1
|
Smith B, Gaur D, Walker N, Walter I, Wohlever ML. Energetic requirements and mechanistic plasticity in Msp1-mediated substrate extraction from lipid bilayers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614443. [PMID: 39386490 PMCID: PMC11463475 DOI: 10.1101/2024.09.23.614443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
AAA+ proteins are essential molecular motors involved in numerous cellular processes, yet their mechanism of action in extracting membrane proteins from lipid bilayers remains poorly understood. One roadblock for mechanistic studies is the inability to generate subunit specific mutations within these hexameric proteins. Using the mitochondrial AAA+ protein Msp1 as a model, we created covalently linked dimers with varying combinations of wild type and catalytically inactive E193Q mutations. The wide range of ATPase rates in these constructs allows us to probe how Msp1 uses the energy from ATP hydrolysis to perform the thermodynamically unfavorable task of removing a transmembrane helix (TMH) from a lipid bilayer. Our in vitro and in vivo assays reveal a non-linear relationship between ATP hydrolysis and membrane protein extraction, suggesting a minimum ATP hydrolysis rate is required for effective TMH extraction. While structural data often supports a sequential clockwise/2-residue step (SC/2R) mechanism for ATP hydrolysis, our biochemical evidence suggests mechanistic plasticity in how Msp1 coordinates ATP hydrolysis between subunits, potentially allowing for robustness in processing challenging substrates. This study enhances our understanding of how Msp1 coordinates ATP hydrolysis to drive mechanical work and provides foundational insights about the minimum energetic requirements for TMH extraction and the coordination of ATP hydrolysis in AAA+ proteins.
Collapse
Affiliation(s)
- Baylee Smith
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| | - Deepika Gaur
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| | - Nathan Walker
- University of Pittsburgh, Department of Cell Biology
- University of Illinois, Department of Microbiology
| | - Isabella Walter
- University of Pittsburgh, Department of Cell Biology
- Ohio State University, Department of Molecular Genetics
| | - Matthew L. Wohlever
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| |
Collapse
|
2
|
Maruszczak KK, Chacinska A. Monitoring and analysis of mitochondrial precursor protein aggregates in the cytosol. Methods Enzymol 2024; 706:287-311. [PMID: 39455220 DOI: 10.1016/bs.mie.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The vast majority of mitochondrial precursor proteins is synthesized in the cytosol and subsequently imported into the organelle with the help of targeting signals that are present within these proteins. Disruptions in mitochondrial import will result in the accumulation of the organellar precursors in the cytosol of the cell. If mislocalized proteins exceed their critical concentrations, they become prone to aggregation. Under certain circumstances, protein aggregation becomes an irreversible process, which eventually endangers cellular health. Impairment in mitochondrial biogenesis and its effect on cellular protein homeostasis were recently linked to neurodegeneration, therefore placing this process in the center of attention. In this chapter, we are presenting a set of techniques that allows to monitor and study mitochondrial precursor protein aggregates upon mitochondrial dysfunction in the cytosol of both yeast and human cells.
Collapse
|
3
|
Wu H, Ren Y, Dong H, Xie C, Zhao L, Wang X, Zhang F, Zhang B, Jiang X, Huang Y, Jing R, Wang J, Miao R, Bao X, Yu M, Nguyen T, Mou C, Wang Y, Wang Y, Lei C, Cheng Z, Jiang L, Wan J. FLOURY ENDOSPERM24, a heat shock protein 101 (HSP101), is required for starch biosynthesis and endosperm development in rice. THE NEW PHYTOLOGIST 2024; 242:2635-2651. [PMID: 38634187 DOI: 10.1111/nph.19761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.
Collapse
Affiliation(s)
- Hongming Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Dong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Chen Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fulin Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Binglei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaokang Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunshuai Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rong Miao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhao Bao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhou Yu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Yihua Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Jianmin Wan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| |
Collapse
|
4
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591398. [PMID: 38712168 PMCID: PMC11071516 DOI: 10.1101/2024.04.26.591398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Peter J. Carman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Craig W. Gambogi
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Nathan M. Kendsersky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Stephanie N. Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Adam L. Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Alexandrea N. Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158. U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| |
Collapse
|
5
|
Khorsand FR, Aziziyan F, Khajeh K. Factors influencing amyloid fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:55-83. [PMID: 38811089 DOI: 10.1016/bs.pmbts.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a complex process with several stages that lead to the formation of complex structures and shapes with a broad variability in stability and toxicity. The aggregation process is affected by various factors and environmental conditions that disrupt the protein's original state, including internal factors like mutations, expression levels, and polypeptide chain truncation, as well as external factors, such as dense molecular surroundings, post-translation modifications, and interactions with other proteins, nucleic acids, small molecules, metal ions, chaperones, and lipid membranes. During the aggregation process, the biological activity of an aggregating protein may be reduced or eliminated, whereas the resulting aggregates may have the potential to be immunogenic, or they may have other undesirable properties. Finding the cause(s) of protein aggregation and controlling it to an acceptable level is among the most crucial topics of research in academia and biopharmaceutical companies. This chapter aims to review intrinsic pathways of protein aggregation and potential extrinsic variables that influence this process.
Collapse
Affiliation(s)
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Berisio R, Barra G, Napolitano V, Privitera M, Romano M, Squeglia F, Ruggiero A. HtpG-A Major Virulence Factor and a Promising Vaccine Antigen against Mycobacterium tuberculosis. Biomolecules 2024; 14:471. [PMID: 38672487 PMCID: PMC11048413 DOI: 10.3390/biom14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| | | | | | | | | | | | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy; (G.B.); (V.N.); (M.P.); (M.R.); (F.S.)
| |
Collapse
|
7
|
Chuang CN, Liu HC, Woo TT, Chao JL, Chen CY, Hu HT, Hsueh YP, Wang TF. Noncanonical usage of stop codons in ciliates expands proteins with structurally flexible Q-rich motifs. eLife 2024; 12:RP91405. [PMID: 38393970 PMCID: PMC10942620 DOI: 10.7554/elife.91405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.
Collapse
Affiliation(s)
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Tai-Ting Woo
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ju-Lan Chao
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Chiung-Ya Chen
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Hisao-Tang Hu
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Biochemical Science and Technology, National Chiayi UniversityChiayiTaiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
- Department of Biochemical Science and Technology, National Chiayi UniversityChiayiTaiwan
| |
Collapse
|
8
|
Cai E, Zeng R, Feng R, Zhang L, Li L, Jia H, Zheng W, Chen S, Yan M, Chang C. Discovery of N-Benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine as a Potential Antifungal Agent against Sporidia Growth and Teliospore Germination of Sporisorium scitamineum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3325-3333. [PMID: 38329286 DOI: 10.1021/acs.jafc.3c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The cultivation of sugar cane using perennial roots is the primary planting method, which is one of the reasons for the serious occurrence of sugar cane smut disease caused by the basidiomycetous fungus Sporisorium scitamineum in the sugar cane perennial root planting area. Consequently, it is crucial to eliminate pathogens from perennial sugar cane buds. In this study, we found that MAP kinase Hog1 is necessary for heat stress resistance. Subsequent investigations revealed a significant reduction in the expression of the heat shock protein 104-encoding gene, SsHSP104, in the ss1hog1Δ mutant. Additionally, the overexpression of SsHSP104 partially restored colony growth in the ss1hog1Δ strain following heat stress treatment, demonstrating the crucial role of SsHsp104 in SsHog1-mediated heat stress tolerance. Hence, we constructed the ss1hsp104:eGFP fusion strain in the wild type of S. scitamineum to identify small-molecule compounds that could inhibit the heat stress response, leading to the discovery of N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine as a potential compound that targets the SsHog1 mediation SsHsp104 pathway during heat treatment. Furthermore, the combination of N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine and warm water treatment (45 °C for 15 min) inhibits the growth of S. scitamineum and teliospore germination, thereby reducing the occurrence of sugar cane smut diseases and indicating its potential for eliminating pathogens from perennial sugar cane buds. In conclusion, these findings suggest that N-benzyl-4-(1-bromonaphthalen-2-yl)oxybutan-1-amine is promising as a targeted compound for the SsHog1-mediated SsHsp104 pathway and may enable the reduction of hot water treatment duration and/or temperature, thereby limiting the occurrence of sugar cane smut diseases caused by S. scitamineum.
