1
|
Niehrs C, Zapparoli E, Lee H. 'Three signals - three body axes' as patterning principle in bilaterians. Cells Dev 2024:203944. [PMID: 39121910 DOI: 10.1016/j.cdev.2024.203944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In vertebrates, the three orthogonal body axes, anteroposterior (AP), dorsoventral (DV) and left-right (LR) are determined at gastrula and neurula stages by the Spemann-Mangold organizer and its equivalents. A common feature of AP and DV axis formation is that an evolutionary conserved interplay between growth factors (Wnt, BMP) and their extracellular antagonists (e.g. Dkk1, Chordin) creates signaling gradients for axial patterning. Recent work showed that LR patterning in Xenopus follows the same principle, with R-spondin 2 (Rspo2) as an extracellular FGF antagonist, which creates a signaling gradient that determines the LR vector. That a triad of anti-FGF, anti-BMP, and anti-Wnt governs LR, DV, and AP axis formation reveals a unifying principle in animal development. We discuss how cross-talk between these three signals confers integrated AP-DV-LR body axis patterning underlying developmental robustness, size scaling, and harmonious regulation. We propose that Urbilateria featured three orthogonal body axes that were governed by a Cartesian coordinate system of orthogonal Wnt/AP, BMP/DV, and FGF/LR signaling gradients.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| | | | - Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Gao H, Huang X, Chen W, Feng Z, Zhao Z, Li P, Tan C, Wang J, Zhuang Q, Gao Y, Min S, Yao Q, Qian M, Ma X, Wu F, Yan W, Sheng W, Huang G. Association of copy number variation in X chromosome-linked PNPLA4 with heterotaxy and congenital heart disease. Chin Med J (Engl) 2024; 137:1823-1834. [PMID: 38973237 DOI: 10.1097/cm9.0000000000003192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heterotaxy (HTX) is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease (CHD). The aim of this study was to analyze rare copy number variations (CNVs) in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD. METHODS Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients, and available samples from parents were used to confirm the inheritance pattern. Potential candidate genes in CNVs region were prioritized via the DECIPHER database, and PNPLA4 was identified as the leading candidate gene. To validate, we generated PNPLA4 -overexpressing human induced pluripotent stem cell lines as well as pnpla4 -overexpressing zebrafish model, followed by a series of transcriptomic, biochemical and cellular analyses. RESULTS Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients (12.5%). Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort, and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD. PNPLA4 is expressed in the lateral plate mesoderm, which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation, and in the neural crest cell lineage. Through a series of in vivo and in vitro analyses at the molecular and cellular levels, we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production. CONCLUSIONS Our findings demonstrated a significant association between CNVs and HTX/CHD. Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.
Collapse
Affiliation(s)
- Han Gao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
| | - Weicheng Chen
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Zhiyu Feng
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Zhengshan Zhao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Ping Li
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Chaozhong Tan
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Jinxin Wang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Quannan Zhuang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Yuan Gao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Shaojie Min
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Qinyu Yao
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Maoxiang Qian
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
| | - Feizhen Wu
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Weili Yan
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai 201102, China
- Shanghai Key Laboratory of Birth Defects, Shanghai 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital, Xiamen, Fujian 361006, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai 201102, China
| |
Collapse
|
3
|
Lee H, Camuto CM, Niehrs C. R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient. Nat Commun 2024; 15:1003. [PMID: 38307837 PMCID: PMC10837206 DOI: 10.1038/s41467-024-44951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024] Open
Abstract
Establishment of the left-right (LR, sinistral, dextral) body axis in many vertebrate embryos relies on cilia-driven leftward fluid flow within an LR organizer (LRO). A cardinal question is how leftward flow triggers symmetry breakage. The chemosensation model posits that ciliary flow enriches a signaling molecule on the left side of the LRO that promotes sinistral cell fate. However, the nature of this sinistralizing signal has remained elusive. In the Xenopus LRO, we identified the stem cell growth factor R-Spondin 2 (Rspo2) as a symmetrically expressed, sinistralizing signal. As predicted for a flow-mediated signal, Rspo2 operates downstream of leftward flow but upstream of the asymmetrically expressed gene dand5. Unexpectedly, in LR patterning, Rspo2 acts as an FGF receptor antagonist: Rspo2 via its TSP1 domain binds Fgfr4 and promotes its membrane clearance by Znrf3-mediated endocytosis. Concordantly, we find that at flow-stage, FGF signaling is dextralizing and forms a gradient across the LRO, high on the dextral- and low on the sinistral side. Rspo2 gain- and loss-of function equalize this FGF signaling gradient and sinistralize and dextralize development, respectively. We propose that leftward flow of Rspo2 produces an FGF signaling gradient that governs LR-symmetry breakage.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Celine Marie Camuto
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120, Heidelberg, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
4
|
Messmore M, Kassab AJ, Prather RO, Arceo DAC, DeCampli W. Cilia and Nodal Flow in Asymmetry: An Engineering Perspective. Crit Rev Biomed Eng 2024; 52:63-82. [PMID: 38523441 DOI: 10.1615/critrevbiomedeng.2024051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Over the past several years, cilia in the primitive node have become recognized more and more for their contribution to development, and more specifically, for their role in axis determination. Although many of the mechanisms behind their influence remain undocumented, it is known that their presence and motion in the primitive node of developing embryos is the determinant of the left-right axis. Studies on cilial mechanics and nodal fluid dynamics have provided clues as to how this asymmetry mechanism works, and more importantly, have shown that direct manipulation of the flow field in the node can directly influence physiology. Although relatively uncommon, cilial disorders have been shown to have a variety of impacts on individuals from chronic respiratory infections to infertility, as well as situs inversus which is linked to congenital heart disease. After first providing background information pertinent to understanding nodal flow and information on why this discussion is important, this paper aims to give a review of the history of nodal cilia investigations, an overview of cilia mechanics and nodal flow dynamics, as well as a review of research studies current and past that sought to understand the mechanisms behind nodal cilia's involvement in symmetry-breaking pathways through a biomedical engineering perspective. This discussion has the additional intention to compile interdisciplinary knowledge on asymmetry and development such that it may encourage more collaborative efforts between the sciences on this topic, as well as provide insight on potential paths forward in the field.
