1
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. Life Sci Alliance 2025; 8:e202403147. [PMID: 40199585 PMCID: PMC11979363 DOI: 10.26508/lsa.202403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the Caenorhabditis elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promotes starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Pohl F, Egan BM, Schneider DL, Mosley MC, Garcia MA, Hou S, Chiu CH, Kornfeld K. Environmental NaCl affects C. elegans development and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.641258. [PMID: 40161617 PMCID: PMC11952357 DOI: 10.1101/2025.03.09.641258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sodium is an essential nutrient, but is toxic in excess. In humans, excessive dietary sodium can cause high blood pressure, which contributes to age-related diseases including stroke and heart disease. We used C. elegans to elucidate how sodium levels influence animal aging. Most experiments on this animal are conducted in standard culture conditions: Nematode Growth Medium (NGM) agar with a lawn of E. coli. Here, we report that the supplemental NaCl in standard NGM, 50 mM, accelerates aging and decreases lifespan. For comparison, we prepared NGM with reduced NaCl or excess NaCl. Considering reduced NaCl as a baseline, wild-type worms on standard NGM displayed normal development and fertility but reduced lifespan and health span, indicating toxicity in old animals. The long-lived mutants daf-2, age-1, and nuo-6, cultured on standard NGM, also displayed reduced lifespan. Thus, NaCl in standard NGM accelerates aging in multiple genetic backgrounds. Wild-type worms on excess NaCl displayed delayed development and reduced fertility, and reduced lifespan and health span, indicating toxicity in both young and old animals. These results suggest that young animals are relatively resistant to NaCl toxicity, but that aging causes progressive sensitivity, such that old animals display toxicity to both standard and excess NaCl. We investigated pathways that respond to NaCl. Young animals cultured with excess NaCl activated gpdh-1, a specific response to NaCl stress. Old animals cultured with excess NaCl activated gpdh-1 and hsp-6, a reporter for the mitochondrial unfolded protein response. Thus, excess NaCl activates multiple stress response pathways in older animals.
Collapse
Affiliation(s)
- Franziska Pohl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- current affiliation: Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Brian M. Egan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- current affiliation: School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew C. Mosley
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Micklaus A. Garcia
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sydney Hou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen-Hao Chiu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Gowripriya T, Yashwanth R, James PB, Suresh R, Balamurugan K. Dopaminergic neuronal regulation determines innate immunity of Caenorhabditis elegans during Klebsiella aerogenes infection. Microbes Infect 2025; 27:105430. [PMID: 39369984 DOI: 10.1016/j.micinf.2024.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The innate immune signals are the front line of host defense against bacterial pathogens. Pathogen-induced harmful effects, such as reduced neuronal signals to the intestine, affect the host's food sensing and dwelling behavior. Here, we report that dopamine and kpc-1 signals control the intestinal innate immune responses through the p38/PMK-1 MAPK signaling pathway in C. elegans. K. aerogenes infection in C. elegans affects the food-dwelling behavior, which depends on dopamine regulation. The absence of the dopamine receptor (dop-1) and transporter (dat-1) increases attraction to the pathogen instead of avoidance. The K. aerogenes infection affects age-1 regulation through the furin-like proprotein convertase (kpc-1); the absence of kpc-1 affects environment-dependent dauer formation. In contrast, the dop-1 mutation antagonistically regulates intestinal immune regulation, while the kpc-1 mutation partially regulates the p38/PMK-1 MAPK pathway. Our findings indicate that dopamine and kpc-1signaling from the nervous system control intestinal immunity in an antagonistic and agonistic manner, respectively.
Collapse
Affiliation(s)
- Thirumugam Gowripriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India
| | - Radhakrishnan Yashwanth
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | - Prabhanand Bhaskar James
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | - Ramamurthi Suresh
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | | |
Collapse
|
4
|
Afridi MI, Tu H. The Roles of Distinct Transcriptional Factors in the Innate Immunity of C. elegans. Cells 2025; 14:327. [PMID: 40072056 PMCID: PMC11899719 DOI: 10.3390/cells14050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Deleterious molecules or factors produced by pathogens can hinder the normal physiological functioning of organisms. In response to these survival challenges, organisms rely on innate immune signaling as their first line of defense, which regulates immune-responsive genes and antimicrobial peptides to protect against pathogenic infections. These genes are under the control of transcription factors, which are known to regulate the transcriptional activity of genes after binding to their regulatory sequences. Previous studies have employed Caenorhabditis elegans as a host-pathogen interaction model to demonstrate the essential role of different transcription factors in the innate immunity of worms. In this review, we summarize the advances made regarding the functioning of distinct transcription factors in the innate immune response upon pathogen infection. Finally, we discuss the open questions in the field, whose resolutions have the potential to expand our understanding of the mechanisms underlying the innate immunity of organisms.
Collapse
Affiliation(s)
- Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China;
| | - Haijun Tu
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
5
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
6
|
Qu Z, Zhang L, Yin X, Dai F, Huang W, Zhang Y, Ran D, Zheng S. Male sex determination maintains proteostasis and extends lifespan of daf-18/PTEN deficient C. elegans. EMBO Rep 2025; 26:1084-1113. [PMID: 39820856 PMCID: PMC11850635 DOI: 10.1038/s44319-025-00368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Although females typically have a survival advantage, those with PTEN functional abnormalities face a higher risk of developing tumors than males. However, the differences in how each sex responds to PTEN dysfunction have rarely been studied. We use Caenorhabditis elegans to investigate how male and hermaphrodite worms respond to dysfunction of the PTEN homolog daf-18. Our study reveals that male worms can counterbalance the negative effects of daf-18 deficiency, resulting in longer adult lifespan. The survival advantage depends on the loss of DAF-18 protein phosphatase activity, while its lipid phosphatase activity is dispensable. The deficiency in DAF-18 protein phosphatase activity leads to the failure of dephosphorylation of the endoplasmic reticulum membrane protein C18E9.2/SEC62, causing increased levels of unfolded and aggregated proteins in hermaphrodites. In contrast, males maintain proteostasis through a UNC-23/NEF-mediated protein ubiquitination and degradation process, providing them with a survival advantage. We find that sex determination is a key factor in regulating the differential expression of unc-23 between sexes in response to daf-18 loss. These findings highlight the unique role of the male sex determination pathway in regulating protein degradation.
