1
|
Olaya I, Burgess SM, Rog O. Formation and resolution of meiotic chromosome entanglements and interlocks. J Cell Sci 2024; 137:jcs262004. [PMID: 38985540 PMCID: PMC11267460 DOI: 10.1242/jcs.262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.
Collapse
Affiliation(s)
- Iván Olaya
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Tian Y, Liu L, Gao J, Wang R. Homologous chromosome pairing: The linchpin of accurate segregation in meiosis. J Cell Physiol 2024; 239:3-19. [PMID: 38032002 DOI: 10.1002/jcp.31166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.
Collapse
Affiliation(s)
- Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Libo Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| |
Collapse
|
3
|
Solé M, Pascual Á, Anton E, Blanco J, Sarrate Z. The courtship choreography of homologous chromosomes: timing and mechanisms of DSB-independent pairing. Front Cell Dev Biol 2023; 11:1191156. [PMID: 37377734 PMCID: PMC10291267 DOI: 10.3389/fcell.2023.1191156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Meiosis involves deep changes in the spatial organisation and interactions of chromosomes enabling the two primary functions of this process: increasing genetic diversity and reducing ploidy level. These two functions are ensured by crucial events such as homologous chromosomal pairing, synapsis, recombination and segregation. In most sexually reproducing eukaryotes, homologous chromosome pairing depends on a set of mechanisms, some of them associated with the repair of DNA double-strand breaks (DSBs) induced at the onset of prophase I, and others that operate before DSBs formation. In this article, we will review various strategies utilised by model organisms for DSB-independent pairing. Specifically, we will focus on mechanisms such as chromosome clustering, nuclear and chromosome movements, as well as the involvement of specific proteins, non-coding RNA, and DNA sequences.
Collapse
Affiliation(s)
| | | | | | - Joan Blanco
- *Correspondence: Joan Blanco, ; Zaida Sarrate,
| | | |
Collapse
|
4
|
Kim HJ, Liu C, Zhang L, Dernburg AF. MJL-1 is a nuclear envelope protein required for homologous chromosome pairing and regulation of synapsis during meiosis in C. elegans. SCIENCE ADVANCES 2023; 9:eadd1453. [PMID: 36753547 PMCID: PMC9908027 DOI: 10.1126/sciadv.add1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Interactions between chromosomes and LINC (linker of nucleoskeleton and cytoskeleton) complexes in the nuclear envelope (NE) promote homolog pairing and synapsis during meiosis. By tethering chromosomes to cytoskeletal motors, these connections lead to processive chromosome movements along the NE. This activity is usually mediated by telomeres, but in the nematode Caenorhabditis elegans, special chromosome regions called "pairing centers" (PCs) have acquired this meiotic function. Here, we identify a previously uncharacterized meiosis-specific NE protein, MJL-1 (MAJIN-Like-1), that is essential for interactions between PCs and LINC complexes in C. elegans. Mutations in MJL-1 eliminate active chromosome movements during meiosis, resulting in nonhomologous synapsis and impaired homolog pairing. Fission yeast and mice also require NE proteins to connect chromosomes to LINC complexes. Extensive similarities in the molecular architecture of meiotic chromosome-NE attachments across eukaryotes suggest a common origin and/or functions of this architecture during meiosis.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Chenshu Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Liangyu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
- Biological Sciences and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Martinez-Garcia M, Naharro PR, Skinner MW, Baran KA, Lascarez-Lagunas LI, Nadarajan S, Shin N, Silva-García CG, Saito TT, Beese-Sims S, Diaz-Pacheco BN, Berson E, Castañer AB, Pacheco S, Martinez-Perez E, Jordan PW, Colaiácovo MP. GRAS-1 is a novel regulator of early meiotic chromosome dynamics in C. elegans. PLoS Genet 2023; 19:e1010666. [PMID: 36809245 PMCID: PMC9983901 DOI: 10.1371/journal.pgen.1010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.
Collapse
Affiliation(s)
- Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pedro Robles Naharro
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marnie W Skinner
- Biochemistry and Molecular Biology Department, John Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Kerstin A Baran
- Biochemistry and Molecular Biology Department, John Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Laura I Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nara Shin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Takamune T Saito
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara Beese-Sims
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna N Diaz-Pacheco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ana B Castañer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarai Pacheco
- MRC London Institute of Medical Sciences, London, United Kingdom
| | | | - Philip W Jordan
- Biochemistry and Molecular Biology Department, John Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Chuang YC, Smith GR. Meiotic crossover interference: Methods of analysis and mechanisms of action. Curr Top Dev Biol 2022; 151:217-244. [PMID: 36681471 PMCID: PMC10063388 DOI: 10.1016/bs.ctdb.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.
Collapse
Affiliation(s)
| | - Gerald R Smith
- Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
7
|
Kim HJ, Liu C, Dernburg AF. How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes (Basel) 2022; 13:genes13050901. [PMID: 35627285 PMCID: PMC9140367 DOI: 10.3390/genes13050901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
During the early meiotic prophase, connections are established between chromosomes and cytoplasmic motors via a nuclear envelope bridge, known as a LINC (linker of nucleoskeleton and cytoskeleton) complex. These widely conserved links can promote both chromosome and nuclear motions. Studies in diverse organisms have illuminated the molecular architecture of these connections, but important questions remain regarding how they contribute to meiotic processes. Here, we summarize the current knowledge in the field, outline the challenges in studying these chromosome dynamics, and highlight distinctive features that have been characterized in major model systems.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
| | - Chenshu Liu
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
- Correspondence:
| |
Collapse
|
8
|
Papaioannou IA, Dutreux F, Peltier FA, Maekawa H, Delhomme N, Bardhan A, Friedrich A, Schacherer J, Knop M. Sex without crossing over in the yeast Saccharomycodes ludwigii. Genome Biol 2021; 22:303. [PMID: 34732243 PMCID: PMC8567612 DOI: 10.1186/s13059-021-02521-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intermixing of genomes through meiotic reassortment and recombination of homologous chromosomes is a unifying theme of sexual reproduction in eukaryotic organisms and is considered crucial for their adaptive evolution. Previous studies of the budding yeast species Saccharomycodes ludwigii suggested that meiotic crossing over might be absent from its sexual life cycle, which is predominated by fertilization within the meiotic tetrad. RESULTS We demonstrate that recombination is extremely suppressed during meiosis in Sd. ludwigii. DNA double-strand break formation by the conserved transesterase Spo11, processing and repair involving interhomolog interactions are required for normal meiosis but do not lead to crossing over. Although the species has retained an intact meiotic gene repertoire, genetic and population analyses suggest the exceptionally rare occurrence of meiotic crossovers in its genome. A strong AT bias of spontaneous mutations and the absence of recombination are likely responsible for its unusually low genomic GC level. CONCLUSIONS Sd. ludwigii has followed a unique evolutionary trajectory that possibly derives fitness benefits from the combination of frequent mating between products of the same meiotic event with the extreme suppression of meiotic recombination. This life style ensures preservation of heterozygosity throughout its genome and may enable the species to adapt to its environment and survive with only minimal levels of rare meiotic recombination. We propose Sd. ludwigii as an excellent natural forum for the study of genome evolution and recombination rates.
Collapse
Affiliation(s)
| | - Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - France A. Peltier
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Hiromi Maekawa
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Current affiliation: Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Amit Bardhan
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michael Knop
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
9
|
Prasada Rao HB, Sato T, Challa K, Fujita Y, Shinohara M, Shinohara A. Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis. eLife 2021; 10:63119. [PMID: 34586062 PMCID: PMC8570693 DOI: 10.7554/elife.63119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
During meiosis, protein ensembles in the nuclear envelope (NE) containing SUN- and KASH-domain proteins, called linker nucleocytoskeleton and cytoskeleton (LINC) complex, promote the chromosome motion. Yeast SUN-domain protein, Mps3, forms multiple meiosis-specific ensembles on NE, which show dynamic localisation for chromosome motion; however, the mechanism by which these Mps3 ensembles are formed during meiosis remains largely unknown. Here, we showed that the cyclin-dependent protein kinase (CDK) and Dbf4-dependent Cdc7 protein kinase (DDK) regulate meiosis-specific dynamics of Mps3 on NE, particularly by mediating the resolution of Mps3 clusters and telomere clustering. We also found that the luminal region of Mps3 juxtaposed to the inner nuclear membrane is required for meiosis-specific localisation of Mps3 on NE. Negative charges introduced by meiosis-specific phosphorylation in the luminal region of Mps3 alter its interaction with negatively charged lipids by electric repulsion in reconstituted liposomes. Phospho-mimetic substitution in the luminal region suppresses the localisation of Mps3 via the inactivation of CDK or DDK. Our study revealed multi-layered phosphorylation-dependent regulation of the localisation of Mps3 on NE for meiotic chromosome motion and NE remodelling.
