1
|
Jimenez-Sanchez S, Maksoud R, Eaton-Fitch N, Marshall-Gradisnik S, Broadley SA. The role of alemtuzumab in the development of secondary autoimmunity in multiple Sclerosis: a systematic review. J Neuroinflammation 2024; 21:281. [PMID: 39487492 DOI: 10.1186/s12974-024-03263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Secondary autoimmune disease (SAID) in the context of alemtuzumab treatment is one of the main safety concerns that may arise following administration in people with multiple sclerosis (pwMS). Contributing factors underlying this adverse event are not well understood. The purpose of this systematic review was to appraise the literature investigating the role of alemtuzumab in the development of SAID in pwMS following treatment and identify potential biomarkers/ risk factors that may be predictive of onset of this manifestation. METHODS Relevant publications were retrieved from PubMed, Embase, and Web of Science using a three-pronged search strategy containing the following keywords: "multiple sclerosis"; "alemtuzumab"; and "autoimmunity". Studies that fulfilled the specified eligibility criteria and investigated SAID development after alemtuzumab in pwMS were included in the final analysis. RESULTS 19 papers were included in the final review. Approximately, 47.92% of pwMS treated with alemtuzumab experienced SAID. A variety of biomarkers and risk factors were noted in the development of SAID, with a focus on immunological changes, including: increased homeostatic proliferation and T cell cycling, along with consistently elevated baseline serum IL-21 levels and thyroid autoantibodies. There was no significant association between known human leukocyte antigen (HLA) risk alleles, lymphocyte profile or dynamics and SAID development. CONCLUSIONS While the mechanism underlying SAID following alemtuzumab is not fully understood, potential biomarkers and risk factors that may assist in elucidating mechanisms underlying this phenomenon have been documented in several independent studies. Following immunodepletion from alemtuzumab, an IL-21 driven increase in homeostatic proliferation and T cell cycling may disrupt tolerance mechanisms leading to an increase in the propensity toward alemtuzumab-induced autoimmunity. Further research is necessary to clarify the physiological changes after alemtuzumab therapy that trigger SAID in pwMS.
Collapse
Affiliation(s)
- Sofia Jimenez-Sanchez
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, Australia.
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Southport, QLD, Australia.
| | - Rebekah Maksoud
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Southport, QLD, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Southport, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Southport, QLD, Australia
| | - Simon A Broadley
- School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Southport, QLD, Australia
- Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
2
|
Li WP, Mao XT, Xie JH, Li JY, Liu BQ, Wu LX, Yang B, Li YY, Jin J. N-acetyltransferase 10 is implicated in the pathogenesis of cycling T cell-mediated autoimmune and inflammatory disorders in mice. Nat Commun 2024; 15:9388. [PMID: 39477944 PMCID: PMC11525920 DOI: 10.1038/s41467-024-53350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
T cell expansion has a crucial function in both autoimmune and chronic inflammatory diseases, with cycling T cells contributing to the pathogenesis of autoimmune diseases by causing uncontrolled immune responses and tissue damage. Yet the regulatory mechanisms governing T cell expansion remain incompletely understood. Here we show that the enzyme N-acetyltransferase 10 (NAT10) regulates T cell activation and proliferation upon antigen stimulation. T cell-specific NAT10 deficiency in mice reduces the number of mature T cells in peripheral lymphoid organs. Mechanistically, NAT10 acetylates RACK1 at K185, preventing subsequent RACK1 K48-linked ubiquitination and degradation. The increased RACK1 stability alters ribosome formation and cellular metabolism, leading to enhanced supply of energy and biosynthetic precursors and, eventually, T cell proliferation. Our findings thus highlight the essential function of NAT10 in T cell self-renewal and metabolism and elucidate NAT10 mode of action for the potential development of novel therapies for immune-related disorders.
Collapse
Affiliation(s)
- Wen-Ping Li
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xin-Tao Mao
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jia-Huan Xie
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie-Yu Li
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Bao-Qin Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Le-Xi Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
3
|
Aharoni R, Milo R, Arnon R. Glatiramer Acetate for the Treatment of Multiple Sclerosis: From First-Generation Therapy to Elucidation of Immunomodulation and Repair. Pharmacol Rev 2024; 76:1133-1158. [PMID: 39406508 DOI: 10.1124/pharmrev.124.000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS), with a putative autoimmune origin and complex pathogenesis. Modification of the natural history of MS by reducing relapses and slowing disability accumulation was first attained in the 1990 s with the development of the first-generation disease-modifying therapies. Glatiramer acetate (GA), a copolymer of L-alanine, L-lysine, L-glutamic acid, and L-tyrosine, was discovered due to its ability to suppress the animal model of MS, experimental autoimmune encephalomyelitis. Extensive clinical trials and long-term assessments established the efficacy and the safety of GA. Furthermore, studies of the therapeutic processes induced by GA in animal models and in MS patients indicate that GA affects various levels of the innate and the adaptive immune response, generating deviation from proinflammatory to anti-inflammatory pathways. This includes competition for binding to antigen presenting cells; driving dendritic cells, monocytes, and B-cells toward anti-inflammatory responses; and stimulating T-helper 2 and T-regulatory cells. The immune cells stimulated by GA reach the CNS and secrete in situ anti-inflammatory cytokines alleviating the pathological processes. Furthermore, cumulative findings reveal that in addition to its immunomodulatory effect, GA promotes neuroprotective repair processes such as neurotrophic factors secretion, remyelination, and neurogenesis. This review aims to provide an overview of MS pathology diagnosis and treatment as well as the diverse mechanism of action of GA. SIGNIFICANCE STATEMENT: Understanding the complex MS immune pathogenesis provided multiple targets for therapeutic intervention, resulting in a plethora of agents, with various mechanisms of action, efficacy, and safety profiles. However, promoting repair beyond the body's limited spontaneous extent is still a major challenge. GA, one of the first approved disease-modifying therapies, induces diverse immunomodulatory effects. Furthermore, GA treatment results in elevated neurotrophic factors secretion, remyelination and neurogenesis, supporting the notion that immunomodulatory treatment can support in situ a growth-promoting and repair environment.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ron Milo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| | - Ruth Arnon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel (Ri.A., Ru.A.); and Department of Neurology, Barzilai Medical Center, Ashkelon, Israel, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel (R.M.)
| |
Collapse
|
4
|
Sigler AL, Thompson SB, Ellwood-Digel L, Kandasamy A, Michaels MJ, Thumkeo D, Narumiya S, Del Alamo JC, Jacobelli J. FMNL1 and mDia1 promote efficient T cell migration through complex environments via distinct mechanisms. Front Immunol 2024; 15:1467415. [PMID: 39430739 PMCID: PMC11486666 DOI: 10.3389/fimmu.2024.1467415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Lymphocyte trafficking and migration through tissues is critical for adaptive immune function and, to perform their roles, T cells must be able to navigate through diverse tissue environments that present a range of mechanical challenges. T cells predominantly express two members of the formin family of actin effectors, Formin-like 1 (FMNL1) and mammalian diaphanous-related formin 1 (mDia1). While both FMNL1 and mDia1 have been studied individually, they have not been directly compared to determine functional differences in promoting T cell migration. Through in vivo analysis and the use of in vitro 2D and 3D model environments, we demonstrate that FMNL1 and mDia1 are both required for effective T cell migration, but they have different localization and roles in T cells, with specific environment-dependent functions. We found that mDia1 promotes general motility in 3D environments in conjunction with Myosin-II activity. We also show that, while mDia1 is almost entirely in the cytoplasmic compartment, a portion of FMNL1 physically associates with the nucleus. Furthermore, FMNL1 localizes to the rear of migrating T cells and contributes to efficient migration by promoting deformation of the rigid T cell nucleus in confined environments. Overall, our data indicates that while FMNL1 and mDia1 have similar mechanisms of actin polymerization, they have distinct roles in promoting T cell migration. This suggests that differential modulation of FMNL1 and mDia1 can be an attractive therapeutic route to fine-tune T cell migration behavior.
Collapse
Affiliation(s)
- Ashton L. Sigler
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Scott B. Thompson
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Logan Ellwood-Digel
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Adithan Kandasamy
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Mary J. Michaels
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Juan C. Del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
- Division of Cardiology, University of Washington, Seattle, WA, United States
| | - Jordan Jacobelli
- Department of Immunology & Microbiology and Barbara Davis Research Center, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
5
|
Waede M, Voss LF, Kingo C, Moeller JB, Elkjaer ML, Illes Z. Longitudinal analysis of peripheral immune cells in patients with multiple sclerosis treated with anti-CD20 therapy. Ann Clin Transl Neurol 2024; 11:2657-2672. [PMID: 39279291 PMCID: PMC11514931 DOI: 10.1002/acn3.52182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Anti-CD20 therapy is a highly effective treatment for multiple sclerosis (MS). In this study, we investigated MS-related changes in peripheral blood mononuclear cell (PBMC) subsets compared to healthy controls and longitudinal changes related to the treatment. METHODS Multicolor spectral flow cytometry analysis was performed on 78 samples to characterize disease- and treatment-related PBMC clusters. Blood samples from MS patients were collected at baseline and up to 8 months post-treatment, with three collection points after treatment initiation. Unsupervised clustering tools and manual gating were applied to identify subclusters of interest and quantify changes. RESULTS B cells were depleted from the periphery after anti-CD20 treatment as expected, and we observed an isolated acute, transitory drop in the proportion of natural killer (NK) and NKT cells among the main populations of PBMC (P = 0.03, P = 0.004). Major affected PBMC subpopulations were cytotoxic immune cells (NK, NKT, and CD8+ T cells), and we observed a higher proportion of cytotoxic cells with reduced brain-homing ability and a higher regulatory function as a long-term anti-CD20-related effect. Additionally, anti-CD20 therapy altered distributions of memory CD8+ T cells and reduced exhaustion markers in both CD4+ and CD8+ T cells. INTERPRETATION The findings of this study elucidate phenotypic clusters of NK and CD8+ T cells, which have previously been underexplored in the context of anti-CD20 therapy. Phenotypic modifications towards a more regulatory and controlled phenotype suggest that these subpopulations may play a critical and previously unrecognized role in mediating the therapeutic efficacy of anti-CD20 treatments.