Collapse
Affiliation(s)
- Zhi Qu
- The Zhongzhou Laboratory for Integrative Biology, Henan University, 450000, Zhengzhou, Henan, China
- School of Nursing and Health, Henan University, 475004, Kaifeng, China
| | - Lu Zhang
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Xue Yin
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Fangzhou Dai
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Wei Huang
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Yutong Zhang
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Dongyang Ran
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China
| | - Shanqing Zheng
- The Zhongzhou Laboratory for Integrative Biology, Henan University, 450000, Zhengzhou, Henan, China.
- School of Basic Medical Sciences, Henan University, 475004, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, 475004, Kaifeng, China.
| |
Collapse
|
7
|
Garcia KC, Khan AA, Ghosh K, Sinha S, Scalora N, DeWane G, Fullenkamp C, Merritt N, Drebot Y, Yu S, Leidinger M, Henry MD, Breheny P, Chimenti MS, Tanas MR. PI3K regulates TAZ/YAP and mTORC1 axes that can be synergistically targeted. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634138. [PMID: 39896636 PMCID: PMC11785051 DOI: 10.1101/2025.01.21.634138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Purpose Sarcomas are a heterogeneous group of cancers with few shared therapeutic targets. PI3K signaling is activated in various subsets of sarcomas, representing a shared oncogenic signaling pathway. Oncogenic PI3K signaling has been challenging to target therapeutically. An integrated view of PI3K and Hippo pathway signaling is examined to determine if this could be leveraged therapeutically. Experimental design A tissue microarray containing sarcomas of various histological types was evaluated for PTEN loss and correlated with levels of activated TAZ and YAP. PI3K and Hippo pathways were dissected in sarcoma cell lines. The role of TAZ and YAP were evaluated in a PI3K-driven mouse model. The efficacy of mTORC1 inhibition and TEAD inhibition were evaluated in sarcoma cell lines and in vivo . Results PI3K signaling is frequently activated in sarcomas due to PTEN loss (in 30-60%), representing a common therapeutic target. TAZ and YAP are transcriptional co-activators regulated by PI3K and drive a transcriptome necessary for tumor growth in a PI3K-driven sarcoma mouse model. Combination therapy using IK-930 (TEAD inhibitor) and everolimus (mTORC1 inhibitor) synergistically diminished proliferation and anchorage independent growth of PI3K-activated sarcoma cell lines at low, physiologically achievable doses. Furthermore, this combination therapy showed a synergistic effect in vivo , reducing tumor proliferation and size. Conclusions TAZ and YAP are transcriptional co-activators downstream of PI3K signaling, a pathway that has lacked a well-defined oncogenic transcription factor. This PI3K-TAZ/YAP axis exists in parallel to the known PI3K-Akt-mTORC1 axis allowing for synergistic combination therapy targeting the TAZ/YAP-TEAD interaction and mTORC1 in sarcomas.
Collapse
|
8
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
9
|
Rautela U, Sarkar GC, Chaudhary A, Chatterjee D, Rosh M, Arimbasseri AG, Mukhopadhyay A. A non-canonical role of somatic Cyclin D/CYD-1 in oogenesis and in maintenance of reproductive fidelity, dependent on the FOXO/DAF-16 activation state. PLoS Genet 2024; 20:e1011453. [PMID: 39546504 PMCID: PMC11602045 DOI: 10.1371/journal.pgen.1011453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
For the optimal survival of a species, an organism coordinates its reproductive decisions with the nutrient availability of its niche. Thus, nutrient-sensing pathways like insulin-IGF-1 signaling (IIS) play an important role in modulating cell division, oogenesis, and reproductive aging. Lowering of the IIS leads to the activation of the downstream FOXO transcription factor (TF) DAF-16 in Caenorhabditis elegans which promotes oocyte quality and delays reproductive aging. However, less is known about how the IIS axis responds to changes in cell cycle proteins, particularly in the somatic tissues. Here, we show a new aspect of the regulation of the germline by this nutrient-sensing axis. First, we show that the canonical G1-S cyclin, Cyclin D/CYD-1, regulates reproductive fidelity from the uterine tissue of wild-type worms. Then, we show that knocking down cyd-1 in the uterine tissue of an IIS receptor mutant arrests oogenesis at the pachytene stage of meiosis-1 in a DAF-16-dependent manner. We observe activated DAF-16-dependent deterioration of the somatic gonadal tissues like the sheath cells, and transcriptional de-regulation of the sperm-to-oocyte switch genes which may be the underlying reason for the absence of oogenesis. Deleting DAF-16 releases the arrest and leads to restoration of the somatic gonad but poor-quality oocytes are produced. Together, our study reveals the unrecognized cell non-autonomous interaction of Cyclin D/CYD-1 and FOXO/DAF-16 in the regulation of oogenesis and reproductive fidelity.