Collapse
Affiliation(s)
| | | | - Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Pazhayam NM, Turcotte CA, Sekelsky J. Meiotic Crossover Patterning. Front Cell Dev Biol 2021; 9:681123. [PMID: 34368131 PMCID: PMC8344875 DOI: 10.3389/fcell.2021.681123] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Proper number and placement of meiotic crossovers is vital to chromosome segregation, with failures in normal crossover distribution often resulting in aneuploidy and infertility. Meiotic crossovers are formed via homologous repair of programmed double-strand breaks (DSBs). Although DSBs occur throughout the genome, crossover placement is intricately patterned, as observed first in early genetic studies by Muller and Sturtevant. Three types of patterning events have been identified. Interference, first described by Sturtevant in 1915, is a phenomenon in which crossovers on the same chromosome do not occur near one another. Assurance, initially identified by Owen in 1949, describes the phenomenon in which a minimum of one crossover is formed per chromosome pair. Suppression, first observed by Beadle in 1932, dictates that crossovers do not occur in regions surrounding the centromere and telomeres. The mechanisms behind crossover patterning remain largely unknown, and key players appear to act at all scales, from the DNA level to inter-chromosome interactions. There is also considerable overlap between the known players that drive each patterning phenomenon. In this review we discuss the history of studies of crossover patterning, developments in methods used in the field, and our current understanding of the interplay between patterning phenomena.
Collapse
Affiliation(s)
- Nila M. Pazhayam
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carolyn A. Turcotte
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning. PLoS Genet 2021; 17:e1009660. [PMID: 34270553 PMCID: PMC8318298 DOI: 10.1371/journal.pgen.1009660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/28/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Equipartitioning by chromosome association and copy number correction by DNA amplification are at the heart of the evolutionary success of the selfish yeast 2-micron plasmid. The present analysis reveals frequent plasmid presence near telomeres (TELs) and centromeres (CENs) in mitotic cells, with a preference towards the former. Inactivation of Cdc14 causes plasmid missegregation, which is correlated to the non-disjunction of TELs (and of rDNA) under this condition. Induced missegregation of chromosome XII, one of the largest yeast chromosomes which harbors the rDNA array and is highly dependent on the condensin complex for proper disjunction, increases 2-micron plasmid missegregation. This is not the case when chromosome III, one of the smallest chromosomes, is forced to missegregate. Plasmid stability decreases when the condensin subunit Brn1 is inactivated. Brn1 is recruited to the plasmid partitioning locus (STB) with the assistance of the plasmid-coded partitioning proteins Rep1 and Rep2. Furthermore, in a dihybrid assay, Brn1 interacts with Rep1-Rep2. Taken together, these findings support a role for condensin and/or condensed chromatin in 2-micron plasmid propagation. They suggest that condensed chromosome loci are among favored sites utilized by the plasmid for its chromosome-associated segregation. By homing to condensed/quiescent chromosome locales, and not over-perturbing genome homeostasis, the plasmid may minimize fitness conflicts with its host. Analogous persistence strategies may be utilized by other extrachromosomal selfish genomes, for example, episomes of mammalian viruses that hitchhike on host chromosomes for their stable maintenance.
Collapse
|
12
|
Lee CY, Bisig CG, Conrad MN, Ditamo Y, Previato de Almeida L, Dresser ME, Pezza RJ. Telomere-led meiotic chromosome movements: recent update in structure and function. Nucleus 2020; 11:111-116. [PMID: 32412326 PMCID: PMC7781623 DOI: 10.1080/19491034.2020.1769456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In S. cerevisiae prophase meiotic chromosomes move by forces generated in the cytoplasm and transduced to the telomere via a protein complex located in the nuclear membrane. We know that chromosome movements require actin cytoskeleton [13,31] and the proteins Ndj1, Mps3, and Csm4. Until recently, the identity of the protein connecting Ndj1-Mps3 with the cytoskeleton components was missing. It was also not known the identity of a cytoplasmic motor responsible for interacting with the actin cytoskeleton and a protein at the outer nuclear envelope. Our recent work [36] identified Mps2 as the protein connecting Ndj1-Mps3 with cytoskeleton components; Myo2 as the cytoplasmic motor that interacts with Mps2; and Cms4 as a regulator of Mps2 and Myo2 interaction and activities (Figure 1). Below we present a model for how Mps2, Csm4, and Myo2 promote chromosome movements by providing the primary connections joining telomeres to the actin cytoskeleton through the LINC complex.
Collapse
Affiliation(s)
- C Y Lee
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - C G Bisig
- Facultad de Ciencias Químicas, Dpto. Química Biológica Ranwel Caputto-CIQUIBIC, Universidad Nacional de Córdoba , Córdoba, Argentina
| | - M N Conrad
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - Y Ditamo
- Facultad de Ciencias Químicas, Dpto. Química Biológica Ranwel Caputto-CIQUIBIC, Universidad Nacional de Córdoba , Córdoba, Argentina
| | - L Previato de Almeida
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - M E Dresser
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - R J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA.,Department of Cell Biology, University of Oklahoma Health Science Center , Oklahoma City, OK, USA
| |
Collapse
|
13
|
González-Arranz S, Gardner JM, Yu Z, Patel NJ, Heldrich J, Santos B, Carballo JA, Jaspersen SL, Hochwagen A, San-Segundo PA. SWR1-Independent Association of H2A.Z to the LINC Complex Promotes Meiotic Chromosome Motion. Front Cell Dev Biol 2020; 8:594092. [PMID: 33195270 PMCID: PMC7642583 DOI: 10.3389/fcell.2020.594092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 11/27/2022] Open
Abstract
The H2A.Z histone variant is deposited into the chromatin by the SWR1 complex, affecting multiple aspects of meiosis. We describe here a SWR1-independent localization of H2A.Z at meiotic telomeres and the centrosome. We demonstrate that H2A.Z colocalizes and interacts with Mps3, the SUN component of the linker of nucleoskeleton, and cytoskeleton (LINC) complex that spans the nuclear envelope and links meiotic telomeres to the cytoskeleton, promoting meiotic chromosome movement. H2A.Z also interacts with the meiosis-specific Ndj1 protein that anchors telomeres to the nuclear periphery via Mps3. Telomeric localization of H2A.Z depends on Ndj1 and the N-terminal domain of Mps3. Although telomeric attachment to the nuclear envelope is maintained in the absence of H2A.Z, the distribution of Mps3 is altered. The velocity of chromosome movement during the meiotic prophase is reduced in the htz1Δ mutant lacking H2A.Z, but it is unaffected in swr1Δ cells. We reveal that H2A.Z is an additional LINC-associated factor that contributes to promote telomere-driven chromosome motion critical for error-free gametogenesis.