Collapse
Affiliation(s)
- Enping Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rong Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruqing Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huan Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wenqiang Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shaofang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530000, China
| | - Changqing Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Kohler V, Kohler A, Berglund LL, Hao X, Gersing S, Imhof A, Nyström T, Höög JL, Ott M, Andréasson C, Büttner S. Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 2024; 15:315. [PMID: 38182580 PMCID: PMC10770042 DOI: 10.1038/s41467-023-44538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andreas Kohler
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
10
|
Sun C, Slade L, Mbonu P, Ordner H, Mitchell C, Mitchell M, Liang FC. Membrane protein chaperone and sodium chloride modulate the kinetics and morphology of amyloid beta aggregation. FEBS J 2024; 291:158-176. [PMID: 37786925 DOI: 10.1111/febs.16967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Protein aggregation is a biological phenomenon caused by the accumulation of misfolded proteins. Amyloid beta (Aβ) peptides are derived from the cleavage of a larger membrane protein molecule and accumulate to form plaques extracellularly. According to the amyloid hypothesis, accumulation of Aβ aggregates in the brain is primarily responsible for the pathogenesis of Alzheimer's disease (AD). Therefore, the disassembly of Aβ aggregates may provide opportunities for alleviating or treating AD. Here, we show that the novel protein targeting machinery from chloroplast, chloroplast signal recognition particle 43 (cpSRP43), is an ATP-independent membrane protein chaperone that can both prevent and reverse Aβ aggregation effectively. Using of thioflavin T dye, we obtained the aggregation kinetics of Aβ aggregation and determined that the chaperone prevents Aβ aggregation in a concentration-dependent manner. Size exclusion chromatography and sedimentation assays showed that 10-fold excess of cpSRP43 can keep Aβ in the soluble monomeric form. Electron microscopy showed that the fibril structure was disrupted in the presence of this chaperone. Importantly, cpSRP43 utilizes the binding energy to actively remodel the preformed Aβ aggregates without assistance by a co-chaperone and ATP, emphasizing its unique function among protein chaperones. Moreover, when sodium chloride concentration is higher than 25 mm, the Aβ aggregation rate increases drastically to form tightly associated aggregates and generate more oligomers. Our results demonstrate that the presence of cpSRP43 and low NaCl levels inhibit or retard Aβ peptide aggregation, potentially opening new avenues to strategically develop an effective treatment for AD.
Collapse
Affiliation(s)
- Christopher Sun
- Department of Biology, Midwestern State University, Wichita Falls, TX, USA
| | - Leah Slade
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Prisca Mbonu
- Department of Biology, Midwestern State University, Wichita Falls, TX, USA
| | - Hunter Ordner
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Connor Mitchell
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Matthew Mitchell
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| | - Fu-Cheng Liang
- Department of Chemistry, Midwestern State University, Wichita Falls, TX, USA
| |
Collapse
|
11
|
Wang W, Matunis MJ. Paralogue-Specific Roles of SUMO1 and SUMO2/3 in Protein Quality Control and Associated Diseases. Cells 2023; 13:8. [PMID: 38201212 PMCID: PMC10778024 DOI: 10.3390/cells13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Small ubiquitin-related modifiers (SUMOs) function as post-translational protein modifications and regulate nearly every aspect of cellular function. While a single ubiquitin protein is expressed across eukaryotic organisms, multiple SUMO paralogues with distinct biomolecular properties have been identified in plants and vertebrates. Five SUMO paralogues have been characterized in humans, with SUMO1, SUMO2 and SUMO3 being the best studied. SUMO2 and SUMO3 share 97% protein sequence homology (and are thus referred to as SUMO2/3) but only 47% homology with SUMO1. To date, thousands of putative sumoylation substrates have been identified thanks to advanced proteomic techniques, but the identification of SUMO1- and SUMO2/3-specific modifications and their unique functions in physiology and pathology are not well understood. The SUMO2/3 paralogues play an important role in proteostasis, converging with ubiquitylation to mediate protein degradation. This function is achieved primarily through SUMO-targeted ubiquitin ligases (STUbLs), which preferentially bind and ubiquitylate poly-SUMO2/3 modified proteins. Effects of the SUMO1 paralogue on protein solubility and aggregation independent of STUbLs and proteasomal degradation have also been reported. Consistent with these functions, sumoylation is implicated in multiple human diseases associated with disturbed proteostasis, and a broad range of pathogenic proteins have been identified as SUMO1 and SUMO2/3 substrates. A better understanding of paralogue-specific functions of SUMO1 and SUMO2/3 in cellular protein quality control may therefore provide novel insights into disease pathogenesis and therapeutic innovation. This review summarizes current understandings of the roles of sumoylation in protein quality control and associated diseases, with a focus on the specific effects of SUMO1 and SUMO2/3 paralogues.
Collapse
Affiliation(s)
| | - Michael J. Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
12
|
Daskivich GJ, Brodsky JL. The generation of detergent-insoluble clipped fragments from an ERAD substrate in mammalian cells. Sci Rep 2023; 13:21508. [PMID: 38057493 PMCID: PMC10700608 DOI: 10.1038/s41598-023-48769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Proteostasis ensures the proper synthesis, folding, and trafficking of proteins and is required for cellular and organellar homeostasis. This network also oversees protein quality control within the cell and prevents accumulation of aberrant proteins, which can lead to cellular dysfunction and disease. For example, protein aggregates irreversibly disrupt proteostasis and can exert gain-of-function toxic effects. Although this process has been examined in detail for cytosolic proteins, how endoplasmic reticulum (ER)-tethered, aggregation-prone proteins are handled is ill-defined. To determine how a membrane protein with a cytoplasmic aggregation-prone domain is routed for ER-associated degradation (ERAD), we analyzed a new model substrate, TM-Ubc9ts. In yeast, we previously showed that TM-Ubc9ts ERAD requires Hsp104, which is absent in higher cells. In transient and stable HEK293 cells, we now report that TM-Ubc9ts degradation is largely proteasome-dependent, especially at elevated temperatures. In contrast to yeast, clipped TM-Ubc9ts polypeptides, which are stabilized upon proteasome inhibition, accumulate and are insoluble at elevated temperatures. TM-Ubc9ts cleavage is independent of the intramembrane protease RHBDL4, which clips other classes of ERAD substrates. These studies highlight an unappreciated mechanism underlying the degradation of aggregation-prone substrates in the ER and invite further work on other proteases that contribute to ERAD.
