1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Benner L, Muron S, Gomez JG, Oliver B. OVO positively regulates essential maternal pathways by binding near the transcriptional start sites in the Drosophila female germline. eLife 2024; 13:RP94631. [PMID: 39291827 PMCID: PMC11410370 DOI: 10.7554/elife.94631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO's role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5'-TAACNGT-3' OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.
Collapse
Affiliation(s)
- Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Savannah Muron
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jillian G Gomez
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
3
|
He AY, Danko CG. Dissection of core promoter syntax through single nucleotide resolution modeling of transcription initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.583868. [PMID: 38559255 PMCID: PMC10979970 DOI: 10.1101/2024.03.13.583868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
How the DNA sequence of cis-regulatory elements encode transcription initiation patterns remains poorly understood. Here we introduce CLIPNET, a deep learning model trained on population-scale PRO-cap data that predicts the position and quantity of transcription initiation with single nucleotide resolution from DNA sequence more accurately than existing approaches. Interpretation of CLIPNET revealed a complex regulatory syntax consisting of DNA-protein interactions in five major positions between -200 and +50 bp relative to the transcription start site, as well as more subtle positional preferences among transcriptional activators. Transcriptional activator and core promoter motifs work non-additively to encode distinct aspects of initiation, with the former driving initiation quantity and the latter initiation position. We identified core promoter motifs that explain initiation patterns in the majority of promoters and enhancers, including DPR motifs and AT-rich TBP binding sequences in TATA-less promoters. Our results provide insights into the sequence architecture governing transcription initiation.
Collapse
Affiliation(s)
- Adam Y. He
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
- Graduate Field of Computational Biology, Cornell University
| | - Charles G. Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University
| |
Collapse
|
4
|
Rodríguez-Lima O, García-Gutiérrez P, Jiménez L, Velázquez-Villegas LA, Zarain-Herzberg A, Lazzarini R, Estrada K, Landa A. Taenia solium TAF6 and TAF9 bind to a downstream promoter element present in the Tstbp1 gene core promoter. PLoS One 2024; 19:e0306633. [PMID: 39208271 PMCID: PMC11361659 DOI: 10.1371/journal.pone.0306633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Transcription regulation in cestodes has been little studied. Here, we characterize the Taenia solium TATA-binding protein (TBP) gene. We found binding sites for transcription factors such as NF1, YY1, and AP-1 in the proximal promoter. We also identified two TATA-like elements in the promoter; however, neither could bind TBP. Additionally, we mapped the transcription start site (A+1) within an initiator and identified a putative downstream promoter element (DPE) located at +27 bp relative to the transcription start site. These two elements are important and functional for gene expression. Moreover, we identified the genes encoding T. solium TBP-Associated Factor 6 (TsTAF6) and 9 (TsTAF9). A Western blot assay revealed that both factors are expressed in the parasite; electrophoretic mobility shift assays and super-shift assays revealed interactions between the DPE probe and TsTAF6-TsTAF9. Finally, we used molecular dynamics simulations to formulate an interaction model among TsTAF6, TsTAF9, and the DPE probe; we stabilized the model with interactions between the histone fold domain pair in TAFs and several pairs of nucleotides in the DPE probe. We discuss novel and interesting features of the TsTAF6-TsTAF9 complex for interaction with DPE on T. solium promoters.
Collapse
Affiliation(s)
- Oscar Rodríguez-Lima
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lucía Jiménez
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Laura A. Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Angel Zarain-Herzberg
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Roberto Lazzarini
- Departamento de Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Karel Estrada
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Abraham Landa
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
5
|
Sloutskin A, Itzhak D, Vogler G, Pozeilov H, Ideses D, Alter H, Adato O, Shachar H, Doniger T, Shohat-Ophir G, Frasch M, Bodmer R, Duttke SH, Juven-Gershon T. From promoter motif to cardiac function: a single DPE motif affects transcription regulation and organ function in vivo. Development 2024; 151:dev202355. [PMID: 38958007 DOI: 10.1242/dev.202355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Transcription initiates at the core promoter, which contains distinct core promoter elements. Here, we highlight the complexity of transcriptional regulation by outlining the effect of core promoter-dependent regulation on embryonic development and the proper function of an organism. We demonstrate in vivo the importance of the downstream core promoter element (DPE) in complex heart formation in Drosophila. Pioneering a novel approach using both CRISPR and nascent transcriptomics, we show the effects of mutating a single core promoter element within the natural context. Specifically, we targeted the downstream core promoter element (DPE) of the endogenous tin gene, encoding the Tinman transcription factor, a homologue of human NKX2-5 associated with congenital heart diseases. The 7 bp substitution mutation results in massive perturbation of the Tinman regulatory network that orchestrates dorsal musculature, which is manifested as physiological and anatomical changes in the cardiac system, impaired specific activity features, and significantly compromised viability of adult flies. Thus, a single motif can have a critical impact on embryogenesis and, in the case of DPE, functional heart formation.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dekel Itzhak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hadar Pozeilov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Alter
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Shachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Galit Shohat-Ophir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Manfred Frasch
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
Cochran K, Yin M, Mantripragada A, Schreiber J, Marinov GK, Kundaje A. Dissecting the cis-regulatory syntax of transcription initiation with deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596138. [PMID: 38853896 PMCID: PMC11160661 DOI: 10.1101/2024.05.28.596138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Despite extensive characterization of mammalian Pol II transcription, the DNA sequence determinants of transcription initiation at a third of human promoters and most enhancers remain poorly understood. Hence, we trained and interpreted a neural network called ProCapNet that accurately models base-resolution initiation profiles from PRO-cap experiments using local DNA sequence. ProCapNet learns sequence motifs with distinct effects on initiation rates and TSS positioning and uncovers context-specific cryptic initiator elements intertwined within other TF motifs. ProCapNet annotates predictive motifs in nearly all actively transcribed regulatory elements across multiple cell-lines, revealing a shared cis-regulatory logic across promoters and enhancers mediated by a highly epistatic sequence syntax of cooperative and competitive motif interactions. ProCapNet models of RAMPAGE profiles measuring steady-state RNA abundance at TSSs distill initiation signals on par with models trained directly on PRO-cap profiles. ProCapNet learns a largely cell-type-agnostic cis-regulatory code of initiation complementing sequence drivers of cell-type-specific chromatin state critical for accurate prediction of cell-type-specific transcription initiation.
Collapse
Affiliation(s)
- Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | | | - Jacob Schreiber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Benner L, Muron S, Gomez JG, Oliver B. OVO Positively Regulates Essential Maternal Pathways by Binding Near the Transcriptional Start Sites in the Drosophila Female Germline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.01.565184. [PMID: 38076814 PMCID: PMC10705541 DOI: 10.1101/2023.11.01.565184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2023]
Abstract
Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO's role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5'-TAACNGT-3' OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA Polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.
Collapse
Affiliation(s)
- Leif Benner
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Savannah Muron
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jillian G Gomez
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Uemura K, Ohyama T. Physical Peculiarity of Two Sites in Human Promoters: Universality and Diverse Usage in Gene Function. Int J Mol Sci 2024; 25:1487. [PMID: 38338773 PMCID: PMC10855393 DOI: 10.3390/ijms25031487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Since the discovery of physical peculiarities around transcription start sites (TSSs) and a site corresponding to the TATA box, research has revealed only the average features of these sites. Unsettled enigmas include the individual genes with these features and whether they relate to gene function. Herein, using 10 physical properties of DNA, including duplex DNA free energy, base stacking energy, protein-induced deformability, and stabilizing energy of Z-DNA, we clarified for the first time that approximately 97% of the promoters of 21,056 human protein-coding genes have distinctive physical properties around the TSS and/or position -27; of these, nearly 65% exhibited such properties at both sites. Furthermore, about 55% of the 21,056 genes had a minimum value of regional duplex DNA free energy within TSS-centered ±300 bp regions. Notably, distinctive physical properties within the promoters and free energies of the surrounding regions separated human protein-coding genes into five groups; each contained specific gene ontology (GO) terms. The group represented by immune response genes differed distinctly from the other four regarding the parameter of the free energies of the surrounding regions. A vital suggestion from this study is that physical-feature-based analyses of genomes may reveal new aspects of the organization and regulation of genes.