Collapse
Affiliation(s)
- Umanshi Rautela
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Gautam Chandra Sarkar
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ayushi Chaudhary
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Debalina Chatterjee
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohtashim Rosh
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
10
|
Giunti S, Blanco MG, De Rosa MJ, Rayes D. The ketone body β-hydroxybutyrate ameliorates neurodevelopmental deficits in the GABAergic system of daf-18/PTEN Caenorhabditis elegans mutants. eLife 2024; 13:RP94520. [PMID: 39422188 PMCID: PMC11488850 DOI: 10.7554/elife.94520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
A finely tuned balance between excitation and inhibition (E/I) is essential for proper brain function. Disruptions in the GABAergic system, which alter this equilibrium, are a common feature in various types of neurological disorders, including autism spectrum disorders (ASDs). Mutations in Phosphatase and Tensin Homolog (PTEN), the main negative regulator of the phosphatidylinositol 3-phosphate kinase/Akt pathway, are strongly associated with ASD. However, it is unclear whether PTEN deficiencies can differentially affect inhibitory and excitatory signaling. Using the Caenorhabditis elegans neuromuscular system, where both excitatory (cholinergic) and inhibitory (GABAergic) inputs regulate muscle activity, we found that daf-18/PTEN mutations impact GABAergic (but not cholinergic) neurodevelopment and function. This selective impact results in a deficiency in inhibitory signaling. The defects observed in the GABAergic system in daf-18/PTEN mutants are due to reduced activity of DAF-16/FOXO during development. Ketogenic diets (KGDs) have proven effective for disorders associated with E/I imbalances. However, the mechanisms underlying their action remain largely elusive. We found that a diet enriched with the ketone body β-hydroxybutyrate during early development induces DAF-16/FOXO activity, therefore improving GABAergic neurodevelopment and function in daf-18/PTEN mutants. Our study provides valuable insights into the link between PTEN mutations and neurodevelopmental defects and delves into the mechanisms underlying the potential therapeutic effects of KGDs.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) (UNS-CONICET), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y TécnicasBahia BlancaArgentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)Bahia BlancaArgentina
| |
Collapse
|
11
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Gowripriya T, Yashwanth R, James Prabhanand B, Suresh R, Balamurugan K. Klebsiella aerogenes ingestion elicits behavioral changes and innate immunity in the host, Caenorhabditis elegans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105138. [PMID: 38286197 DOI: 10.1016/j.dci.2024.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Klebsiella aerogenes (previously known as Enterobacter aerogenes) is a common opportunistic pathogen that infect the respiratory tract and central nervous system. However, how it interferes the host regulatory mechanism has not been previously described. When C. elegans were exposed to K. aerogenes, they exhibited a shorter lifespan compared to those fed with E. coli OP50. The time required for 50 % of L4 hermaphrodite nematodes to die when exposed to K. aerogenes was approximately 9 days, whereas it was about 18 days when fed with E. coli OP50. The interaction with K. aerogenes also affected the physical activity of C. elegans. Parameters like pharyngeal pumping, head thrashing, body bending, and swimming showed a gradual decline during infection. The expression of serotonin-mediated axon regeneration K. aerogenes infection led to increased levels of reactive oxygen species (ROS) in C. elegans compared to E. coli OP50-fed worms. The nematodes activated antioxidant mechanisms, including the expression of SODs, to counteract elevated ROS levels. The interaction with K. aerogenes activated immune regulatory pathways in C. elegans, including the mTOR signaling pathway downstream player SGK-1. Lifespan regulatory pathways, such as pha-4 and pmk-1, were also affected, likely contributing to the nematode ability to survive in a pathogenic environment. K. aerogenes infection has a detrimental impact on the healthspan and lifespan of C. elegans, affecting physical activity, intestinal health, serotonin regulation, ROS levels, and immune responses. These findings provide insights into the complex interactions between K. aerogenes and host organisms.
Collapse
Affiliation(s)
- Thirumugam Gowripriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India.
| | - Radhakrishnan Yashwanth
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | - Bhaskar James Prabhanand
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | - Ramamurthi Suresh
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | | |
Collapse
|
13
|
Göttig L, Jummer S, Staehler L, Groitl P, Karimi M, Blanchette P, Kosulin K, Branton PE, Schreiner S. The human adenovirus PI3K-Akt activator E4orf1 is targeted by the tumor suppressor p53. J Virol 2024; 98:e0170123. [PMID: 38451084 PMCID: PMC11019960 DOI: 10.1128/jvi.01701-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/13/2024] [Indexed: 03/08/2024] Open
Abstract
Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Jummer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Staehler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maryam Karimi
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paola Blanchette
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Karin Kosulin
- Molecular Microbiology, Children’s Cancer Research Institute, Vienna, Austria
| | - Philip E. Branton
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Freiburg, Germany
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Rani N, Alam MM, Jamal A, Bin Ghaffar U, Parvez S. Caenorhabditis elegans: A transgenic model for studying age-associated neurodegenerative diseases. Ageing Res Rev 2023; 91:102036. [PMID: 37598759 DOI: 10.1016/j.arr.2023.102036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated ailments characterized by interrupting cellular proteostasic machinery and the misfolding of distinct proteins to form toxic aggregates in neurons. Neurodegenerative diseases, which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and others, are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Over the past decades, Caenorhabditis eleganshas beenwidely used as a transgenic model to investigate biological processes related to health and disease. The nematode Caenorhabditis elegans (C. elegans) has developed as a powerful tool for studying disease mechanisms due to its ease of genetic handling and instant cultivation while providing a whole-animal system amendable to several molecular and biochemical techniques. In this review, we elucidate the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Usama Bin Ghaffar
- Department of Basic Science, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Zhang X, Wang Y, Cai Z, Wan Z, Aihemaiti Y, Tu H. A gonadal gap junction INX-14/Notch GLP-1 signaling axis suppresses gut defense through an intestinal lysosome pathway. Front Immunol 2023; 14:1249436. [PMID: 37928537 PMCID: PMC10620905 DOI: 10.3389/fimmu.2023.1249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Gap junctions mediate intercellular communications across cellular networks in the nervous and immune systems. Yet their roles in intestinal innate immunity are poorly understood. Here, we show that the gap junction/innexin subunit inx-14 acts in the C. elegans gonad to attenuate intestinal defenses to Pseudomonas aeruginosa PA14 infection through the PMK-1/p38 pathway. RNA-Seq analyses revealed that germline-specific inx-14 RNAi downregulated Notch/GLP-1 signaling, while lysosome and PMK-1/p38 pathways were upregulated. Consistently, disruption of inx-14 or glp-1 in the germline enhanced resistance to PA14 infection and upregulated lysosome and PMK-1/p38 activity. We show that lysosome signaling functions downstream of the INX-14/GLP-1 signaling axis and upstream of PMK-1/p38 pathway to facilitate intestinal defense. Our findings expand the understanding of the links between the reproductive system and intestinal defense, which may be evolutionarily conserved in higher organism.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
16
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
17
|
Sarkar GC, Rautela U, Goyala A, Datta S, Anand N, Singh A, Singh P, Chamoli M, Mukhopadhyay A. DNA damage signals from somatic uterine tissue arrest oogenesis through activated DAF-16. Development 2023; 150:dev201472. [PMID: 37577954 DOI: 10.1242/dev.201472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Germ line integrity is crucial for progeny fitness. Organisms deploy the DNA damage response (DDR) signaling to protect the germ line from genotoxic stress, facilitating the cell-cycle arrest of germ cells and DNA repair or their apoptosis. Cell-autonomous regulation of germ line quality in response to DNA damage is well studied; however, how quality is enforced cell non-autonomously on sensing somatic DNA damage is less known. Using Caenorhabditis elegans, we show that DDR disruption, only in the uterus, when insulin/IGF-1 signaling (IIS) is low, arrests oogenesis in the pachytene stage of meiosis I, in a FOXO/DAF-16 transcription factor-dependent manner. Without FOXO/DAF-16, germ cells of the IIS mutant escape the arrest to produce poor-quality oocytes, showing that the transcription factor imposes strict quality control during low IIS. Activated FOXO/DAF-16 senses DDR perturbations during low IIS to lower ERK/MPK-1 signaling below a threshold to promote germ line arrest. Altogether, we elucidate a new surveillance role for activated FOXO/DAF-16 that ensures optimal germ cell quality and progeny fitness in response to somatic DNA damage.