Collapse
Affiliation(s)
- Grant J Daskivich
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jeffrey L Brodsky
- A320 Langley Hall, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
13
|
Braxton JR, Altobelli CR, Tucker MR, Tse E, Thwin AC, Arkin MR, Southworth DR. The p97/VCP adaptor UBXD1 drives AAA+ remodeling and ring opening through multi-domain tethered interactions. Nat Struct Mol Biol 2023; 30:2009-2019. [PMID: 37945741 PMCID: PMC10716044 DOI: 10.1038/s41594-023-01126-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
p97, also known as valosin-containing protein, is an essential cytosolic AAA+ (ATPases associated with diverse cellular activities) hexamer that unfolds substrate polypeptides to support protein homeostasis and macromolecular disassembly. Distinct sets of p97 adaptors guide cellular functions but their roles in direct control of the hexamer are unclear. The UBXD1 adaptor localizes with p97 in critical mitochondria and lysosome clearance pathways and contains multiple p97-interacting domains. Here we identify UBXD1 as a potent p97 ATPase inhibitor and report structures of intact human p97-UBXD1 complexes that reveal extensive UBXD1 contacts across p97 and an asymmetric remodeling of the hexamer. Conserved VIM, UBX and PUB domains tether adjacent protomers while a connecting strand forms an N-terminal domain lariat with a helix wedged at the interprotomer interface. An additional VIM-connecting helix binds along the second (D2) AAA+ domain. Together, these contacts split the hexamer into a ring-open conformation. Structures, mutagenesis and comparisons to other adaptors further reveal how adaptors containing conserved p97-remodeling motifs regulate p97 ATPase activity and structure.
Collapse
Affiliation(s)
- Julian R Braxton
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chad R Altobelli
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA
| | - Maxwell R Tucker
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Graduate Program in Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Aye C Thwin
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Wentink A, Rosenzweig R. Protein disaggregation machineries in the human cytosol. Curr Opin Struct Biol 2023; 83:102735. [PMID: 38000128 DOI: 10.1016/j.sbi.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Proteins carry out the vast majority of functions in cells, but can only do so when properly folded. Following stress or mutation, proteins can lose their proper fold, resulting in misfolding, inactivity, and aggregation-posing a threat to cellular health. In order to counteract protein aggregation, cells have evolved a remarkable subset of molecular chaperones, called protein disaggregases, which collaboratively possess the ability to forcibly untangle protein aggregates. Here, we review the different chaperone disaggregation machineries present in the human cytosol and their mechanisms of action. Understanding, how these disaggregases function, is both universally and clinically important, as protein aggregation has been linked to multiple, debilitating neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne Wentink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands.
| | - Rina Rosenzweig
- Chemical and Structural Biology Department, Weizmann Institute of Science, Rehovot, 761000, Israel.
| |
Collapse
|
15
|
Mack KL, Kim H, Barbieri EM, Lin J, Braganza S, Jackrel ME, DeNizio JE, Yan X, Chuang E, Tariq A, Cupo RR, Castellano LM, Caldwell KA, Caldwell GA, Shorter J. Tuning Hsp104 specificity to selectively detoxify α-synuclein. Mol Cell 2023; 83:3314-3332.e9. [PMID: 37625404 PMCID: PMC10530207 DOI: 10.1016/j.molcel.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.
Collapse
Affiliation(s)
- Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edward M Barbieri
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvanne Braganza
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie E DeNizio
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaohui Yan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amber Tariq
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Hnath B, Chen J, Reynolds J, Choi E, Wang J, Zhang D, Sha CM, Dokholyan NV. Big versus small: The impact of aggregate size in disease. Protein Sci 2023; 32:e4686. [PMID: 37243896 PMCID: PMC10273386 DOI: 10.1002/pro.4686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Protein aggregation results in an array of different size soluble oligomers and larger insoluble fibrils. Insoluble fibrils were originally thought to cause neuronal cell deaths in neurodegenerative diseases due to their prevalence in tissue samples and disease models. Despite recent studies demonstrating the toxicity associated with soluble oligomers, many therapeutic strategies still focus on fibrils or consider all types of aggregates as one group. Oligomers and fibrils require different modeling and therapeutic strategies, targeting the toxic species is crucial for successful study and therapeutic development. Here, we review the role of different-size aggregates in disease, and how factors contributing to aggregation (mutations, metals, post-translational modifications, and lipid interactions) may promote oligomers opposed to fibrils. We review two different computational modeling strategies (molecular dynamics and kinetic modeling) and how they are used to model both oligomers and fibrils. Finally, we outline the current therapeutic strategies targeting aggregating proteins and their strengths and weaknesses for targeting oligomers versus fibrils. Altogether, we aim to highlight the importance of distinguishing the difference between oligomers and fibrils and determining which species is toxic when modeling and creating therapeutics for protein aggregation in disease.
Collapse
Affiliation(s)
- Brianna Hnath
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jiaxing Chen
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Joshua Reynolds
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Esther Choi
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Jian Wang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Dongyan Zhang
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
| | - Congzhou M. Sha
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Medical Scientist Training ProgramPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Nikolay V. Dokholyan
- Department of Biomedical EngineeringPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of PharmacologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of Engineering Science and MechanicsPenn State UniversityUniversity ParkPennsylvaniaUSA
- Department of Biochemistry & Molecular BiologyPenn State College of MedicineHersheyPennsylvaniaUSA
- Department of ChemistryPenn State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
17
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Gupta A, Lentzsch AM, Siegel A, Yu Z, Chio US, Cheng Y, Shan SO. Dodecamer assembly of a metazoan AAA + chaperone couples substrate extraction to refolding. SCIENCE ADVANCES 2023; 9:eadf5336. [PMID: 37163603 PMCID: PMC10171807 DOI: 10.1126/sciadv.adf5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Ring-forming AAA+ chaperones solubilize protein aggregates and protect organisms from proteostatic stress. In metazoans, the AAA+ chaperone Skd3 in the mitochondrial intermembrane space (IMS) is critical for human health and efficiently refolds aggregated proteins, but its underlying mechanism is poorly understood. Here, we show that Skd3 harbors both disaggregase and protein refolding activities enabled by distinct assembly states. High-resolution structures of Skd3 hexamers in distinct conformations capture ratchet-like motions that mediate substrate extraction. Unlike previously described disaggregases, Skd3 hexamers further assemble into dodecameric cages in which solubilized substrate proteins can attain near-native states. Skd3 mutants defective in dodecamer assembly retain disaggregase activity but are impaired in client refolding, linking the disaggregase and refolding activities to the hexameric and dodecameric states of Skd3, respectively. We suggest that Skd3 is a combined disaggregase and foldase, and this property is particularly suited to meet the complex proteostatic demands in the mitochondrial IMS.