Collapse
Affiliation(s)
- Kohei Uemura
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan;
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
9
|
Fan K, Pfister E, Weng Z. Toward a comprehensive catalog of regulatory elements. Hum Genet 2023; 142:1091-1111. [PMID: 36935423 DOI: 10.1007/s00439-023-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 03/21/2023]
Abstract
Regulatory elements are the genomic regions that interact with transcription factors to control cell-type-specific gene expression in different cellular environments. A precise and complete catalog of functional elements encoded by the human genome is key to understanding mammalian gene regulation. Here, we review the current state of regulatory element annotation. We first provide an overview of assays for characterizing functional elements, including genome, epigenome, transcriptome, three-dimensional chromatin interaction, and functional validation assays. We then discuss computational methods for defining regulatory elements, including peak-calling and other statistical modeling methods. Finally, we introduce several high-quality lists of regulatory element annotations and suggest potential future directions.
Collapse
Affiliation(s)
- Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Edith Pfister
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA.
| |
Collapse
|
10
|
Sloutskin A, Itzhak D, Vogler G, Ideses D, Alter H, Shachar H, Doniger T, Frasch M, Bodmer R, Duttke SH, Juven-Gershon T. A single DPE core promoter motif contributes to in vivo transcriptional regulation and affects cardiac function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544490. [PMID: 37398300 PMCID: PMC10312617 DOI: 10.1101/2023.06.11.544490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Transcription is initiated at the core promoter, which confers specific functions depending on the unique combination of core promoter elements. The downstream core promoter element (DPE) is found in many genes related to heart and mesodermal development. However, the function of these core promoter elements has thus far been studied primarily in isolated, in vitro or reporter gene settings. tinman (tin) encodes a key transcription factor that regulates the formation of the dorsal musculature and heart. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show that a substitution mutation of the functional tin DPE motif within the natural context of the core promoter results in a massive perturbation of Tinman's regulatory network orchestrating dorsal musculature and heart formation. Mutation of endogenous tin DPE reduced the expression of tin and distinct target genes, resulting in significantly reduced viability and an overall decrease in adult heart function. We demonstrate the feasibility and importance of characterizing DNA sequence elements in vivo in their natural context, and accentuate the critical impact a single DPE motif has during Drosophila embryogenesis and functional heart formation.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Dekel Itzhak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Alter
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Shachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Manfred Frasch
- Division of Developmental Biology, Department of Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sascha H Duttke
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
11
|
Ni X, Liu Z, Guo J, Zhang G. Development of Terminator-Promoter Bifunctional Elements for Application in Saccharomyces cerevisiae Pathway Engineering. Int J Mol Sci 2023; 24:9870. [PMID: 37373018 DOI: 10.3390/ijms24129870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of a genetic circuit requires the substitution and redesign of different promoters and terminators. The assembly efficiency of exogenous pathways will also decrease significantly when the number of regulatory elements and genes is increased. We speculated that a novel bifunctional element with promoter and terminator functions could be created via the fusion of a termination signal with a promoter sequence. In this study, the elements from a Saccharomyces cerevisiae promoter and terminator were employed to design a synthetic bifunctional element. The promoter strength of the synthetic element is apparently regulated through a spacer sequence and an upstream activating sequence (UAS) with a ~5-fold increase, and the terminator strength could be finely regulated by the efficiency element, with a ~5-fold increase. Furthermore, the use of a TATA box-like sequence resulted in the adequate execution of both functions of the TATA box and the efficiency element. By regulating the TATA box-like sequence, UAS, and spacer sequence, the strengths of the promoter-like and terminator-like bifunctional elements were optimally fine-tuned with ~8-fold and ~7-fold increases, respectively. The application of bifunctional elements in the lycopene biosynthetic pathway showed an improved pathway assembly efficiency and higher lycopene yield. The designed bifunctional elements effectively simplified pathway construction and can serve as a useful toolbox for yeast synthetic biology.
Collapse
Affiliation(s)
- Xiaoxia Ni
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhengyang Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jintang Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Genlin Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
12
|
Hoffmann A. Designer genes courtesy of artificial intelligence. Genes Dev 2023; 37:351-353. [PMID: 37253615 PMCID: PMC10270197 DOI: 10.1101/gad.350783.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The core promoter determines not only where gene transcription initiates but also the transcriptional activity in both basal and enhancer-induced conditions. Multiple short sequence elements within the core promoter have been identified in different species, but how they function together and to what extent they are truly species-specific has remained unclear. In this issue of Genes & Development, Vo ngoc and colleagues (pp. 377-382) report undertaking massively parallel measurements of synthetic core promoters to generate a large data set of their activities that informs a statistical learning model to identify the sequence differences of human and Drosophila core promoters. This machine learning model was then applied to design gene core promoters that are particularly specific for the human transcriptional machinery.
Collapse
Affiliation(s)
- Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90025, USA
| |
Collapse
|
13
|
Vo Ngoc L, Rhyne TE, Kadonaga JT. Analysis of the Drosophila and human DPR elements reveals a distinct human variant whose specificity can be enhanced by machine learning. Genes Dev 2023; 37:377-382. [PMID: 37163335 PMCID: PMC10270198 DOI: 10.1101/gad.350572.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
The RNA polymerase II core promoter is the site of convergence of the signals that lead to the initiation of transcription. Here, we performed a comparative analysis of the downstream core promoter region (DPR) in Drosophila and humans by using machine learning. These studies revealed a distinct human-specific version of the DPR and led to the use of machine learning models for the identification of synthetic extreme DPR motifs with specificity for human transcription factors relative to Drosophila factors and vice versa. More generally, machine learning models could similarly be used to design synthetic DNA elements with customized functional properties.
Collapse
Affiliation(s)
- Long Vo Ngoc
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - Torrey E Rhyne
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Department of Molecular Biology, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Zhong V, Archibald BN, Brophy JAN. Transcriptional and post-transcriptional controls for tuning gene expression in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102315. [PMID: 36462457 DOI: 10.1016/j.pbi.2022.102315] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.
Collapse
Affiliation(s)
- Vivian Zhong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Bella N Archibald
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
15
|
Sghaier N, Essemine J, Ayed RB, Gorai M, Ben Marzoug R, Rebai A, Qu M. An Evidence Theory and Fuzzy Logic Combined Approach for the Prediction of Potential ARF-Regulated Genes in Quinoa. PLANTS (BASEL, SWITZERLAND) 2022; 12:71. [PMID: 36616201 PMCID: PMC9824623 DOI: 10.3390/plants12010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Quinoa constitutes among the tolerant plants to the challenging and harmful abiotic environmental factors. Quinoa was selected as among the model crops destined for bio-saline agriculture that could contribute to the staple food security for an ever-growing worldwide population under various climate change scenarios. The auxin response factors (ARFs) constitute the main contributors in the plant adaptation to severe environmental conditions. Thus, the determination of the ARF-binding sites represents the major step that could provide promising insights helping in plant breeding programs and improving agronomic traits. Hence, determining the ARF-binding sites is a challenging task, particularly in species with large genome sizes. In this report, we present a data fusion approach based on Dempster-Shafer evidence theory and fuzzy set theory to predict the ARF-binding sites. We then performed an "In-silico" identification of the ARF-binding sites in Chenopodium quinoa. The characterization of some known pathways implicated in the auxin signaling in other higher plants confirms our prediction reliability. Furthermore, several pathways with no or little available information about their functions were identified to play important roles in the adaptation of quinoa to environmental conditions. The predictive auxin response genes associated with the detected ARF-binding sites may certainly help to explore the biological roles of some unknown genes newly identified in quinoa.
