses to treat prostate cancer, but with limited success. Only Sipuleucel-T and the immune checkpoint inhibitor pembrolizumab are approved by the US FDA for the treatment of limited prostate cancer patients. Prostate cancer has a complex tumor microenvironment (TME) in which various immunosuppressive molecules and mechanisms coexist and interact. Additionally, prostate cancer is considered a “cold” tumor with low levels of tumor mutational burden, low amounts of antigen-presenting and cytotoxic T-cell activation, and high levels of immunosuppressive molecules including cytokines/chemokines. Thus, understanding the mechanisms of immunosuppressive signaling activation and immune evasion will help develop more effective treatments for prostate cancer. The purpose of this review is to summarize emerging advances in prostate cancer immunotherapy, with a particular focus on the molecular mechanisms that lead to immune evasion in prostate cancer. At the same time, we also highlight some potential therapeutic targets to provide a theoretical basis for the treatment of prostate cancer.
Collapse
|
48
|
Argani P, Tickoo SK, Matoso A, Pratilas CA, Mehra R, Tretiakova M, Sibony M, Meeker AK, Lin MT, Reuter VE, Epstein JI, Gagan J, Palsgrove DN. Adult Wilms Tumor: Genetic Evidence of Origin of a Subset of Cases From Metanephric Adenoma. Am J Surg Pathol 2022; 46:988-999. [PMID: 35184066 PMCID: PMC9310085 DOI: 10.1097/pas.0000000000001864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The genetics of nephroblastoma (Wilms tumor) occurring in adults is largely unknown, as studies have largely been limited to isolated case reports. We, therefore, studied 14 adult Wilms tumors for genetic alterations, using expanded targeted sequencing on 11 cases. The patients ranged from 17 to 46 years of age (mean and median, 31 y), and there were 8 males and 6 females. Five Wilms tumors harbored BRAF V600E mutations. All of these had better-differentiated areas identical to metanephric adenoma, as has previously been described. In 3 such cases, microdissection studies revealed that the BRAF V600E mutation was present in both the metanephric adenoma and Wilms tumor areas; however, additional genetic alterations (including TERT promoter mutations in 2 cases, ASLX1/ATR mutations in 1 other case) were limited to the Wilms tumor component. These findings suggest that the Wilms tumor developed from the metanephric adenoma. Other adult Wilms tumors harbored genetic alterations previously reported in the more common pediatric Wilms tumors, including WT1 mutations (2 cases), ASLX1 mutations (3 additional cases), NSD2 mutation (1 additional case), and 11p loss (3 cases). In summary, a significant subset of adult Wilms tumors (specifically those of epithelial type with differentiated areas) harbor targetable BRAF V600E mutations and appear to arise from metanephric adenomas as a consequence of additional acquired genetic alterations. Other adult Wilms tumors often harbor genetic alterations found in their more common pediatric counterparts, suggesting at least some similarities in their pathogenesis.
Collapse
Affiliation(s)
| | - Satish K. Tickoo
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Andres Matoso
- Departments of Pathology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Rohit Mehra
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Maria Tretiakova
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA
| | | | - Alan K. Meeker
- Departments of Pathology
- Departments of Oncology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Victor E. Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jonathan I. Epstein
- Departments of Pathology
- Departments of Oncology
- Departments of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Doreen N. Palsgrove
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
49
|
Park KS, Xiong Y, Yim H, Velez J, Babault N, Kumar P, Liu J, Jin J. Discovery of the First-in-Class G9a/GLP Covalent Inhibitors. J Med Chem 2022; 65:10506-10522. [PMID: 35763668 DOI: 10.1021/acs.jmedchem.2c00652] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly homologous protein lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in various human diseases. To investigate functions of G9a and GLP in human diseases, we and others reported several noncovalent reversible small-molecule inhibitors of G9a and GLP. Here, we report the discovery of the first-in-class G9a/GLP covalent irreversible inhibitors, 1 and 8 (MS8511), by targeting a cysteine residue at the substrate binding site. We characterized these covalent inhibitors in enzymatic, mass spectrometry based and cellular assays and using X-ray crystallography. Compared to the noncovalent G9a/GLP inhibitor UNC0642, covalent inhibitor 8 displayed improved potency in enzymatic and cellular assays. Interestingly, compound 8 also displayed potential kinetic preference for covalently modifying G9a over GLP. Collectively, compound 8 could be a useful chemical tool for studying the functional roles of G9a and GLP by covalently modifying and inhibiting these methyltransferases.
Collapse
Affiliation(s)
- Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hyerin Yim
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Nicolas Babault
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Prashasti Kumar
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
50
|
Li N, Yang H, Liu K, Zhou L, Huang Y, Cao D, Li Y, Sun Y, Yu A, Du Z, Yu F, Zhang Y, Wang B, Geng M, Li J, Xiong B, Xu S, Huang X, Liu T. Structure-Based Discovery of a Series of NSD2-PWWP1 Inhibitors. J Med Chem 2022; 65:9459-9477. [PMID: 35704853 DOI: 10.1021/acs.jmedchem.2c00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression, point mutations, or translocations of protein lysine methyltransferase NSD2 occur in many types of cancer cells. Therefore, it was recognized as onco-protein and considered as a promising anticancer drug target. NSD2 consists of multiple domains including a SET catalytic domain and two PWWP domains binding to methylated histone proteins. Here, we reported our efforts to develop a series of NSD2-PWWP1 inhibitors, and further structure-based optimization resulted in a potent inhibitor 38, which has high selectivity toward the NSD2-PWWP1 domain. The detailed biological evaluation revealed that compound 38 can bind to NSD2-PWWP1 and then affect the expression of genes regulated by NSD2. The current discovery will provide a useful chemical probe to the future research in understanding the specific regulation mode of NSD2 by PWWP1 recognition and pave the way to develop potential drugs targeting NSD2 protein.
Collapse
Affiliation(s)
- Na Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Hong Yang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Ke Liu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201210, P. R. China
| | - Liwei Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yuting Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Aisong Yu
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201210, P. R. China
| | - Ying Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| | - Bingyang Wang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Meiyu Geng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Shilin Xu
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 ZuChong Zhi Road, Shanghai 201203, P. R. China
| | - Xun Huang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China
| |
Collapse
|