Collapse
Affiliation(s)
- Gautam Chandra Sarkar
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Umanshi Rautela
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anita Goyala
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sudeshna Datta
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nikhita Anand
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anupama Singh
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prachi Singh
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manish Chamoli
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
18
|
Liu J, Zhang P, Zheng Z, Afridi MI, Zhang S, Wan Z, Zhang X, Stingelin L, Wang Y, Tu H. GABAergic signaling between enteric neurons and intestinal smooth muscle promotes innate immunity and gut defense in Caenorhabditis elegans. Immunity 2023; 56:1515-1532.e9. [PMID: 37437538 DOI: 10.1016/j.immuni.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The nervous system is critical for intestinal homeostasis and function, but questions remain regarding its impact on gut immune defense. By screening the major neurotransmitters of C. elegans, we found that γ-aminobutyric acid (GABA) deficiency enhanced susceptibility to pathogenic Pseudomonas aeruginosa PA14 infection. GABAergic signaling between enteric neurons and intestinal smooth muscle promoted gut defense in a PMK-1/p38-dependent, but IIS/DAF-16- and DBL-1/TGF-β-independent, pathway. Transcriptomic profiling revealed that the neuropeptide, FLP-6, acted downstream of enteric GABAergic signaling. Further data determined that FLP-6 was expressed and secreted by intestinal smooth muscle cells and functioned as a paracrine molecule on the intestinal epithelium. FLP-6 suppressed the transcription factors ZIP-10 and KLF-1 that worked in parallel and converged to the PMK-1/p38 pathway in the intestinal epithelia for innate immunity and gut defense. Collectively, these findings uncover an enteric neuron-muscle-epithelium axis that may be evolutionarily conserved in higher organisms.
Collapse
Affiliation(s)
- Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Pei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Zhongfan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Shan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Zhiqing Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Xiumei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Lukas Stingelin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China.
| |
Collapse
|
19
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
20
|
Ohta A, Yamashiro S, Kuhara A. Temperature acclimation: Temperature shift induces system conversion to cold tolerance in C. elegans. Neurosci Res 2023:S0168-0102(23)00075-5. [PMID: 37086751 DOI: 10.1016/j.neures.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
Acclimation to temperature is one of the survival strategies used by organisms to adapt to changing environmental temperatures. Caenorhabditis elegans' cold tolerance is altered by previous cultivation temperature, and similarly, past low-temperature induces a longer lifespan. Temperature is thought to cause a large shift in homeostasis, lipid metabolism, and reproduction in the organism because it is a direct physiological factor during chemical events. This paper will share and discuss what we know so far about the neural and molecular mechanisms that control cold tolerance and lifespan by altering lipid metabolism and physiological characteristics. We hope that this will contribute to a better understanding of how organisms respond to temperature changes.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Faculty of Science and Engineering, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, JAPAN.
| | - Serina Yamashiro
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, JAPAN; Faculty of Science and Engineering, Konan University, Kobe 658-8501, JAPAN; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, JAPAN; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, JAPAN.
| |
Collapse
|
21
|
Xia Q, Casas-Martinez JC, Zarzuela E, Muñoz J, Miranda-Vizuete A, Goljanek-Whysall K, McDonagh B. Peroxiredoxin 2 is required for the redox mediated adaptation to exercise. Redox Biol 2023; 60:102631. [PMID: 36791646 PMCID: PMC9950660 DOI: 10.1016/j.redox.2023.102631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Exercise generates a site-specific increase in Reactive Oxygen Species (ROS) within muscle that promotes changes in gene transcription and mitochondrial biogenesis, required for the beneficial adaptive response. We demonstrate that Peroxiredoxin 2 (Prdx2), an abundant cytoplasmic 2-Cys peroxiredoxin, is required for the adaptive hormesis response to physiological levels of H2O2 in myoblasts and following exercise in C. elegans. A short bolus addition of H2O2 increases mitochondrial capacity and improves myogenesis of cultured myoblasts, this beneficial adaptive response was suppressed in myoblasts with decreased expression of cytoplasmic Prdxs. Moreover, a swimming exercise protocol in C. elegans increased mitochondrial content, fitness, survival and longevity in wild type (N2) worms. In contrast, prdx-2 mutant worms had decreased fitness, disrupted mitochondria, reduced survival and lifespan following exercise. Global proteomics following exercise identified distinct changes in the proteome of N2 and prdx-2 mutants. Furthermore, a redox proteomic approach to quantify reversible oxidation of specific Cysteine residues revealed a more reduced redox state in the non-exercised prdx-2 mutant strain that become oxidized following exercise. In contrast, specific Cys residues from regulatory proteins become more reduced in the N2 strain following exercise, establishing the key regulatory role of PRDX-2 in a redox signalling cascade following endogenous ROS generation. Our results demonstrate that conserved cytoplasmic 2-Cys Peroxiredoxins are required for the beneficial adaptive response to a physiological redox stress.