Collapse
Affiliation(s)
- Nesrine Sghaier
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Laboratory of Advanced Technology and Intelligent Systems, National Engineering School of Sousse, Sousse 4023, Tunisia
| | - Jemaa Essemine
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rayda Ben Ayed
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), 43 Avenue Charles Nicolle, 1082 El Mahrajène, University of Carthage-Tunis, Tunis 1082, Tunisia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam Lif 2050, Tunisia
| | - Mustapha Gorai
- Higher Institute of Applied Biology Medenine, University of Gabes, Medenine 4119, Tunisia
| | - Riadh Ben Marzoug
- Laboratory of Molecular and Cellular Screening Processes, Sfax Biotechnology Center, B.P 1177, Sfax 3018, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Sfax Biotechnology Center, B.P 1177, Sfax 3018, Tunisia
| | - Mingnan Qu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
DeeProPre: A promoter predictor based on deep learning. Comput Biol Chem 2022; 101:107770. [PMID: 36116322 DOI: 10.1016/j.compbiolchem.2022.107770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/06/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022]
Abstract
The promoter is a DNA sequence recognized, bound and transcribed by RNA polymerase. It is usually located at the upstream or 5'end of the transcription start site (TSS). Studies have shown that the structure of the promoter affects its affinity for RNA polymerase, thus affecting the level of gene expression. Therefore, the correct identification of core promoter and common structural gene is of great significance in the field of biomedicine. At present, many methods have been proposed to improve the accuracy of promoter recognition, but the performances still need to be further improved. In this study, a deep learning algorithm (DeeProPre) based on bidirectional long short-term memory (BiLSTM) and convolutional neural network (CNN) was proposed. Firstly, the supervised embedding layer was applied to map the sequence to a high-dimensional space. Secondly, two 1D convolutional layers, BiLSTM and attentional mechanism layer were used for extracting features. Finally, the full connection layer activated by Sigmoid function was used to obtain the probability of classification into target categories. This model can identify the promoter region of eukaryotes with high accuracy, providing an analytical basis for further understanding of promoter physiological functions and studies of gene transcription mechanisms. The source code of DeeProPre is freely available at https://github.com/zzwwmmm/DeeProPre/tree/master.
Collapse
|
17
|
Bu L, Cripps RM. Promoter architecture of Drosophila genes regulated by Myocyte enhancer factor-2. PLoS One 2022; 17:e0271554. [PMID: 35862472 PMCID: PMC9302807 DOI: 10.1371/journal.pone.0271554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
To gain understanding into the mechanisms of transcriptional activation of muscle genes, we sought to determine if genes targeted by the myogenic transcription factor Myocyte enhancer factor-2 (MEF2) were enriched for specific core promoter elements. We identified 330 known MEF2 target promoters in Drosophila, and analyzed them for for the presence and location of 17 known consensus promoter sequences. As a control, we also searched all Drosophila RNA polymerase II-dependent promoters for the same sequences. We found that promoter motifs were readily detected in the MEF2 target dataset, and that many of them were slightly enriched in frequency compared to the control dataset. A prominent sequence over-represented in the MEF2 target genes was NDM2, that appeared in over 50% of MEF2 target genes and was 2.5-fold over-represented in MEF2 targets compared to background. To test the functional significance of NDM2, we identified two promoters containing a single copy of NDM2 plus an upstream MEF2 site, and tested the activity of these promoters in vivo. Both the sticks and stones and Kahuli fragments showed strong skeletal myoblast-specific expression of a lacZ reporter in embryos. However, the timing and level of reporter expression was unaffected when the NDM2 site in either element was mutated. These studies identify variations in promoter architecture for a set of regulated genes compared to all RNA polymerase II-dependent genes, and underline the potential redundancy in the activities of some core promoter elements.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology and Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, United States of America
| | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA, United States of America
| |
Collapse
|
18
|
Bateman JR, Johnson JE. Altering enhancer-promoter linear distance impacts promoter competition in cis and in trans. Genetics 2022; 222:6617354. [PMID: 35748724 PMCID: PMC9434180 DOI: 10.1093/genetics/iyac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
In Drosophila, pairing of maternal and paternal homologs can permit trans-interactions between enhancers on one homolog and promoters on another, an example of a phenomenon called transvection. When chromosomes are paired, promoters in cis and in trans to an enhancer can compete for the enhancer's activity, but the parameters that govern this competition are as yet poorly understood. To assess how the linear spacing between an enhancer and promoter can influence promoter competition in Drosophila, we employed transgenic constructs wherein the eye-specific enhancer GMR is placed at varying distances from a heterologous hsp70 promoter driving a fluorescent reporter. While GMR activates the reporter to a high degree when the enhancer and promoter are spaced by a few hundred base pairs, activation is strongly attenuated when the enhancer is moved 3 kilobases away. By examining transcription of endogenous genes near the point of transgene insertion, we show that linear spacing of 3 kb between GMR and the hsp70 promoter results in elevated transcription of neighboring promoters, suggesting a loss of specificity between the enhancer and its intended transgenic target promoter. Furthermore, increasing spacing between GMR and hsp70 by just 100 bp can enhance transvection, resulting in increased activation of a promoter on a paired homolog at the expense of a promoter in cis to the enhancer. Finally, cis-/trans-promoter competition assays in which one promoter carries mutations to key core promoter elements show that GMR will skew its activity toward a wild type promoter, suggesting that an enhancer is in a balanced competition between its potential target promoters in cis and in trans.
Collapse
Affiliation(s)
- Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | | |
Collapse
|
19
|
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases. Nat Rev Mol Cell Biol 2022; 23:603-622. [PMID: 35505252 DOI: 10.1038/s41580-022-00476-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
The eukaryotic transcription apparatus synthesizes a staggering diversity of RNA molecules. The labour of nuclear gene transcription is, therefore, divided among multiple DNA-dependent RNA polymerases. RNA polymerase I (Pol I) transcribes ribosomal RNA, Pol II synthesizes messenger RNAs and various non-coding RNAs (including long non-coding RNAs, microRNAs and small nuclear RNAs) and Pol III produces transfer RNAs and other short RNA molecules. Pol I, Pol II and Pol III are large, multisubunit protein complexes that associate with a multitude of additional factors to synthesize transcripts that largely differ in size, structure and abundance. The three transcription machineries share common characteristics, but differ widely in various aspects, such as numbers of RNA polymerase subunits, regulatory elements and accessory factors, which allows them to specialize in transcribing their specific RNAs. Common to the three RNA polymerases is that the transcription process consists of three major steps: transcription initiation, transcript elongation and transcription termination. In this Review, we outline the common principles and differences between the Pol I, Pol II and Pol III transcription machineries and discuss key structural and functional insights obtained into the three stages of their transcription processes.
Collapse
|
20
|
Yokoshi M, Kawasaki K, Cambón M, Fukaya T. Dynamic modulation of enhancer responsiveness by core promoter elements in living Drosophila embryos. Nucleic Acids Res 2021; 50:92-107. [PMID: 34897508 PMCID: PMC8754644 DOI: 10.1093/nar/gkab1177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022] Open
Abstract
Regulatory interactions between enhancers and core promoters are fundamental for the temporal and spatial specificity of gene expression in development. The central role of core promoters is to initiate productive transcription in response to enhancer's activation cues. However, it has not been systematically assessed how individual core promoter elements affect the induction of transcriptional bursting by enhancers. Here, we provide evidence that each core promoter element differentially modulates functional parameters of transcriptional bursting in developing Drosophila embryos. Quantitative live imaging analysis revealed that the timing and the continuity of burst induction are common regulatory steps on which core promoter elements impact. We further show that the upstream TATA also affects the burst amplitude. On the other hand, Inr, MTE and DPE mainly contribute to the regulation of the burst frequency. Genome editing analysis of the pair-rule gene fushi tarazu revealed that the endogenous TATA and DPE are both essential for its correct expression and function during the establishment of body segments in early embryos. We suggest that core promoter elements serve as a key regulatory module in converting enhancer activity into transcription dynamics during animal development.
Collapse
Affiliation(s)
- Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kawasaki
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Manuel Cambón
- Applied Mathematics Department, University of Granada, Granada, Spain
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
21
|
Zimmer JT, Rosa-Mercado NA, Canzio D, Steitz JA, Simon MD. STL-seq reveals pause-release and termination kinetics for promoter-proximal paused RNA polymerase II transcripts. Mol Cell 2021; 81:4398-4412.e7. [PMID: 34520723 PMCID: PMC9020433 DOI: 10.1016/j.molcel.2021.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/19/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Despite the critical regulatory function of promoter-proximal pausing, the influence of pausing kinetics on transcriptional control remains an active area of investigation. Here, we present Start-TimeLapse-seq (STL-seq), a method that captures the genome-wide kinetics of short, capped RNA turnover and reveals principles of regulation at the pause site. By measuring the rates of release into elongation and premature termination through the inhibition of pause release, we determine that pause-release rates are highly variable, and most promoter-proximal paused RNA polymerase II molecules prematurely terminate (∼80%). The preferred regulatory mechanism upon a hormonal stimulus (20-hydroxyecdysone) is to influence pause-release rather than termination rates. Transcriptional shutdown occurs concurrently with the induction of promoter-proximal termination under hyperosmotic stress, but paused transcripts from TATA box-containing promoters remain stable, demonstrating an important role for cis-acting DNA elements in pausing. STL-seq dissects the kinetics of pause release and termination, providing an opportunity to identify mechanisms of transcriptional regulation.