Collapse
Affiliation(s)
| | - Alain J Kassab
- Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd, Orlando, Florida, USA
| | - Ray O Prather
- Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA; University of Central Florida, Orlando, FL 32816, USA; The Heart Center at Orlando Health Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| | - David A Castillo Arceo
- College of Engineering and Computer Science (CECS), University of Central Florida, Orlando, FL, USA
| | - William DeCampli
- University of Central Florida, Orlando, FL, 32816, USA; The Heart Center, Arnold Palmer Hospital for Children, Orlando, FL, 32806, USA
| |
Collapse
|
5
|
Liu J, Xie H, Wu M, Hu Y, Kang Y. The role of cilia during organogenesis in zebrafish. Open Biol 2023; 13:230228. [PMID: 38086423 PMCID: PMC10715920 DOI: 10.1098/rsob.230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Cilia are hair-like organelles that protrude from the surface of eukaryotic cells and are present on the surface of nearly all human cells. Cilia play a crucial role in signal transduction, organ development and tissue homeostasis. Abnormalities in the structure and function of cilia can lead to a group of human diseases known as ciliopathies. Currently, zebrafish serves as an ideal model for studying ciliary function and ciliopathies due to its relatively conserved structure and function of cilia compared to humans. In this review, we will summarize the different types of cilia that present in embryonic and adult zebrafish, and provide an overview of the advantages of using zebrafish as a vertebrate model for cilia research. We will specifically focus on the roles of cilia during zebrafish organogenesis based on recent studies. Additionally, we will highlight future prospects for ciliary research in zebrafish.
Collapse
Affiliation(s)
- Junjun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haibo Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mengfan Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yidan Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yunsi Kang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
6
|
Du J, Li SK, Guan LY, Guo Z, Yin JF, Gao L, Kawanishi T, Shimada A, Zhang QP, Zheng LS, Liu YY, Feng XQ, Zhao L, Chen DY, Takeda H, Fan YB. Mechanically sensitive HSF1 is a key regulator of left-right symmetry breaking in zebrafish embryos. iScience 2023; 26:107864. [PMID: 37766982 PMCID: PMC10520531 DOI: 10.1016/j.isci.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The left-right symmetry breaking of vertebrate embryos requires nodal flow. However, the molecular mechanisms that mediate the asymmetric gene expression regulation under nodal flow remain elusive. Here, we report that heat shock factor 1 (HSF1) is asymmetrically activated in the Kupffer's vesicle of zebrafish embryos in the presence of nodal flow. Deficiency in HSF1 expression caused a significant situs inversus and disrupted gene expression asymmetry of nodal signaling proteins in zebrafish embryos. Further studies demonstrated that HSF1 is a mechanosensitive protein. The mechanical sensation ability of HSF1 is conserved in a variety of mechanical stimuli in different cell types. Moreover, cilia and Ca2+-Akt signaling axis are essential for the activation of HSF1 under mechanical stress in vitro and in vivo. Considering the conserved expression of HSF1 in organisms, these findings unveil a fundamental mechanism of gene expression regulation by mechanical clues during embryonic development and other physiological and pathological transformations.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Shu-Kai Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Liu-Yuan Guan
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
| | - Zheng Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jiang-Fan Yin
- College of life science, Hebei Normal University, Shijiazhuang 050024, China
| | - Li Gao
- College of life science, Hebei Normal University, Shijiazhuang 050024, China
| | - Toru Kawanishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Atsuko Shimada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Qiu-Ping Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Li-Sha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yi-Yao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Mechanical Engineering, School of Aerospace, Tsinghua University, Beijing 100084, China
| | - Lin Zhao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
7
|
Tanaka Y, Morozumi A, Hirokawa N. Nodal flow transfers polycystin to determine mouse left-right asymmetry. Dev Cell 2023; 58:1447-1461.e6. [PMID: 37413993 DOI: 10.1016/j.devcel.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Left-dominant [Ca2+]i elevation on the left margin of the ventral node furnishes the initial laterality of mouse embryos. It depends on extracellular leftward fluid flow (nodal flow), fibroblast growth factor receptor (FGFR)/sonic hedgehog (Shh) signaling, and the PKD1L1 polycystin subunit, of which interrelationship is still elusive. Here, we show that leftward nodal flow directs PKD1L1-containing fibrous strands and facilitates Nodal-mediated [Ca2+]i elevation on the left margin. We generate KikGR-PKD1L1 knockin mice in order to monitor protein dynamics with a photoconvertible fluorescence protein tag. By imaging those embryos, we have identified fragile meshwork being gradually transferred leftward involving pleiomorphic extracellular events. A portion of the meshwork finally bridges over the left nodal crown cells in an FGFR/Shh-dependent manner. As PKD1L1 N-term is predominantly associated with Nodal on the left margin and that PKD1L1/PKD2 overexpression significantly augments cellular Nodal sensitivity, we propose that leftward transfer of polycystin-containing fibrous strands determines left-right asymmetry in developing embryos.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ai Morozumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
8
|
Peng Z, Man Q, Meng L, Wang S, Cai H, Zhang C, Li X, Wang H, Zhu G. A PITX2-HTR1B pathway regulates the asymmetric development of female gonads in chickens. PNAS NEXUS 2023; 2:pgad202. [PMID: 37388922 PMCID: PMC10304771 DOI: 10.1093/pnasnexus/pgad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
All female vertebrates develop a pair of ovaries except for birds, in which only the left gonad develops into an ovary, whereas the right gonad regresses. Previous studies found that the transcription factor Paired-Like Homeodomain 2 (PITX2), a key mediator for left/right morphogenesis in vertebrates, was also implicated in asymmetric gonadal development in chickens. In this study, we systematically screened and validated the signaling pathways that could be targeted by Pitx2 to control unilateral gonad development. Integrated chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analyses indicated that Pitx2 directly binds to the promoters of genes encoding neurotransmitter receptors and leads to left-biased expression of both serotonin and dopamine receptors. Forcibly activating serotonin receptor 5-Hydroxytryptamine Receptor 1B (HTR1B) signaling could induce ovarian gene expression and cell proliferation to partially rescue the degeneration of the right gonad. In contrast, inhibiting serotonin signaling could block the development of the left gonad. These findings reveal a PITX2-HTR1B genetic pathway that guides the left-specific ovarian growth in chickens. We also provided new evidence showing neurotransmitters stimulate the growth of nonneuronal cells during the early development of reproductive organs well before innervation.