Collapse
Affiliation(s)
- Qin Xia
- Discipline of Physiology, School of Medicine, University of Galway, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Cell Signalling and Clinical Proteomics Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, University of Galway, Ireland; Apoptosis Research Centre, University of Galway, Ireland; Institute of Lifecourse and Medical Sciences, University of Liverpool, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Ireland; Apoptosis Research Centre, University of Galway, Ireland.
| |
Collapse
|
22
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
23
|
Kandoor A, Fierst J. Dauer fate in a Caenorhabditis elegans Boolean network model. PeerJ 2023; 11:e14713. [PMID: 36710867 PMCID: PMC9879150 DOI: 10.7717/peerj.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023] Open
Abstract
Cellular fates are determined by genes interacting across large, complex biological networks. A critical question is how to identify causal relationships spanning distinct signaling pathways and underlying organismal phenotypes. Here, we address this question by constructing a Boolean model of a well-studied developmental network and analyzing information flows through the system. Depending on environmental signals Caenorhabditis elegans develop normally to sexual maturity or enter a reproductively delayed, developmentally quiescent 'dauer' state, progressing to maturity when the environment changes. The developmental network that starts with environmental signal and ends in the dauer/no dauer fate involves genes across 4 signaling pathways including cyclic GMP, Insulin/IGF-1, TGF-β and steroid hormone synthesis. We identified three stable motifs leading to normal development, each composed of genes interacting across the Insulin/IGF-1, TGF-β and steroid hormone synthesis pathways. Three genes known to influence dauer fate, daf-2, daf-7 and hsf-1, acted as driver nodes in the system. Using causal logic analysis, we identified a five gene cyclic subgraph integrating the information flow from environmental signal to dauer fate. Perturbation analysis showed that a multifactorial insulin profile determined the stable motifs the system entered and interacted with daf-12 as the switchpoint driving the dauer/no dauer fate. Our results show that complex organismal systems can be distilled into abstract representations that permit full characterization of the causal relationships driving developmental fates. Analyzing organismal systems from this perspective of logic and function has important implications for studies examining the evolution and conservation of signaling pathways.
Collapse
Affiliation(s)
- Alekhya Kandoor
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States of America
| | - Janna Fierst
- Biomolecular Sciences Institute and Department of Biology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
24
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
25
|
Abstract
Diapause is a form of dormancy used widely by insects to survive adverse seasons. Previous studies have demonstrated that forkhead box O (FoxO) is activated during pupal diapause initiation in the moth Helicoverpa armigera. However, it is unclear how FoxO induces diapause. Here, we show that knockout of FoxO causes H. armigera diapause-destined pupae to channel into nondiapause, indicating that FoxO is a master regulator that induces insect diapause. FoxO activates the ubiquitin-proteasome system (UPS) by promoting ubiquitin c (Ubc) expression via directly binding to the Ubc promoter. Activated UPS decreases transforming growth factor beta (TGFβ) receptor signaling via ubiquitination to block developmental signaling to induce diapause. This study significantly advances the understanding of insect diapause by uncovering the detailed molecular mechanism of FoxO.
Collapse
|
26
|
Luo X, Zhang Y, Lu C, Zhang J. Role of insulin signaling pathway in apoptosis induced by food chain delivery of nano-silver under the action of environmental factors. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109429. [PMID: 35944823 DOI: 10.1016/j.cbpc.2022.109429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate how the environmental factor affects the delivery of nano silver through food chain, we set up a two-stage food delivery chain model of Escherichia coli and Caenorhabditis elegans system. METHODS Through a two-stage food delivery chain model of E. coli and C. elegans, the mRNA expression levels of DAF-2, age-1, PDK-1, Akt-1 and DAF-16 in the insulin growth factor 1 signaling pathway in nematode gonad cells which occurs AgNPs induced apoptosis were evaluated and the apoptosis of gonad cells in the mutant strains of the above key genes were detected. RESULTS DAF-2, age-1, PDK-1 and Akt-1 could significantly negatively regulate the apoptosis of nematode cells induced by AgNPs, while DAF-16 could significantly promote the apoptosis induced by AgNPs. The DAF-16 up-regulated expression was a protective effect on the body and the phenomenon of DNA double-strand breaks was significantly increased. The damage effect induced by AgNPs was significantly enhanced in the presence of the environmental factor fulvic acid. CONCLUSION The damage effect induced by AgNPs after food delivery involves the regulation of the insulin growth factor 1 signaling pathway and environmental factors have a significant impact on the biological effects.