Collapse
Affiliation(s)
- Arpit Gupta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alfred M. Lentzsch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Siegel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zanlin Yu
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Un Seng Chio
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Zhao X, Stanford K, Ahearn J, Masison DC, Greene LE. Hsp70 Binding to the N-terminal Domain of Hsp104 Regulates [ PSI+] Curing by Hsp104 Overexpression. Mol Cell Biol 2023; 43:157-173. [PMID: 37099734 PMCID: PMC10153015 DOI: 10.1080/10985549.2023.2198181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 04/28/2023] Open
Abstract
Hsp104 propagates the yeast prion [PSI+], the infectious form of Sup35, by severing the prion seeds, but when Hsp104 is overexpressed, it cures [PSI+] in a process that is not yet understood but may be caused by trimming, which removes monomers from the ends of the amyloid fibers. This curing was shown to depend on both the N-terminal domain of Hsp104 and the expression level of various members of the Hsp70 family, which raises the question as to whether these effects of Hsp70 are due to it binding to the Hsp70 binding site that was identified in the N-terminal domain of Hsp104, a site not involved in prion propagation. Investigating this question, we now find, first, that mutating this site prevents both the curing of [PSI+] by Hsp104 overexpression and the trimming activity of Hsp104. Second, we find that depending on the specific member of the Hsp70 family binding to the N-terminal domain of Hsp104, both trimming and the curing caused by Hsp104 overexpression are either increased or decreased in parallel. Therefore, the binding of Hsp70 to the N-terminal domain of Hsp104 regulates both the rate of [PSI+] trimming by Hsp104 and the rate of [PSI+] curing by Hsp104 overexpression.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Ahearn
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Fare CM, Rhine K, Lam A, Myong S, Shorter J. A minimal construct of nuclear-import receptor Karyopherin-β2 defines the regions critical for chaperone and disaggregation activity. J Biol Chem 2023; 299:102806. [PMID: 36529289 PMCID: PMC9860449 DOI: 10.1016/j.jbc.2022.102806] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Karyopherin-β2 (Kapβ2) is a nuclear-import receptor that recognizes proline-tyrosine nuclear localization signals of diverse cytoplasmic cargo for transport to the nucleus. Kapβ2 cargo includes several disease-linked RNA-binding proteins with prion-like domains, such as FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2. These RNA-binding proteins with prion-like domains are linked via pathology and genetics to debilitating degenerative disorders, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Remarkably, Kapβ2 prevents and reverses aberrant phase transitions of these cargoes, which is cytoprotective. However, the molecular determinants of Kapβ2 that enable these activities remain poorly understood, particularly from the standpoint of nuclear-import receptor architecture. Kapβ2 is a super-helical protein comprised of 20 HEAT repeats. Here, we design truncated variants of Kapβ2 and assess their ability to antagonize FUS aggregation and toxicity in yeast and FUS condensation at the pure protein level and in human cells. We find that HEAT repeats 8 to 20 of Kapβ2 recapitulate all salient features of Kapβ2 activity. By contrast, Kapβ2 truncations lacking even a single cargo-binding HEAT repeat display reduced activity. Thus, we define a minimal Kapβ2 construct for delivery in adeno-associated viruses as a potential therapeutic for amyotrophic lateral sclerosis/frontotemporal dementia, multisystem proteinopathy, and related disorders.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Rhine
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Lam
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
22
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
23
|
Szczesna E, Zehr EA, Cummings SW, Szyk A, Mahalingan KK, Li Y, Roll-Mecak A. Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing. Dev Cell 2022; 57:2497-2513.e6. [PMID: 36347241 PMCID: PMC9665884 DOI: 10.1016/j.devcel.2022.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and β-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on β-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.
Collapse
Affiliation(s)
- Ewa Szczesna
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kishore K Mahalingan
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Cupo RR, Rizo AN, Braun GA, Tse E, Chuang E, Gupta K, Southworth DR, Shorter J. Unique structural features govern the activity of a human mitochondrial AAA+ disaggregase, Skd3. Cell Rep 2022; 40:111408. [PMID: 36170828 PMCID: PMC9584538 DOI: 10.1016/j.celrep.2022.111408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/02/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022] Open
Abstract
The AAA+ protein, Skd3 (human CLPB), solubilizes proteins in the mitochondrial intermembrane space, which is critical for human health. Skd3 variants with defective protein-disaggregase activity cause severe congenital neutropenia (SCN) and 3-methylglutaconic aciduria type 7 (MGCA7). How Skd3 disaggregates proteins remains poorly understood. Here, we report a high-resolution structure of a Skd3-substrate complex. Skd3 adopts a spiral hexameric arrangement that engages substrate via pore-loop interactions in the nucleotide-binding domain (NBD). Substrate-bound Skd3 hexamers stack head-to-head via unique, adaptable ankyrin-repeat domain (ANK)-mediated interactions to form dodecamers. Deleting the ANK linker region reduces dodecamerization and disaggregase activity. We elucidate apomorphic features of the Skd3 NBD and C-terminal domain that regulate disaggregase activity. We also define how Skd3 subunits collaborate to disaggregate proteins. Importantly, SCN-linked subunits sharply inhibit disaggregase activity, whereas MGCA7-linked subunits do not. These advances illuminate Skd3 structure and mechanism, explain SCN and MGCA7 inheritance patterns, and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Ryan R Cupo
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandrea N Rizo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel A Braun
- Chemistry and Chemical Biology Graduate Program, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Kocaman S, Lo YH, Krahn JM, Sobhany M, Dandey VP, Petrovich ML, Etigunta SK, Williams JG, Deterding LJ, Borgnia MJ, Stanley RE. Communication network within the essential AAA-ATPase Rix7 drives ribosome assembly. PNAS NEXUS 2022; 1:pgac118. [PMID: 36090660 PMCID: PMC9437592 DOI: 10.1093/pnasnexus/pgac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 02/06/2023]
Abstract
Rix7 is an essential AAA+ ATPase that functions during the early stages of ribosome biogenesis. Rix7 is composed of three domains including an N-terminal domain (NTD) and two AAA+ domains (D1 and D2) that assemble into an asymmetric stacked hexamer. It was recently established that Rix7 is a presumed protein translocase that removes substrates from preribosomes by translocating them through its central pore. However, how the different domains of Rix7 coordinate their activities within the overall hexameric structure was unknown. We captured cryo-electron microscopy (EM) structures of single and double Walker B variants of full length Rix7. The disordered NTD was not visible in the cryo-EM reconstructions, but cross-linking mass spectrometry revealed that the NTD can associate with the central channel in vitro. Deletion of the disordered NTD enabled us to obtain a structure of the Rix7 hexamer to 2.9 Å resolution, providing high resolution details of critical motifs involved in substrate translocation and interdomain communication. This structure coupled with cell-based assays established that the linker connecting the D1 and D2 domains as well as the pore loops lining the central channel are essential for formation of the large ribosomal subunit. Together, our work shows that Rix7 utilizes a complex communication network to drive ribosome biogenesis.