Collapse
Affiliation(s)
| | | | | | - Sheng Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Hao Cai
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Chuansheng Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Heng Wang
- To whom correspondence should be addressed: (G.Z.); (H.W.)
| | - Guiyu Zhu
- To whom correspondence should be addressed: (G.Z.); (H.W.)
| |
Collapse
|
9
|
Arora S, Rana M, Sachdev A, D’Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023. [DOI: 10.1007/s12038-023-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
10
|
Colleluori V, Khokha MK. Mink1 regulates spemann organizer cell fate in the xenopus gastrula via Hmga2. Dev Biol 2023; 495:42-53. [PMID: 36572140 PMCID: PMC10116378 DOI: 10.1016/j.ydbio.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Congenital Heart Disease (CHD) is the most common birth defect and leading cause of infant mortality, yet molecular mechanisms explaining CHD remain mostly unknown. Sequencing studies are identifying CHD candidate genes at a brisk rate including MINK1, a serine/threonine kinase. However, a plausible molecular mechanism connecting CHD and MINK1 is unknown. Here, we reveal that mink1 is required for proper heart development due to its role in left-right patterning. Mink1 regulates canonical Wnt signaling to define the cell fates of the Spemann Organizer and the Left-Right Organizer, a ciliated structure that breaks bilateral symmetry in the vertebrate embryo. To identify Mink1 targets, we applied an unbiased proteomics approach and identified the high mobility group architectural transcription factor, Hmga2. We report that Hmga2 is necessary and sufficient for regulating Spemann's Organizer. Indeed, we demonstrate that Hmga2 can induce Spemann Organizer cell fates even when β-catenin, a critical effector of the Wnt signaling pathway, is depleted. In summary, we discover a transcription factor, Hmga2, downstream of Mink1 that is critical for the regulation of Spemann's Organizer, as well as the LRO, defining a plausible mechanism for CHD.
Collapse
Affiliation(s)
- Vaughn Colleluori
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
11
|
Abstract
Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
12
|
Djenoune L, Mahamdeh M, Truong TV, Nguyen CT, Fraser SE, Brueckner M, Howard J, Yuan S. Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry. Science 2023; 379:71-78. [PMID: 36603098 PMCID: PMC9939240 DOI: 10.1126/science.abq7317] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The breaking of bilateral symmetry in most vertebrates is critically dependent upon the motile cilia of the embryonic left-right organizer (LRO), which generate a directional fluid flow; however, it remains unclear how this flow is sensed. Here, we demonstrated that immotile LRO cilia are mechanosensors for shear force using a methodological pipeline that combines optical tweezers, light sheet microscopy, and deep learning to permit in vivo analyses in zebrafish. Mechanical manipulation of immotile LRO cilia activated intraciliary calcium transients that required the cation channel Polycystin-2. Furthermore, mechanical force applied to LRO cilia was sufficient to rescue and reverse cardiac situs in zebrafish that lack motile cilia. Thus, LRO cilia are mechanosensitive cellular levers that convert biomechanical forces into calcium signals to instruct left-right asymmetry.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Mohammed Mahamdeh
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Thai V. Truong
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher T. Nguyen
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Martina Brueckner
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jonathon Howard
- Department of Molecular Biochemistry and Biophysics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shiaulou Yuan
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
13
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
14
|
Forrest K, Barricella AC, Pohar SA, Hinman AM, Amack JD. Understanding laterality disorders and the left-right organizer: Insights from zebrafish. Front Cell Dev Biol 2022; 10:1035513. [PMID: 36619867 PMCID: PMC9816872 DOI: 10.3389/fcell.2022.1035513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Vital internal organs display a left-right (LR) asymmetric arrangement that is established during embryonic development. Disruption of this LR asymmetry-or laterality-can result in congenital organ malformations. Situs inversus totalis (SIT) is a complete concordant reversal of internal organs that results in a low occurrence of clinical consequences. Situs ambiguous, which gives rise to Heterotaxy syndrome (HTX), is characterized by discordant development and arrangement of organs that is associated with a wide range of birth defects. The leading cause of health problems in HTX patients is a congenital heart malformation. Mutations identified in patients with laterality disorders implicate motile cilia in establishing LR asymmetry. However, the cellular and molecular mechanisms underlying SIT and HTX are not fully understood. In several vertebrates, including mouse, frog and zebrafish, motile cilia located in a "left-right organizer" (LRO) trigger conserved signaling pathways that guide asymmetric organ development. Perturbation of LRO formation and/or function in animal models recapitulates organ malformations observed in SIT and HTX patients. This provides an opportunity to use these models to investigate the embryological origins of laterality disorders. The zebrafish embryo has emerged as an important model for investigating the earliest steps of LRO development. Here, we discuss clinical characteristics of human laterality disorders, and highlight experimental results from zebrafish that provide insights into LRO biology and advance our understanding of human laterality disorders.
Collapse
Affiliation(s)
- Kadeen Forrest
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Alexandria C. Barricella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Sonny A. Pohar
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anna Maria Hinman
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, United States
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, NY, United States
| |
Collapse
|
15
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
16
|
Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Sci Rep 2022; 12:12086. [PMID: 35840576 PMCID: PMC9287303 DOI: 10.1038/s41598-022-14963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Left–right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix—including the differentially expressed PDGFRB gene—is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.
Collapse
|
17
|
Derrick CJ, Santos-Ledo A, Eley L, Paramita IA, Henderson DJ, Chaudhry B. Sequential action of JNK genes establishes the embryonic left-right axis. Development 2022; 149:274898. [PMID: 35352808 PMCID: PMC9148569 DOI: 10.1242/dev.200136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/09/2022] [Indexed: 12/22/2022]
Abstract
The establishment of the left-right axis is crucial for the placement, morphogenesis and function of internal organs. Left-right specification is proposed to be dependent on cilia-driven fluid flow in the embryonic node. Planar cell polarity (PCP) signalling is crucial for patterning of nodal cilia, yet downstream effectors driving this process remain elusive. We have examined the role of the JNK gene family, a proposed downstream component of PCP signalling, in the development and function of the zebrafish node. We show jnk1 and jnk2 specify length of nodal cilia, generate flow in the node and restrict southpaw to the left lateral plate mesoderm. Moreover, loss of asymmetric southpaw expression does not result in disturbances to asymmetric organ placement, supporting a model in which nodal flow may be dispensable for organ laterality. Later, jnk3 is required to restrict pitx2c expression to the left side and permit correct endodermal organ placement. This work uncovers multiple roles for the JNK gene family acting at different points during left-right axis establishment. It highlights extensive redundancy and indicates JNK activity is distinct from the PCP signalling pathway.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Isabela Andhika Paramita
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Deborah J Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
18
|
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2022; 19:211-227. [PMID: 34862511 PMCID: PMC10161238 DOI: 10.1038/s41569-021-00635-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Berg
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Brueckner
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Sutlive J, Xiu H, Chen Y, Gou K, Xiong F, Guo M, Chen Z. Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103466. [PMID: 34837328 PMCID: PMC8831476 DOI: 10.1002/smll.202103466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/19/2021] [Indexed: 05/02/2023]
Abstract
Embryonic morphogenesis is a biological process which depicts shape forming of tissues and organs during development. Unveiling the roles of mechanical forces generated, transmitted, and regulated in cells and tissues through these processes is key to understanding the biophysical mechanisms governing morphogenesis. To this end, it is imperative to measure, simulate, and predict the regulation and control of these mechanical forces during morphogenesis. This article aims to provide a comprehensive review of the recent advances on mechanical properties of cells and tissues, generation of mechanical forces in cells and tissues, the transmission processes of these generated forces during cells and tissues, the tools and methods used to measure and predict these mechanical forces in vivo, in vitro, or in silico, and to better understand the corresponding regulation and control of generated forces. Understanding the biomechanics and mechanobiology of morphogenesis will not only shed light on the fundamental physical mechanisms underlying these concerted biological processes during normal development, but also uncover new information that will benefit biomedical research in preventing and treating congenital defects or tissue engineering and regeneration.