Collapse
Affiliation(s)
- Xun Luo
- School of Biological Engineering, Huainan Normal University, China.
| | - Yajun Zhang
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, China; Medicine School, Anhui University of Science & Technology, China.
| | - Changjie Lu
- School of Biological Engineering, Huainan Normal University, China
| | - Jiaming Zhang
- School of Biological Engineering, Huainan Normal University, China
| |
Collapse
|
27
|
Yerevanian A, Murphy LM, Emans S, Zhou Y, Ahsan FM, Baker D, Li S, Adedoja A, Cedillo L, Stuhr NL, Gnanatheepam E, Dao K, Jain M, Curran SP, Georgakoudi I, Soukas AA. Riboflavin depletion promotes longevity and metabolic hormesis in Caenorhabditis elegans. Aging Cell 2022; 21:e13718. [PMID: 36181246 PMCID: PMC9649603 DOI: 10.1111/acel.13718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Riboflavin is an essential cofactor in many enzymatic processes and in the production of flavin adenine dinucleotide (FAD). Here, we report that the partial depletion of riboflavin through knockdown of the C. elegans riboflavin transporter 1 (rft-1) promotes metabolic health by reducing intracellular flavin concentrations. Knockdown of rft-1 significantly increases lifespan in a manner dependent upon AMP-activated protein kinase (AMPK)/aak-2, the mitochondrial unfolded protein response, and FOXO/daf-16. Riboflavin depletion promotes altered energetic and redox states and increases adiposity, independent of lifespan genetic dependencies. Riboflavin-depleted animals also exhibit the activation of caloric restriction reporters without any reduction in caloric intake. Our findings indicate that riboflavin depletion activates an integrated hormetic response that promotes lifespan and healthspan in C. elegans.
Collapse
Affiliation(s)
- Armen Yerevanian
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Luke M. Murphy
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Sinclair Emans
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Yifei Zhou
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Fasih M. Ahsan
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Daniel Baker
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Sainan Li
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Adebanjo Adedoja
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Lucydalila Cedillo
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Nicole L. Stuhr
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Einstein Gnanatheepam
- Department of Biomedical EngineeringTufts University School of EngineeringMedfordMassachusettsUSA
| | - Khoi Dao
- Department of Medicine and PharmacologyUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Mohit Jain
- Department of Medicine and PharmacologyUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Sean P. Curran
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Irene Georgakoudi
- Department of Biomedical EngineeringTufts University School of EngineeringMedfordMassachusettsUSA
| | - Alexander A. Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and MITCambridgeMassachusettsUSA
| |
Collapse
|
28
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
29
|
Tan L, Zheng ZY, Huang L, Jin Z, Li SL, Wu GS, Luo HR. Flavonol glycoside complanatoside A requires FOXO/DAF-16, NRF2/SKN-1, and HSF-1 to improve stress resistances and extend the life span of Caenorhabditis elegans. Front Pharmacol 2022; 13:931886. [PMID: 36071837 PMCID: PMC9441740 DOI: 10.3389/fphar.2022.931886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Aging is associated with the increased risk of most age-related diseases in humans. Complanatoside A (CA) is a flavonoid compound isolated from the herbal medicine Semen Astragali Complanati. CA was reported to have potential anti-inflammatory and anti-oxidative activities. In this study, we investigated whether CA could increase the stress resistance capability and life span of Caenorhabditis elegans. Our results showed that CA could extend the longevity of C. elegans in a dosage-dependent manner, while 50 μM of CA has the best effect and increased the life span of C. elegans by about 16.87%. CA also improved the physiological functions in aging worms, such as enhanced locomotor capacity, and reduced the accumulation of the aging pigment. CA could also reduce the accumulation of toxic proteins (α-synuclein and β-amyloid) and delay the onset of neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease, in models of C. elegans. Further investigation has revealed that CA requires DAF-16/FOXO, SKN-1, and HSF-1 to extend the life span of C. elegans. CA could increase the antioxidation and detoxification activities regulated by transcription factor SKN-1 and the heat resistance by activating HSF-1 that mediated the expression of the chaperone heat shock proteins. Our results suggest that CA is a potential antiaging agent worth further research for its pharmacological mechanism and development for pharmaceutical applications.
Collapse
Affiliation(s)
- Lin Tan
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pharmacy, Guang’an People’s Hospital, Guang’an, Sichuan, China
| | - Zhuo-Ya Zheng
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lv Huang
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhong Jin
- Luzhou City Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, China
| | - Su-Lian Li
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gui-Sheng Wu
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- *Correspondence: Gui-Sheng Wu, ; Huai-Rong Luo,
| | - Huai-Rong Luo
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Gui-Sheng Wu, ; Huai-Rong Luo,
| |
Collapse
|
30
|
Hou L, Qiao X, Li Y, Jin Y, Liu R, Wang S, Zhou K, Wang L, Song L. A RAC-alpha serine/threonine-protein kinase (CgAKT1) involved in the synthesis of CgIFNLP in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 127:129-139. [PMID: 35709896 DOI: 10.1016/j.fsi.2022.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The RAC-alpha serine/threonine-protein kinase (AKT) is one of the most important protein kinases involved in many biological processes in eukaryotes. In the present study, a novel AKT homologue named CgAKT1 was identified from the Pacific oyster Crassostrea gigas. The open reading frame (ORF) of CgAKT1 cDNA was of 1482 bp encoding a peptide with 493 amino acid residues. There were classical domains in the predicted CgAKT1 protein, including an N-terminal pleckstrin homology domain, a central catalytic domain and a C-terminal hydrophobic domain. The mRNA transcripts of CgAKT1 were detected in all the examined tissues of C. gigas with higher level in gills (8.24-fold of that in mantle, p < 0.05) and haemocytes (3.62-fold of that in mantle, p < 0.05). After poly (I:C) stimulation, the mRNA expression of CgAKT1 decreased significantly in haemocytes from 3 h (0.44-fold of that in the control group, p < 0.001) to 24 h (0.20-fold of that in the control group, p < 0.001), and then increased significantly at 48 h (3.65-fold of that in the control group, p < 0.05). The expression level of CgAKT1 mRNA increased significantly at 6 h after rCgIFNLP stimulation, which was 3.60-fold of that in the control group (p < 0.001). The Alexa Fluor 488 positive signals of CgAKT1 protein were found to be distributed in the cytoplasm and cell membrane of haemocytes, while those in the cytoplasm became weaker after poly (I:C) stimulation. In CgAKT1-RNAi oysters, the mRNA expression of cyclic GMP-AMP synthase (CgcGAS) and TANK-binding kinase 1 (CgTBK1) did not change significantly, but the mRNA expression level of stimulator of interferon gene (CgSTING), interferon regulatory factor-1 (CgIRF-1), interferon regulatory factor-8 (CgIRF-8) and IFN-like protein (CgIFNLP) increased significantly, which was 1.40-fold, 1.53-fold, 1.72-fold and 1.99-fold of that in EGFP-RNAi oysters (p < 0.05), respectively. In CgIFNLP-RNAi oysters, the transcripts of CgAKT1 decreased significantly compared to those in EGFP-RNAi oysters (0.16-fold, p < 0.01). Moreover, the expression of p-CgTBK1, CgSTING and CgIFNLP at the protein level in the oysters treated with p-AKT1 activator (SC-79) was significantly suppressed after poly (I:C) stimulation. After the transfection of CgAKT1, the expression of p-cGAS protein in HEK293T cells increased significantly, while the cyclic GMP-AMP in the cells and the interferon (IFN-β) in the cell culture fluid decreased significantly compared with that in the control group. These results indicated that CgAKT1 might play a negative role in antiviral immunity of oyster by regulating the synthesis of CgIFNLP.