Collapse
Affiliation(s)
- Mie Waede
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Lasse F. Voss
- Section for Experimental and Translational Immunology, Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | - Christina Kingo
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Jesper B. Moeller
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced Study, University of Southern DenmarkOdenseDenmark
| | - Maria L. Elkjaer
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Institute for Computational Systems Biology, University of HamburgHamburgGermany
| | - Zsolt Illes
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- BRIDGE – Brain Research Interdisciplinary Guided ExcellenceUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
6
|
Tortosa-Carreres J, Cubas-Núñez L, Piqueras M, Castillo-Villalba J, Quintanilla-Bordàs C, Quiroga-Varela A, Villarrubia N, Monreal E, Álvarez G, Gasque-Rubio R, Forés-Toribio L, Carratalà-Boscà S, Lucas C, Sanz MT, Ramió-Torrentà L, Villar LM, Casanova B, Laiz B, Pérez-Miralles FC. Evaluating the complement C1q levels in serum and cerebrospinal fluid in multiple sclerosis patients: Could it serve as a valuable marker in clinical practice? J Neuroimmunol 2024; 394:578428. [PMID: 39121816 DOI: 10.1016/j.jneuroim.2024.578428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Immunohistochemical studies have identified complement component C1q in MS lesions. We aimed to compare serum (sC1q) and CSF (csfC1q) levels in a large cohort of MS patients (pwMS) (n = 222) with those of healthy controls (HC, n = 52), individuals with other immune (IND, n = 14), and non-immune neurological disorders (nIND, n = 15), and to analyze their correlation with other biomarkers. pwMS were divided into three series based on their origin. CSF samples were unavailable for HC. All three pwMS cohorts had lower sC1q levels compared to HC and IND. csfC1q was higher in one pwMS cohort, with a trend in another, and correlated with IgG, Free Kappa Light Chains, GFAP, and Chitinase-3 Like Protein-1 in CSF. Our findings suggest a significant role for C1q in MS pathophysiology, potentially serving as a biomarker for disease identification.
Collapse
Affiliation(s)
- Jordi Tortosa-Carreres
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain; Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain.
| | - Laura Cubas-Núñez
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain.
| | - Mónica Piqueras
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | | | - Carlos Quintanilla-Bordàs
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Ana Quiroga-Varela
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain.
| | - Noelia Villarrubia
- Departments of Immunology and Neurology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Madrid, Spain.
| | - Enric Monreal
- Departments of Immunology and Neurology, Ramon y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Red Española de Esclerosis Múltiple (REEM), Red de Enfermedades Inflamatorias (REI), ISCIII, Madrid, Spain.
| | - Gary Álvarez
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Salt, Spain.
| | - Raquel Gasque-Rubio
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain
| | | | | | - Celia Lucas
- Computer Systems, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain..
| | - María T Sanz
- Department of Didactic of Mathematics. University of Valencia, Spain.
| | - Lluís Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital and Santa Caterina Hospital, Girona, Spain.
| | - Luisa María Villar
- Multiple Sclerosis Unit, Ramon y Cajal University Hospital, Madrid, Spain.
| | - Bonaventura Casanova
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| | - Begoña Laiz
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain.
| | - Francisco Carlos Pérez-Miralles
- Neuroimmunology Unit, Health Research Institute La Fe, 46026, Valencia. Spain; Neurology Department, La Fe University and Polytechnic Hospital, 46026, Valencia, Spain
| |
Collapse
|
7
|
Kawakami N, Wekerle H. Life history of a brain autoreactive T cell: From thymus through intestine to blood-brain barrier and brain lesion. Neurotherapeutics 2024:e00442. [PMID: 39237437 DOI: 10.1016/j.neurot.2024.e00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Brain antigen-specific autoreactive T cells seem to play a key role in inducing inflammation in the central nervous system (CNS), a characteristic feature of human multiple sclerosis (MS). These T cells are generated within the thymus, where they escape negative selection and become integrated into the peripheral immune repertoire of immune cells. Typically, these autoreactive T cells rest in the periphery without attacking the CNS. When autoimmune T cells enter gut-associated lymphatic tissue (GALT), they may be stimulated by the microbiota and its metabolites. After activation, the cells migrate into the CNS through the blood‒brain barrier, become reactivated upon interacting with local antigen-presenting cells, and induce inflammatory lesions within the brain parenchyma. This review describes how microbiota influence autoreactive T cells during their life, starting in the thymus, migrating through the periphery and inducing inflammation in their target organ, the CNS.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany; Emeritus Group Neuroimmunology, Max Planck Institute of Biological Intelligence, Germany.
| |
Collapse
|
8
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2024:revneuro-2024-0090. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
9
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
10
|
Xu D, Wang M, Wang L. Simvastatin alleviates experimental autoimmune encephalomyelitis through regulating the balance of Th17 and Treg in mice. Allergol Immunopathol (Madr) 2024; 52:36-43. [PMID: 39278849 DOI: 10.15586/aei.v52i5.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 09/18/2024]
Abstract
The aim of this study was to elucidate the therapeutic effect of simvastatin on experimental autoimmune encephalomyelitis (EAE) by regulating the balance between Th17 and Treg cells in mice. C57BL/6 mice were randomly divided into four groups: normal group, EAE group, simvastatin (2 and 10 mg/kg) group, and AG490 group (with AG490 serving as the positive control). Neurological function scores of mice were assessed daily. The four groups received treatments of normal saline, normal saline, and simvastatin (2 and 10 mg/kg), respectively. In the AG490 group, mice were injected intraperitoneally with AG490 (1 mg) every other day, and treatment was halted after 3 weeks. The spinal cord was stained with hematoxylin and eosin (H&E), and immunohistochemical staining for retinoic acid receptor-related orphan receptor γ(RORγ) and Foxp3 (Foxp3) was performed. Spleen samples were taken for Th17 and Treg analysis using flow cytometry. The levels of interleukin-17 and transforming growth factor-β (TGF-β) were detected using enzyme-linked immunosorbent assay (ELISA). In the simvastatin and AG490 groups, recovery from neurological impairment was earlier compared to the EAE group, and the symptoms were notably improved. Both simvastatin and AG490 reduced focal inflammation, decreased RORγ-positive cell infiltration, and significantly increased the number of FOXP3-positive cells. The number of Th17 cells and the level of IL-17 in the spleen were decreased in the simvastatin and AG490 treatment groups, while the number of Treg cells and TGF-β levels were significantly increased across all treatment groups. Simvastatin exhibits anti-inflammatory and immunomodulatory effects, potentially alleviating symptoms of neurological dysfunction of EAE. Regulating the balance between Th17 and Treg may represent a therapeutic mechanism for simvastatin in treating EAE.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Th17 Cells/immunology
- Th17 Cells/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Simvastatin/pharmacology
- Simvastatin/administration & dosage
- Mice
- Mice, Inbred C57BL
- Female
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Interleukin-17/metabolism
- Forkhead Transcription Factors/metabolism
- Spinal Cord/immunology
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Humans
- Transforming Growth Factor beta/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Dongsheng Xu
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, China;
| | - Lijuan Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Arneth B. Current Knowledge about CD3 +CD20 + T Cells in Patients with Multiple Sclerosis. Int J Mol Sci 2024; 25:8987. [PMID: 39201672 PMCID: PMC11354236 DOI: 10.3390/ijms25168987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by inflammation and autoimmune responses. This review explores the participation of T cells, particularly certain CD3+CD20+ T cells, in the clinical manifestations of MS and highlights their presence in diagnosed patients. These T cells show aberrant expression of CD20, normally considered a B-cell marker. In this review, relevant journal articles available in PubMed and CINAHL were identified by employing diverse search terms, such as MS, CD3+CD20+ T cells, the incidence and significance of CD3+CD20+ T cells in MS patients, and the impact of rituximab treatment. The search was limited to articles published in the ten-year period from 2014 to 2024. The results of this review suggest that most scholars agree on the presence of CD3+CD20+ T cells in cerebrospinal fluid. Emerging concepts relate to the fundamental role of CD20-expressing T cells in determining the target and efficacy of MS therapeutics and the presence of T cells in the cerebrospinal fluid of MS patients. The results clearly show that CD20+ T cells indicate disease chronicity and high disease activity.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
12
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
13
|
Stekic A, Dragic M, Stanojevic J, Zaric Kontic M, Stevanovic I, Zeljkovic Jovanovic M, Mihajlovic K, Nedeljkovic N. Impaired olfactory performance and anxiety-like behavior in a rat model of multiple sclerosis are associated with enhanced adenosine signaling in the olfactory bulb via A 1R, A 2BR, and A 3R. Front Cell Neurosci 2024; 18:1407975. [PMID: 39139401 PMCID: PMC11320153 DOI: 10.3389/fncel.2024.1407975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
The present study shows that animals with experimental autoimmune encephalomyelitis (EAE) exhibit olfactory dysfunction and impaired general cognitive abilities, as well as anxiety-like behavior. Olfactory dysfunction occurs on average at 2 dpi, well before the onset of the first motor signs of EAE (8-10 dpi). After the initial olfactory dysfunction, the EAE animals show a fluctuation in olfactory performance that resembles the relapsing-remitting course of human MS. The study also shows severe neuroinflammation in the olfactory bulb (OB), with numerous infiltrated CD4+ T cells and peripheral macrophages in the superficial OB layers, marked microgliosis, and massive induction of TNF-α, IL-1β, and IL-6. Reduced tyrosine hydroxylase activity in the glomerular layer, pronounced granule cell atrophy, and reduced numbers of type B neuroblasts in the rostral migratory stream also indicate altered plasticity of the neuronal network in the OB. Considering the exceptionally high purinome expression in the OB, the possible involvement of purinergic signaling was also investigated. The study shows that macrophages infiltrating the OB overexpress A3R, while highly reactive microglia overexpress the adenosine-producing enzyme eN/CD73 as well as A2BR, A3R, and P2X4R. Given the simultaneous induction of complement component C3, the results suggest that the microglial cells develop a functional phenotype of phagocytizing microglia. The study also demonstrates transcriptional and translational upregulation of A1R in mitral and tufted cells, which likely influence resting network activity in OB and likely contribute to olfactory dysfunction in EAE. Overall, our study shows that olfactory dysfunction and altered social and cognitive behavior in EAE are associated with increased adenosine signaling via A1R, A2BR, and A3R.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Vinca Institute of Nuclear Sciences, Institute of National Significance, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Hu H, Li H, Li R, Liu P, Liu H. Re-establishing immune tolerance in multiple sclerosis: focusing on novel mechanisms of mesenchymal stem cell regulation of Th17/Treg balance. J Transl Med 2024; 22:663. [PMID: 39010157 PMCID: PMC11251255 DOI: 10.1186/s12967-024-05450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.