Collapse
Affiliation(s)
- Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Daniele Canzio
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06536, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
22
|
Sloutskin A, Shir-Shapira H, Freiman RN, Juven-Gershon T. The Core Promoter Is a Regulatory Hub for Developmental Gene Expression. Front Cell Dev Biol 2021; 9:666508. [PMID: 34568311 PMCID: PMC8461331 DOI: 10.3389/fcell.2021.666508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
The development of multicellular organisms and the uniqueness of each cell are achieved by distinct transcriptional programs. Multiple processes that regulate gene expression converge at the core promoter region, an 80 bp region that directs accurate transcription initiation by RNA polymerase II (Pol II). In recent years, it has become apparent that the core promoter region is not a passive DNA component, but rather an active regulatory module of transcriptional programs. Distinct core promoter compositions were demonstrated to result in different transcriptional outputs. In this mini-review, we focus on the role of the core promoter, particularly its downstream region, as the regulatory hub for developmental genes. The downstream core promoter element (DPE) was implicated in the control of evolutionarily conserved developmental gene regulatory networks (GRNs) governing body plan in both the anterior-posterior and dorsal-ventral axes. Notably, the composition of the basal transcription machinery is not universal, but rather promoter-dependent, highlighting the importance of specialized transcription complexes and their core promoter target sequences as key hubs that drive embryonic development, differentiation and morphogenesis across metazoan species. The extent of transcriptional activation by a specific enhancer is dependent on its compatibility with the relevant core promoter. The core promoter content also regulates transcription burst size. Overall, while for many years it was thought that the specificity of gene expression is primarily determined by enhancers, it is now clear that the core promoter region comprises an important regulatory module in the intricate networks of developmental gene expression.
Collapse
Affiliation(s)
- Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Richard N. Freiman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
23
|
Dreos R, Sloutskin A, Malachi N, Ideses D, Bucher P, Juven-Gershon T. Computational identification and experimental characterization of preferred downstream positions in human core promoters. PLoS Comput Biol 2021; 17:e1009256. [PMID: 34383743 PMCID: PMC8384218 DOI: 10.1371/journal.pcbi.1009256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/24/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Metazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters. Transcription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements were identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE -containing human promoters were identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.
Collapse
Affiliation(s)
- René Dreos
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nati Malachi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Philipp Bucher
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
- * E-mail: (PB); (TJG)
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (PB); (TJG)
| |
Collapse
|
24
|
Compe E, Egly JM. The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes. Annu Rev Biochem 2021; 90:193-219. [PMID: 34153211 DOI: 10.1146/annurev-biochem-090220-112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; ,
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; , .,College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
25
|
Jores T, Tonnies J, Wrightsman T, Buckler ES, Cuperus JT, Fields S, Queitsch C. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. NATURE PLANTS 2021; 7:842-855. [PMID: 34083762 PMCID: PMC10246763 DOI: 10.1038/s41477-021-00932-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/27/2021] [Indexed: 05/24/2023]
Abstract
Targeted engineering of plant gene expression holds great promise for ensuring food security and for producing biopharmaceuticals in plants. However, this engineering requires thorough knowledge of cis-regulatory elements to precisely control either endogenous or introduced genes. To generate this knowledge, we used a massively parallel reporter assay to measure the activity of nearly complete sets of promoters from Arabidopsis, maize and sorghum. We demonstrate that core promoter elements-notably the TATA box-as well as promoter GC content and promoter-proximal transcription factor binding sites influence promoter strength. By performing the experiments in two assay systems, leaves of the dicot tobacco and protoplasts of the monocot maize, we detect species-specific differences in the contributions of GC content and transcription factors to promoter strength. Using these observations, we built computational models to predict promoter strength in both assay systems, allowing us to design highly active promoters comparable in activity to the viral 35S minimal promoter. Our results establish a promising experimental approach to optimize native promoter elements and generate synthetic ones with desirable features.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Graduate Program in Biology, University of Washington, Seattle, WA, USA
| | - Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Chen X, Qi Y, Wu Z, Wang X, Li J, Zhao D, Hou H, Li Y, Yu Z, Liu W, Wang M, Ren Y, Li Z, Yang H, Xu Y. Structural insights into preinitiation complex assembly on core promoters. Science 2021; 372:science.aba8490. [PMID: 33795473 DOI: 10.1126/science.aba8490] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Transcription factor IID (TFIID) recognizes core promoters and supports preinitiation complex (PIC) assembly for RNA polymerase II (Pol II)-mediated eukaryotic transcription. We determined the structures of human TFIID-based PIC in three stepwise assembly states and revealed two-track PIC assembly: stepwise promoter deposition to Pol II and extensive modular reorganization on track I (on TATA-TFIID-binding element promoters) versus direct promoter deposition on track II (on TATA-only and TATA-less promoters). The two tracks converge at an ~50-subunit holo PIC in identical conformation, whereby TFIID stabilizes PIC organization and supports loading of cyclin-dependent kinase (CDK)-activating kinase (CAK) onto Pol II and CAK-mediated phosphorylation of the Pol II carboxyl-terminal domain. Unexpectedly, TBP of TFIID similarly bends TATA box and TATA-less promoters in PIC. Our study provides structural visualization of stepwise PIC assembly on highly diversified promoters.
Collapse
Affiliation(s)
- Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yilun Qi
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zihan Wu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xinxin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jiabei Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dan Zhao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haifeng Hou
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weida Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Mo Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Huirong Yang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai 200032, China. .,The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China.,Human Phenome Institute, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
27
|
Ramalingam V, Natarajan M, Johnston J, Zeitlinger J. TATA and paused promoters active in differentiated tissues have distinct expression characteristics. Mol Syst Biol 2021; 17:e9866. [PMID: 33543829 PMCID: PMC7863008 DOI: 10.15252/msb.20209866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Core promoter types differ in the extent to which RNA polymerase II (Pol II) pauses after initiation, but how this affects their tissue-specific gene expression characteristics is not well understood. While promoters with Pol II pausing elements are active throughout development, TATA promoters are highly active in differentiated tissues. We therefore used a genomics approach on late-stage Drosophila embryos to analyze the properties of promoter types. Using tissue-specific Pol II ChIP-seq, we found that paused promoters have high levels of paused Pol II throughout the embryo, even in tissues where the gene is not expressed, while TATA promoters only show Pol II occupancy when the gene is active. The promoter types are associated with different chromatin accessibility in ATAC-seq data and have different expression characteristics in single-cell RNA-seq data. The two promoter types may therefore be optimized for different properties: paused promoters show more consistent expression when active, while TATA promoters have lower background expression when inactive. We propose that tissue-specific genes have evolved to use two different strategies for their differential expression across tissues.