Collapse
Affiliation(s)
- Lilin Hou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Youjing Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ranyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Kai Zhou
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
31
|
Meraş İ, Chotard L, Liontis T, Ratemi Z, Wiles B, Seo JH, Van Raamsdonk JM, Rocheleau CE. The Rab GTPase activating protein TBC-2 regulates endosomal localization of DAF-16 FOXO and lifespan. PLoS Genet 2022; 18:e1010328. [PMID: 35913999 PMCID: PMC9371356 DOI: 10.1371/journal.pgen.1010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
FOXO transcription factors have been shown to regulate longevity in model organisms and are associated with longevity in humans. To gain insight into how FOXO functions to increase lifespan, we examined the subcellular localization of DAF-16 in C. elegans. We show that DAF-16 is localized to endosomes and that this endosomal localization is increased by the insulin-IGF signaling (IIS) pathway. Endosomal localization of DAF-16 is modulated by endosomal trafficking proteins. Disruption of the Rab GTPase activating protein TBC-2 increases endosomal localization of DAF-16, while inhibition of TBC-2 targets, RAB-5 or RAB-7 GTPases, decreases endosomal localization of DAF-16. Importantly, the amount of DAF-16 that is localized to endosomes has functional consequences as increasing endosomal localization through mutations in tbc-2 reduced the lifespan of long-lived daf-2 IGFR mutants, depleted their fat stores, and DAF-16 target gene expression. Overall, this work identifies endosomal localization as a mechanism regulating DAF-16 FOXO, which is important for its functions in metabolism and aging. FOXO transcription factors have been shown to modulate lifespan in multiple model organisms and to be associated with longevity in humans. Here we describe a new localization of the C. elegans FOXO transcription factor, called DAF-16. We report that DAF-16 localizes to endosomes, membrane compartments internalized from the plasma membrane at the cell surface. We demonstrate that expansion of these endosome compartments by disruption of an endosomal regulator called TBC-2 results in increased localization of DAF-16 on endosomes at the expense of nuclear localization in the intestinal cells. This results in altered expression of DAF-16 target genes, reduced fat storage and decreased lifespan. These results demonstrate the importance of endosomal trafficking for proper localization of DAF-16 and suggest that the endosome is an important site of FOXO regulation. An intriguing possibility based on our results is that storage of FOXO on endosomes facilitates the mobilization of FOXO as a rapid response to environmental stress.
Collapse
Affiliation(s)
- İçten Meraş
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Laëtitia Chotard
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
| | - Thomas Liontis
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Zakaria Ratemi
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Benjamin Wiles
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jung Hwa Seo
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jeremy M. Van Raamsdonk
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Christian E. Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
32
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
33
|
Galley JC, Miller MP, Sanker S, Liu M, Sharina I, Martin E, Gomez D, Straub AC. FoxO4 controls sGCβ transcription in vascular smooth muscle. Am J Physiol Heart Circ Physiol 2022; 322:H417-H426. [PMID: 35089807 PMCID: PMC8873033 DOI: 10.1152/ajpheart.00551.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) binds soluble guanylyl cyclase β (sGCβ) to produce cGMP and relax vascular smooth muscle cells (SMCs) needed for vasodilation. Although the regulation of NO-stimulated sGC activity has been well characterized at the posttranslational level, the mechanisms that govern sGC transcription remain incompletely understood. Recently, we identified Forkhead box subclass O (FoxO) transcription factors as essential for expression of sGC; however, the specific FoxO family member responsible for the expression of sGCβ in SMC remains unknown. Using FoxO shRNA knockdown adenovirus treatment in rat aortic SMCs, we show that FoxO1 or FoxO3 knockdown causes greater than twofold increases in Gucy1a3 and Gucy1b3 mRNA expression, without changes in NO-dependent cGMP production or cGMP-dependent phosphorylation. FoxO4 knockdown produced a 50% decrease in Gucy1a3 and Gucy1b3 mRNA with 70% loss of sGCα and 50% loss of sGCβ protein expression. Knockdown of FoxO4 expression decreased cGMP production and downstream protein kinase G-dependent phosphorylation more than 50%. Triple FoxO knockdown exacerbated loss of sGC-dependent function, phenocopying previous FoxO inhibition studies. Using promoter luciferase and chromatin immunoprecipitation assays, we find that FoxO4 acts as a transcriptional activator by directly binding several FoxO DNA motifs in the promoter regions of GUCY1B3 in human aortic SMCs. Collectively, our data show FoxO4 is a critical transcriptional regulator of sGCβ expression in SMC.NEW & NOTEWORTHY One of the key mechanisms of vascular smooth muscle cell (SMC) dilation occurs through nitric oxide (NO)-dependent induction of soluble guanylyl cyclase (sGC) by means of its β-subunit. Herein, we are the first to identify Forkhead box subclass O protein 4 (FoxO4) as a key transcriptional regulator of GUCY1B3 expression, which codes for sGCβ protein in human and animal SMCs. This discovery will likely have important implications for the future usage of antihypertensive and vasodilatory therapies which target NO production, sGC, or FoxO transcription factors.