Collapse
Affiliation(s)
- Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
15
|
Chen Y, Liu M, Lu M, Luo L, Han Z, Liu X. Exploring the impact of m 6A modification on immune diseases: mechanisms and therapeutic implication. Front Immunol 2024; 15:1387582. [PMID: 39072324 PMCID: PMC11272477 DOI: 10.3389/fimmu.2024.1387582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
N6-methyladenosine (m6A) is a chemical modification of RNA and has become a widely discussed topic among scientific researchers in recent years. It is distributed in various organisms, including eukaryotes and bacteria. It has been found that m6A is composed of writers, erasers and readers and is involved in biological functions such as splicing, transport and translation of RNA. The balance of the human immune microenvironment is important for human health abnormalities. Increasing studies have found that m6A affects the development of immune diseases such as inflammatory enteritis and systemic lupus erythematosus (SLE) by participating in the homeostatic regulation of the immune microenvironment in vivo. In this manuscript, we introduce the composition, biological function, regulation of m6A in the immune microenvironment and its progression in various immune diseases, providing new targets and directions for the treatment of immune diseases in clinical practice.
Collapse
Affiliation(s)
- Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| | - Miao Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linling Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xide Liu
- Department of Traditional Chinese Medicine, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Wu N, Zhao Y, Xiao M, Liu H, Chen H, Liu B, Wang X, Fan X. Methylprednisolone Modulates the Tfr/Tfh ratio in EAE-Induced Neuroinflammation through the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR Signalling Pathways. Inflammation 2024:10.1007/s10753-024-02099-y. [PMID: 38980500 DOI: 10.1007/s10753-024-02099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Methylprednisolone (MP) is a potent glucocorticoid that can effectively inhibit immune system inflammation and brain tissue damage in Multiple sclerosis (MS) patients. T follicular helper (Tfh) cells are a subpopulation of activated CD4 + T cells, while T follicular regulatory (Tfr) cells, a novel subset of Treg cells, possess specialized abilities to suppress the Tfh-GC response and inhibit antibody production. Dysregulation of either Tfh or Tfr cells has been implicated in the pathogenesis of MS. However, the molecular mechanism underlying the anti-inflammatory effects of MP therapy on experimental autoimmune encephalomyelitis (EAE), a representative model for MS, remains unclear. This study aimed to investigate the effects of MP treatment on EAE and elucidate the possible underlying molecular mechanisms involed. We evaluated the effects of MP on disease progression, CNS inflammatory cell infiltration and myelination, microglia and astrocyte activation, as well as Tfr/Tfh ratio and related molecules/inflammatory factors in EAE mice. Additionally, Western blotting was used to assess the expression of proteins associated with the PI3K/AKT pathway. Our findings demonstrated that MP treatment ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Furthermore, it reduced microglial and astrocytic activation. MP may increase the number of Tfr cells and the levels of cytokine TGF-β1, while reducing the number of Tfh cells and the levels of cytokine IL-21, as well as regulate the imbalanced Tfr/Tfh ratio in EAE mice. The PI3K/AKT/FoxO1 and PI3K/AKT/mTOR pathways were found to be involved in EAE development. However, MP treatment inhibited their activation. MP reduced neuroinflammation in EAE by regulating the balance between Tfr/Tfh cells via inhibition of the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR signalling pathways.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Yun Zhao
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Minjun Xiao
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Hui Liu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Hongliang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Xuezhen Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China.
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China.
| |
Collapse
|
17
|
Mohammadinasr M, Montazersaheb S, Hosseini V, Kahroba H, Talebi M, Molavi O, Ayromlou H, Hejazi MS. Epstein-Barr virus-encoded BART9 and BART15 miRNAs are elevated in exosomes of cerebrospinal fluid from relapsing-remitting multiple sclerosis patients. Cytokine 2024; 179:156624. [PMID: 38692184 DOI: 10.1016/j.cyto.2024.156624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Epstein-Barr virus (EBV) infection is approved as the main environmental trigger of multiple sclerosis (MS). In this path, we quantified ebv-miR-BART9-3p and ebv-miR-BART15 in exosomes of cerebrospinal fluid (CSF) of untreated relapsing-remitting MS (RRMS) patients in comparison with the control group. Interestingly, patients displayed significant upregulation of ebv-miR-BART9-3p (18.4-fold) and ebv-miR-BART15 (3.1-fold) expression in CSF exosomes. Moreover, the expression levels of hsa-miR-21-5p and hsa-miR-146a-5p were found to be significantly elevated in the CSF samples obtained from the patient group compared to those obtained from the HC group. The levels of Interferon-gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), transforming growth factor beta (TGF-β), and tumor necrosis factor-alpha (TNF-α) were observed to be significantly elevated in the serum and CSF exosomes of the patients. The highest increase was observed in TGF-β (8.5-fold), followed by IL-23 (3.9-fold) in CSF exosomes. These findings are in agreement with the association between EBV infection and inflammatory cytokines induction. Furthermore, the ratios of TGF-β: TNF-α and TGF-β: IFN-γ attained values of 4 to 16.4 and 1.3 to 3.6, respectively, in the CSF exosomes of the patients, in comparison to those of the control group. These findings show EBV activity in RRMS patients is different from that of healthy ones. Elevation of ebv-miR-BART9-3p, ebv-miR-BART15, and inflammatory cytokines expression in CSF exosomes in RRMS patients provides a substantial link between EBV activity and the onset of the disease, as well as the transition from EBV infection to MS.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School of Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ommoleila Molavi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Bjedov S, Stegnjaić G, Stanisavljević S, Lazarević M, Pilipović I, Sakač M, Miljković Đ. Anti-Neuroinflammatory Effects of a Novel Bile Acid Derivative. Int J Mol Sci 2024; 25:7136. [PMID: 39000243 PMCID: PMC11241333 DOI: 10.3390/ijms25137136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In the search for novel potent immunomodulatory nuclear factor-erythroid 2 related factor 2 (Nrf2) activators, a derivative of cholic bile acid, SB140, was synthesized. The synthesis of SB140 aimed to increase the electrophilic functionality of the compound, enhancing its ability to activate Nrf2. Effects of SB140 on microglial cells, myeloid-derived cells (MDC), and T cells were explored in the context of (central nervous system) CNS autoimmunity. SB140 potently activated Nrf2 signaling in MDC and microglia. It was efficient in reducing the ability of microglial cells to produce inflammatory nitric oxide, interleukin (IL)-6, and tumor necrosis factor (TNF). Also, SB140 reduced the proliferation of encephalitogenic T cells and the production of their effector cytokines: IL-17 and interferon (IFN)-γ. On the contrary, the effects of SB140 on anti-inflammatory IL-10 production in microglial and encephalitogenic T cells were limited or absent. These results show that SB140 is a potent Nrf2 activator, as well as an immunomodulatory compound. Thus, further research on the application of SB140 in the treatment of neuroinflammatory diseases is warranted. Animal models of multiple sclerosis and other inflammatory neurological disorders will be a suitable choice for such studies.