Collapse
Affiliation(s)
- Sara González-Arranz
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | | | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Neem J. Patel
- Department of Biology, New York University, New York, NY, United States
| | - Jonna Heldrich
- Department of Biology, New York University, New York, NY, United States
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Jesús A. Carballo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Fan J, Jin H, Koch BA, Yu HG. Mps2 links Csm4 and Mps3 to form a telomere-associated LINC complex in budding yeast. Life Sci Alliance 2020; 3:3/12/e202000824. [PMID: 32967926 PMCID: PMC7536833 DOI: 10.26508/lsa.202000824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
The canonical LINC complex is composed of two different transmembrane proteins; this work reveals the heterotrimeric composition of the telomere-associated LINC complex in budding yeast. The linker of the nucleoskeleton and cytoskeleton (LINC) complex is composed of two transmembrane proteins: the KASH domain protein localized to the outer nuclear membrane and the SUN domain protein to the inner nuclear membrane. In budding yeast, the sole SUN domain protein, Mps3, is thought to pair with either Csm4 or Mps2, two KASH-like proteins, to form two separate LINC complexes. Here, we show that Mps2 mediates the interaction between Csm4 and Mps3 to form a heterotrimeric telomere-associated LINC (t-LINC) complex in budding yeast meiosis. Mps2 binds to Csm4 and Mps3, and all three are localized to the telomere. Telomeric localization of Csm4 depends on both Mps2 and Mps3; in contrast, Mps2’s localization depends on Mps3 but not Csm4. Mps2-mediated t-LINC complex regulates telomere movement and meiotic recombination. By ectopically expressing CSM4 in vegetative yeast cells, we reconstitute the heterotrimeric t-LINC complex and demonstrate its ability to tether telomeres. Our findings therefore reveal the heterotrimeric composition of the t-LINC complex in budding yeast and have implications for understanding variant LINC complex formation.
Collapse
Affiliation(s)
- Jinbo Fan
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Hui Jin
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Bailey A Koch
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Hong-Guo Yu
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
15
|
Extranuclear Structural Components that Mediate Dynamic Chromosome Movements in Yeast Meiosis. Curr Biol 2020; 30:1207-1216.e4. [PMID: 32059771 DOI: 10.1016/j.cub.2020.01.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 11/20/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
Telomere-led rapid chromosome movements or rapid prophase movements direct fundamental meiotic processes required for successful haploidization of the genome. Critical components of the machinery that generates rapid prophase movements are unknown, and the mechanism underlying rapid prophase movements remains poorly understood. We identified S. cerevisiae Mps2 as the outer nuclear membrane protein that connects the LINC complex with the cytoskeleton. We also demonstrate that the motor Myo2 works together with Mps2 to couple the telomeres to the actin cytoskeleton. Further, we show that Csm4 interacts with Mps2 and is required for perinuclear localization of Myo2, implicating Csm4 as a regulator of the Mps2-Myo2 interaction. We propose a model in which the newly identified functions of Mps2 and Myo2 cooperate with Csm4 to drive chromosome movements in meiotic prophase by coupling telomeres to the actin cytoskeleton.
Collapse
|
16
|
Bommi JR, Rao HBDP, Challa K, Higashide M, Shinmyozu K, Nakayama JI, Shinohara M, Shinohara A. Meiosis-specific cohesin component, Rec8, promotes the localization of Mps3 SUN domain protein on the nuclear envelope. Genes Cells 2019; 24:94-106. [PMID: 30417519 DOI: 10.1111/gtc.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Proteins in the nuclear envelope (NE) play a role in the dynamics and functions of the nucleus and of chromosomes during mitosis and meiosis. Mps3, a yeast NE protein with a conserved SUN domain, predominantly localizes on a yeast centrosome equivalent, spindle pole body (SPB), in mitotic cells. During meiosis, Mps3, together with SPB, forms a distinct multiple ensemble on NE. How meiosis-specific NE localization of Mps3 is regulated remains largely unknown. In this study, we found that a meiosis-specific component of the protein complex essential for sister chromatid cohesion, Rec8, binds to Mps3 during meiosis and controls Mps3 localization and proper dynamics on NE. Ectopic expression of Rec8 in mitotic yeast cells induced the formation of Mps3 patches/foci on NE. This required the cohesin regulator, WAPL ortholog, Rad61/Wpl1, suggesting that a meiosis-specific cohesin complex with Rec8 controls NE localization of Mps3. We also observed that two domains of the nucleoplasmic region of Mps3 are essential for NE localization of Mps3 in mitotic as well as meiotic cells. We speculate that the interaction of Mps3 with the meiosis-specific cohesin in the nucleoplasm is a key determinant for NE localization/function of Mps3.
Collapse
Affiliation(s)
| | | | - Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mika Higashide
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Jun-Ichi Nakayama
- RIKEN Center for Developmental Biology, Kobe, Japan
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Alleva B, Smolikove S. Moving and stopping: Regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Nucleus 2017; 8:613-624. [PMID: 28892406 DOI: 10.1080/19491034.2017.1358329] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Meiosis is a specialized cellular division occurring in organisms capable of sexual reproduction that leads to the formation of gametes containing half of the original chromosome number. During the earliest stage of meiosis, prophase I, pairing of homologous chromosomes is achieved in preparation for their proper distribution in the coming divisions. An important question is how do homologous chromosomes find each other and establish pairing interactions. Early studies demonstrated that chromosomes are dynamic in nature and move during this early stage of meiosis. More recently, there have been several studies across different models showing the conserved nature and importance of this chromosome movement, as well as the key components involved in chromosome movement. This review will cover these major findings and also introduce unexamined areas of regulation in meiotic prophase I chromosome movement.
Collapse
Affiliation(s)
- Benjamin Alleva
- a Department of Biology , The University of Iowa , Iowa City, IA , USA
| | - Sarit Smolikove
- a Department of Biology , The University of Iowa , Iowa City, IA , USA
| |
Collapse
|
18
|
The Nucleoporin Nup2 Contains a Meiotic-Autonomous Region that Promotes the Dynamic Chromosome Events of Meiosis. Genetics 2017; 206:1319-1337. [PMID: 28455351 DOI: 10.1534/genetics.116.194555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cellular program required to create haploid gametes from diploid parent cells. Homologous chromosomes pair, synapse, and recombine in a dynamic environment that accommodates gross chromosome reorganization and significant chromosome motion, which are critical for normal chromosome segregation. In Saccharomyces cerevisiae, Ndj1 is a meiotic telomere-associated protein required for physically attaching telomeres to proteins embedded in the nuclear envelope. In this study, we identified additional proteins that act at the nuclear periphery from meiotic cell extracts, including Nup2, a nonessential nucleoporin with a known role in tethering interstitial chromosomal loci to the nuclear pore complex. We found that deleting NUP2 affects meiotic progression and spore viability, and gives increased levels of recombination intermediates and products. We identified a previously uncharacterized 125 aa region of Nup2 that is necessary and sufficient for its meiotic function, thus behaving as a meiotic autonomous region (MAR). Nup2-MAR forms distinct foci on spread meiotic chromosomes, with a subset overlapping with Ndj1 foci. Localization of Nup2-MAR to meiotic chromosomes does not require Ndj1, nor does Ndj1 localization require Nup2, suggesting these proteins function in different pathways, and their interaction is weak or indirect. Instead, several severe synthetic phenotypes are associated with the nup2Δ ndj1Δ double mutant, including delayed turnover of recombination joint molecules, and a failure to undergo nuclear divisions without also arresting the meiotic program. These data suggest Nup2 and Ndj1 support partially overlapping functions that promote two different levels of meiotic chromosome organization necessary to withstand a dynamic stage of the eukaryotic life cycle.
Collapse
|
19
|
Lefrançois P, Rockmill B, Xie P, Roeder GS, Snyder M. Multiple Pairwise Analysis of Non-homologous Centromere Coupling Reveals Preferential Chromosome Size-Dependent Interactions and a Role for Bouquet Formation in Establishing the Interaction Pattern. PLoS Genet 2016; 12:e1006347. [PMID: 27768699 PMCID: PMC5074576 DOI: 10.1371/journal.pgen.1006347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition.