Collapse
Affiliation(s)
- Joseph Sutlive
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Haning Xiu
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224
| | - Fengzhu Xiong
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zi Chen
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
20
|
Harel T, Griffin JN, Arbogast T, Monroe TO, Palombo F, Martinelli M, Seri M, Pippucci T, Elpeleg O, Katsanis N. Loss of function mutations in CCDC32 cause a congenital syndrome characterized by craniofacial, cardiac and neurodevelopmental anomalies. Hum Mol Genet 2021; 29:1489-1497. [PMID: 32307552 DOI: 10.1093/hmg/ddaa073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/22/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the wide use of genomics to investigate the molecular basis of rare congenital malformations, a significant fraction of patients remains bereft of diagnosis. As part of our continuous effort to recruit and perform genomic and functional studies on such cohorts, we investigated the genetic and mechanistic cause of disease in two independent consanguineous families affected by overlapping craniofacial, cardiac, laterality and neurodevelopmental anomalies. Using whole exome sequencing, we identified homozygous frameshift CCDC32 variants in three affected individuals. Functional analysis in a zebrafish model revealed that ccdc32 depletion recapitulates the human phenotypes. Because some of the patient phenotypes overlap defects common to ciliopathies, we asked if loss of CCDC32 might contribute to the dysfunction of this organelle. Consistent with this hypothesis, we show that ccdc32 is required for normal cilia formation in zebrafish embryos and mammalian cell culture, arguing that ciliary defects are at least partially involved in the pathomechanism of this disorder.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - John N Griffin
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Thomas Arbogast
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA
| | - Tanner O Monroe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Marcella Martinelli
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum - Università di Bologna, Bologna 40138, Italy
| | - Marco Seri
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum - Università di Bologna, Bologna 40138, Italy.,U.O. Genetica Medica, Policlinico S. Orsola-Malpighi, Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Tommaso Pippucci
- U.O. Genetica Medica, Policlinico S. Orsola-Malpighi, Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Nicholas Katsanis
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Abstract
Congenital birth defects result from an abnormal development of an embryo and have detrimental effects on children's health. Specifically, congenital heart malformations are a leading cause of death among pediatric patients and often require surgical interventions within the first year of life. Increased efforts to navigate the human genome provide an opportunity to discover multiple candidate genes in patients suffering from birth defects. These efforts, however, fail to provide an explanation regarding the mechanisms of disease pathogenesis and emphasize the need for an efficient platform to screen candidate genes. Xenopus is a rapid, cost effective, high-throughput vertebrate organism to model the mechanisms behind human disease. This review provides numerous examples describing the successful use of Xenopus to investigate the contribution of patient mutations to complex phenotypes including congenital heart disease and heterotaxy. Moreover, we describe a variety of unique methods that allow us to rapidly recapitulate patients' phenotypes in frogs: gene knockout and knockdown strategies, the use of fate maps for targeted manipulations, and novel imaging modalities. The combination of patient genomics data and the functional studies in Xenopus will provide necessary answers to the patients suffering from birth defects. Furthermore, it will allow for the development of better diagnostic methods to ensure early detection and intervention. Finally, with better understanding of disease pathogenesis, new treatment methods can be tailored specifically to address patient's phenotype and genotype.
Collapse
Affiliation(s)
- Valentyna Kostiuk
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
22
|
Little RB, Norris DP. Right, left and cilia: How asymmetry is established. Semin Cell Dev Biol 2021; 110:11-18. [PMID: 32571625 DOI: 10.1016/j.semcdb.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.
Collapse
Affiliation(s)
- Rosie B Little
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
23
|
Abstract
Motile cilia are highly complex hair-like organelles of epithelial cells lining the surface of various organ systems. Genetic mutations (usually with autosomal recessive inheritance) that impair ciliary beating cause a variety of motile ciliopathies, a heterogeneous group of rare disorders. The pathogenetic mechanisms, clinical symptoms and severity of the disease depend on the specific affected genes and the tissues in which they are expressed. Defects in the ependymal cilia can result in hydrocephalus, defects in the cilia in the fallopian tubes or in sperm flagella can cause female and male subfertility, respectively, and malfunctional motile monocilia of the left-right organizer during early embryonic development can lead to laterality defects such as situs inversus and heterotaxy. If mucociliary clearance in the respiratory epithelium is severely impaired, the disorder is referred to as primary ciliary dyskinesia, the most common motile ciliopathy. No single test can confirm a diagnosis of motile ciliopathy, which is based on a combination of tests including nasal nitric oxide measurement, transmission electron microscopy, immunofluorescence and genetic analyses, and high-speed video microscopy. With the exception of azithromycin, there is no evidence-based treatment for primary ciliary dyskinesia; therapies aim at relieving symptoms and reducing the effects of reduced ciliary motility.