Collapse
Grants
- 451-03-66/2024-03/200007 Ministry of Science, , Technological Development, and Innovation, Republic of Serbia
- 451-03-66/2024-03/ 200125 Ministry of Science, Technological Development, and Innovation, Republic of Serbia
- 451-03-65/2024-03/200125 Ministry of Science, Technological Development, and Innovation, Republic of Serbia
Collapse
Affiliation(s)
- Srđan Bjedov
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Goran Stegnjaić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Ivan Pilipović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| | - Marija Sakač
- Department of Chemistry, Biochemistry, and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia
| |
Collapse
|
19
|
Schumacher SM, Doyle WJ, Hill K, Ochoa-Repáraz J. Gut microbiota in multiple sclerosis and animal models. FEBS J 2024. [PMID: 38817090 DOI: 10.1111/febs.17161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) neurodegenerative and neuroinflammatory disease marked by a host immune reaction that targets and destroys the neuronal myelin sheath. MS and correlating animal disease models show comorbidities, including intestinal barrier disruption and alterations of the commensal microbiome. It is accepted that diet plays a crucial role in shaping the microbiota composition and overall gastrointestinal (GI) tract health, suggesting an interplay between nutrition and neuroinflammation via the gut-brain axis. Unfortunately, poor host health and diet lead to microbiota modifications that could lead to significant responses in the host, including inflammation and neurobehavioral changes. Beneficial microbial metabolites are essential for host homeostasis and inflammation control. This review will highlight the importance of the gut microbiota in the context of host inflammatory responses in MS and MS animal models. Additionally, microbial community restoration and how it affects MS and GI barrier integrity will be discussed.
Collapse
Affiliation(s)
| | - William J Doyle
- Department of Biological Sciences, Boise State University, ID, USA
| | - Kristina Hill
- Department of Biological Sciences, Boise State University, ID, USA
| | | |
Collapse
|
20
|
Cogill SA, Lee JH, Jeon MT, Kim DG, Chang Y. Hopping the Hurdle: Strategies to Enhance the Molecular Delivery to the Brain through the Blood-Brain Barrier. Cells 2024; 13:789. [PMID: 38786013 PMCID: PMC11119906 DOI: 10.3390/cells13100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Modern medicine has allowed for many advances in neurological and neurodegenerative disease (ND). However, the number of patients suffering from brain diseases is ever increasing and the treatment of brain diseases remains an issue, as drug efficacy is dramatically reduced due to the existence of the unique vascular structure, namely the blood-brain barrier (BBB). Several approaches to enhance drug delivery to the brain have been investigated but many have proven to be unsuccessful due to limited transport or damage induced in the BBB. Alternative approaches to enhance molecular delivery to the brain have been revealed in recent studies through the existence of molecular delivery pathways that regulate the passage of peripheral molecules. In this review, we present recent advancements of the basic research for these delivery pathways as well as examples of promising ventures to overcome the molecular hurdles that will enhance therapeutic interventions in the brain and potentially save the lives of millions of patients.
Collapse
Affiliation(s)
- Sinnead Anne Cogill
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae-Hyeok Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Tae Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; (S.A.C.); (J.-H.L.); (M.-T.J.)
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
21
|
Cheyne I, Gopinath VS, Muppa N, Armas AE, Gil Agurto MS, Akula SA, Nagpal S, Yousaf MS, Haider A. The Neurological Implications of COVID-19: A Comprehensive Narrative Review. Cureus 2024; 16:e60376. [PMID: 38887342 PMCID: PMC11181960 DOI: 10.7759/cureus.60376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 revealed a huge number of problems as well as discoveries in medicine, notably, regarding the effects of the virus on the central nervous system (CNS) and peripheral nervous system (PNS). This paper is a narrative review that takes a deep dive into the complex interactions between COVID-19 and the NS. Therefore, this paper explains the broad range of neurological manifestations and neurodegenerative diseases caused by the virus. It carefully considers the routes through which SARS-CoV-2 reaches the NS, including the olfactory system and of course, the hematogenous route, which are also covered when discussing the virus's direct and indirect mechanisms of neuropathogenesis. Besides neurological pathologies such as stroke, encephalitis, Guillain-Barré syndrome, Parkinson's disease, and multiple sclerosis, the focus area is also given to the challenges of making diagnosis, treatment, and management of these conditions during the pandemic. The review also examines the strategic and interventional approaches utilized to prevent these disorders, as well as the ACE2 receptors implicated in the mediation of neurological effects caused by COVID-19. This detailed overview, which combines research outputs with case data, is directed at tackling this pandemic challenge, with a view toward better patient care and outcomes in the future.
Collapse
Affiliation(s)
- Ithamar Cheyne
- Critical Care, Medical University of Warsaw, Warsaw, POL
| | | | - Neeharika Muppa
- School of Medicine, St. George's University, St. George's, GRD
| | - Angel Emanuel Armas
- Internal Medicine, Cardiac Arrhythmia Service, Harvard Medical School, Boston, USA
| | | | - Sai Abhigna Akula
- Internal Medicine, School of Medicine, St. George's University, St. George's, GRD
| | - Shubhangi Nagpal
- Internal Medicine, Guru Gobind Singh Government Hospital, New Delhi, IND
| | | | - Ali Haider
- Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| |
Collapse
|
22
|
Varghese JF, Kaskow BJ, von Glehn F, Case J, Li Z, Julé AM, Berdan E, Ho Sui SJ, Hu Y, Krishnan R, Chitnis T, Kuchroo VK, Weiner HL, Baecher-Allan CM. Human regulatory memory B cells defined by expression of TIM-1 and TIGIT are dysfunctional in multiple sclerosis. Front Immunol 2024; 15:1360219. [PMID: 38745667 PMCID: PMC11091236 DOI: 10.3389/fimmu.2024.1360219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Background Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.
Collapse
Affiliation(s)
- Johnna F. Varghese
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Belinda J. Kaskow
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Felipe von Glehn
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Junning Case
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhenhua Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Amélie M. Julé
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Emma Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shannan Janelle Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yong Hu
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vijay K. Kuchroo
- Harvard Medical School, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Howard L. Weiner
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Clare Mary Baecher-Allan
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
23
|
Khan Z, Mehan S, Gupta GD, Narula AS. Immune System Dysregulation in the Progression of Multiple Sclerosis: Molecular Insights and Therapeutic Implications. Neuroscience 2024; 548:9-26. [PMID: 38692349 DOI: 10.1016/j.neuroscience.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Multiple sclerosis (MS), a prevalent neurological disorder, predominantly affects young adults and is characterized by chronic autoimmune activity. The study explores the immune system dysregulation in MS, highlighting the crucial roles of immune and non-neuronal cells in the disease's progression. This review examines the dual role of cytokines, with some like IL-6, TNF-α, and interferon-gamma (IFN-γ) promoting inflammation and CNS tissue injury, and others such as IL-4, IL-10, IL-37, and TGF-β fostering remyelination and protecting against MS. Elevated chemokine levels in the cerebrospinal fluid (CSF), including CCL2, CCL5, CXCL10, CXCL13, and fractalkine, are analyzed for their role in facilitating immune cell migration across the blood-brain barrier (BBB), worsening inflammation and neurodegeneration. The study also delves into the impact of auto-antibodies targeting myelin components like MOG and AQP4, which activate complement cascades leading to further myelin destruction. The article discusses how compromised BBB integrity allows immune cells and inflammatory mediators to infiltrate the CNS, intensifying MS symptoms. It also examines the involvement of astrocytes, microglia, and oligodendrocytes in the disease's progression. Additionally, the effectiveness of immunomodulatory drugs such as IFN-β and CD20-targeting monoclonal antibodies (e.g., rituximab) in modulating immune responses is reviewed, highlighting their potential to reduce relapse rates and delaying MS progression. These insights emphasize the importance of immune system dysfunction in MS development and progression, guiding the development of new therapeutic strategies. The study underscores recent advancements in understanding MS's molecular pathways, opening avenues for more targeted and effective treatments.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
24
|
Sladojević M, Nikolić S, Živanović Ž, Simić S, Sakalaš L, Spasić I, Ilinčić B, Čabarkapa V. Determination of systemic inflammatory biomarkers in multiple sclerosis. J Med Biochem 2024; 43:257-264. [PMID: 38699700 PMCID: PMC11062333 DOI: 10.5937/jomb0-45083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/08/2023] [Indexed: 05/05/2024] Open
Abstract