Collapse
Affiliation(s)
- Philippe Lefrançois
- Department of Molecular, Cellular and Developmental Biology Yale University New Haven, United States of America
- Faculty of Medicine University of Montreal, Montreal, CANADA
- * E-mail: (PL); (MS)
| | - Beth Rockmill
- Department of Molecular, Cellular and Developmental Biology Yale University New Haven, United States of America
- Department of Molecular and Cell Biology University of California Berkeley, Berkeley, United States of America
| | - Pingxing Xie
- Faculty of Medicine McGill University Montreal, CANADA
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology Yale University New Haven, United States of America
| | - Michael Snyder
- Department of Genetics Stanford University School of Medicine Stanford, United States of America
- * E-mail: (PL); (MS)
| |
Collapse
|
20
|
Liu YT, Chang KM, Ma CH, Jayaram M. Replication-dependent and independent mechanisms for the chromosome-coupled persistence of a selfish genome. Nucleic Acids Res 2016; 44:8302-23. [PMID: 27492289 PMCID: PMC5041486 DOI: 10.1093/nar/gkw694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022] Open
Abstract
The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts' fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates 'mother bias' (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Keng-Ming Chang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Ren H, Ferguson K, Kirkpatrick G, Vinning T, Chow V, Ma S. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia. PLoS One 2016; 11:e0156817. [PMID: 27273078 PMCID: PMC4894629 DOI: 10.1371/journal.pone.0156817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022] Open
Abstract
During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future studies linking crossover distribution with telomere integrity and sperm aneuploidy may provide new insight into the mechanisms underlying male infertility.
Collapse
MESH Headings
- Adult
- Aneuploidy
- Azoospermia/epidemiology
- Azoospermia/genetics
- Case-Control Studies
- Chromosome Segregation
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 18
- Chromosomes, Human, Pair 21
- Crossing Over, Genetic
- Humans
- Incidence
- Infertility, Male/epidemiology
- Infertility, Male/genetics
- Male
- Meiosis/genetics
- Middle Aged
- Recombination, Genetic
- Semen Analysis/statistics & numerical data
- Spermatocytes/metabolism
Collapse
Affiliation(s)
- He Ren
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Kyle Ferguson
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Gordon Kirkpatrick
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Tanya Vinning
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Victor Chow
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
- * E-mail:
| |
Collapse
|
22
|
A Computational Approach to Estimating Nondisjunction Frequency in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2016; 6:669-82. [PMID: 26747203 PMCID: PMC4777129 DOI: 10.1534/g3.115.024380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Errors segregating homologous chromosomes during meiosis result in aneuploid gametes and are the largest contributing factor to birth defects and spontaneous abortions in humans. Saccharomyces cerevisiae has long served as a model organism for studying the gene network supporting normal chromosome segregation. Measuring homolog nondisjunction frequencies is laborious, and involves dissecting thousands of tetrads to detect missegregation of individually marked chromosomes. Here we describe a computational method (TetFit) to estimate the relative contributions of meiosis I nondisjunction and random-spore death to spore inviability in wild type and mutant strains. These values are based on finding the best-fit distribution of 4, 3, 2, 1, and 0 viable-spore tetrads to an observed distribution. Using TetFit, we found that meiosis I nondisjunction is an intrinsic component of spore inviability in wild-type strains. We show proof-of-principle that the calculated average meiosis I nondisjunction frequency determined by TetFit closely matches empirically determined values in mutant strains. Using these published data sets, TetFit uncovered two classes of mutants: Class A mutants skew toward increased nondisjunction death, and include those with known defects in establishing pairing, recombination, and/or synapsis of homologous chromosomes. Class B mutants skew toward random spore death, and include those with defects in sister-chromatid cohesion and centromere function. Epistasis analysis using TetFit is facilitated by the low numbers of tetrads (as few as 200) required to compare the contributions to spore death in different mutant backgrounds. TetFit analysis does not require any special strain construction, and can be applied to previously observed tetrad distributions.
Collapse
|
23
|
Shibuya H, Hernández-Hernández A, Morimoto A, Negishi L, Höög C, Watanabe Y. MAJIN Links Telomeric DNA to the Nuclear Membrane by Exchanging Telomere Cap. Cell 2015; 163:1252-1266. [PMID: 26548954 DOI: 10.1016/j.cell.2015.10.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022]
Abstract
In meiosis, telomeres attach to the inner nuclear membrane (INM) and drive the chromosome movement required for homolog pairing and recombination. Here, we address the question of how telomeres are structurally adapted for the meiotic task. We identify a multi-subunit meiotic telomere-complex, TERB1/2-MAJIN, which takes over telomeric DNA from the shelterin complex in mouse germ cells. TERB1/2-MAJIN initially assembles on the INM sequestered by its putative transmembrane subunit MAJIN. In early meiosis, telomere attachment is achieved by the formation of a chimeric complex of TERB1/2-MAJIN and shelterin. The chimeric complex matures during prophase into DNA-bound TERB1/2-MAJIN by releasing shelterin, forming a direct link between telomeric DNA and the INM. These hierarchical processes, termed "telomere cap exchange," are regulated by CDK-dependent phosphorylation and the DNA-binding activity of MAJIN. Further, we uncover a positive feedback between telomere attachment and chromosome movement, revealing a comprehensive regulatory network underlying meiosis-specific telomere function in mammals.
Collapse
Affiliation(s)
- Hiroki Shibuya
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | | | - Akihiro Morimoto
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan
| | - Lumi Negishi
- Laboratory of Protein Expression and Production, Center for Structural Biology of Challenging Proteins, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan.
| |
Collapse
|
24
|
Voelkel-Meiman K, Johnston C, Thappeta Y, Subramanian VV, Hochwagen A, MacQueen AJ. Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis. PLoS Genet 2015; 11:e1005335. [PMID: 26114667 PMCID: PMC4482702 DOI: 10.1371/journal.pgen.1005335] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/04/2015] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis) but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ)-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast. Our data suggest that features of S. cerevisiae Zip1 or of the assembled SC in S. cerevisiae normally constrain MutLγ to preferentially promote resolution of MutSγ-associated recombination intermediates. At the heart of reproductive cell formation is a nuclear division process (meiosis) whereby homologous chromosomes segregate from one another. Meiotic partner chromosomes establish exclusive associations via a patterned distribution of crossover recombination events. During the maturation of recombination intermediates into crossovers, homologous axes are aligned in the context of a striking proteinaceous structure, the synaptonemal complex (SC). While genetic data link the SC with crossovers, it is unclear whether the mature SC structure facilitates crossover formation. Here we describe an interspecies complementation experiment in which we replace the S. cerevisiae version of an SC structural protein with an ancestrally related version from K. lactis. Our experiment reveals that, while SC proteins are required, mature full-length SC is dispensable for the formation of SC-associated crossovers in budding yeast. We furthermore discovered that most, but not all, members of a conserved meiotic crossover pathway are required for the crossovers that form in this interspecies context. Our findings strengthen the notion that a primary function of many SC proteins is to facilitate crossover recombination, independent of a role in building the larger SC structure. Furthermore, these data suggest that during normal meiosis in S. cerevisiae the assembled SC may act to functionally couple key crossover recombination proteins to one another.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Cassandra Johnston
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Yashna Thappeta
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | | | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York, United States of America
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sau S, Liu YT, Ma CH, Jayaram M. Stable persistence of the yeast plasmid by hitchhiking on chromosomes during vegetative and germ-line divisions of host cells. Mob Genet Elements 2015; 5:1-8. [PMID: 26442178 DOI: 10.1080/2159256x.2015.1031359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
The chromosome-like stability of the Saccharomyces cerevisiae plasmid 2 micron circle likely stems from its ability to tether to chromosomes and segregate by a hitchhiking mechanism. The plasmid partitioning system, responsible for chromosome-coupled segregation, is comprised of 2 plasmid coded proteins Rep1 and Rep2 and a partitioning locus STB. The evidence for the hitchhiking model for mitotic plasmid segregation, although compelling, is almost entirely circumstantial. Direct tests for plasmid-chromosome association are hampered by the limited resolving power of current cell biological tools for analyzing yeast chromosomes. Recent investigations, exploiting the improved resolution of yeast meiotic chromosomes, have revealed the plasmid's propensity to be present at or near chromosome tips. This localization is consistent with the rapid plasmid movements during meiosis I prophase, closely resembling telomere dynamics driven by a meiosis-specific nuclear envelope motor. Current evidence is consistent with the plasmid utilizing the motor as a platform for gaining access to telomeres. Episomes of viruses of the papilloma family and the gammaherpes subfamily persist in latently infected cells by tethering to chromosomes. Selfish genetic elements from fungi to mammals appear to have, by convergent evolution, arrived at the common strategy of chromosome association as a means for stable propagation.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Yen-Ting Liu
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences; University of Texas at Austin ; Austin, TX USA
| |
Collapse
|
26
|
Klutstein M, Fennell A, Fernández-Álvarez A, Cooper JP. The telomere bouquet regulates meiotic centromere assembly. Nat Cell Biol 2015; 17:458-69. [PMID: 25774833 DOI: 10.1038/ncb3132] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
The role of the conserved meiotic telomere bouquet has been enigmatic for over a century. We showed previously that disruption of the fission yeast bouquet impairs spindle formation in approximately half of meiotic cells. Surprisingly, bouquet-deficient meiocytes with functional spindles harbour chromosomes that fail to achieve spindle attachment. Kinetochore proteins and the centromeric histone H3 variant Cnp1 fail to localize to those centromeres that exhibit spindle attachment defects in the bouquet's absence. The HP1 orthologue Swi6 also fails to bind these centromeres, suggesting that compromised pericentromeric heterochromatin underlies the kinetochore defects. We find that centromeres are prone to disassembly during meiosis, but this is reversed by localization of centromeres to the telomere-proximal microenvironment, which is conducive to heterochromatin formation and centromere reassembly. Accordingly, artificially tethering a centromere to a telomere rescues the tethered centromere but not other centromeres. These results reveal an unanticipated level of control of centromeres by telomeres.