Collapse
|
24
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
25
|
Zhu X, Shi C, Zhong Y, Liu X, Yan Q, Wu X, Wang Y, Li G. Cilia-driven asymmetric Hedgehog signalling determines the amphioxus left-right axis by controlling Dand5 expression. Development 2020; 147:dev.182469. [PMID: 31826864 DOI: 10.1242/dev.182469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/27/2019] [Indexed: 02/01/2023]
Abstract
Cilia rotation-driven nodal flow is crucial for the left-right (L-R) break in symmetry in most vertebrates. However, the mechanism by which the flow signal is translated to asymmetric gene expression has been insufficiently addressed. Here, we show that Hedgehog (Hh) signalling is asymmetrically activated (L<R) in the region in which initial asymmetric Dand5 expression is detected. Upregulation of Hh signalling on the left side of wild-type embryos induces ectopic Dand5 expression on the left side, and the unilateral recovery of Hh signalling in Hh homozygous mutants induces Dand5 expression in the Hh signal recovery side. Immunofluorescence analysis results revealed that Hh fusion protein is asymmetrically enriched in the anterior-right paraxial mesoderm at the early neurula stage. Inhibiting embryonic cilia motility using methylcellulose (MC) blocks Hh protein enrichment on the right hand side and randomizes Dand5 expression and organ positioning along the L-R axis. These findings present a model showing that cilia movement is crucial for the symmetry breaks in amphioxus through asymmetric Hh protein transport. The resultant asymmetric Hh signalling provides a clue into the induction of asymmetric Dand5 expression.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Xin Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yanhong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiuning Yan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
26
|
HAMADA H. Molecular and cellular basis of left-right asymmetry in vertebrates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:273-296. [PMID: 32788551 PMCID: PMC7443379 DOI: 10.2183/pjab.96.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although the human body appears superficially symmetrical with regard to the left-right (L-R) axis, most visceral organs are asymmetric in terms of their size, shape, or position. Such morphological asymmetries of visceral organs, which are essential for their proper function, are under the control of a genetic pathway that operates in the developing embryo. In many vertebrates including mammals, the breaking of L-R symmetry occurs at a structure known as the L-R organizer (LRO) located at the midline of the developing embryo. This symmetry breaking is followed by transfer of an active form of the signaling molecule Nodal from the LRO to the lateral plate mesoderm (LPM) on the left side, which results in asymmetric expression of Nodal (a left-side determinant) in the left LPM. Finally, L-R asymmetric morphogenesis of visceral organs is induced by Nodal-Pitx2 signaling. This review will describe our current understanding of the mechanisms that underlie the generation of L-R asymmetry in vertebrates, with a focus on mice.
Collapse
Affiliation(s)
- Hiroshi HAMADA
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Correspondence should be addressed: H. Hamada, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan (e-mail: )
| |
Collapse
|
27
|
Rothschild SC, Tombes RM. Widespread Roles of CaMK-II in Developmental Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:519-535. [DOI: 10.1007/978-3-030-12457-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
28
|
Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left-right patterning via Wnt signaling. Dev Biol 2019; 456:1-7. [PMID: 31398317 DOI: 10.1016/j.ydbio.2019.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 07/08/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022]
Abstract
Congenital heart disease (CHD) is a major cause of morbidity in the pediatric population yet its genetic and molecular causes remain poorly defined. Previously, we identified AGMO as a candidate heterotaxy disease gene, a disorder of left-right (LR) patterning that can have a profound effect on cardiac function. AGMO is the only known alkylglycerol monooxygenase, an orphan tetrahydrobiopterin dependent enzyme that cleaves the ether linkage in alkylglycerols. However, whether AGMO plays a role in LR patterning was unexplored. Here we reveal that Agmo is required for correct development of the embryonic LR axis in Xenopus embryos recapitulating the patient's heterotaxy phenotype. Mechanistically, we demonstrate that Agmo is a regulator of canonical Wnt signaling, required during gastrulation for normal formation of the left - right organizer. Mutational analysis demonstrates that this function is dependent on Agmo's alkylglycerol monooxygenase activity. Together, our findings identify Agmo as a regulator of canonical Wnt signaling, demonstrate a role for Agmo in embryonic axis formation, and provide insight into the poorly understood developmental requirements for ether lipid cleavage.
Collapse
|
29
|
Burkhalter MD, Sridhar A, Sampaio P, Jacinto R, Burczyk MS, Donow C, Angenendt M, Hempel M, Walther P, Pennekamp P, Omran H, Lopes SS, Ware SM, Philipp M. Imbalanced mitochondrial function provokes heterotaxy via aberrant ciliogenesis. J Clin Invest 2019; 129:2841-2855. [PMID: 31094706 DOI: 10.1172/jci98890] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
About 1% of all newborns are affected by congenital heart disease (CHD). Recent findings identify aberrantly functioning cilia as a possible source for CHD. Faulty cilia also prevent the development of proper left-right asymmetry and cause heterotaxy, the incorrect placement of visceral organs. Intriguingly, signaling cascades such as mTor that influence mitochondrial biogenesis also affect ciliogenesis, and can cause heterotaxy-like phenotypes in zebrafish. Here, we identify levels of mitochondrial function as a determinant for ciliogenesis and a cause for heterotaxy. We detected reduced mitochondrial DNA content in biopsies of heterotaxy patients. Manipulation of mitochondrial function revealed a reciprocal influence on ciliogenesis and affected cilia-dependent processes in zebrafish, human fibroblasts and Tetrahymena thermophila. Exome analysis of heterotaxy patients revealed an increased burden of rare damaging variants in mitochondria-associated genes as compared to 1000 Genome controls. Knockdown of such candidate genes caused cilia elongation and ciliopathy-like phenotypes in zebrafish, which could not be rescued by RNA encoding damaging rare variants identified in heterotaxy patients. Our findings suggest that ciliogenesis is coupled to the abundance and function of mitochondria. Our data further reveal disturbed mitochondrial function as an underlying cause for heterotaxy-linked CHD and provide a mechanism for unexplained phenotypes of mitochondrial disease.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany.,Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Arthi Sridhar
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pedro Sampaio
- CEDOC Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Raquel Jacinto
- CEDOC Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Martina S Burczyk
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Max Angenendt
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | | | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Susana S Lopes
- CEDOC Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Stephanie M Ware
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University of Tübingen, Tübingen, Germany.,Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
30
|
Schneider I, Kreis J, Schweickert A, Blum M, Vick P. A dual function of FGF signaling in Xenopus left-right axis formation. Development 2019; 146:dev.173575. [PMID: 31036544 DOI: 10.1242/dev.173575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 11/20/2022]
Abstract
Organ left-right (LR) asymmetry is a conserved vertebrate feature, which is regulated by left-sided activation of Nodal signaling. Nodal asymmetry is established by a leftward fluid-flow generated at the ciliated LR organizer (LRO). Although the role of fibroblast growth factor (FGF) signaling pathways during mesoderm development is conserved, diverging results from different model organisms suggest a non-conserved function in LR asymmetry. Here, we demonstrate that FGF is required during gastrulation in a dual function at consecutive stages of Xenopus embryonic development. In the early gastrula, FGF is necessary for LRO precursor induction, acting in parallel with FGF-mediated mesoderm induction. During late gastrulation, the FGF/Ca2+-branch is required for specification of the flow-sensing lateral LRO cells, a function related to FGF-mediated mesoderm morphogenesis. This second function in addition requires input from the calcium channel Polycystin-2. Thus, analogous to mesoderm development, FGF activity is required in a dual role for laterality specification; namely, for generating and sensing leftward flow. Moreover, our findings in Xenopus demonstrate that FGF functions in LR development share more conserved features across vertebrate species than previously anticipated.