Background Multiple sclerosis (MS) is one of the most common demyelinating diseases of the central nervous system. We aimed to investigate serum and cerebrospinal fluid levels of different laboratory inflammatory biomarkers in patients with MS. Methods A total of 120 subjects participated in the study, 60 of whom were diagnosed with MS, 30 with the final diagnosis of non-inflammatory diseases of the central nervous system (CNS), and 30 healthy subjects representing the control group. Regarding the progression of radiological findings after 2 years from the initial diagnosis, the MS group was divided into stationary radiological findings (n=30) and radiologically proven disease progression (n=30). In all patients, we analyzed levels of laboratory inflammatory biomarkers: C reactive protein (CRP), Neutrophil-to-lymphocyte ratio (NLR), Growth differentiation factor 15 (GDF15) in serum samples, and neurofilaments (NFs) in cerebrospinal fluid (CSF). NFs and GDF15 were analyzed initially, while CRP and NLR values were analyzed initially and after two years. Results We found statistically lower GDF15 values and initial CRP values in the MS group regarding the group with non-inflammatory diseases of the CNS (p<0.0001). On the other side, we determined a significant elevation of laboratory markers CRP and NLR, initially and after a two-year period, in the MS subgroup with the progression of magnetic resonance imaging (MRI) findings (p<0.0001 and p=0.050, respectively). Also, we found a positive correlation between CRP and NFs (r=0.243, p=0.04), as well as a positive correlation between CRP and GDF15 in patients with MS (r=0.769, p<0.0001). Conclusions We found a significant elevation of laboratory markers of systemic inflammation, CRP, and NLR in MS patients who developed disease progression based on MRI findings. There is a need for further studies to validate current parameters to be considered as useful markers of MS activity and disability.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Spasić
- Department of Laboratory Diagnostics Medlab, Novi Sad
| | | | | |
Collapse
|
25
|
Saedmocheshi S, Yousfi N, Chamari K. Breaking boundaries: the transformative role of exercise in managing multiple sclerosis. EXCLI JOURNAL 2024; 23:475-490. [PMID: 38741722 PMCID: PMC11089092 DOI: 10.17179/excli2024-6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024]
Abstract
Multiple sclerosis (MS) is a prevalent cause of physical disability in adults, with inflammation-induced demyelination and neurodegeneration contributing to its etiology. This comprehensive review explores the multifaceted benefits of exercise in managing MS, including improvements in aerobic capacity, balance, muscle strength, immune and hormonal functions and mood. Various exercise modalities, such as aerobic, resistance, flexibility, and balance training, are discussed, along with tailored protocols for MS patients. Recommended exercise strategies are: aerobic exercise: 2-3x/week; 10-30 minutes (40 %-60 % of maximum heart rate (HRmax), HIIT: 1x/week, five 30-90-second intervals at 90 %-100 % HRmax, Resistance training: 2-3x/week, 5-10 exercises; 1-3 sets for each exercise, 8-15 repetitions/set. The review also examines the impact of exercise on neuroplasticity, cardiovascular responses, cytokine modulation, stress hormone regulation, brain structure, and function and fatigue perception. Emphasizing the importance of exercise in enhancing the quality of life for individuals with MS, the review proposes exercise prescriptions and highlights the promising link between physical activity, brain health, and improved hormonal and immune status in MS patients. This review aims to inform future research and guide clinical practices for effective MS management.
Collapse
Affiliation(s)
- Saber Saedmocheshi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran
| | - Narimen Yousfi
- Tunisian Research Laboratory "Sport Performance Optimisation", (LR09SEP01) National Center of Medicine and Science in Sport, Tunis, Tunisia
| | - Karim Chamari
- Higher Institute of Sport and Physical Education, ISSEP Ksar Said, Manouba University, Tunis, Tunisia
| |
Collapse
|
26
|
Herger N, Heggli I, Mengis T, Devan J, Arpesella L, Brunner F, Distler O, Dudli S. Impacts of priming on distinct immunosuppressive mechanisms of mesenchymal stromal cells under translationally relevant conditions. Stem Cell Res Ther 2024; 15:65. [PMID: 38443999 PMCID: PMC10916130 DOI: 10.1186/s13287-024-03677-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The multimodal properties of mesenchymal stromal cells (MSCs), particularly their ability to modulate immune responses is of high interest in translational research. Pro-inflammatory, hypoxic, and 3D culture priming are promising and often used strategies to improve the immunosuppressive potency of MSCs, but the underlying mechanisms are not well understood. Therefore, the aims of this study were (i) to compare the effects of pro-inflammatory, hypoxic, and 3D culture priming on the in vitro immunosuppressive potential of MSCs, (ii) to assess if immunosuppressive priming effects are temporally preserved under standard and translationally relevant culture conditions, and (iii) to investigate if the three priming strategies engage the same immunosuppressive mechanisms. METHODS Functional in vitro T cell suppressive potency measurements were conducted to assess the impact of pro-inflammatory, hypoxic, and 3D culture priming on the immunosuppressive potential of human bone marrow-derived MSCs. Primed MSCs were either cultured under standard cell culture conditions or translationally relevant culture conditions, and their transcriptomic adaptations were monitored over time. Next-generation sequencing was performed to assess if different priming strategies activate distinct immunosuppressive mechanisms. RESULTS (i) Pro-inflammatory, hypoxic, and 3D culture priming induced profound transcriptomic changes in MSCs resulting in a significantly enhanced T cell suppressive potential of pro-inflammatory and 3D culture primed MSCs. (ii) Priming effects rapidly faded under standard cell culture conditions but were partially preserved under translationally relevant conditions. Interestingly, continuous 3D culture priming of MSCs maintained the immunosuppressive potency of MSCs. (iii) Next-generation sequencing revealed that priming strategy-specific differentially expressed genes are involved in the T cell suppressive capacity of MSCs, indicating that different priming strategies engage distinct immunosuppressive mechanisms. CONCLUSION Priming can be a useful approach to improve the immunosuppressive potency of MSCs. However, future studies involving primed MSCs should carefully consider the significant impact of translationally relevant conditions on the preservation of priming effects. Continuous 3D culture could act as a functionalized formulation, supporting the administration of MSC spheroids for a sustainably improved immunosuppressive potency.
Collapse
Affiliation(s)
- Nick Herger
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland.
| | - Irina Heggli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Tamara Mengis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Jan Devan
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Leonardo Arpesella
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Florian Brunner
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Dudli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Balgrist Campus, Zurich, Switzerland
| |
Collapse
|
27
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili SA, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
- Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - MohammadHossein Nemati
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Pazoki
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
28
|
Holm Hansen R, von Essen MR, Reith Mahler M, Cobanovic S, Sellebjerg F. Sustained effects on immune cell subsets and autoreactivity in multiple sclerosis patients treated with oral cladribine. Front Immunol 2024; 15:1327672. [PMID: 38433828 PMCID: PMC10904620 DOI: 10.3389/fimmu.2024.1327672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Cladribine tablet therapy is an efficacious treatment for multiple sclerosis (MS). Recently, we showed that one year after the initiation of cladribine treatment, T and B cell crosstalk was impaired, reducing potentially pathogenic effector functions along with a specific reduction of autoreactivity to RAS guanyl releasing protein 2 (RASGRP2). In the present study we conducted a longitudinal analysis of the effect of cladribine treatment in patients with RRMS, focusing on the extent to which the effects observed on T and B cell subsets and autoreactivity after one year of treatment are maintained, modulated, or amplified during the second year of treatment. Methods In this case-control exploratory study, frequencies and absolute counts of peripheral T and B cell subsets and B cell cytokine production from untreated patients with relapsing-remitting MS (RRMS) and patients treated with cladribine for 52 (W52), 60 (W60), 72 (W72) and 96 (W96) weeks, were measured using flow cytometry. Autoreactivity was assessed using a FluoroSpot assay. Results We found a substantial reduction in circulating memory B cells and proinflammatory B cell responses. Furthermore, we observed reduced T cell responses to autoantigens possibly presented by B cells (RASGRP2 and a-B crystallin (CRYAB)) at W52 and W96 and a further reduction in responses to the myelin antigens myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) after 96 weeks. Conclusion We conclude that the effects of cladribine observed after year one are maintained and, for some effects, even increased two years after the initiation of a full course of treatment with cladribine tablets.
Collapse
Affiliation(s)
- Rikke Holm Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stefan Cobanovic
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Petersen-Cherubini CL, Liu Y, Deffenbaugh JL, Murphy SP, Xin M, Rau CN, Yang Y, Lovett-Racke AE. Dysregulated autotaxin expression by T cells in multiple sclerosis. J Neuroimmunol 2024; 387:578282. [PMID: 38183947 PMCID: PMC10923181 DOI: 10.1016/j.jneuroim.2023.578282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by infiltration of autoreactive T cells into the central nervous system (CNS). In order to understand how activated, autoreactive T cells are able to cross the blood brain barrier, the unique molecular characteristics of pathogenic T cells need to be more thoroughly examined. In previous work, our laboratory found autotaxin (ATX) to be upregulated by activated autoreactive T cells in the mouse model of MS. ATX is a secreted glycoprotein that promotes T cell chemokinesis and transmigration through catalysis of lysophoshphatidic acid (LPA). ATX is elevated in the serum of MS patients during active disease phases, and we previously found that inhibiting ATX decreases severity of neurological deficits in the mouse model. In this study, ATX expression was found to be lower in MS patient immune cells during rest, but significantly increased during early activation in a manner not seen in healthy controls. The ribosomal binding protein HuR, which stabilizes ATX mRNA, was also increased in MS patients in a similar pattern to that of ATX, suggesting it may be helping regulate ATX levels after activation. The proinflammatory cytokine interleukin-23 (IL-23) was shown to induce prolonged ATX expression in MS patient Th1 and Th17 cells. Finally, through ChIP, re-ChIP analysis, we show that IL-23 may be signaling through pSTAT3/pSTAT4 heterodimers to induce expression of ATX. Taken together, these findings elucidate cell types that may be contributing to elevated serum ATX levels in MS patients and identify potential drivers of sustained expression in encephalitogenic T cells.