Collapse
Affiliation(s)
- Michael Klutstein
- 1] National Cancer Institute, NIH, Bethesda, Maryland 20892, USA [2] Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | - Alex Fennell
- 1] National Cancer Institute, NIH, Bethesda, Maryland 20892, USA [2] Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | - Alfonso Fernández-Álvarez
- 1] National Cancer Institute, NIH, Bethesda, Maryland 20892, USA [2] Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | - Julia Promisel Cooper
- 1] National Cancer Institute, NIH, Bethesda, Maryland 20892, USA [2] Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| |
Collapse
|
27
|
Sau S, Conrad MN, Lee CY, Kaback DB, Dresser ME, Jayaram M. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation. ACTA ACUST UNITED AC 2014; 205:643-61. [PMID: 24914236 PMCID: PMC4050733 DOI: 10.1083/jcb.201312002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The yeast 2 micron plasmid engages a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Michael N Conrad
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - David B Kaback
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07101
| | - Michael E Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
28
|
Yamamoto A. Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 2014; 71:2119-34. [PMID: 24413667 PMCID: PMC11113538 DOI: 10.1007/s00018-013-1548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka, 422-8529, Japan,
| |
Collapse
|
29
|
Tsai IT, Lin JL, Chiang YH, Chuang YC, Liang SS, Chuang CN, Huang TN, Wang TF. Interorganelle interactions and inheritance patterns of nuclei and vacuoles in budding yeast meiosis. Autophagy 2013; 10:285-95. [PMID: 24345927 PMCID: PMC5396080 DOI: 10.4161/auto.27192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Jyun-Liang Lin
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Yi-Hsuan Chiang
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Taiwan International Graduate Program in Molecular and Cellular Biology; Academia Sinica; Taipei, Taiwan
| | - Shu-Shan Liang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Institute of Biochemical Sciences; National Taiwan University; Taipei, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Ting-Fang Wang
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Taiwan International Graduate Program in Molecular and Cellular Biology; Academia Sinica; Taipei, Taiwan; Institute of Biochemical Sciences; National Taiwan University; Taipei, Taiwan
| |
Collapse
|
30
|
Chromosome movement in meiosis I prophase of Caenorhabditis elegans. Chromosoma 2013; 123:15-24. [PMID: 24036686 PMCID: PMC3967079 DOI: 10.1007/s00412-013-0436-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/29/2022]
Abstract
Rapid chromosome movement during prophase of the first meiotic division has been observed in many organisms. It is generally concomitant with formation of the “meiotic chromosome bouquet,” a special chromosome configuration in which one or both chromosome ends attach to the nuclear envelope and become concentrated within a limited area. The precise function of the chromosomal bouquet is still not fully understood. Chromosome mobility is implicated in homologous chromosome pairing, synaptonemal complex formation, recombination, and resolution of chromosome entanglements. The basic mechanistic module through which forces are exerted on chromosomes is widely conserved; however, phenotypic differences have been reported among various model organisms once movement is abrogated. Movements are transmitted to the chromosome ends by the nuclear membrane-bridging SUN/KASH complex and are dependent on cytoskeletal filaments and motor proteins located in the cytoplasm. Here we review the recent findings on chromosome mobility during meiosis in an animal model system: the Caenorhabditis elegans nematode.
Collapse
|
31
|
Lui DY, Cahoon CK, Burgess SM. Multiple opposing constraints govern chromosome interactions during meiosis. PLoS Genet 2013; 9:e1003197. [PMID: 23341780 PMCID: PMC3547833 DOI: 10.1371/journal.pgen.1003197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/12/2012] [Indexed: 11/24/2022] Open
Abstract
Homolog pairing and crossing over during meiosis I prophase is required for accurate chromosome segregation to form euploid gametes. The repair of Spo11-induced double-strand breaks (DSB) using a homologous chromosome template is a major driver of pairing in many species, including fungi, plants, and mammals. Inappropriate pairing and crossing over at ectopic loci can lead to chromosome rearrangements and aneuploidy. How (or if) inappropriate ectopic interactions are disrupted in favor of allelic interactions is not clear. Here we used an in vivo "collision" assay in budding yeast to test the contributions of cohesion and the organization and motion of chromosomes in the nucleus on promoting or antagonizing interactions between allelic and ectopic loci at interstitial chromosome sites. We found that deletion of the cohesin subunit Rec8, but not other chromosome axis proteins (e.g. Red1, Hop1, or Mek1), caused an increase in homolog-nonspecific chromosome interaction, even in the absence of Spo11. This effect was partially suppressed by expression of the mitotic cohesin paralog Scc1/Mdc1, implicating Rec8's role in cohesion rather than axis integrity in preventing nonspecific chromosome interactions. Disruption of telomere-led motion by treating cells with the actin polymerization inhibitor Latrunculin B (Lat B) elevated nonspecific collisions in rec8Δ spo11Δ. Next, using a visual homolog-pairing assay, we found that the delay in homolog pairing in mutants defective for telomere-led chromosome motion (ndj1Δ or csm4Δ) is enhanced in Lat B-treated cells, implicating actin in more than one process promoting homolog juxtaposition. We suggest that multiple, independent contributions of actin, cohesin, and telomere function are integrated to promote stable homolog-specific interactions and to destabilize weak nonspecific interactions by modulating the elastic spring-like properties of chromosomes.
Collapse
Affiliation(s)
- Doris Y. Lui
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Cori K. Cahoon
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
32
|
A single internal telomere tract ensures meiotic spindle formation. EMBO Rep 2013; 14:252-60. [PMID: 23295325 DOI: 10.1038/embor.2012.218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/09/2022] Open
Abstract
Contact between telomeres and the fission yeast spindle pole body during meiotic prophase is crucial for subsequent spindle assembly, but the feature of telomeres that confers their ability to promote spindle formation remains mysterious. Here we show that while strains harbouring circular chromosomes devoid of telomere repeat tracts undergo aberrant meiosis with defective spindles, the insertion of a single internal telomere repeat stretch rescues the spindle defects. Moreover, the telomeric overhang-binding protein Pot1 is dispensable for rescue of spindle formation. Hence, an inherent feature of the double-strand telomeric region endows telomeres with the capacity to promote spindle formation.