Collapse
Affiliation(s)
- Vivekanandan Ramalingam
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | - Malini Natarajan
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Present address:
Department of Molecular Biology, Cell Biology and BiochemistryBrown UniversityProvidenceRIUSA
| | - Jeff Johnston
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Present address:
Center for Pediatric Genomic MedicineChildren's MercyKansas CityMOUSA
| | - Julia Zeitlinger
- Stowers Institute for Medical ResearchKansas CityMOUSA
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityKSUSA
| |
Collapse
|
28
|
Markus BM, Waldman BS, Lorenzi HA, Lourido S. High-Resolution Mapping of Transcription Initiation in the Asexual Stages of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 10:617998. [PMID: 33553008 PMCID: PMC7854901 DOI: 10.3389/fcimb.2020.617998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is a common parasite of humans and animals, causing life-threatening disease in the immunocompromized, fetal abnormalities when contracted during gestation, and recurrent ocular lesions in some patients. Central to the prevalence and pathogenicity of this protozoan is its ability to adapt to a broad range of environments, and to differentiate between acute and chronic stages. These processes are underpinned by a major rewiring of gene expression, yet the mechanisms that regulate transcription in this parasite are only partially characterized. Deciphering these mechanisms requires a precise and comprehensive map of transcription start sites (TSSs); however, Toxoplasma TSSs have remained incompletely defined. To address this challenge, we used 5'-end RNA sequencing to genomically assess transcription initiation in both acute and chronic stages of Toxoplasma. Here, we report an in-depth analysis of transcription initiation at promoters, and provide empirically-defined TSSs for 7603 (91%) protein-coding genes, of which only 1840 concur with existing gene models. Comparing data from acute and chronic stages, we identified instances of stage-specific alternative TSSs that putatively generate mRNA isoforms with distinct 5' termini. Analysis of the nucleotide content and nucleosome occupancy around TSSs allowed us to examine the determinants of TSS choice, and outline features of Toxoplasma promoter architecture. We also found pervasive divergent transcription at Toxoplasma promoters, clustered within the nucleosomes of highly-symmetrical phased arrays, underscoring chromatin contributions to transcription initiation. Corroborating previous observations, we asserted that Toxoplasma 5' leaders are among the longest of any eukaryote studied thus far, displaying a median length of approximately 800 nucleotides. Further highlighting the utility of a precise TSS map, we pinpointed motifs associated with transcription initiation, including the binding sites of the master regulator of chronic-stage differentiation, BFD1, and a novel motif with a similar positional arrangement present at 44% of Toxoplasma promoters. This work provides a critical resource for functional genomics in Toxoplasma, and lays down a foundation to study the interactions between genomic sequences and the regulatory factors that control transcription in this parasite.
Collapse
Affiliation(s)
- Benedikt M. Markus
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Benjamin S. Waldman
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
29
|
Skopenkova VV, Egorova TV, Bardina MV. Muscle-Specific Promoters for Gene Therapy. Acta Naturae 2021; 13:47-58. [PMID: 33959386 PMCID: PMC8084301 DOI: 10.32607/actanaturae.11063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Many genetic diseases that are responsible for muscular disorders have been described to date. Gene replacement therapy is a state-of-the-art strategy used to treat such diseases. In this approach, the functional copy of a gene is delivered to the affected tissues using viral vectors. There is an urgent need for the design of short, regulatory sequences that would drive a high and robust expression of a therapeutic transgene in skeletal muscles, the diaphragm, and the heart, while exhibiting limited activity in non-target tissues. This review focuses on the development and improvement of muscle-specific promoters based on skeletal muscle α-actin, muscle creatine kinase, and desmin genes, as well as other genes expressed in muscles. The current approaches used to engineer synthetic muscle-specific promoters are described. Other elements of the viral vectors that contribute to tissue-specific expression are also discussed. A special feature of this review is the presence of up-to-date information on the clinical and preclinical trials of gene therapy drug candidates that utilize muscle-specific promoters.
Collapse
Affiliation(s)
- V. V. Skopenkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - T. V. Egorova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
| | - M. V. Bardina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Marlin Biotech LLC, Moscow, 121205 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
30
|
Identification of the human DPR core promoter element using machine learning. Nature 2020; 585:459-463. [PMID: 32908305 PMCID: PMC7501168 DOI: 10.1038/s41586-020-2689-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/16/2020] [Indexed: 01/31/2023]
Abstract
The RNA polymerase II (Pol II) core promoter is the strategic site of convergence of the signals that lead to transcription initiation1-5, but the downstream core promoter in humans has been difficult to decipher1-3. Here, we analyze the human Pol II core promoter and use machine learning to generate predictive models for the downstream core promoter region (DPR) and the TATA box. We developed a method termed HARPE (high-throughput analysis of randomized promoter elements) to create hundreds of thousands of DPR (or TATA box) variants that are each of known transcriptional strength. We then analyzed the HARPE data by support vector regression (SVR) to provide comprehensive models for the sequence motifs, and found that the SVR-based approach is more effective than a consensus-based method for predicting transcriptional activity. These studies revealed that the DPR is a functionally important core promoter element that is widely used in human promoters. Importantly, there appears to be a duality between the DPR and TATA box, as many promoters contain one or the other element. More broadly, these findings show that functional DNA motifs can be identified by machine learning analysis of a comprehensive set of sequence variants.
Collapse
|
31
|
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol 2020; 104:5673-5688. [PMID: 32372203 DOI: 10.1007/s00253-020-10640-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiao Guo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Perildicals Publishing House, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
32
|
Core Element Cloning, Cis -Element Mapping and Serum Regulation of the Human EphB4 Promoter: A Novel TATA-Less Inr/MTE/DPE -Like Regulated Gene. Genes (Basel) 2019; 10:genes10120997. [PMID: 31810288 PMCID: PMC6947382 DOI: 10.3390/genes10120997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
The EphB4 gene encodes for a transmembrane tyrosine kinase receptor involved in embryonic blood vessel differentiation and cancer development. Although EphB4 is known to be regulated at the post-translational level, little is known about its gene regulation. The present study describes the core promoter elements’ identification and cloning, the cis-regulatory elements’ mapping and the serum regulation of the human EphB4 gene promoter region. Using bioinformatic analysis, Sanger sequencing and recombinant DNA technology, we analyzed the EphB4 gene upstream region spanning +40/−1509 from the actual transcription start site (TSS) and proved it to be a TATA-less gene promoter with dispersed regulatory elements characterized by a novel motif-of-ten element (MTE) at positions +18/+28, and a DPE-like motif and a DPE-like-repeated motif (DRM) spanning nt +27/+30 and +32 +35, respectively. We also mapped both proximal (multiple Sp1) and distal (HoxA9) trans-activating/dispersed cis-acting transcription factor (TF)-binding elements on the region we studied and used a transient transfection reporter assay to characterize its regulation by serum and IGF-II using EphB4 promoter deletion constructs with or without the identified new DNA-binding elements. Altogether, these findings shed new light on the human EphB4 promoter structure and regulation, suggesting mechanistic features conserved among Pol-II TATA-less genes phylogenetically shared from Drosophila to Human genomes.
Collapse
|
33
|
Tombácz D, Moldován N, Balázs Z, Gulyás G, Csabai Z, Boldogkői M, Snyder M, Boldogkői Z. Multiple Long-Read Sequencing Survey of Herpes Simplex Virus Dynamic Transcriptome. Front Genet 2019; 10:834. [PMID: 31608102 PMCID: PMC6769088 DOI: 10.3389/fgene.2019.00834] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Long-read sequencing (LRS) has become increasingly important in RNA research due to its strength in resolving complex transcriptomic architectures. In this regard, currently two LRS platforms have demonstrated adequate performance: the Single Molecule Real-Time Sequencing by Pacific Biosciences (PacBio) and the nanopore sequencing by Oxford Nanopore Technologies (ONT). Even though these techniques produce lower coverage and are more error prone than short-read sequencing, they continue to be more successful in identifying polycistronic RNAs, transcript isoforms including splice and transcript end variants, as well as transcript overlaps. Recent reports have successfully applied LRS for the investigation of the transcriptome of viruses belonging to various families. These studies have substantially increased the number of previously known viral RNA molecules. In this work, we used the Sequel and MinION technique from PacBio and ONT, respectively, to characterize the lytic transcriptome of the herpes simplex virus type 1 (HSV-1). In most samples, we analyzed the poly(A) fraction of the transcriptome, but we also performed random oligonucleotide-based sequencing. Besides cDNA sequencing, we also carried out native RNA sequencing. Our investigations identified more than 2,300 previously undetected transcripts, including coding, and non-coding RNAs, multi-splice transcripts, as well as polycistronic and complex transcripts. Furthermore, we found previously unsubstantiated transcriptional start sites, polyadenylation sites, and splice sites. A large number of novel transcriptional overlaps were also detected. Random-primed sequencing revealed that each convergent gene pair produces non-polyadenylated read-through RNAs overlapping the partner genes. Furthermore, we identified novel replication-associated transcripts overlapping the HSV-1 replication origins, and novel LAT variants with very long 5' regions, which are co-terminal with the LAT-0.7kb transcript. Overall, our results demonstrated that the HSV-1 transcripts form an extremely complex pattern of overlaps, and that entire viral genome is transcriptionally active. In most viral genes, if not in all, both DNA strands are expressed.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Miklós Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
The RNA Polymerase II Core Promoter in Drosophila. Genetics 2019; 212:13-24. [PMID: 31053615 DOI: 10.1534/genetics.119.302021] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Transcription by RNA polymerase II initiates at the core promoter, which is sometimes referred to as the "gateway to transcription." Here, we describe the properties of the RNA polymerase II core promoter in Drosophila The core promoter is at a strategic position in the expression of genes, as it is the site of convergence of the signals that lead to transcriptional activation. Importantly, core promoters are diverse in terms of their structure and function. They are composed of various combinations of sequence motifs such as the TATA box, initiator (Inr), and downstream core promoter element (DPE). Different types of core promoters are transcribed via distinct mechanisms. Moreover, some transcriptional enhancers exhibit specificity for particular types of core promoters. These findings indicate that the core promoter is a central component of the transcriptional apparatus that regulates gene expression.