Collapse
Affiliation(s)
- Cora L Petersen-Cherubini
- The Ohio State University, Neuroscience Graduate Program, 460 West 12th Avenue, Biomedical Research Tower 6894, Columbus, OH 43210, USA; The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Yue Liu
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Joshua L Deffenbaugh
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Shawn P Murphy
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Matthew Xin
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Christina N Rau
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Yuhong Yang
- The Ohio State University, Wexner Medical Center, Department of Neurology, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Amy E Lovett-Racke
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA; The Ohio State University, Wexner Medical Center, Department of Neuroscience, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Williams GP, Michaelis T, Lima-Junior JR, Frazier A, Tran NK, Phillips EJ, Mallal SA, Litvan I, Goldman JG, Alcalay RN, Sidney J, Sulzer D, Sette A, Lindestam Arlehamn CS. PINK1 is a target of T cell responses in Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579465. [PMID: 38405939 PMCID: PMC10888789 DOI: 10.1101/2024.02.09.579465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Parkinson's disease (PD) is associated with autoimmune T cells that recognize the protein alpha-synuclein in a subset of individuals. Multiple neuroantigens are targets of autoinflammatory T cells in classical central nervous system autoimmune diseases such as multiple sclerosis (MS). Here, we explored whether additional autoantigenic targets of T cells in PD. We generated 15-mer peptide pools spanning several PD-related proteins implicated in PD pathology, including GBA, SOD1, PINK1, parkin, OGDH, and LRRK2. Cytokine production (IFNγ, IL-5, IL-10) against these proteins was measured using a fluorospot assay and PBMCs from patients with PD and age-matched healthy controls. This approach identified unique epitopes and their HLA restriction from the mitochondrial-associated protein PINK1, a regulator of mitochondrial stability, as an autoantigen targeted by T cells. The T cell reactivity was predominantly found in male patients with PD, which may contribute to the heterogeneity of PD. Identifying and characterizing PINK1 and other autoinflammatory targets may lead to antigen-specific diagnostics, progression markers, and/or novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Gregory P Williams
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tanner Michaelis
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - April Frazier
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ngan K Tran
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Irene Litvan
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jennifer G Goldman
- JPG Enterprises LLC; prior: Shirley Ryan AbilityLab and Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, NY, USA; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - John Sidney
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - David Sulzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Departments of Psychiatry and Pharmacology, Columbia University; New York State Psychiatric Institute, NY, USA
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Medicine, University of California San Diego, CA
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
31
|
Mashayekhi F, Hadipour E, Shabani S, Salehi Z. Folate receptor alpha autoantibodies in the serum of patients with relapsing-remitting multiple sclerosis (RRMS). Clin Neurol Neurosurg 2024; 237:108161. [PMID: 38325038 DOI: 10.1016/j.clineuro.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a potentially progressive, autoimmune neurologic disorder of the central nervous system (CNS), resulting from an autoimmune attack on central nervous system white matter. Folate deficiencies are linked to DNA instability and breakdown of phospholipid membranes and thus might affect myelin integrity. Folic acid exerts its effects through its receptors (FRs). Folate receptor alpha autoantibodies (FRAA) can block folate transport to the brain. Due to important role of folate in the pathogenesis of MS, in this project we aimed to study FRAA serum levels in patients with relapsing remitting multiple sclerosis (RRMS). METHODS Fifty-four patients with RRMS and 58 healthy individuals were enrolled in this study. Serum samples were collected from all participants and folate receptor alpha autoantibody (FRAA) serum concentration was measured by Enzyme-linked immunosorbent assay (ELISA). RESULTS The results showed that FRAA serum levels in patients with RRMS is 67.20 ± 19.79 ng/ml as compared to controls which was 37.32 ± 13.26 ng/ml. Significant increase in folate receptor autoantibody serum concentration was seen in patients with RRMS when compared to control group (P = 0.007). The results showed that a high concentration of folate receptor autoantibody is associated with RRMS. We have also found that 85.18% (46/54) of patients with RRMS were positive for serum FRAA, whereas the prevalence in controls was only 46.55% (27/58). CONCLUSIONS It is concluded that serum FRAA are more prevalent in RRMS patients than controls. The findings also suggest that FRAA might be involved in the pathophysiology of RRMS.
Collapse
Affiliation(s)
- Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Elham Hadipour
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Somayeh Shabani
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
32
|
Ban M, Bredikhin D, Huang Y, Bonder MJ, Katarzyna K, Oliver AJ, Wilson NK, Coupland P, Hadfield J, Göttgens B, Madissoon E, Stegle O, Sawcer S. Expression profiling of cerebrospinal fluid identifies dysregulated antiviral mechanisms in multiple sclerosis. Brain 2024; 147:554-565. [PMID: 38038362 PMCID: PMC10834244 DOI: 10.1093/brain/awad404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danila Bredikhin
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yuanhua Huang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kania Katarzyna
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul Coupland
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - James Hadfield
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Elo Madissoon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
33
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
34
|
Zhao Y, Ma J, Ding G, Wang Y, Yu H, Cheng X. Astragalus polysaccharides promote neural stem cells-derived oligodendrogenesis through attenuating CD8 +T cell infiltration in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2024; 126:111303. [PMID: 38043269 DOI: 10.1016/j.intimp.2023.111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Endogenous neural stem cells (NSCs) have the potential to generate remyelinating oligodendrocytes, which play an important role in multiple sclerosis (MS). However, the differentiation of NSCs into oligodendrocytes is insufficient, which is considered a major cause of remyelination failure. Our previous work reported that Astragalus polysaccharides (APS) had a neuroprotective effect on experimental autoimmune encephalomyelitis (EAE) mice. However, it remains unclear whether APS regulate NSCs differentiation in EAE mice. In this study, our data illustrated that APS administration could promote NSCs in the subventricular zone (SVZ) to differentiate into oligodendrocytes. Furthermore, we found that APS significantly improved neuroinflammation and inhibited CD8+T cell infiltration into SVZ of EAE mice. We also found that MOG35-55-specific CD8+T cells suppressed NSCs differentiation into oligodendrocytes by secreting IFN-γ, and APS facilitated the differentiation of NSCs into oligodendrocytes which was related to decreased IFN-γ secretion. In addition, APS treatment did not show a better effect on the NSCs-derived oligodendrogenesis after CD8+T cell depletion. This present study demonstrated that APS alleviated neuroinflammation and CD8+T cell infiltration into SVZ to induce oligodendroglial differentiation, and thus exerted neuroprotective effect. Our findings revealed that reducing the infiltration of CD8+T cells might contribute to enhancing NSCs-derived neurogenesis. And APS might be a promising drug candidate to treat MS.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
35
|
Eftekhari R, Ewanchuk BW, Rawji KS, Yates RM, Noorbakhsh F, Kuipers HF, Hollenberg MD. Blockade of Proteinase-Activated Receptor 2 (PAR2) Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Pharmacol Exp Ther 2024; 388:12-22. [PMID: 37699708 DOI: 10.1124/jpet.123.001685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Proteinase-activated receptor-2 (PAR2), which modulates inflammatory responses, is elevated in the central nervous system in multiple sclerosis (MS) and in its murine model, experimental autoimmune encephalomyelitis (EAE). In PAR2-null mice, disease severity of EAE is markedly diminished. We therefore tested whether inhibiting PAR2 activation in vivo might be a viable strategy for the treatment of MS. Using the EAE model, we show that a PAR2 antagonist, the pepducin palmitoyl-RSSAMDENSEKKRKSAIK-amide (P2pal-18S), attenuates EAE progression by affecting immune cell function. P2pal-18S treatment markedly diminishes disease severity and reduces demyelination, as well as the infiltration of T-cells and macrophages into the central nervous system. Moreover, P2pal-18S decreases granulocyte-macrophage colony-stimulating factor (GM-CSF) production and T-cell activation in cultured splenocytes and prevents macrophage polarization in vitro. We conclude that PAR2 plays a key role in regulating neuroinflammation in EAE and that PAR2 antagonists represent promising therapeutic agents for treating MS and other neuroinflammatory diseases. SIGNIFICANCE STATEMENT: Proteinase-activated receptor-2 modulates inflammatory responses and is increased in multiple sclerosis lesions. We show that the proteinase-activated receptor-2 antagonist palmitoyl-RSSAMDENSEKKRKSAIK-amide reduces disease in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis by inhibiting T-cell and macrophage activation and infiltration into the central nervous system, making it a potential treatment for multiple sclerosis.