Collapse
|
33
|
LeClere AR, Yang JK, Kirkpatrick DT. The role of CSM3, MRC1, and TOF1 in minisatellite stability and large loop DNA repair during meiosis in yeast. Fungal Genet Biol 2012; 50:33-43. [PMID: 23165348 DOI: 10.1016/j.fgb.2012.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
Double-stranded break (DSB) repair during meiotic recombination in yeast Saccharomyces cerevisiae leads to the formation of heteroduplex DNA, a hybrid DNA molecule composed of single strands from two homologous chromosomes. Differences in sequence between the strands within heteroduplex DNA generate mismatches or large unpaired loops that are substrates for repair. At least two pathways function to repair large loops that form within heteroduplex DNA: the RAD1-dependent large loop repair (LLR) pathway and another as yet uncharacterized RAD1-independent LLR pathway. Repair of large loops during meiotic recombination is especially important for the genomic stability of the repetitive DNA sequences known as minisatellites. Minisatellite DNA tracts are generally stable during mitotic cell divisions but frequently alter in length during meiosis. Using a yeast minisatellite system in which the human minisatellite associated with the HRAS1 proto-oncogene has been inserted into the recombination hotspot region upstream of HIS4 in S. cerevisiae, our lab previously showed that the RAD1-dependent LLR pathway controls minisatellite length expansions, but not contractions. Here we show that minisatellite length expansions are controlled by the products of the CSM3 and TOF1 genes, while contractions are controlled by MRC1. By examining meiotic segregation patterns in yeast strains heterozygous for the 26bp his4-lopd insert, we found that deleting CSM3 caused a loss of LLR activity similar to that seen in a RAD1 mutant. Double mutant analysis revealed that failure to repair loops is exacerbated upon deleting both RAD1 and CSM3 - specifically the type of repair that fills in loops, which would generate minisatellite length expansions. A model for minisatellite length alteration based on these results is presented.
Collapse
Affiliation(s)
- Andrea R LeClere
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | |
Collapse
|
34
|
Qiao H, Offenberg HH, Anderson LK. Altered distribution of MLH1 foci is associated with changes in cohesins and chromosome axis compaction in an asynaptic mutant of tomato. Chromosoma 2012; 121:291-305. [PMID: 22350750 DOI: 10.1007/s00412-012-0363-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/03/2012] [Accepted: 01/21/2012] [Indexed: 12/25/2022]
Abstract
In most multicellular eukaryotes, synapsis [synaptonemal complex (SC) formation] between pairs of homologous chromosomes during prophase I of meiosis is closely linked with crossing over. Asynaptic mutants in plants have reduced synapsis and increased univalent frequency, often resulting in genetically unbalanced gametes and reduced fertility. Surprisingly, some asynaptic mutants (like as1 in tomato) have wild-type or increased levels of crossing over. To investigate, we examined SC spreads from as1/as1 microsporocytes using both light and electron microscopic immunolocalization. We observed increased numbers of MLH1 foci (a crossover marker) per unit length of SC in as1 mutants compared to wild-type. These changes are associated with reduced levels of detectable cohesin proteins in the axial and lateral elements (AE/LEs) of SCs, and the AE/LEs of as1 mutants are also significantly longer than those of wild-type or another asynaptic mutant. These results indicate that chromosome axis structure, synapsis, and crossover control are all closely linked in plants.
Collapse
Affiliation(s)
- Huanyu Qiao
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
35
|
Lee CY, Conrad MN, Dresser ME. Meiotic chromosome pairing is promoted by telomere-led chromosome movements independent of bouquet formation. PLoS Genet 2012; 8:e1002730. [PMID: 22654677 PMCID: PMC3359977 DOI: 10.1371/journal.pgen.1002730] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/11/2012] [Indexed: 11/19/2022] Open
Abstract
Chromosome pairing in meiotic prophase is a prerequisite for the high fidelity of chromosome segregation that haploidizes the genome prior to gamete formation. In the budding yeast Saccharomyces cerevisiae, as in most multicellular eukaryotes, homologous pairing at the cytological level reflects the contemporaneous search for homology at the molecular level, where DNA double-strand broken ends find and interact with templates for repair on homologous chromosomes. Synapsis (synaptonemal complex formation) stabilizes pairing and supports DNA repair. The bouquet stage, where telomeres have formed a transient single cluster early in meiotic prophase, and telomere-promoted rapid meiotic prophase chromosome movements (RPMs) are prominent temporal correlates of pairing and synapsis. The bouquet has long been thought to contribute to the kinetics of pairing, but the individual roles of bouquet and RPMs are difficult to assess because of common dependencies. For example, in budding yeast RPMs and bouquet both require the broadly conserved SUN protein Mps3 as well as Ndj1 and Csm4, which link telomeres to the cytoskeleton through the intact nuclear envelope. We find that mutants in these genes provide a graded series of RPM activity: wild-type>mps3-dCC>mps3-dAR>ndj1Δ>mps3-dNT = csm4Δ. Pairing rates are directly correlated with RPM activity even though only wild-type forms a bouquet, suggesting that RPMs promote homologous pairing directly while the bouquet plays at most a minor role in Saccharomyces cerevisiae. A new collision trap assay demonstrates that RPMs generate homologous and heterologous chromosome collisions in or before the earliest stages of prophase, suggesting that RPMs contribute to pairing by stirring the nuclear contents to aid the recombination-mediated homology search.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael N. Conrad
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael E. Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
36
|
Penfold CA, Brown PE, Lawrence ND, Goldman ASH. Modeling meiotic chromosomes indicates a size dependent contribution of telomere clustering and chromosome rigidity to homologue juxtaposition. PLoS Comput Biol 2012; 8:e1002496. [PMID: 22570605 PMCID: PMC3342934 DOI: 10.1371/journal.pcbi.1002496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/12/2012] [Indexed: 01/17/2023] Open
Abstract
Meiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells. Of particular note is the change from a centromere clustered layout (Rabl configuration) to a telomere clustered conformation (bouquet stage). The contribution of the bouquet structure to homologous chromosome pairing is uncertain. We have developed a new in silico model to represent the chromosomes of Saccharomyces cerevisiae in space, based on a worm-like chain model constrained by attachment to the nuclear envelope and clustering forces. We have asked how these constraints could influence chromosome layout, with particular regard to the juxtaposition of homologous chromosomes and potential nonallelic, ectopic, interactions. The data support the view that the bouquet may be sufficient to bring short chromosomes together, but the contribution to long chromosomes is less. We also find that persistence length is critical to how much influence the bouquet structure could have, both on pairing of homologues and avoiding contacts with heterologues. This work represents an important development in computer modeling of chromosomes, and suggests new explanations for why elucidating the functional significance of the bouquet by genetics has been so difficult. Organisms store their genetic material in the form of chromosomes that must be replicated and shared out during cell division. In sexual reproduction the cell division, called meiosis, halves the number of chromosomes to form gametes. This halving requires a complex reorganisation of chromosomes. Each gamete receives one maternal or one paternal copy of every chromosome. This requires a pairing process between the maternal and paternal chromosomes of each type. Once paired the two chromosomes are organised in space to bias subsequent movement in opposite directions when the nucleus divides. How chromosomes pair is of great importance to understanding fertility, and manipulating chromosomes in crops species, for which it is desirable to breed in new genes to improve hardiness or yield. We have modelled chromosomes in 3-dimensions based on the experimental organism Saccharomyces cerevisiae. We used our model to ask if various physical features of chromosomes might influence their ability to pair. We found that binding chromosome ends to the nuclear wall and pushing those ends together helps to encourage pairing along the length of chromosomes. It has long been known this special chromosome organisation occurs in live cells, but the significance of it has been difficult to determine.
Collapse
Affiliation(s)
- Christopher A. Penfold
- Department of Molecular Biology and Biotechnology, Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Institute of Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - Paul E. Brown
- Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Neil D. Lawrence
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
- Sheffield Institute of Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
| | - Alastair S. H. Goldman
- Department of Molecular Biology and Biotechnology, Krebs Institute, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc Natl Acad Sci U S A 2011; 108:20036-41. [PMID: 22123968 DOI: 10.1073/pnas.1117937108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Meiotic recombination initiates via programmed double-strand breaks (DSBs). We investigate whether, at a given initiation site, DSBs occur independently among the four available chromatids. For a single DSB "hot spot", the proportions of nuclei exhibiting zero, one, or two (or more) observable events were defined by tetrad analysis and compared with those predicted by different DSB distribution scenarios. Wild-type patterns are incompatible with independent distribution of DSBs among the four chromatids. In most or all nuclei, DSBs occur one-per-pair of chromatids, presumptively sisters. In many nuclei, only one DSB occurs per four chromatids, confirming the existence of trans inhibition where a DSB on one chromosome interactively inhibits DSB formation on the partner chromosome. Several mutants exhibit only a one-per-pair constraint, a phenotype we propose to imply loss of trans inhibition. Signal transduction kinases Mec1 (ATR) and Tel1 (ATM) exhibit this phenotype and thus could be mediators of this effect. Spreading trans inhibition can explain even spacing of total recombinational interactions and implies that establishment of interhomolog interactions and DSB formation are homeostatic processes. The two types of constraints on DSB formation provide two different safeguards against recombination failure during meiosis.