Collapse
|
35
|
Shao W, Alcantara SGM, Zeitlinger J. Reporter-ChIP-nexus reveals strong contribution of the Drosophila initiator sequence to RNA polymerase pausing. eLife 2019; 8:41461. [PMID: 31021316 PMCID: PMC6483594 DOI: 10.7554/elife.41461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
RNA polymerase II (Pol II) pausing is a general regulatory step in transcription, yet the stability of paused Pol II varies widely between genes. Although paused Pol II stability correlates with core promoter elements, the contribution of individual sequences remains unclear, in part because no rapid assay is available for measuring the changes in Pol II pausing as a result of altered promoter sequences. Here, we overcome this hurdle by showing that ChIP-nexus captures the endogenous Pol II pausing on transfected plasmids. Using this reporter-ChIP-nexus assay in Drosophila cells, we show that the pausing stability is influenced by downstream promoter sequences, but that the strongest contribution to Pol II pausing comes from the initiator sequence, in which a single nucleotide, a G at the +2 position, is critical for stable Pol II pausing. These results establish reporter-ChIP-nexus as a valuable tool to analyze Pol II pausing.
Collapse
Affiliation(s)
- Wanqing Shao
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, United States
| |
Collapse
|
36
|
Shir-Shapira H, Sloutskin A, Adato O, Ovadia-Shochat A, Ideses D, Zehavi Y, Kassavetis G, Kadonaga JT, Unger R, Juven-Gershon T. Identification of evolutionarily conserved downstream core promoter elements required for the transcriptional regulation of Fushi tarazu target genes. PLoS One 2019; 14:e0215695. [PMID: 30998799 PMCID: PMC6472829 DOI: 10.1371/journal.pone.0215695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022] Open
Abstract
The regulation of transcription initiation is critical for developmental and cellular processes. RNA polymerase II (Pol II) is recruited by the basal transcription machinery to the core promoter where Pol II initiates transcription. The core promoter encompasses the region from -40 to +40 bp relative to the +1 transcription start site (TSS). Core promoters may contain one or more core promoter motifs that confer specific properties to the core promoter, such as the TATA box, initiator (Inr) and motifs that are located downstream of the TSS, namely, motif 10 element (MTE), the downstream core promoter element (DPE) and the Bridge, a bipartite core promoter element. We had previously shown that Caudal, an enhancer-binding homeodomain transcription factor and a key regulator of the Hox gene network, is a DPE-specific activator. Interestingly, pair-rule proteins have been implicated in enhancer-promoter communication at the engrailed locus. Fushi tarazu (Ftz) is an enhancer-binding homeodomain transcription factor encoded by the ftz pair-rule gene. Ftz works in concert with its co-factor, Ftz-F1, to activate transcription. Here, we examined whether Ftz and Ftz-F1 activate transcription with a preference for a specific core promoter motif. Our analysis revealed that similarly to Caudal, Ftz and Ftz-F1 activate the promoter containing a TATA box mutation to significantly higher levels than the promoter containing a DPE mutation, thus demonstrating a preference for the DPE motif. We further discovered that Ftz target genes are enriched for a combination of functional downstream core promoter elements that are conserved among Drosophila species. Thus, the unique combination (Inr, Bridge and DPE) of functional downstream core promoter elements within Ftz target genes highlights the complexity of transcriptional regulation via the core promoter in the transcription of different developmental gene regulatory networks.
Collapse
Affiliation(s)
- Hila Shir-Shapira
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Orit Adato
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Avital Ovadia-Shochat
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yonathan Zehavi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - George Kassavetis
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - James T. Kadonaga
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
37
|
Johari YB, Brown AJ, Alves CS, Zhou Y, Wright CM, Estes SD, Kshirsagar R, James DC. CHO genome mining for synthetic promoter design. J Biotechnol 2019; 294:1-13. [PMID: 30703471 DOI: 10.1016/j.jbiotec.2019.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023]
Abstract
Synthetic promoters are an attractive alternative for use in mammalian hosts such as CHO cells as they can be designed de novo with user-defined functionalities. In this study, we describe and validate a method for bioprocess-directed design of synthetic promoters utilizing CHO genomic sequence information. We designed promoters with two objective features, (i) constitutive high-level recombinant gene transcription, and (ii) upregulated transcription under mild hypothermia or late-stage culture. CHO genes varying in transcriptional activity were selected based on a comparative analysis of RNA-Seq transcript levels in normal and biphasic cultures in combination with estimates of mRNA half-life from published genome scale datasets. Discrete transcription factor regulatory elements (TFREs) upstream of these genes were informatically identified and functionally screened in vitro to identify a subset of TFREs with the potential to support high activity recombinant gene transcription during biphasic cell culture processes. Two libraries of heterotypic synthetic promoters with varying TFRE combinations were then designed in silico that exhibited a maximal 2.5-fold increase in transcriptional strength over the CMV-IE promoter after transient transfection into host CHO-K1 cells. A subset of synthetic promoters was then used to create stable transfectant pools using CHO-K1 cells under glutamine synthetase selection. Whilst not achieving the maximal 2.5-fold increase in productivity over stable pools harboring the CMV promoter, all stably transfected cells utilizing synthetic promoters exhibited increased reporter production - up to 1.6-fold that of cells employing CMV, both in the presence or absence of intron A immediately downstream of the promoter. The increased productivity of stably transfected cells harboring synthetic promoters was maintained during fed-batch culture, with or without a transition to mild hypothermia at the onset of stationary phase. Our data exemplify that it is important to consider both host cell and intended bioprocess contexts as design criteria in the de novo construction of synthetic genetic parts for mammalian cell engineering.
Collapse
Affiliation(s)
- Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | - Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK
| | | | - Yizhou Zhou
- Cell Culture Development, Biogen Inc., Cambridge, MA 02142, USA
| | | | - Scott D Estes
- Cell Culture Development, Biogen Inc., Cambridge, MA 02142, USA
| | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield S1 3JD, UK.