Collapse
Affiliation(s)
- Seda Kocaman
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Venkata P Dandey
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Matthew L Petrovich
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Suhas K Etigunta
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Department of Health and Human Services, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Department of Health and Human Services, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
26
|
Shoup D, Roth A, Puchalla J, Rye HS. The Impact of Hidden Structure on Aggregate Disassembly by Molecular Chaperones. Front Mol Biosci 2022; 9:915307. [PMID: 35874607 PMCID: PMC9302491 DOI: 10.3389/fmolb.2022.915307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Protein aggregation, or the uncontrolled self-assembly of partially folded proteins, is an ever-present danger for living organisms. Unimpeded, protein aggregation can result in severe cellular dysfunction and disease. A group of proteins known as molecular chaperones is responsible for dismantling protein aggregates. However, how protein aggregates are recognized and disassembled remains poorly understood. Here we employ a single particle fluorescence technique known as Burst Analysis Spectroscopy (BAS), in combination with two structurally distinct aggregate types grown from the same starting protein, to examine the mechanism of chaperone-mediated protein disaggregation. Using the core bi-chaperone disaggregase system from Escherichia coli as a model, we demonstrate that, in contrast to prevailing models, the overall size of an aggregate particle has, at most, a minor influence on the progression of aggregate disassembly. Rather, we show that changes in internal structure, which have no observable impact on aggregate particle size or molecular chaperone binding, can dramatically limit the ability of the bi-chaperone system to take aggregates apart. In addition, these structural alterations progress with surprising speed, rendering aggregates resistant to disassembly within minutes. Thus, while protein aggregate structure is generally poorly defined and is often obscured by heterogeneous and complex particle distributions, it can have a determinative impact on the ability of cellular quality control systems to process protein aggregates.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jason Puchalla
- Department of Physics, Princeton University, Princeton, NJ, United States
| | - Hays S. Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- *Correspondence: Hays S. Rye,
| |
Collapse
|
27
|
Pallapati AR, Prasad S, Roy I. Glycerol 3-phosphate dehydrogenase regulates heat shock response in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119238. [PMID: 35150808 DOI: 10.1016/j.bbamcr.2022.119238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The aim of this work was to identify elements of adaptive regulatory mechanism for basal level of yeast histone deacetylase Sir2. Heat shock response (HSR) was altered in the absence of the NAD-dependent glycerol 3-phosphate dehydrogenase (Gpd1). Increase in HSR was lower in ΔGpd1 cells than wild-type cells. An inverse correlation existed between Gpd1 and Sir2; Sir2-deleted cells showed higher expression of Gpd1 while deletion of Gpd1 led to higher expression of Sir2. In the absence of Gpd1, basal activity of Sir2 promoter was higher and was increased further upon heat shock, suggesting higher Sir2 levels. No interaction between Gpd1 and Sir2 was detected without or with heat shock using immunoprecipitation. The results show that Gpd1 regulates HSR in yeast cells and likely blocks its uncontrolled activation. As uncontrolled stress adversely affects the cellular adaptive response, Gpd1 may be a component of the cell's catalogue to ensure a balanced response to unmitigated thermal stress.
Collapse
Affiliation(s)
- Anusha Rani Pallapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
28
|
Lin J, Shorter J, Lucius AL. AAA+ proteins: one motor, multiple ways to work. Biochem Soc Trans 2022; 50:895-906. [PMID: 35356966 PMCID: PMC9115847 DOI: 10.1042/bst20200350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Numerous ATPases associated with diverse cellular activities (AAA+) proteins form hexameric, ring-shaped complexes that function via ATPase-coupled translocation of substrates across the central channel. Cryo-electron microscopy of AAA+ proteins processing substrate has revealed non-symmetric, staircase-like hexameric structures that indicate a sequential clockwise/2-residue step translocation model for these motors. However, for many of the AAA+ proteins that share similar structural features, their translocation properties have not yet been experimentally determined. In the cases where translocation mechanisms have been determined, a two-residue translocation step-size has not been resolved. In this review, we explore Hsp104, ClpB, ClpA and ClpX as examples to review the experimental methods that have been used to examine, in solution, the translocation mechanisms employed by AAA+ motor proteins. We then ask whether AAA+ motors sharing similar structural features can have different translocation mechanisms. Finally, we discuss whether a single AAA+ motor can adopt multiple translocation mechanisms that are responsive to different challenges imposed by the substrate or the environment. We suggest that AAA+ motors adopt more than one translocation mechanism and are tuned to switch to the most energetically efficient mechanism when constraints are applied.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
29
|
Differential Interactions of Molecular Chaperones and Yeast Prions. J Fungi (Basel) 2022; 8:jof8020122. [PMID: 35205876 PMCID: PMC8877571 DOI: 10.3390/jof8020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Baker’s yeast Saccharomyces cerevisiae is an important model organism that is applied to study various aspects of eukaryotic cell biology. Prions in yeast are self-perpetuating heritable protein aggregates that can be leveraged to study the interaction between the protein quality control (PQC) machinery and misfolded proteins. More than ten prions have been identified in yeast, of which the most studied ones include [PSI+], [URE3], and [PIN+]. While all of the major molecular chaperones have been implicated in propagation of yeast prions, many of these chaperones differentially impact propagation of different prions and/or prion variants. In this review, we summarize the current understanding of the life cycle of yeast prions and systematically review the effects of different chaperone proteins on their propagation. Our analysis clearly shows that Hsp40 proteins play a central role in prion propagation by determining the fate of prion seeds and other amyloids. Moreover, direct prion-chaperone interaction seems to be critically important for proper recruitment of all PQC components to the aggregate. Recent results also suggest that the cell asymmetry apparatus, cytoskeleton, and cell signaling all contribute to the complex network of prion interaction with the yeast cell.
Collapse
|
30
|
Locatelli AG, Cenci S. Autophagy and longevity: Evolutionary hints from hyper-longevous mammals. Front Endocrinol (Lausanne) 2022; 13:1085522. [PMID: 36605941 PMCID: PMC9807614 DOI: 10.3389/fendo.2022.1085522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a fundamental multi-tasking adaptive cellular degradation and recycling strategy. Following its causal implication in age-related decline, autophagy is currently among the most broadly studied and challenged mechanisms within aging research. Thanks to these efforts, new cellular nodes interconnected with this phylogenetically ancestral pathway and unexpected roles of autophagy-associated genetic products are unveiled daily, yet the history of functional adaptations of autophagy along its evolutive trail is poorly understood and documented. Autophagy is traditionally studied in canonical and research-wise convenient model organisms such as yeast and mice. However, unconventional animal models endowed with extended longevity and exemption from age-related diseases offer a privileged perspective to inquire into the role of autophagy in the evolution of longevity. In this mini review we retrace the appearance and functions evolved by autophagy in eukaryotic cells and its protective contribution in the pathophysiology of aging.
Collapse
Affiliation(s)
- Andrea G. Locatelli
- Age Related Diseases, San Raffaele Scientific Institute, Division of Genetics and Cell Biology, Milano, Italy
- *Correspondence: Andrea G. Locatelli, ; Simone Cenci,
| | - Simone Cenci
- Age Related Diseases, San Raffaele Scientific Institute, Division of Genetics and Cell Biology, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
- *Correspondence: Andrea G. Locatelli, ; Simone Cenci,
| |
Collapse
|
31
|
Borgert L, Mishra S, den Brave F. Quality control of cytoplasmic proteins inside the nucleus. Comput Struct Biotechnol J 2022; 20:4618-4625. [PMID: 36090811 PMCID: PMC9440239 DOI: 10.1016/j.csbj.2022.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
A complex network of molecular chaperones and proteolytic machinery safeguards the proteins which comprise the proteome, from the time they are synthesized on ribosomes to their destruction via proteolysis. Impaired protein quality control results in the accumulation of aberrant proteins, which may undergo unwanted spurious interactions with other proteins, thereby interfering with a broad range of cellular functions. To protect the cellular environment, such proteins are degraded or sequestered into inclusions in different subcellular compartments. Recent findings demonstrate that aberrant or mistargeted proteins from different cytoplasmic compartments are removed from their environment by transporting them into the nucleus. These proteins are degraded by the nuclear ubiquitin–proteasome system or sequestered into intra-nuclear inclusions. Here, we discuss the emerging role of the nucleus as a cellular quality compartment based on recent findings in the yeast Saccharomyces cerevisiae. We describe the current knowledge on cytoplasmic substrates of nuclear protein quality control, the mechanism of nuclear import of such proteins, as well as possible advantages and risks of nuclear sequestration of aberrant proteins.