Collapse
Affiliation(s)
- Rahil Eftekhari
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Benjamin W Ewanchuk
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Khalil S Rawji
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Robin M Yates
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Farshid Noorbakhsh
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Hedwich F Kuipers
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology (R.E., M.D.H.), Department of Medicine (R.E., M.D.H.), Department of Clinical Neurosciences (R.E., K.S.R., H.F.K.), Department of Biochemistry and Molecular Biology (B.W.E., R.M.Y.), Department of Comparative Biology and Experimental Medicine (B.W.E., R.M.Y.), and Department of Cell Biology and Anatomy (H.F.K.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran (R.E., F.N.)
| |
Collapse
|
36
|
Dejbakht M, Akhzari M, Jalili S, Faraji F, Barazesh M. Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment. Curr Drug Res Rev 2024; 16:175-197. [PMID: 37724675 DOI: 10.2174/2589977516666230915103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIMS This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Majid Dejbakht
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Fouziyeh Faraji
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, Cellular and Molecular Research Center, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
37
|
Shan Y, Chen W, Li Y. The role of m 6A RNA methylation in autoimmune diseases: Novel therapeutic opportunities. Genes Dis 2024; 11:252-267. [PMID: 37588214 PMCID: PMC10425809 DOI: 10.1016/j.gendis.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
N6-methyladenosine (m6A) modifications, as one of the most common forms of internal RNA chemical modifications in eukaryotic cells, have gained increasing attention in recent years. The m6A RNA modifications exert various crucial roles in various biological processes, such as embryonic development, neurogenesis, circadian rhythms, and tumorigenesis. Recent advances have highlighted that m6A RNA modification plays an important role in immune response, especially in the initiation and progression of autoimmune diseases. In this review, we summarized the regulatory mechanisms of m6A methylation and its biological functions in the immune system and mainly focused on recent progress in research on the potential role of m6A RNA methylation in the pathogenesis of autoimmune diseases, thus providing possible biomarkers and potential targets for the prevention and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yunan Shan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250013, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yanbin Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong 250013, China
| |
Collapse
|
38
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
39
|
Turner TA, Lehman P, Ghimire S, Shahi SK, Mangalam A. Game of microbes: the battle within - gut microbiota and multiple sclerosis. Gut Microbes 2024; 16:2387794. [PMID: 39114974 PMCID: PMC11313001 DOI: 10.1080/19490976.2024.2387794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and progressive autoimmune disease of the central nervous system (CNS), with both genetic and environmental factors contributing to the pathobiology of the disease. While human leukocyte antigen (HLA) genes have emerged as the strongest genetic factor, consensus on environmental risk factors are lacking. Recently, trillions of microbes residing in our gut (microbiome) have emerged as a potential environmental factor linked with the pathobiology of MS as PwMS show gut microbial dysbiosis (altered gut microbiome). Thus, there has been a strong emphasis on understanding the factors (host and environmental) regulating the composition of the gut microbiota and the mechanism(s) through which gut microbes contribute to MS disease, especially through immune system modulation. A better understanding of these interactions will help harness the enormous potential of the gut microbiota as a therapeutic approach to treating MS.
Collapse
Affiliation(s)
- Ti-Ara Turner
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Health Care System, Iowa City, IA, USA
| | - Peter Lehman
- Iowa City VA Health Care System, Iowa City, IA, USA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Sudeep Ghimire
- Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh K. Shahi
- Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Health Care System, Iowa City, IA, USA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
40
|
Ghosh S, Bhatti GK, Sharma PK, Kandimalla R, Mastana SS, Bhatti JS. Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:6. [PMID: 38104307 DOI: 10.1007/s10571-023-01434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations. This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.
Collapse
Affiliation(s)
- Sushruta Ghosh
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University, Rajasthan, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, CSIR-Indian Institute of Technology, Hyderabad, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India.
| |
Collapse
|
41
|
Nabizadeh F, Ahmadabad MA, Mohamadi M, Mirmosayyeb O, Maleki T, Kazemzadeh K, Seyedmirzaei H. Efficacy and safety of rituximab in multiple sclerosis: a systematic review and meta-analysis. Acta Neurol Belg 2023; 123:2115-2127. [PMID: 37428437 DOI: 10.1007/s13760-023-02329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE We aimed to synthesize all available observational studies and clinical trials of rituximab to estimate the safety and efficacy of this monoclonal antibody in people with multiple sclerosis (MS). METHODS The four databases including PubMed, Scopus, Embase, and Web of Science were comprehensively searched in April 2022. We defined PICO as follows. Problem or study population (P): patients with MS; intervention (I): Rituximab; comparison (C): none; outcome (O): efficacy and safety. RESULTS After two-step screening, a total of 27 studies entered into our qualitative and quantitative synthesis. Our analysis showed a significant decrease in EDSS score in all patients with MS after treatment (SMD: - 0.44, 95% CI - 0.85, - 0.03). In addition, the ARR was reduced after using rituximab compared to the pre-treatment period (SMD: - 0.65, 95% CI - 1.55, 0.24) but it was not significant. The most common side effect after rituximab with a pooled prevalence of 28.63% (95% CI 16.61%, 42.33%). Furthermore, the pooled prevalence of infection was 24% in patients with MS (95% CI 13%, 36%). In the end, the pooled prevalence of malignancies after rituximab treatment was 0.39% (95% CI 0.02%, 1.03%). CONCLUSION Our findings illustrated an acceptable safety for this treatment. However, further studies with randomized design, long follow-up, and large sample sizes are needed to confirm the safety and efficacy of rituximab in patients with MS.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mona Asghari Ahmadabad
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mobin Mohamadi
- Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahereh Maleki
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Kimia Kazemzadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
42
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
43
|
Withana M, Castorina A. Potential Crosstalk between the PACAP/VIP Neuropeptide System and Endoplasmic Reticulum Stress-Relevance to Multiple Sclerosis Pathophysiology. Cells 2023; 12:2633. [PMID: 37998368 PMCID: PMC10670126 DOI: 10.3390/cells12222633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.
Collapse
Affiliation(s)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
44
|
Wang YK, Zhao YP, Ye MZ, Wang L, Lan TS, Wang Y, Qi ZQ. Chimeric CNS-targeting-peptide engineered exosomes for experimental autoimmune encephalomyelitis therapy. Int Immunopharmacol 2023; 124:110835. [PMID: 37717320 DOI: 10.1016/j.intimp.2023.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes demyelination, neuronal damage and white matter loss, but there is still no known cure. Exosomes are 30-200 nm-sized double-layered membrane vesicles that can easily cross the blood-brain barrier (BBB). Exosomes from umbilical cord mesenchymal stem cells(UMSCs) have been found to treat experimental autoimmune encephalomyelitis (EAE) through the action of anti-inflammatory and immunomodulatory, but its clinical translation has been hampered by their inefficacious accumulation in CNS. Therefore, we developed a TAxI-exos, also known as a TAxI-peptide-chimeric UMSC-exos, for CNS-specific accumulation and curative effect in EAE. We used the EAE model in vivo as well as active T cell and BV-2 cell models in vitro to explore the efficacy and mechanisms. Exosomes from UMSCs with TAxI or DiR labels were given to EAE mice in one dosage (150 g) prior to the peak at day 15. The mice were sacrificed on day 30 so that spinal cords, spleens, and blood could be taken for analysis of demyelination, inflammation, microglia, T-cell subset proportions, and inflammatory cytokine expression. In vitro, PBMCs and splenocytes isolated from healthy C57BL/6 mice were activated and incubated with 0.15 mg/mL of UMSC-exos or TAxI-exos for immune mechanism investigations. Activated BV-2 cells were used to investigate the targeting and controlling polarization ability and mechanism of UMSC-exos and TAxI-exos. As expected, TAxI-exos exhibited significantly greater therapeutic action in EAE mice than UMSC-exos due to their improved targeting-ability. The medication reduced T-cell subset proportions and inflammation, reduced active-microglia proportions and promoted M1 to M2 microglial cell polarization through TNF pathway, upregulated IL-4, IL-10, TGF-β, and IDO-1 expression, and downregulated IL-2, IL-6, IL-17A, IFN-γ, and TNF-α. The CNS-targeting properties of TAxI-exos and their capacity to inhibit degenerative processes in EAE mice have considerable potential therapeutic value for MS and other CNS illnesses.
Collapse
Affiliation(s)
- Ying-Kai Wang
- School of Medicine, Guangxi University, Nanning, Guangxi, China.
| | - Yun-Peng Zhao
- Department of Histology and Embryology, Naval Medical University, Shanghai, China; Shanghai Key Lab of Cell Engineering, China.
| | - Ming-Zhu Ye
- Department of Obstetrics and Gynecology, Zhong Shan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Ling Wang
- Shanghai Key Lab of Cell Engineering, China; Translational Medicine Research Center, Naval Medical University, Shanghai, China.
| | - Tian-Shu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China.