| |
Collapse
|
38
|
Weingarten-Gabbay S, Nir R, Lubliner S, Sharon E, Kalma Y, Weinberger A, Segal E. Systematic interrogation of human promoters. Genome Res 2019; 29:171-183. [PMID: 30622120 PMCID: PMC6360817 DOI: 10.1101/gr.236075.118] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Despite much research, our understanding of the architecture and cis-regulatory elements of human promoters is still lacking. Here, we devised a high-throughput assay to quantify the activity of approximately 15,000 fully designed sequences that we integrated and expressed from a fixed location within the human genome. We used this method to investigate thousands of native promoters and preinitiation complex (PIC) binding regions followed by in-depth characterization of the sequence motifs underlying promoter activity, including core promoter elements and TF binding sites. We find that core promoters drive transcription mostly unidirectionally and that sequences originating from promoters exhibit stronger activity than those originating from enhancers. By testing multiple synthetic configurations of core promoter elements, we dissect the motifs that positively and negatively regulate transcription as well as the effect of their combinations and distances, including a 10-bp periodicity in the optimal distance between the TATA and the initiator. By comprehensively screening 133 TF binding sites, we find that in contrast to core promoters, TF binding sites maintain similar activity levels in both orientations, supporting a model by which divergent transcription is driven by two distinct unidirectional core promoters sharing bidirectional TF binding sites. Finally, we find a striking agreement between the effect of binding site multiplicity of individual TFs in our assay and their tendency to appear in homotypic clusters throughout the genome. Overall, our study systematically assays the elements that drive expression in core and proximal promoter regions and sheds light on organization principles of regulatory regions in the human genome.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronit Nir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shai Lubliner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eilon Sharon
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Kalma
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
39
|
Fanis P, Skordis N, Toumba M, Papaioannou N, Makris A, Kyriakou A, Neocleous V, Phylactou LA. Central Precocious Puberty Caused by Novel Mutations in the Promoter and 5'-UTR Region of the Imprinted MKRN3 Gene. Front Endocrinol (Lausanne) 2019; 10:677. [PMID: 31636607 PMCID: PMC6787840 DOI: 10.3389/fendo.2019.00677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Central Precocious Puberty (CPP) is clinically defined by the development of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. To date, mutations in the coding region of KISS1, KISS1R, PROKR2, DLK1, and MKRN3 genes have been reported as causative for CPP. This study investigated the presence of causative mutations in both the promoter and the 5'-UTR regions of the MKRN3 gene. Methods: Sanger DNA sequencing was used for screening the proximal promoter and 5'-UTR region of the MKRN3 gene in a group of 73 index girls with CPP. Mutations identified were cloned in luciferase reporter gene vectors and transiently transfected in GN11 cells in order to check for changes in the activity of the MKRN3 promoter. GN11 cells were previously checked for Mkrn3 expression using lentivirus mediated knock-down. In silico analysis was implemented for the detection of changes in the mRNA secondary structure of the mutated MKRN3 5'-UTR. Results: Three novel heterozygous mutations (-166, -865, -886 nt upstream to the transcription start site) located in the proximal promoter region of the MKRN3 gene were identified in six non-related girls with CPP. Four of these girls shared the -865 mutation, one the -166, and another one the -886. A 5'-UTR (+13 nt downstream to the transcription start site) novel mutation was also identified in a girl with similar clinical phenotype. Gene reporter assay evaluated the identified promoter mutations and demonstrated a significant reduction of MKRN3 promoter activity in transfected GN11 cells. In silico analysis for the mutated 5'-UTR predicted a significant change of the mRNA secondary structure. The minimum free energy (MFE) of the mutated 5'-UTR was higher when compared to the corresponding wild-type indicating less stable RNA secondary structure. Conclusion: Our findings demonstrated novel genetic alterations in the promoter and 5'-UTR regulatory regions of the MKRN3 gene. These changes add to another region to check for the etiology of CPP.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Pediatrics, Iasis Hospital, Paphos, Cyprus
| | - Nikoletta Papaioannou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Anestis Makris
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Kyriakou
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou
| |
Collapse
|
40
|
Greber BJ, Nogales E. The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications. Subcell Biochem 2019; 93:143-192. [PMID: 31939151 DOI: 10.1007/978-3-030-28151-9_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
41
|
Patel AB, Louder RK, Greber BJ, Grünberg S, Luo J, Fang J, Liu Y, Ranish J, Hahn S, Nogales E. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 2018; 362:eaau8872. [PMID: 30442764 PMCID: PMC6446905 DOI: 10.1126/science.aau8872] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022]
Abstract
The general transcription factor IID (TFIID) is a critical component of the eukaryotic transcription preinitiation complex (PIC) and is responsible for recognizing the core promoter DNA and initiating PIC assembly. We used cryo-electron microscopy, chemical cross-linking mass spectrometry, and biochemical reconstitution to determine the complete molecular architecture of TFIID and define the conformational landscape of TFIID in the process of TATA box-binding protein (TBP) loading onto promoter DNA. Our structural analysis revealed five structural states of TFIID in the presence of TFIIA and promoter DNA, showing that the initial binding of TFIID to the downstream promoter positions the upstream DNA and facilitates scanning of TBP for a TATA box and the subsequent engagement of the promoter. Our findings provide a mechanistic model for the specific loading of TBP by TFIID onto the promoter.
Collapse
Affiliation(s)
- Avinash B Patel
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert K Louder
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Basil J Greber
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- California Institute for Quantitative Biology (QB3), University of California, Berkeley, CA 94720, USA
| | - Sebastian Grünberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yutong Liu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Steve Hahn
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eva Nogales
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA.
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
42
|
A methyl-sensitive element induces bidirectional transcription in TATA-less CpG island-associated promoters. PLoS One 2018; 13:e0205608. [PMID: 30332484 PMCID: PMC6192621 DOI: 10.1371/journal.pone.0205608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
How TATA-less promoters such as those within CpG islands (CGI) control gene expression is still a subject of active research. Here, we have identified the "CGCG element", a ten-base pair motif with a consensus sequence of TCTCGCGAGA present in a group of promoter-associated CGI-enriched in ribosomal protein and housekeeping genes. This element is evolutionarily conserved in vertebrates, found in DNase-accessible regions and employs RNA Pol II to activate gene expression. Through analysis of capped-nascent transcripts and supporting evidence from reporter assays, we demonstrate that this element activates bidirectional transcription through divergent start sites. Methylation of this element abrogates the associated promoter activity. When coincident with a TATA-box, directional transcription remains CGCG-dependent. Because the CGCG element is sufficient to drive transcription, we propose that its unmethylated form functions as a heretofore undescribed promoter element of a group of TATA-less CGI-associated promoters.
Collapse
|
43
|
Fitz E, Wanka F, Seiboth B. The Promoter Toolbox for Recombinant Gene Expression in Trichoderma reesei. Front Bioeng Biotechnol 2018; 6:135. [PMID: 30364340 PMCID: PMC6193071 DOI: 10.3389/fbioe.2018.00135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023] Open
Abstract
The ascomycete Trichoderma reesei is one of the main fungal producers of cellulases and xylanases based on its high production capacity. Its enzymes are applied in food, feed, and textile industry or in lignocellulose hydrolysis in biofuel and biorefinery industry. Over the last years, the demand to expand the molecular toolbox for T. reesei to facilitate genetic engineering and improve the production of heterologous proteins grew. An important instrument to modify the expression of key genes are promoters to initiate and control their transcription. To date, the most commonly used promoter for T. reesei is the strong inducible promoter of the main cellobiohydrolase cel7a. Beside this one, there is a number of alternative inducible promoters derived from other cellulase- and xylanase encoding genes and a few constitutive promoters. With the advances in genomics and transcriptomics the identification of new constitutive and tunable promoters with different expression strength was simplified. In this review, we will discuss new developments in the field of promoters and compare their advantages and disadvantages. Synthetic expression systems constitute a new option to control gene expression and build up complex gene circuits. Therefore, we will address common structural features of promoters and describe options for promoter engineering and synthetic design of promoters. The availability of well-characterized gene expression control tools is essential for the analysis of gene function, detection of bottlenecks in gene networks and yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Elisabeth Fitz
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Franziska Wanka
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
44
|
Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 2018; 19:621-637. [PMID: 29946135 PMCID: PMC6205604 DOI: 10.1038/s41580-018-0028-8] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA polymerase II (Pol II) core promoters are specialized DNA sequences at transcription start sites of protein-coding and non-coding genes that support the assembly of the transcription machinery and transcription initiation. They enable the highly regulated transcription of genes by selectively integrating regulatory cues from distal enhancers and their associated regulatory proteins. In this Review, we discuss the defining properties of gene core promoters, including their sequence features, chromatin architecture and transcription initiation patterns. We provide an overview of molecular mechanisms underlying the function and regulation of core promoters and their emerging functional diversity, which defines distinct transcription programmes. On the basis of the established properties of gene core promoters, we discuss transcription start sites within enhancers and integrate recent results obtained from dedicated functional assays to propose a functional model of transcription initiation. This model can explain the nature and function of transcription initiation at gene starts and at enhancers and can explain the different roles of core promoters, of Pol II and its associated factors and of the activating cues provided by enhancers and the transcription factors and cofactors they recruit.
Collapse
Affiliation(s)
- Vanja Haberle
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
45
|
Abstract
This review by Vo ngoc et al. expands the view of the RNA polymerase II core promoter, which is comprised of classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. The signals that direct the initiation of transcription ultimately converge at the core promoter, which is the gateway to transcription. Here we provide an overview of the RNA polymerase II core promoter in bilateria (bilaterally symmetric animals). The core promoter is diverse in terms of its composition and function yet is also punctilious, as it acts with strict rules and precision. We additionally describe an expanded view of the core promoter that comprises the classical DNA sequence motifs, sequence-specific DNA-binding transcription factors, chromatin signals, and DNA structure. This model may eventually lead to a more unified conceptual understanding of the core promoter.