Collapse
Affiliation(s)
| | - Jennifer Kreis
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Philipp Vick
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
31
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Korenić A, Perović S, Ćirković MM, Miquel PA. Symmetry breaking and functional incompleteness in biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:1-12. [PMID: 30776381 DOI: 10.1016/j.pbiomolbio.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Symmetry-based explanations using symmetry breaking (SB) as the key explanatory tool have complemented and replaced traditional causal explanations in various domains of physics. The process of spontaneous SB is now a mainstay of contemporary explanatory accounts of large chunks of condensed-matter physics, quantum field theory, nonlinear dynamics, cosmology, and other disciplines. A wide range of empirical research into various phenomena related to symmetries and SB across biological scales has accumulated as well. Led by these results, we identify and explain some common features of the emergence, propagation, and cascading of SB-induced layers across the biosphere. These features are predicated on the thermodynamic openness and intrinsic functional incompleteness of the systems at stake and have not been systematically analyzed from a general philosophical and methodological perspective. We also consider possible continuity of SB across the physical and biological world and discuss the connection between Darwinism and SB-based analysis of the biosphere and its history.
Collapse
Affiliation(s)
- Andrej Korenić
- The Centre for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Serbia
| | | | | | | |
Collapse
|
33
|
Ferreira RR, Pakula G, Klaeyle L, Fukui H, Vilfan A, Supatto W, Vermot J. Chiral Cilia Orientation in the Left-Right Organizer. Cell Rep 2018; 25:2008-2016.e4. [DOI: 10.1016/j.celrep.2018.10.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/13/2018] [Accepted: 10/18/2018] [Indexed: 01/28/2023] Open
|
34
|
Chan CJ, Heisenberg CP, Hiiragi T. Coordination of Morphogenesis and Cell-Fate Specification in Development. Curr Biol 2018; 27:R1024-R1035. [PMID: 28950087 DOI: 10.1016/j.cub.2017.07.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissue-shaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development.
Collapse
Affiliation(s)
- Chii J Chan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
35
|
Vick P, Kreis J, Schneider I, Tingler M, Getwan M, Thumberger T, Beyer T, Schweickert A, Blum M. An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus. iScience 2018; 2:76-85. [PMID: 30428378 PMCID: PMC6136938 DOI: 10.1016/j.isci.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 12/03/2022] Open
Abstract
Nodal signaling controls asymmetric organ placement during vertebrate embryogenesis. Nodal is induced by a leftward fluid flow at the ciliated left-right organizer (LRO). The mechanism of flow sensing, however, has remained elusive. pkd2 encodes the calcium channel Polycystin-2, which is required for kidney development and laterality, and may act in flow perception. Here, we have studied the role of Polycystin-2 in Xenopus and show that pkd2 is indispensable for left-right (LR) asymmetry. Knockdown of pkd2 prevented left-asymmetric nodal cascade induction in the lateral plate mesoderm. Defects were due to failure of LRO specification, morphogenesis, and, consequently, absence of leftward flow. Polycystin-2 synergizes with the unconventional nodal-type signaling molecule Xnr3 to induce the LRO precursor tissue before gastrulation, upstream of symmetry breakage. Our data uncover an unknown function of pkd2 in LR axis formation, which we propose represents an ancient role of Polycystin-2 during LRO induction in lower vertebrates. Loss of Polycystin-2 in Xenopus results in LR asymmetry defects upstream of leftward flow LR defects are caused by lack of LR organizer induction Polycystin-2 is required upstream of foxj1 for specification of superficial mesoderm Polycystin-2 and Xnr3 synergistically induce foxj1 in the superficial mesoderm
Collapse
Affiliation(s)
- Philipp Vick
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Jennifer Kreis
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Melanie Tingler
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Maike Getwan
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Thomas Thumberger
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Tina Beyer
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
36
|
Elliott KH, Brugmann SA. Sending mixed signals: Cilia-dependent signaling during development and disease. Dev Biol 2018; 447:28-41. [PMID: 29548942 DOI: 10.1016/j.ydbio.2018.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Molecular signals are the guiding force of development, imparting direction upon cells to divide, migrate, differentiate, etc. The mechanisms by which a cell can receive and transduce these signals into measurable actions remains a 'black box' in developmental biology. Primary cilia are ubiquitous, microtubule-based organelles that dynamically extend from a cell to receive and process molecular and mechanical signaling cues. In the last decade, this organelle has become increasingly intriguing to the research community due to its ability to act as a cellular antenna, receive and transduce molecular stimuli, and initiate a cellular response. In this review, we discuss the structure of primary cilia, emphasizing how the ciliary components contribute to the transduction of signaling pathways. Furthermore, we address how the cilium integrates these signals and conveys them into cellular processes such as proliferation, migration and tissue patterning. Gaining a deeper understanding of the mechanisms used by primary cilia to receive and integrate molecular signals is essential, as it opens the door for the identification of therapeutic targets within the cilium that could alleviate pathological conditions brought on by aberrant molecular signaling.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
37
|
Griffin JN, del Viso F, Duncan AR, Robson A, Hwang W, Kulkarni S, Liu KJ, Khokha MK. RAPGEF5 Regulates Nuclear Translocation of β-Catenin. Dev Cell 2018; 44:248-260.e4. [PMID: 29290587 PMCID: PMC5818985 DOI: 10.1016/j.devcel.2017.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
Abstract
Canonical Wnt signaling coordinates many critical aspects of embryonic development, while dysregulated Wnt signaling contributes to common diseases, including congenital malformations and cancer. The nuclear localization of β-catenin is the defining step in pathway activation. However, despite intensive investigation, the mechanisms regulating β-catenin nuclear transport remain undefined. In a patient with congenital heart disease and heterotaxy, a disorder of left-right patterning, we previously identified the guanine nucleotide exchange factor, RAPGEF5. Here, we demonstrate that RAPGEF5 regulates left-right patterning via Wnt signaling. In particular, RAPGEF5 regulates the nuclear translocation of β-catenin independently of both β-catenin cytoplasmic stabilization and the importin β1/Ran-mediated transport system. We propose a model whereby RAPGEF5 activates the nuclear GTPases, Rap1a/b, to facilitate the nuclear transport of β-catenin, defining a parallel nuclear transport pathway to Ran. Our results suggest new targets for modulating Wnt signaling in disease states.