Collapse
|
38
|
Berchowitz LE, Copenhaver GP. Genetic interference: don't stand so close to me. Curr Genomics 2011; 11:91-102. [PMID: 20885817 PMCID: PMC2874225 DOI: 10.2174/138920210790886835] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/26/2009] [Accepted: 11/29/2009] [Indexed: 11/30/2022] Open
Abstract
Meiosis is a dynamic process during which chromosomes undergo condensation, pairing, crossing-over and disjunction. Stringent regulation of the distribution and quantity of meiotic crossovers is critical for proper chromosome segregation in many organisms. In humans, aberrant crossover placement and the failure to faithfully segregate meiotic chromosomes often results in severe genetic disorders such as Down syndrome and Edwards syndrome. In most sexually reproducing organisms, crossovers are more evenly spaced than would be expected from a random distribution. This phenomenon, termed interference, was first reported in the early 20th century by Drosophila geneticists and has been subsequently observed in a vast range of organisms from yeasts to humans. Yet, many questions regarding the behavior and mechanism of interference remain poorly understood. In this review, we examine results new and old, from a wide range of organisms, to begin to understand the progress and remaining challenges to understanding the fundamental unanswered questions regarding genetic interference.
Collapse
Affiliation(s)
- Luke E Berchowitz
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
39
|
Sustained and rapid chromosome movements are critical for chromosome pairing and meiotic progression in budding yeast. Genetics 2011; 188:21-32. [PMID: 21339478 DOI: 10.1534/genetics.110.125575] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Telomere-led chromosome movements are a conserved feature of meiosis I (MI) prophase. Several roles have been proposed for such chromosome motion, including promoting homolog pairing and removing inappropriate chromosomal interactions. Here, we provide evidence in budding yeast that rapid chromosome movements affect homolog pairing and recombination. We found that csm4Δ strains, which are defective for telomere-led chromosome movements, show defects in homolog pairing as measured in a "one-dot/two-dot tetR-GFP" assay; however, pairing in csm4Δ eventually reaches near wild-type (WT) levels. Charged-to-alanine scanning mutagenesis of CSM4 yielded one allele, csm4-3, that confers a csm4Δ-like delay in meiotic prophase but promotes high spore viability. The meiotic delay in csm4-3 strains is essential for spore viability because a null mutation (rad17Δ) in the Rad17 checkpoint protein suppresses the delay but confers a severe spore viability defect. csm4-3 mutants show a general defect in chromosome motion but an intermediate defect in chromosome pairing. Chromosome velocity analysis in live cells showed that while average chromosome velocity was strongly reduced in csm4-3, chromosomes in this mutant displayed occasional rapid movements. Lastly, we observed that spo11 mutants displaying lower levels of meiosis-induced double-strand breaks showed higher spore viability in the presence of the csm4-3 mutation compared to csm4Δ. On the basis of these observations, we propose that during meiotic prophase the presence of occasional fast moving chromosomes over an extended period of time is sufficient to promote WT levels of recombination and high spore viability; however, sustained and rapid chromosome movements are required to prevent a checkpoint response and promote efficient meiotic progression.
Collapse
|
40
|
Abstract
Recent studies in diverse eukaryotes have implicated a family of nuclear envelope proteins containing SUN domains as key components of meiotic nuclear organization and chromosome dynamics. In many cases, these transmembrane proteins are also known to contribute to centrosome or spindle pole body function in mitotically dividing cells. During meiotic prophase, the apparent role of these SUN-domain proteins, together with their partner KASH-domain proteins, is to connect chromosomes through the intact nuclear envelope to force-generating mechanisms in the cytoplasm.
Collapse
Affiliation(s)
- Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.
| | | |
Collapse
|
41
|
Joshi N, Barot A, Jamison C, Börner GV. Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLoS Genet 2009; 5:e1000557. [PMID: 19629172 PMCID: PMC2708914 DOI: 10.1371/journal.pgen.1000557] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/10/2009] [Indexed: 01/10/2023] Open
Abstract
Segregation of homologous chromosomes during meiosis I depends on appropriately positioned crossovers/chiasmata. Crossover assurance ensures at least one crossover per homolog pair, while interference reduces double crossovers. Here, we have investigated the interplay between chromosome axis morphogenesis and non-random crossover placement. We demonstrate that chromosome axes are structurally modified at future crossover sites as indicated by correspondence between crossover designation marker Zip3 and domains enriched for axis ensemble Hop1/Red1. This association is first detected at the zygotene stage, persists until double Holliday junction resolution, and is controlled by the conserved AAA+ ATPase Pch2. Pch2 further mediates crossover interference, although it is dispensable for crossover formation at normal levels. Thus, interference appears to be superimposed on underlying mechanisms of crossover formation. When recombination-initiating DSBs are reduced, Pch2 is also required for viable spore formation, consistent with further functions in chiasma formation. pch2Δ mutant defects in crossover interference and spore viability at reduced DSB levels are oppositely modulated by temperature, suggesting contributions of two separable pathways to crossover control. Roles of Pch2 in controlling both chromosome axis morphogenesis and crossover placement suggest linkage between these processes. Pch2 is proposed to reorganize chromosome axes into a tiling array of long-range crossover control modules, resulting in chiasma formation at minimum levels and with maximum spacing. In the germ line of sexually reproducing organisms, haploid gametes are generated from diploid precursor cells by a specialized cell division called meiosis. Reduction by half of chromosome numbers during the first meiotic division depends on genetic exchange, resulting in the formation of crossovers. Without crossovers, pairs of homologous chromosomes frequently fail to separate, resulting in unbalanced gametes with a surplus or deficit of individual chromosomes. Along a given chromosome, crossovers form in different locations in different cells, but distribution of crossovers within each cell is controlled in two ways: first, at least one crossover is formed along each homolog pair, irrespective of size; second, a crossover in a given interval reduces the frequency of crossovers in adjacent chromosome regions. Here, we identify functions of the evolutionarily conserved protein Pch2 in suppressing additional crossovers in adjacent regions and ensuring homolog segregation under certain conditions. Pch2 further controls the assembly of chromosome axis protein Hop1 at future crossover sites. Our findings reveal that chromosome axes undergo structural changes at the same positions where crossovers occur. Thus, axis remodeling and crossover placement are linked via Pch2.
Collapse
Affiliation(s)
- Neeraj Joshi
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Aekam Barot
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Christine Jamison
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - G. Valentin Börner
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Visualization of meiotic chromosomes in the model organism S. cerevisiae has become an integral part of the study of wild-type meiosis and the characterization of mutant phenotypes. This chapter describes a simple method for chromosome spreading, which is a variation on a protocol originally developed by Dresser and Giroux. This method uses osmotic pressure to spread the nuclear contents of spheroplasted meiotic cells over a glass slide enabling unobstructed inspection of the chromosomal morphology. Chromosomes from all meiotic stages can be analyzed using indirect immunofluorescence to visualize meiotic proteins involved in different processes of meiosis, including recombination, synapsis, sister chromatid cohesion, and chromosome disjunction.
Collapse
|
43
|
Abstract
Accurate segregation of chromosomes during meiosis requires physical links between homologs. These links are usually established through chromosome pairing, synapsis, and recombination, which occur during meiotic prophase. How chromosomes pair with their homologous partners is one of the outstanding mysteries of meiosis. Surprisingly, experimental evidence indicates that different organisms have found more than one way to accomplish this feat. Whereas some species depend on recombination machinery to achieve homologous pairing, others are able to pair and synapse their homologs in the absence of recombination. To ensure specific pairing between homologous chromosomes, both recombination-dependent and recombination-independent mechanisms must strike the proper balance between forces that promote chromosome interactions and activities that temper the promiscuity of those interactions. The initiation of synapsis is likely to be a tightly regulated step in a process that must be mechanically coupled to homolog pairing.