Collapse
Affiliation(s)
- Long Vo Ngoc
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Yuan-Liang Wang
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
46
|
Krebs AR, Imanci D, Hoerner L, Gaidatzis D, Burger L, Schübeler D. Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters. Mol Cell 2017; 67:411-422.e4. [PMID: 28735898 PMCID: PMC5548954 DOI: 10.1016/j.molcel.2017.06.027] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/22/2017] [Accepted: 06/22/2017] [Indexed: 11/19/2022]
Abstract
Transcription initiation entails chromatin opening followed by pre-initiation complex formation and RNA polymerase II recruitment. Subsequent polymerase elongation requires additional signals, resulting in increased residence time downstream of the start site, a phenomenon referred to as pausing. Here, we harnessed single-molecule footprinting to quantify distinct steps of initiation in vivo throughout the Drosophila genome. This identifies the impact of promoter structure on initiation dynamics in relation to nucleosomal occupancy. Additionally, perturbation of transcriptional initiation reveals an unexpectedly high turnover of polymerases at paused promoters-an observation confirmed at the level of nascent RNAs. These observations argue that absence of elongation is largely caused by premature termination rather than by stable polymerase stalling. In support of this non-processive model, we observe that induction of the paused heat shock promoter depends on continuous initiation. Our study provides a framework to quantify protein binding at single-molecule resolution and refines concepts of transcriptional pausing.
Collapse
Affiliation(s)
- Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | - Dilek Imanci
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Sciences, Petersplatz 1, 4001 Basel, Switzerland.
| |
Collapse
|
47
|
Genome-wide assessment of sequence-intrinsic enhancer responsiveness at single-base-pair resolution. Nat Biotechnol 2016; 35:136-144. [PMID: 28024147 DOI: 10.1038/nbt.3739] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/08/2016] [Indexed: 01/13/2023]
Abstract
Gene expression is controlled by enhancers that activate transcription from the core promoters of their target genes. Although a key function of core promoters is to convert enhancer activities into gene transcription, whether and how strongly they activate transcription in response to enhancers has not been systematically assessed on a genome-wide level. Here we describe self-transcribing active core promoter sequencing (STAP-seq), a method to determine the responsiveness of genomic sequences to enhancers, and apply it to the Drosophila melanogaster genome. We cloned candidate fragments at the position of the core promoter (also called minimal promoter) in reporter plasmids with or without a strong enhancer, transfected the resulting library into cells, and quantified the transcripts that initiated from each candidate for each setup by deep sequencing. In the presence of a single strong enhancer, the enhancer responsiveness of different sequences differs by several orders of magnitude, and different levels of responsiveness are associated with genes of different functions. We also identify sequence features that predict enhancer responsiveness and discuss how different core promoters are employed for the regulation of gene expression.
Collapse
|
48
|
In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 2016; 541:112-116. [PMID: 27992877 PMCID: PMC5701785 DOI: 10.1038/nature20589] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022]
Abstract
Genome packaging into a protein capsid and its subsequent delivery into a host cell are two fundamental processes in the life cycle of a virus. Unlike dsDNA viruses which pump their genome into a preformed capsid1-3, ssRNA viruses, such as bacteriophage MS2, co-assemble their capsid with genome4-7; however, the structural basis of this co-assembly is poorly understood. MS2 infects Escherichia coli via host “sex” pilus (F-pilus)8 and is the first fully-sequenced organism9 and a model system for studies of gene translational regulations10,11, RNA-protein interactions12-14, and RNA virus assembly15-17. Its positive-sense ssRNA genome of 3569 bases is enclosed in a capsid with one maturation protein (MP) monomer and 89 coat protein (CP) dimers arranged in a T=3 icosahedral lattice18,19. MP is responsible for attaching the virus to an F-pilus and delivering the viral genome into the host during infection8, but how the genome is organized and delivered are not known. Here we show the MS2 structure at 3.6Å resolution determined by electron-counting cryo electron microscopy (cryoEM) and asymmetric reconstruction. We traced ~80% backbone of the viral genome, built atomic models for 16 RNA stem-loops, and identified three conserved motifs of RNA-CP interactions among 15 of these stem-loops with diverse sequences. The stem-loop at 3’ end of the genome interacts extensively with the MP, which, with just a six-helix bundle and a six-stranded β-sheet, forms a genome-delivery apparatus, and joins 89 CP-dimers to form a capsid. This first atomic description of genome-capsid interactions in a spherical ssRNA virus provides insights into genome delivery via host “sex” pilus and mechanisms underlying ssRNA-capsid co-assembly, and inspires imaginations about links between nucleoprotein complexes and the origin of viruses.
Collapse
|
49
|
Feigerle JT, Weil PA. The C Terminus of the RNA Polymerase II Transcription Factor IID (TFIID) Subunit Taf2 Mediates Stable Association of Subunit Taf14 into the Yeast TFIID Complex. J Biol Chem 2016; 291:22721-22740. [PMID: 27587401 DOI: 10.1074/jbc.m116.751107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
The evolutionarily conserved RNA polymerase II transcription factor D (TFIID) complex is composed of TATA box-binding protein (TBP) and 13 TBP-associated factors (Tafs). The mechanisms by which many Taf subunits contribute to the essential function of TFIID are only poorly understood. To address this gap in knowledge, we present the results of a molecular genetic dissection of the TFIID subunit Taf2. Through systematic site-directed mutagenesis, we have discovered 12 taf2 temperature-sensitive (ts) alleles. Two of these alleles display growth defects that can be strongly suppressed by overexpression of the yeast-specific TFIID subunit TAF14 but not by overexpression of any other TFIID subunit. In Saccharomyces cerevisiae, Taf14 is also a constituent of six other transcription-related complexes, making interpretation of its role in each of these complexes difficult. Although Taf14 is not conserved as a TFIID subunit in metazoans, it is conserved through its chromatin-binding YEATS domain. Based on the Taf2-Taf14 genetic interaction, we demonstrate that Taf2 and Taf14 directly interact and mapped the Taf2-Taf14 interaction domains. We used this information to identify a Taf2 separation-of-function variant (Taf2-ΔC). Although Taf2-ΔC no longer interacts with Taf14 in vivo or in vitro, it stably incorporates into the TFIID complex. In addition, purified Taf2-ΔC mutant TFIID is devoid of Taf14, making this variant a powerful reagent for determining the role of Taf14 in TFIID function. Furthermore, we characterized the mechanism through which Taf14 suppresses taf2ts alleles, shedding light on how Taf2-Taf14 interaction contributes to TFIID complex organization and identifying a potential role for Taf14 in mediating TFIID-chromatin interactions.
Collapse
Affiliation(s)
- Jordan T Feigerle
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | - P Anthony Weil
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| |
Collapse
|
50
|
Characterization of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome. Sci Rep 2016; 6:31125. [PMID: 27545598 PMCID: PMC4992882 DOI: 10.1038/srep31125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022] Open
Abstract
Bovine leukemia virus latency is a viral strategy used to escape from the host immune system and contribute to tumor development. However, a highly expressed BLV micro-RNA cluster has been reported, suggesting that the BLV silencing is not complete. Here, we demonstrate the in vivo recruitment of RNA polymerase III to the BLV miRNA cluster both in BLV-latently infected cell lines and in ovine BLV-infected primary cells, through a canonical type 2 RNAPIII promoter. Moreover, by RPC6-knockdown, we showed a direct functional link between RNAPIII transcription and BLV miRNAs expression. Furthermore, both the tumor- and the quiescent-related isoforms of RPC7 subunits were recruited to the miRNA cluster. We showed that the BLV miRNA cluster was enriched in positive epigenetic marks. Interestingly, we demonstrated the in vivo recruitment of RNAPII at the 3′LTR/host genomic junction, associated with positive epigenetic marks. Functionally, we showed that the BLV LTR exhibited a strong antisense promoter activity and identified cis-acting elements of an RNAPII-dependent promoter. Finally, we provided evidence for an in vivo collision between RNAPIII and RNAPII convergent transcriptions. Our results provide new insights into alternative ways used by BLV to counteract silencing of the viral 5′LTR promoter.
Collapse
|