Collapse
Affiliation(s)
- John N. Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA,Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Florencia del Viso
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Anna R. Duncan
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Andrew Robson
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Woong Hwang
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Saurabh Kulkarni
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA,Correspondence to: Lead contact Mustafa Khokha,
| |
Collapse
|
38
|
The Role of Cerl2 in the Establishment of Left-Right Asymmetries during Axis Formation and Heart Development. J Cardiovasc Dev Dis 2017; 4:jcdd4040023. [PMID: 29367552 PMCID: PMC5753124 DOI: 10.3390/jcdd4040023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
The formation of the asymmetric left-right (LR) body axis is one of the fundamental aspects of vertebrate embryonic development, and one still raising passionate discussions among scientists. Although the conserved role of nodal is unquestionable in this process, several of the details around this signaling cascade are still unanswered. To further understand this mechanism, we have been studying Cerberus-like 2 (Cerl2), an inhibitor of Nodal, and its role in the generation of asymmetries in the early vertebrate embryo. The absence of Cerl2 results in a wide spectrum of malformations commonly known as heterotaxia, which comprises defects in either global organ position (e.g., situs inversus totalis), reversed orientation of at least one organ (e.g., situs ambiguus), and mirror images of usually asymmetric paired organs (e.g., left or right isomerisms of the lungs). Moreover, these laterality defects are frequently associated with congenital heart diseases (e.g., transposition of the great arteries, or atrioventricular septal defects). Here, reviewing the knowledge on the establishment of LR asymmetry in mouse embryos, the emerging conclusion is that as necessary as is the activation of the Nodal signaling cascade, the tight control that Cerl2-mediates on Nodal signaling is equally important, and that generates a further regionalized LR genetic program in the proper time and space.
Collapse
|
39
|
Shinohara K, Hamada H. Cilia in Left-Right Symmetry Breaking. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028282. [PMID: 28213464 DOI: 10.1101/cshperspect.a028282] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Visceral organs of vertebrates show left-right (L-R) asymmetry with regard to their position and morphology. Cilia play essential role in generating L-R asymmetry. A number of genes required for L-R asymmetry have now been identified in vertebrates, including human, many of which contribute to the formation and motility of cilia. In the mouse embryo, breaking of L-R symmetry occurs in the ventral node, where two types of cilia (motile and immotile) are present. Motile cilia are located at the central region of the node, and generate a leftward fluid flow. These motile cilia at the node are unique in that they rotate in the clockwise direction, unlike other immotile cilia such as airway cilia that show planar beating. The second type of cilia essential for L-R asymmetry is immotile cilia that are peripherally located immotile cilia. They sense a flow-dependent signal, which is either chemical or mechanical in nature. Although Ca2+ signaling is implicated in flow sensing, the precise mechanism remains unknown.
Collapse
Affiliation(s)
- Kyosuke Shinohara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Palmquist K, Davidson B. Establishment of lateral organ asymmetries in the invertebrate chordate, Ciona intestinalis. EvoDevo 2017; 8:12. [PMID: 28770040 PMCID: PMC5526266 DOI: 10.1186/s13227-017-0075-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The evolutionary emergence and diversification of the chordates appear to involve dramatic changes in organ morphogenesis along the left/right axis. However, the ancestral chordate mechanism for establishing lateral asymmetry remains ambiguous. Additionally, links between the initial establishment of lateral asymmetry and subsequent asymmetries in organ morphogenesis are poorly characterized. RESULTS To explore asymmetric organ morphogenesis during chordate evolution, we have begun to characterize left/right patterning of the heart and endodermal organs in an invertebrate chordate, Ciona intestinalis. Here, we show that Ciona has a laterally asymmetric, right-sided heart. Our data indicate that cardiac lateral asymmetry requires H+/K+ ion flux, but is independent of Nodal signaling. Our pharmacological inhibitor studies show that ion flux is required for polarization of epidermal cilia and neurula rotation and suggest that ion flux functions synergistically with chorion contact to drive cardiac laterality. Live imaging analysis revealed that larval heart progenitor cells undergo a lateral shift without displaying any migratory behaviors. Furthermore, we find that this passive shift corresponds with the emergence of lateral asymmetry in the endoderm, which is also ion flux dependent. CONCLUSIONS Our data suggest that ion flux promotes laterally asymmetric morphogenesis of the larval endoderm rudiment leading to a passive, Nodal-independent shift in the position of associated heart progenitor cells. These findings help to refine hypotheses regarding ancestral chordate left/right patterning mechanisms and how they have diverged within invertebrate and vertebrate chordate lineages.
Collapse
Affiliation(s)
- Karl Palmquist
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| | - Brad Davidson
- Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| |
Collapse
|
41
|
Grimes DT, Burdine RD. Left-Right Patterning: Breaking Symmetry to Asymmetric Morphogenesis. Trends Genet 2017; 33:616-628. [PMID: 28720483 DOI: 10.1016/j.tig.2017.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Vertebrates exhibit striking left-right (L-R) asymmetries in the structure and position of the internal organs. Symmetry is broken by motile cilia-generated asymmetric fluid flow, resulting in a signaling cascade - the Nodal-Pitx2 pathway - being robustly established within mesodermal tissue on the left side only. This pathway impinges upon various organ primordia to instruct their side-specific development. Recently, progress has been made in understanding both the breaking of embryonic L-R symmetry and how the Nodal-Pitx2 pathway controls lateralized cell differentiation, migration, and other aspects of cell behavior, as well as tissue-level mechanisms, that drive asymmetries in organ formation. Proper execution of asymmetric organogenesis is critical to health, making furthering our understanding of L-R development an important concern.