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University, Shanghai, China; Shanghai Key Lab of Cell Engineering, China; Translational Medicine Research Center, Naval Medical University, Shanghai, China.
| | - Zhong-Quan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
45
|
Wang X, Chen C, Sun H, Mao K, Yao J, Zhang W, Zhan M, Li HB, Zhang Z, Zhu S, Lu L. m 6A mRNA modification potentiates Th17 functions to inflame autoimmunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2543-2552. [PMID: 37405565 DOI: 10.1007/s11427-022-2323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 07/06/2023]
Abstract
N6-methyladenosine (m6A), the most common and abundant epigenetic RNA modification, governs mRNA metabolism to determine cell differentiation, proliferation and response to stimulation. m6A methyltransferase METTL3 has been reported to control T cell homeostasis and sustain the suppressive function of regulatory T cells (Tregs). However, the role of m6A methyltransferase in other subtypes of T cells remains unknown. T helper cells 17 (Th17) play a pivotal role in host defense and autoimmunity. Here, we found that the loss of METTL3 in T cells caused serious defect of Th17 cell differentiation, and impeded the development of experimental autoimmune encephalomyelitis (EAE). We generated Mettl3f/fIl17aCre mice and observed that METTL3 deficiency in Th17 cells significantly suppressed the development of EAE and displayed less Th17 cell infiltration into central nervous system (CNS). Importantly, we demonstrated that depletion of METTL3 attenuated IL-17A and CCR5 expression by facilitating SOCS3 mRNA stability in Th17 cells, leading to disrupted Th17 cell differentiation and infiltration, and eventually attenuating the process of EAE. Collectively, our results highlight that m6A modification sustains Th17 cell function, which provides new insights into the regulatory network of Th17 cells, and also implies a potential therapeutic target for Th17 cell mediated autoimmune disease.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chen Chen
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China
| | - Hongwei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Kaiqiong Mao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiameng Yao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiqiao Zhang
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Hua-Bing Li
- Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiren Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| | - Shu Zhu
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| |
Collapse
|
46
|
Peng HY, Wang L, Das JK, Kumar A, Ballard DJ, Ren Y, Xiong X, de Figueiredo P, Yang JM, Song J. Control of CD4 + T cells to restrain inflammatory diseases via eukaryotic elongation factor 2 kinase. Signal Transduct Target Ther 2023; 8:415. [PMID: 37875468 PMCID: PMC10598003 DOI: 10.1038/s41392-023-01648-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
CD4+ T cells, particularly IL-17-secreting helper CD4+ T cells, play a central role in the inflammatory processes underlying autoimmune disorders. Eukaryotic Elongation Factor 2 Kinase (eEF2K) is pivotal in CD8+ T cells and has important implications in vascular dysfunction and inflammation-related diseases such as hypertension. However, its specific immunological role in CD4+ T cell activities and related inflammatory diseases remains elusive. Our investigation has uncovered that the deficiency of eEF2K disrupts the survival and proliferation of CD4+ T cells, impairs their ability to secrete cytokines. Notably, this dysregulation leads to heightened production of pro-inflammatory cytokine IL-17, fosters a pro-inflammatory microenvironment in the absence of eEF2K in CD4+ T cells. Furthermore, the absence of eEF2K in CD4+ T cells is linked to increased metabolic activity and mitochondrial bioenergetics. We have shown that eEF2K regulates mitochondrial function and CD4+ T cell activity through the upregulation of the transcription factor, signal transducer and activator of transcription 3 (STAT3). Crucially, the deficiency of eEF2K exacerbates the severity of inflammation-related diseases, including rheumatoid arthritis, multiple sclerosis, and ulcerative colitis. Strikingly, the use of C188-9, a small molecule targeting STAT3, mitigates colitis in a murine immunodeficiency model receiving eEF2K knockout (KO) CD4+ T cells. These findings emphasize the pivotal role of eEF2K in controlling the function and metabolism of CD4+ T cells and its indispensable involvement in inflammation-related diseases. Manipulating eEF2K represents a promising avenue for novel therapeutic approaches in the treatment of inflammation-related disorders.
Collapse
Affiliation(s)
- Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Darby J Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77845, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
47
|
Salehi N, Nourbakhsh M, Noori S, Rezaeizadeh H, Zarghi A. Tehranolid and Artemisinin Effects on Ameliorating Experimental Autoimmune Encephalomyelitis by Modulating Inflammation and Remyelination. Mol Neurobiol 2023; 60:5975-5986. [PMID: 37391648 DOI: 10.1007/s12035-023-03449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system. Artemisinin (ART) is a natural sesquiterpene lactone with an endoperoxide bond that is well-known for its anti-inflammatory effects in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Tehranolide (TEH) is a novel compound with structural similarity to ART. In this study, we aimed to investigate the ameliorating effect of TEH on EAE development by targeting proteins and genes involved in this process and compare its effects with ART. Female C57BL/6 mice were immunized with MOG35-55. Twelve days post-immunization, mice were treated with 0.28 mg/kg/day TEH and 2.8 mg/kg/day ART for 18 consecutive days, and the clinical score was measured daily. The levels of pro-inflammatory and anti-inflammatory cytokines were assessed in mice serum and splenocytes by ELISA. We also evaluated the mRNA expression level of cytokines, as well as genes involved in T cell differentiation and myelination in the spinal cord tissue by qRT-PCR. Administration of TEH and ART significantly alleviated EAE signs. A significant reduction in IL-6 and IL-17 secretion and IL-17 and IL-1 gene expression in spinal cord were observed in the TEH-treated group. ART had similar or less significant effects. Moreover, TGF-β, IL-4, and IL-10 genes were stimulated by ART and TEH in the spinal cord, while the treatments did not affect IFN-γ expression. Both treatments dramatically increased the expression of FOXP3, GATA3, MBP, and AXL. Additionally, the T-bet gene was reduced after TEH administration. The compounds made no changes in RORγt, nestin, Gas6, Tyro3, and Mertk mRNA expression levels in the spinal cord. The study revealed that both TEH and ART can effectively modulate the genes responsible for inflammation and myelination that play a crucial role in EAE. Interestingly, TEH demonstrated a greater potency compared to ART and hence may have the potential to be evaluated in interventions for the management of MS.
Collapse
Affiliation(s)
- Niloufar Salehi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Rezaeizadeh
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
49
|
Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI. CSF1R inhibition is not specific to innate immune cells but also affects T-helper cell differentiation independently of microglia depletion. RESEARCH SQUARE 2023:rs.3.rs-3308220. [PMID: 37720036 PMCID: PMC10503844 DOI: 10.21203/rs.3.rs-3308220/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Colony-stimulating factor 1 receptor (CSF1R) inhibition has been proposed as a specific method for microglia depletion. However, recent work revealed that in addition to microglia, CSF1R inhibition also affects other innate immune cells, such as peripheral monocytes and tissue-resident macrophages of the lung, liver, spleen, and peritoneum. Here, we show that this effect is not restricted to innate immune cells only but extends to the adaptive immune compartment. CSF1R inhibition alters the transcriptional profile of bone marrow cells that control T helper cell activation. In vivo or ex vivo inhibition of CSF1R profoundly changes the transcriptional profile of CD4+ cells and suppresses Th1 and Th2 differentiation in directionally stimulated and unstimulated cells and independently of microglia depletion. Given that T cells also contribute in CNS pathology, these effects may have practical implications in the interpretation of relevant experimental data.
Collapse
Affiliation(s)
- Fengyang Lei
- Massachusetts Eye and Ear, Harvard Medical School
| | | | | | | | | | | |
Collapse
|
50
|
Holm Hansen R, von Essen MR, Mahler MR, Cobanovic S, Binko TS, Sellebjerg F. Cladribine Effects on T and B Cells and T Cell Reactivity in Multiple Sclerosis. Ann Neurol 2023; 94:518-530. [PMID: 37191113 DOI: 10.1002/ana.26684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Cladribine tablet therapy is an efficacious treatment for multiple sclerosis (MS), however, its mechanism of action on T and B cell subsets remains unclear. The purpose of this study was to investigate the treatment effects of cladribine on the peripheral pool of T and B cells subsets and reactivity toward central nervous system (CNS) antigens. METHODS In this cross-sectional exploratory study, frequencies and absolute counts of peripheral T and B cell subsets and B cell cytokine production from untreated patients with relapsing-remitting MS (RRMS) and patients treated with cladribine for 1 year were measured using flow cytometry. Autoreactivity was assessed using a FluoroSpot assay. RESULTS We found that 1 year after initiation of cladribine treatment, a lower number of CD4+ T cells was persisting whereas CD19+ B cell counts were normalized compared to untreated patients with RRMS. Follicular helper T cells and their effecter subsets producing cytokines exerting distinct B cell helper activity were lower and, additionally, the peripheral B cell pool was skewed toward a naïve and anti-inflammatory phenotype. Finally, reactivity to the recently identified CNS-enriched autoantigen RAS guanyl-releasing protein 2 (RASGRP2), but not to myelin basic protein and myelin oligodendrocyte glycoprotein, was lower in cladribine-treated patients. INTERPRETATION Together, these investigations on T and B cell subsets suggest that cladribine treatment impairs the B-T cell crosstalk and reduces their ability to mediate pathogenic effector functions. This may result in specific reduction of autoreactivity to RASGRP2 which is expressed in B cells and brain tissue. ANN NEUROL 2023;94:518-530.
Collapse
Affiliation(s)
- Rikke Holm Hansen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Marina Rode von Essen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mie Reith Mahler
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stefan Cobanovic
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Tomas Sorm Binko
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|