Collapse
Affiliation(s)
- Needhi Bhalla
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
44
|
|
45
|
Kosaka H, Shinohara M, Shinohara A. Csm4-dependent telomere movement on nuclear envelope promotes meiotic recombination. PLoS Genet 2008; 4:e1000196. [PMID: 18818742 PMCID: PMC2533704 DOI: 10.1371/journal.pgen.1000196] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 08/08/2008] [Indexed: 12/03/2022] Open
Abstract
During meiotic prophase, chromosomes display rapid movement, and their telomeres attach to the nuclear envelope and cluster to form a “chromosomal bouquet.” Little is known about the roles of the chromosome movement and telomere clustering in this phase. In budding yeast, telomere clustering is promoted by a meiosis-specific, telomere-binding protein, Ndj1. Here, we show that a meiosis-specific protein, Csm4, which forms a complex with Ndj1, facilitates bouquet formation. In the absence of Csm4, Ndj1-bound telomeres tether to nuclear envelopes but do not cluster, suggesting that telomere clustering in the meiotic prophase consists of at least two distinct steps: Ndj1-dependent tethering to the nuclear envelope and Csm4-dependent clustering/movement. Similar to Ndj1, Csm4 is required for several distinct steps during meiotic recombination. Our results suggest that Csm4 promotes efficient second-end capture of a double-strand break following a homology search, as well as resolution of the double-Holliday junction during crossover formation. We propose that chromosome movement and associated telomere dynamics at the nuclear envelope promotes the completion of key biochemical steps during meiotic recombination. Meiosis is a specialized cell division that produces haploid gametes. Homologous recombination plays a pivotal role in the segregation of homologous chromosomes during meiosis I by creating physical linkages between the chromosomes. Drastic reorganization of chromosomes in the nucleus is a prominent feature of meiotic prophase I, during which telomeres get associated with the nuclear envelope and move within the envelope, culminating in the formation of telomere clusters, often referred to as “chromosome bouquets.” The roles that telomere movement and clustering play in meiotic prophase I are largely unknown. In the budding yeast Saccharomyces cerevisiae, tethering of telomeres to the nuclear envelope is mediated by a meiosis-specific telomere-binding protein, Ndj1. We studied the functions of a meiosis-specific gene, CSM4, in telomere clustering and during meiotic recombination. CSM4 is necessary for the clustering of Ndj1-associated telomeres. Interestingly, csm4 mutants show pleiotropic defects during meiotic recombination. It is likely that the chromosome movement promotes various biochemical reactions during meiotic recombination.
Collapse
Affiliation(s)
- Hiromichi Kosaka
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
46
|
Wanat JJ, Kim KP, Koszul R, Zanders S, Weiner B, Kleckner N, Alani E. Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis. PLoS Genet 2008; 4:e1000188. [PMID: 18818741 PMCID: PMC2533701 DOI: 10.1371/journal.pgen.1000188] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022] Open
Abstract
Chromosome movements are a general feature of mid-prophase of meiosis. In budding yeast, meiotic chromosomes exhibit dynamic movements, led by nuclear envelope (NE)-associated telomeres, throughout the zygotene and pachytene stages. Zygotene motion underlies the global tendency for colocalization of NE-associated chromosome ends in a "bouquet." In this study, we identify Csm4 as a new molecular participant in these processes and show that, unlike the two previously identified components, Ndj1 and Mps3, Csm4 is not required for meiosis-specific telomere/NE association. Instead, it acts to couple telomere/NE ensembles to a force generation mechanism. Mutants lacking Csm4 and/or Ndj1 display the following closely related phenotypes: (i) elevated crossover (CO) frequencies and decreased CO interference without abrogation of normal pathways; (ii) delayed progression of recombination, and recombination-coupled chromosome morphogenesis, with resulting delays in the MI division; and (iii) nondisjunction of homologs at the MI division for some reason other than absence of (the obligatory) CO(s). The recombination effects are discussed in the context of a model where the underlying defect is chromosome movement, the absence of which results in persistence of inappropriate chromosome relationships that, in turn, results in the observed mutant phenotypes.
Collapse
Affiliation(s)
- Jennifer J. Wanat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Keun P. Kim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Romain Koszul
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sarah Zanders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Beth Weiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Affiliation(s)
- Frank Stahl
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA.
| |
Collapse
|
48
|
Global analysis of the meiotic crossover landscape. Dev Cell 2008; 15:401-415. [PMID: 18691940 PMCID: PMC2628562 DOI: 10.1016/j.devcel.2008.07.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/05/2008] [Accepted: 07/18/2008] [Indexed: 12/21/2022]
Abstract
Tight control of the number and distribution of crossovers is of great importance for meiosis. Crossovers establish chiasmata, which are physical connections between homologous chromosomes that provide the tension necessary to align chromosomes on the meiotic spindle. Understanding the mechanisms underlying crossover control has been hampered by the difficulty in determining crossover distributions. Here, we present a microarray-based method to analyze multiple aspects of crossover control simultaneously and rapidly, at high resolution, genome-wide, and on a cell-by-cell basis. Using this approach, we show that loss of interference in zip2 and zip4/spo22 mutants is accompanied by a reduction in crossover homeostasis, thus connecting these two levels of crossover control. We also provide evidence to suggest that repression of crossing over at telomeres and centromeres arises from different mechanisms. Lastly, we uncover a surprising role for the synaptonemal complex component Zip1 in repressing crossing over at the centromere.
Collapse
|
49
|
Conrad MN, Lee CY, Chao G, Shinohara M, Kosaka H, Shinohara A, Conchello JA, Dresser ME. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 2008; 133:1175-87. [PMID: 18585352 DOI: 10.1016/j.cell.2008.04.047] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/07/2008] [Accepted: 04/12/2008] [Indexed: 11/18/2022]
Abstract
Haploidization of the genome in meiosis requires that chromosomes be sorted exclusively into pairs stabilized by synaptonemal complexes (SCs) and crossovers. This sorting and pairing is accompanied by active chromosome positioning in meiotic prophase in which telomeres cluster near the spindle pole to form the bouquet before dispersing around the nuclear envelope. We now describe telomere-led rapid prophase movements (RPMs) that frequently exceed 1 microm/s and persist throughout meiotic prophase. Bouquet formation and RPMs depend on NDJ1, MPS3, and a new member of this pathway, CSM4, which encodes a meiosis-specific nuclear envelope protein required specifically for telomere mobility. RPMs initiate independently of recombination but differ quantitatively in mutants that fail to complete recombination, suggesting that RPMs respond to recombination status. Together with recombination defects described for ndj1, our observations suggest that RPMs and SCs balance the disruption and stabilization of recombinational interactions, respectively, to regulate crossing over.
Collapse
Affiliation(s)
- Michael N Conrad
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Reduced mismatch repair of heteroduplexes reveals "non"-interfering crossing over in wild-type Saccharomyces cerevisiae. Genetics 2008; 178:1251-69. [PMID: 18385111 DOI: 10.1534/genetics.106.067603] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using small palindromes to monitor meiotic double-strand-break-repair (DSBr) events, we demonstrate that two distinct classes of crossovers occur during meiosis in wild-type yeast. We found that crossovers accompanying 5:3 segregation of a palindrome show no conventional (i.e., positive) interference, while crossovers with 6:2 or normal 4:4 segregation for the same palindrome, in the same cross, do manifest interference. Our observations support the concept of a "non"-interference class and an interference class of meiotic double-strand-break-repair events, each with its own rules for mismatch repair of heteroduplexes. We further show that deletion of MSH4 reduces crossover tetrads with 6:2 or normal 4:4 segregation more than it does those with 5:3 segregation, consistent with Msh4p specifically promoting formation of crossovers in the interference class. Additionally, we present evidence that an ndj1 mutation causes a shift of noncrossovers to crossovers specifically within the "non"-interference class of DSBr events. We use these and other data in support of a model in which meiotic recombination occurs in two phases-one specializing in homolog pairing, the other in disjunction-and each producing both noncrossovers and crossovers.
Collapse
|