Collapse
|
32
|
Amyloid Fragmentation and Disaggregation in Yeast and Animals. Biomolecules 2021; 11:biom11121884. [PMID: 34944528 PMCID: PMC8699242 DOI: 10.3390/biom11121884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/29/2022] Open
Abstract
Amyloids are filamentous protein aggregates that are associated with a number of incurable diseases, termed amyloidoses. Amyloids can also manifest as infectious or heritable particles, known as prions. While just one prion is known in humans and animals, more than ten prion amyloids have been discovered in fungi. The propagation of fungal prion amyloids requires the chaperone Hsp104, though in excess it can eliminate some prions. Even though Hsp104 acts to disassemble prion fibrils, at normal levels it fragments them into multiple smaller pieces, which ensures prion propagation and accelerates prion conversion. Animals lack Hsp104, but disaggregation is performed by the same complement of chaperones that assist Hsp104 in yeast—Hsp40, Hsp70, and Hsp110. Exogenous Hsp104 can efficiently cooperate with these chaperones in animals and promotes disaggregation, especially of large amyloid aggregates, which indicates its potential as a treatment for amyloid diseases. However, despite the significant effects, Hsp104 and its potentiated variants may be insufficient to fully dissolve amyloid. In this review, we consider chaperone mechanisms acting to disassemble heritable protein aggregates in yeast and animals, and their potential use in the therapy of human amyloid diseases.
Collapse
|
33
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
34
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
35
|
Amyloid particles facilitate surface-catalyzed cross-seeding by acting as promiscuous nanoparticles. Proc Natl Acad Sci U S A 2021; 118:2104148118. [PMID: 34462352 PMCID: PMC8433567 DOI: 10.1073/pnas.2104148118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amyloid seeds are nanometer-sized protein particles that accelerate amyloid assembly as well as propagate and transmit the amyloid protein conformation associated with a wide range of protein misfolding diseases. However, seeded amyloid growth through templated elongation at fibril ends cannot explain the full range of molecular behaviors observed during cross-seeded formation of amyloid by heterologous seeds. Here, we demonstrate that amyloid seeds can accelerate amyloid formation via a surface catalysis mechanism without propagating the specific amyloid conformation associated with the seeds. This type of seeding mechanism is demonstrated through quantitative characterization of the cross-seeded assembly reactions involving two nonhomologous and unrelated proteins: the human Aβ42 peptide and the yeast prion-forming protein Sup35NM. Our results demonstrate experimental approaches to differentiate seeding by templated elongation from nontemplated amyloid seeding and rationalize the molecular mechanism of the cross-seeding phenomenon as a manifestation of the aberrant surface activities presented by amyloid seeds as nanoparticles.
Collapse
|
36
|
Mazal H, Iljina M, Riven I, Haran G. Ultrafast pore-loop dynamics in a AAA+ machine point to a Brownian-ratchet mechanism for protein translocation. SCIENCE ADVANCES 2021; 7:eabg4674. [PMID: 34516899 PMCID: PMC8442866 DOI: 10.1126/sciadv.abg4674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/14/2021] [Indexed: 05/29/2023]
Abstract
AAA+ ring–shaped machines, such as the disaggregation machines ClpB and Hsp104, mediate ATP-driven substrate translocation through their central channel by a set of pore loops. Recent structural studies have suggested a universal hand-over-hand translocation mechanism with slow and rigid subunit motions. However, functional and biophysical studies are in discord with this model. Here, we directly measure the real-time dynamics of the pore loops of ClpB during substrate threading, using single-molecule FRET spectroscopy. All pore loops undergo large-amplitude fluctuations on the microsecond time scale and change their conformation upon interaction with substrate proteins in an ATP-dependent manner. Conformational dynamics of two of the pore loops strongly correlate with disaggregation activity, suggesting that they are the main contributors to substrate pulling. This set of findings is rationalized in terms of an ultrafast Brownian-ratchet translocation mechanism, which likely acts in parallel to the much slower hand-over-hand process in ClpB and other AAA+ machines.
Collapse
|
37
|
Burns GD, Hilal OE, Sun Z, Reutter KR, Preston GM, Augustine AA, Brodsky JL, Guerriero CJ. Distinct classes of misfolded proteins differentially affect the growth of yeast compromised for proteasome function. FEBS Lett 2021; 595:2383-2394. [PMID: 34358326 DOI: 10.1002/1873-3468.14172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/09/2022]
Abstract
Maintenance of the proteome (proteostasis) is essential for cellular homeostasis and prevents cytotoxic stress responses that arise from protein misfolding. However, little is known about how different types of misfolded proteins impact homeostasis, especially when protein degradation pathways are compromised. We examined the effects of misfolded protein expression on yeast growth by characterizing a suite of substrates possessing the same aggregation-prone domain but engaging different quality control pathways. We discovered that treatment with a proteasome inhibitor was more toxic in yeast expressing misfolded membrane proteins, and this growth defect was mirrored in yeast lacking a proteasome-specific transcription factor, Rpn4p. These results highlight weaknesses in the proteostasis network's ability to handle the stress arising from an accumulation of misfolded membrane proteins.
Collapse
Affiliation(s)
- Grace D Burns
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | - Olivia E Hilal
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | - Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, PA, USA
| | | |
Collapse
|
38
|
Xia H, Chen L, Fan Z, Peng M, Zhao J, Chen W, Li H, Shi Y, Ding S, Li H. Heat Stress Tolerance Gene FpHsp104 Affects Conidiation and Pathogenicity of Fusarium pseudograminearum. Front Microbiol 2021; 12:695535. [PMID: 34394037 PMCID: PMC8355993 DOI: 10.3389/fmicb.2021.695535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein Hsp104, a homolog of the bacterial chaperone ClpB and plant Hsp100, plays an essential part in the response to heat and various chemical agents in Saccharomyces cerevisiae. However, their functions remain largely unknown in plant fungal pathogens. Here, we report the identification and functional characterization of a plausible ortholog of yeast Hsp104 in Fusarium pseudograminearum, which we termed FpHsp104. Deletion mutant of FpHsp104 displayed severe defects in the resistance of heat shock during F. pseudograminearum mycelia and conidia when exposed to extreme heat. We also found that the protein showed dynamic localization to small particles under high temperature. However, no significant differences were detected in osmotic, oxidative, or cell wall stress responses between the wild-type and Δfphsp104 strains. Quantitative real-time PCR analysis showed that FpHsp104 was upregulated in the conidia, and disruption of FpHsp104 gene resulted in defects in conidia production, morphology, and germination. The transcript levels of conidiation-related genes of FpFluG, FpVosA, FpWetA, and FpAbaA were reduced in the Δfphsp104 mutant vs. the wild-type strain, but heat-shocked mRNA splicing repair was not affected in Δfphsp104. Moreover, Δfphsp104 mutant also showed attenuated virulence, but its DON synthesis was normal. These data from the first study of Hsp104 in F. pseudograminearum strongly suggest that FpHsp104 gene is an important element in the heat tolerance, development, and pathogenicity processes of F. pseudograminearum.
Collapse
Affiliation(s)
- Huiqing Xia
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zhuo Fan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengya Peng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingya Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Haiyang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shengli Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
39
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Abstract
In this Primer, Seraphim and Houry highlight the structural features and functional diversity of AAA+ proteins and summarise our current knowledge of the molecular mechanisms driving the activities of these proteins.