Collapse
Affiliation(s)
- Daniel T Grimes
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
42
|
Ferreira RR, Vilfan A, Jülicher F, Supatto W, Vermot J. Physical limits of flow sensing in the left-right organizer. eLife 2017; 6. [PMID: 28613157 PMCID: PMC5544429 DOI: 10.7554/elife.25078] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment. DOI:http://dx.doi.org/10.7554/eLife.25078.001
Collapse
Affiliation(s)
- Rita R Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Frank Jülicher
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| | - Willy Supatto
- Laboratory for Optics and Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique (UMR7645), Institut National de la Santé et de la Recherche Médicale (U1182) and Paris Saclay University, Palaiseau, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
43
|
Ferreira RR, Vermot J. The balancing roles of mechanical forces during left-right patterning and asymmetric morphogenesis. Mech Dev 2017; 144:71-80. [DOI: 10.1016/j.mod.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
|
44
|
Dasgupta A, Amack JD. Cilia in vertebrate left-right patterning. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150410. [PMID: 27821522 PMCID: PMC5104509 DOI: 10.1098/rstb.2015.0410] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 01/10/2023] Open
Abstract
Understanding how left-right (LR) asymmetry is generated in vertebrate embryos is an important problem in developmental biology. In humans, a failure to align the left and right sides of cardiovascular and/or gastrointestinal systems often results in birth defects. Evidence from patients and animal models has implicated cilia in the process of left-right patterning. Here, we review the proposed functions for cilia in establishing LR asymmetry, which include creating transient leftward fluid flows in an embryonic 'left-right organizer'. These flows direct asymmetric activation of a conserved Nodal (TGFβ) signalling pathway that guides asymmetric morphogenesis of developing organs. We discuss the leading hypotheses for how cilia-generated asymmetric fluid flows are translated into asymmetric molecular signals. We also discuss emerging mechanisms that control the subcellular positioning of cilia and the cellular architecture of the left-right organizer, both of which are critical for effective cilia function during left-right patterning. Finally, using mosaic cell-labelling and time-lapse imaging in the zebrafish embryo, we provide new evidence that precursor cells maintain their relative positions as they give rise to the ciliated left-right organizer. This suggests the possibility that these cells acquire left-right positional information prior to the appearance of cilia.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Agnik Dasgupta
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey D Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
45
|
Del Viso F, Huang F, Myers J, Chalfant M, Zhang Y, Reza N, Bewersdorf J, Lusk CP, Khokha MK. Congenital Heart Disease Genetics Uncovers Context-Dependent Organization and Function of Nucleoporins at Cilia. Dev Cell 2016; 38:478-92. [PMID: 27593162 PMCID: PMC5021619 DOI: 10.1016/j.devcel.2016.08.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 01/21/2023]
Abstract
Human genomics is identifying candidate genes for congenital heart disease (CHD), but discovering the underlying mechanisms remains challenging. In a patient with CHD and heterotaxy (Htx), a disorder of left-right patterning, we previously identified a duplication in Nup188. However, a mechanism to explain how a component of the nuclear pore complex (NPC) could cause Htx/CHD was undefined. Here, we show that knockdown of Nup188 or its binding partner Nup93 leads to a loss of cilia during embryonic development while leaving NPC function largely intact. Many data, including the localization of endogenous Nup188/93 at cilia bases, support their direct role at cilia. Super-resolution imaging of Nup188 shows two barrel-like structures with dimensions and organization incompatible with an NPC-like ring, arguing against a proposed "ciliary pore complex." We suggest that the nanoscale organization and function of nucleoporins are context dependent in a way that is required for the structure of the heart.
Collapse
Affiliation(s)
- Florencia Del Viso
- Program in Vertebrate Developmental Biology, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Fang Huang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jordan Myers
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Madeleine Chalfant
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Yongdeng Zhang
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Nooreen Reza
- Program in Vertebrate Developmental Biology, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - C Patrick Lusk
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Mustafa K Khokha
- Program in Vertebrate Developmental Biology, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
46
|
Abstract
Through the better understanding of the genetics and clinical associations of Primary Ciliary Dyskinesia (PCD), an autosomal recessive disorder of ciliary motility and mucociliary clearance, the association between PCD and heterotaxic congenital heart disease (CHD) has been established. In parallel, research into the cause of CHD has elucidated further the role of ciliary function on the development of normal cardiovascular structure. Increased awareness by clinicians regarding this elevated risk of PCD in patients with CHD will allow for more comprehensive screening and identification of cases in this high-risk group with earlier diagnosis leading to improved health outcomes.
Collapse
|
47
|
Duncan AR, Khokha MK. Xenopus as a model organism for birth defects-Congenital heart disease and heterotaxy. Semin Cell Dev Biol 2016; 51:73-9. [PMID: 26910255 PMCID: PMC4809202 DOI: 10.1016/j.semcdb.2016.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
Congenital heart disease is the leading cause of birth defects, affecting 9 out of 1000 newborns each year. A particularly severe form of congenital heart disease is heterotaxy, a disorder of left-right development. Despite aggressive surgical management, patients with heterotaxy have poor survival rates and severe morbidity due to their complex congenital heart disease. Recent genetic analysis of affected patients has found novel candidate genes for heterotaxy although their underlying mechanisms remain unknown. In this review, we discuss the importance and challenges of birth defects research including high locus heterogeneity and few second alleles that make defining disease causality difficult. A powerful strategy moving forward is to analyze these candidate genes in a high-throughput human disease model. Xenopus is ideal for these studies. We present multiple examples demonstrating the power of Xenopus in discovering new biology from the analysis of candidate heterotaxy genes such as GALNT11, NEK2 and BCOR. These genes have diverse roles in embryos and have led to a greater understanding of complex signaling pathways and basic developmental biology. It is our hope that the mechanistic analysis of these candidate genes in Xenopus enabled by next generation sequencing of patients will provide clinicians with a greater understanding of patient pathophysiology allowing more precise and personalized medicine, to help patients more effectively in the future.
Collapse
Affiliation(s)
- Anna R Duncan
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Mustafa K Khokha
- Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, United States.
| |
Collapse
|
48
|
Shinohara K, Chen D, Nishida T, Misaki K, Yonemura S, Hamada H. Absence of Radial Spokes in Mouse Node Cilia Is Required for Rotational Movement but Confers Ultrastructural Instability as a Trade-Off. Dev Cell 2016; 35:236-46. [PMID: 26506310 DOI: 10.1016/j.devcel.2015.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/29/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022]
Abstract
Determination of left-right asymmetry in mouse embryos is established by a leftward fluid flow that is generated by clockwise rotation of node cilia. How node cilia achieve stable unidirectional rotation has remained unknown, however. Here we show that brief exposure to the microtubule-stabilizing drug paclitaxel (Taxol) induces randomly directed rotation and changes the ultrastructure of node cilia. In vivo observations and a computer simulation revealed that a regular 9+0 arrangement of doublet microtubules is essential for stable unidirectional rotation of node cilia. The 9+2 motile cilia of the airway, which manifest planar beating, are resistant to Taxol treatment. However, the airway cilia of mice lacking the radial spoke head protein Rsph4a undergo rotational movement instead of planar beating, are prone to microtubule rearrangement, and are sensitive to Taxol. Our results suggest that the absence of radial spokes allows node cilia to rotate unidirectionally but, as a trade-off, renders them ultrastructurally fragile.
Collapse
Affiliation(s)
- Kyosuke Shinohara
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Duanduan Chen
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tomoki Nishida
- Research Center for Ultra-high Voltage Electron Microscopy, Osaka University, Osaka 567-0047, Japan
| | - Kazuyo Misaki
- Ultrastructural Research Team, Center for Life Science Technologies, RIKEN, Kobe 650-0047, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, Center for Life Science Technologies, RIKEN, Kobe 650-0047, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Abstract
Leftward flow generated by motile cilia is known to underlie left-right asymmetry in vertebrate embryos. A new study now links intraciliary calcium oscillations to cilia motility and the downstream nodal signaling cascade that drives left-sided development.
Collapse
|
50
|
Schweickert A, Feistel K. The Xenopus Embryo: An Ideal Model System to Study Human Ciliopathies. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|