Collapse
Affiliation(s)
- Thiago V Seraphim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
41
|
Yin Y, Kovach A, Hsu HC, Darwin KH, Li H. The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome. J Biol Chem 2021; 296:100713. [PMID: 33930464 PMCID: PMC8142254 DOI: 10.1016/j.jbc.2021.100713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
Abstract
Although many bacterial species do not possess proteasome systems, the actinobacteria, including the human pathogen Mycobacterium tuberculosis, use proteasome systems for targeted protein removal. Previous structural analyses of the mycobacterial proteasome ATPase Mpa revealed a general structural conservation with the archaeal proteasome-activating nucleotidase and eukaryotic proteasomal Rpt1–6 ATPases, such as the N-terminal coiled-coil domain, oligosaccharide-/oligonucleotide-binding domain, and ATPase domain. However, Mpa has a unique β-grasp domain that in the ADP-bound crystal structure appears to interfere with the docking to the 20S proteasome core particle (CP). Thus, it is unclear how Mpa binds to proteasome CPs. In this report, we show by cryo-EM that the Mpa hexamer in the presence of a degradation substrate and ATP forms a gapped ring, with two of its six ATPase domains being highly flexible. We found that the linkers between the oligonucleotide-binding and ATPase domains undergo conformational changes that are important for function, revealing a previously unappreciated role of the linker region in ATP hydrolysis–driven protein unfolding. We propose that this gapped ring configuration is an intermediate state that helps rearrange its β-grasp domains and activating C termini to facilitate engagement with proteasome CPs. This work provides new insights into the crucial process of how an ATPase interacts with a bacterial proteasome protease.
Collapse
Affiliation(s)
- Yanting Yin
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - K Heran Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
42
|
Abstract
Neurodegenerative diseases and other protein-misfolding disorders represent a longstanding biomedical challenge, and effective therapies remain largely elusive. This failure is due, in part, to the recalcitrant and diverse nature of misfolded protein conformers. Recent work has uncovered that many aggregation-prone proteins can also undergo liquid-liquid phase separation, a process by which macromolecules self-associate to form dense condensates with liquid properties that are compositionally distinct from the bulk cellular milieu. Efforts to combat diseases caused by toxic protein states focus on exploiting or enhancing the proteostasis machinery to prevent and reverse pathological protein conformations. Here, we discuss recent advances in elucidating and engineering therapeutic agents to combat the diverse aberrant protein states that underlie protein-misfolding disorders.
Collapse
Affiliation(s)
- Charlotte M. Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Yin Y, Feng X, Yu H, Fay A, Kovach A, Glickman MS, Li H. Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Rep 2021; 35:109166. [PMID: 34038719 PMCID: PMC8209680 DOI: 10.1016/j.celrep.2021.109166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/30/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
The M. tuberculosis (Mtb) ClpB is a protein disaggregase that helps to rejuvenate the bacterial cell. DnaK is a protein foldase that can function alone, but it can also bind to the ClpB hexamer to physically couple protein disaggregation with protein refolding, although the molecular mechanism is not well understood. Here, we report the cryo-EM analysis of the Mtb ClpB-DnaK bi-chaperone in the presence of ATPγS and a protein substrate. We observe three ClpB conformations in the presence of DnaK, identify a conserved TGIP loop linking the oligonucleotide/oligosaccharide-binding domain and the nucleotide-binding domain that is important for ClpB function, derive the interface between the regulatory middle domain of the ClpB and the DnaK nucleotide-binding domain, and find that DnaK binding stabilizes, but does not bend or tilt, the ClpB middle domain. We propose a model for the synergistic actions of aggregate dissolution and refolding by the Mtb ClpB-DnaK bi-chaperone system. Yin et al. use cryo-EM to analyze the structure of the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. They find that the Mtb ClpB middle domain does not bend or tilt when interacting with DnaK. They therefore propose that the Mtb DnaK facilitates protein folding following protein disaggregation by ClpB.
Collapse
Affiliation(s)
- Yanting Yin
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongjun Yu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
44
|
Darling AL, Shorter J. Combating deleterious phase transitions in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118984. [PMID: 33549703 PMCID: PMC7965345 DOI: 10.1016/j.bbamcr.2021.118984] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases. However, the mechanism that induces pathogenic aggregation is not well understood. Recently, it has emerged that several of the pathological proteins found in an aggregated or mislocalized state in neurodegenerative diseases are also able to undergo liquid-liquid phase separation (LLPS) under physiological conditions. Although these phase transitions are likely important for various physiological functions, neurodegenerative disease-related mutations and conditions can alter the LLPS behavior of these proteins, which can elicit toxicity. Therefore, therapeutics that antagonize aberrant LLPS may be able to mitigate toxicity and aggregation that is ubiquitous in neurodegenerative disease. Here, we discuss the mechanisms by which aberrant protein phase transitions may contribute to neurodegenerative disease. We also outline potential therapeutic strategies to counter deleterious phases. State without borders: Membrane-less organelles and liquid-liquid phase transitions edited by Vladimir N Uversky.
Collapse
Affiliation(s)
- April L Darling
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Alberti S, Hyman AA. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol 2021; 22:196-213. [PMID: 33510441 DOI: 10.1038/s41580-020-00326-6] [Citation(s) in RCA: 485] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Biomolecular condensates are membraneless intracellular assemblies that often form via liquid-liquid phase separation and have the ability to concentrate biopolymers. Research over the past 10 years has revealed that condensates play fundamental roles in cellular organization and physiology, and our understanding of the molecular principles, components and forces underlying their formation has substantially increased. Condensate assembly is tightly regulated in the intracellular environment, and failure to control condensate properties, formation and dissolution can lead to protein misfolding and aggregation, which are often the cause of ageing-associated diseases. In this Review, we describe the mechanisms and regulation of condensate assembly and dissolution, highlight recent advances in understanding the role of biomolecular condensates in ageing and disease, and discuss how cellular stress, ageing-related loss of homeostasis and a decline in protein quality control may contribute to the formation of aberrant, disease-causing condensates. Our improved understanding of condensate pathology provides a promising path for the treatment of protein aggregation diseases.
Collapse
Affiliation(s)
- Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
46
|
March ZM, Sweeney K, Kim H, Yan X, Castellano LM, Jackrel ME, Lin J, Chuang E, Gomes E, Willicott CW, Michalska K, Jedrzejczak RP, Joachimiak A, Caldwell KA, Caldwell GA, Shalem O, Shorter J. Therapeutic genetic variation revealed in diverse Hsp104 homologs. eLife 2020; 9:e57457. [PMID: 33319748 PMCID: PMC7785292 DOI: 10.7554/elife.57457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The AAA+ protein disaggregase, Hsp104, increases fitness under stress by reversing stress-induced protein aggregation. Natural Hsp104 variants might exist with enhanced, selective activity against neurodegenerative disease substrates. However, natural Hsp104 variation remains largely unexplored. Here, we screened a cross-kingdom collection of Hsp104 homologs in yeast proteotoxicity models. Prokaryotic ClpG reduced TDP-43, FUS, and α-synuclein toxicity, whereas prokaryotic ClpB and hyperactive variants were ineffective. We uncovered therapeutic genetic variation among eukaryotic Hsp104 homologs that specifically antagonized TDP-43 condensation and toxicity in yeast and TDP-43 aggregation in human cells. We also uncovered distinct eukaryotic Hsp104 homologs that selectively antagonized α-synuclein condensation and toxicity in yeast and dopaminergic neurodegeneration in C. elegans. Surprisingly, this therapeutic variation did not manifest as enhanced disaggregase activity, but rather as increased passive inhibition of aggregation of specific substrates. By exploring natural tuning of this passive Hsp104 activity, we elucidated enhanced, substrate-specific agents that counter proteotoxicity underlying neurodegeneration.
Collapse
Affiliation(s)
- Zachary M March
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Katelyn Sweeney
- Department of Genetics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Hanna Kim
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Xiaohui Yan
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Laura M Castellano
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Pharmacology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Pharmacology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Edward Gomes
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Corey W Willicott
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Karolina Michalska
- Structural Biology Center, X-ray Science Division, Argonne National LaboratoryArgonneUnited States
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Robert P Jedrzejczak
- Structural Biology Center, X-ray Science Division, Argonne National LaboratoryArgonneUnited States
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National LaboratoryArgonneUnited States
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Kim A Caldwell
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Guy A Caldwell
- Department of Biological Sciences, The University of AlabamaTuscaloosaUnited States
| | - Ophir Shalem
- Department of Genetics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Pharmacology Graduate Group, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
47
|
Huang YW, Kushnirov VV, King CY. Mutable yeast prion variants are stabilized by a defective Hsp104 chaperone. Mol Microbiol 2020; 115:774-788. [PMID: 33190361 DOI: 10.1111/mmi.14643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
Gorkovskiy et al. observed that many [PSI+ ] prion isolates, obtained in yeast with the mutant Hsp104T160M chaperone, propagate poorly in wild-type cells and suggested that Hsp104 is part of the cellular anti-prion system, curing many nascent [PSI+ ] variants. Here, we argue that the concept may require reassessment. We induced [PSI+ ] variants in both the wild-type and the mutant background. Three new variants were isolated in the T160M background. They exhibited lower thermostability, possessed novel structural features, and were inherently mutable, changing to well-characterized VH, VK, and VL variants in wild-type cells. In contrast, VH, VK, and VL of the wild-type background, could not change freely and were lost in the mutant, due to insufficient chaperone activity. Thus, mutant Hsp104 can impose as much restriction against emerging prion variants as the wild-type protein. Such restriction conserved the transmutable variants in the T160M background, since new structures mis-templated from them could not gain a foothold. We further demonstrate excess Hsp104T160M or Hsp104∆2-147 can eliminate nearly all of the [PSI+ ] variants in their native background. This finding contradicts the generally held belief that Hsp104-induced [PSI+ ] curing requires its N-terminal domain, and may help settling the current contention regarding how excess Hsp104 cures [PSI+ ].
Collapse
Affiliation(s)
- Yu-Wen Huang
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Vitaly V Kushnirov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Chih-Yen King
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
48
|
Kim G, Lee SG, Han S, Jung J, Jeong HS, Hyun JK, Rhee DK, Kim HM, Lee S. ClpL is a functionally active tetradecameric AAA+ chaperone, distinct from hexameric/dodecameric ones. FASEB J 2020; 34:14353-14370. [PMID: 32910525 DOI: 10.1096/fj.202000843r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023]
Abstract
AAA+ (ATPases associated with diverse cellular activities) chaperones are involved in a plethora of cellular activities to ensure protein homeostasis. The function of AAA+ chaperones is mostly modulated by their hexameric/dodecameric quaternary structures. Here we report the structural and biochemical characterizations of a tetradecameric AAA+ chaperone, ClpL from Streptococcus pneumoniae. ClpL exists as a tetradecamer in solution in the presence of ATP. The cryo-EM structure of ClpL at 4.5 Å resolution reveals a striking tetradecameric arrangement. Solution structures of ClpL derived from small-angle X-ray scattering data suggest that the tetradecameric ClpL could assume a spiral conformation found in active hexameric/dodecameric AAA+ chaperone structures. Vertical positioning of the middle domain accounts for the head-to-head arrangement of two heptameric rings. Biochemical activity assays with site-directed mutagenesis confirmed the critical roles of residues both in the integrity of the tetradecameric arrangement and activities of ClpL. Non-conserved Q321 and R670 are crucial in the heptameric ring assembly of ClpL. These results establish that ClpL is a functionally active tetradecamer, clearly distinct from hexameric/dodecameric AAA+ chaperones.
Collapse
Affiliation(s)
- Gyuhee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Seong-Gyu Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jaeeun Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | | | - Jae-Kyung Hyun
- Korea Basic Science Institute, Cheongju, Korea.,Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.,Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
49
|
Tariq A, Lin J, Jackrel ME, Hesketh CD, Carman PJ, Mack KL, Weitzman R, Gambogi C, Hernandez Murillo OA, Sweeny EA, Gurpinar E, Yokom AL, Gates SN, Yee K, Sudesh S, Stillman J, Rizo AN, Southworth DR, Shorter J. Mining Disaggregase Sequence Space to Safely Counter TDP-43, FUS, and α-Synuclein Proteotoxicity. Cell Rep 2020; 28:2080-2095.e6. [PMID: 31433984 PMCID: PMC6750954 DOI: 10.1016/j.celrep.2019.07.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/25/2019] [Accepted: 07/19/2019] [Indexed: 10/31/2022] Open
Abstract
Hsp104 is an AAA+ protein disaggregase, which can be potentiated via diverse mutations in its autoregulatory middle domain (MD) to mitigate toxic misfolding of TDP-43, FUS, and α-synuclein implicated in fatal neurodegenerative disorders. Problematically, potentiated MD variants can exhibit off-target toxicity. Here, we mine disaggregase sequence space to safely enhance Hsp104 activity via single mutations in nucleotide-binding domain 1 (NBD1) or NBD2. Like MD variants, NBD variants counter TDP-43, FUS, and α-synuclein toxicity and exhibit elevated ATPase and disaggregase activity. Unlike MD variants, non-toxic NBD1 and NBD2 variants emerge that rescue TDP-43, FUS, and α-synuclein toxicity. Potentiating substitutions alter NBD1 residues that contact ATP, ATP-binding residues, or the MD. Mutating the NBD2 protomer interface can also safely ameliorate Hsp104. Thus, we disambiguate allosteric regulation of Hsp104 by several tunable structural contacts, which can be engineered to spawn enhanced therapeutic disaggregases with minimal off-target toxicity.
Collapse
Affiliation(s)
- Amber Tariq
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina D Hesketh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Carman
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Weitzman
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oscar A Hernandez Murillo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esin Gurpinar
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Keolamau Yee
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saurabh Sudesh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Stillman
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis-Past, present, and future. Med Res Rev 2020; 40:1352-1384. [PMID: 32043626 PMCID: PMC7417284 DOI: 10.1002/med.21661] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive loss of muscle function. It is the most common adult-onset form of motor neuron disease, affecting about 16 000 people in the United States alone. The average survival is about 3 years. Only two interventional drugs, the antiglutamatergic small-molecule riluzole and the more recent antioxidant edaravone, have been approved for the treatment of ALS to date. Therapeutic strategies under investigation in clinical trials cover a range of different modalities and targets, and more than 70 different drugs have been tested in the clinic to date. Here, we summarize and classify interventional therapeutic strategies based on their molecular targets and phenotypic effects. We also discuss possible reasons for the failure of clinical trials in ALS and highlight emerging preclinical strategies that could provide a breakthrough in the battle against this relentless disease.
Collapse
Affiliation(s)
- Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Merck & Co, Inc, Kenilworth, New Jersey
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|