Collapse
Affiliation(s)
- Joseph C. Galley
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania,2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan P. Miller
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Subramaniam Sanker
- 2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mingjun Liu
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania,3Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Iraida Sharina
- 4Department of Cardiovascular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Emil Martin
- 4Department of Cardiovascular Medicine, University of Texas Health Science Center, Houston, Texas
| | - Delphine Gomez
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania,5Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam C. Straub
- 1Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania,2Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania,6Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans. PLoS Biol 2022; 20:e3001317. [PMID: 35192608 PMCID: PMC8863262 DOI: 10.1371/journal.pbio.3001317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
Cell invasion is an initiating event during tumor cell metastasis and an essential process during development. A screen of C. elegans orthologs of genes overexpressed in invasive human melanoma cells has identified several components of the conserved DNA pre-replication complex (pre-RC) as positive regulators of anchor cell (AC) invasion. The pre-RC genes function cell-autonomously in the G1-arrested AC to promote invasion, independently of their role in licensing DNA replication origins in proliferating cells. While the helicase activity of the pre-RC is necessary for AC invasion, the downstream acting DNA replication initiation factors are not required. The pre-RC promotes the invasive fate by regulating the expression of extracellular matrix genes and components of the PI3K signaling pathway. Increasing PI3K pathway activity partially suppressed the AC invasion defects caused by pre-RC depletion, suggesting that the PI3K pathway is one critical pre-RC target. We propose that the pre-RC, or a part of it, acts in the postmitotic AC as a transcriptional regulator that facilitates the switch to an invasive phenotype.
Collapse
|
35
|
Zhang T, Fassl A, Vaites LP, Fu S, Sicinski P, Paulo JA, Gygi SP. Interrogating Kinase-Substrate Relationships with Proximity Labeling and Phosphorylation Enrichment. J Proteome Res 2022; 21:494-506. [PMID: 35044772 PMCID: PMC9142857 DOI: 10.1021/acs.jproteome.1c00865] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases govern many cellular responses through the reversible transfer of a phosphate moiety to their substrates. However, pairing a substrate with a kinase is challenging. In proximity labeling experiments, proteins proximal to a target protein are marked by biotinylation, and mass spectrometry can be used for their identification. Here, we combine ascorbate peroxidase (APEX) proximity labeling and a phosphorylation enrichment-based workflow, Phospho-APEX (pAPEX), to rapidly identify phosphorylated and biotinylated neighbor proteins which can be considered for candidate substrates. The pAPEX strategy enriches and quantifies differences in proximity for proteins and phosphorylation sites proximal to an APEX2-tagged kinase under the kinase "ON" and kinase "OFF" conditions. As a proof of concept, we identified candidate substrates of MAPK1 in HEK293T and HCT116 cells and candidate substrates of PKA in HEK293T cells. In addition to many known substrates, C15orf39 was identified and confirmed as a novel MAPK1 substrate. In all, we adapted the proximity labeling-based platform to accommodate phosphorylation analysis for kinase substrate identification.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Laura P. Vaites
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sipei Fu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics 2022; 23:93. [PMID: 35105312 PMCID: PMC8805411 DOI: 10.1186/s12864-021-08222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Clara Coll-Lladó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
37
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 794] [Impact Index Per Article: 198.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
38
|
Du S, Zheng H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci 2021; 11:188. [PMID: 34727995 PMCID: PMC8561869 DOI: 10.1186/s13578-021-00700-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Aging happens to all of us as we live. Thanks to the improved living standard and discovery of life-saving medicines, our life expectancy has increased substantially across the world in the past century. However, the rise in lifespan leads to unprecedented increases in both the number and the percentage of individuals 65 years and older, accompanied by the increased incidences of age-related diseases such as type 2 diabetes mellitus and Alzheimer's disease. FoxO transcription factors are evolutionarily conserved molecules that play critical roles in diverse biological processes, in particular aging and metabolism. Their dysfunction is often found in the pathogenesis of many age-related diseases. Here, we summarize the signaling pathways and cellular functions of FoxO proteins. We also review the complex role of FoxO in aging and age-related diseases, with focus on type 2 diabetes and Alzheimer's disease and discuss the possibility of FoxO as a molecular link between aging and disease risks.
Collapse
Affiliation(s)
- Shuqi Du
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
39
|
Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, Goverse A, Bouwmeester HJ. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors 2021; 14:554. [PMID: 34706780 PMCID: PMC8555053 DOI: 10.1186/s13071-021-04953-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Nematodes are presumably the most abundant Metazoa on Earth, and can even be found in some of the most hostile environments of our planet. Various types of hypobiosis evolved to adapt their life cycles to such harsh environmental conditions. The five most distal major clades of the phylum Nematoda (Clades 8-12), formerly referred to as the Secernentea, contain many economically relevant parasitic nematodes. In this group, a special type of hypobiosis, dauer, has evolved. The dauer signalling pathway, which culminates in the biosynthesis of dafachronic acid (DA), is intensively studied in the free-living nematode Caenorhabditis elegans, and it has been hypothesized that the dauer stage may have been a prerequisite for the evolution of a wide range of parasitic lifestyles among other nematode species. Biosynthesis of DA is not specific for hypobiosis, but if it results in exit of the hypobiotic state, it is one of the main criteria to define certain behaviour as dauer. Within Clades 9 and 10, the involvement of DA has been validated experimentally, and dauer is therefore generally accepted to occur in those clades. However, for other clades, such as Clade 12, this has hardly been explored. In this review, we provide clarity on the nomenclature associated with hypobiosis and dauer across different nematological subfields. We discuss evidence for dauer-like stages in Clades 8 to 12 and support this with a meta-analysis of available genomic data. Furthermore, we discuss indications for a simplified dauer signalling pathway in parasitic nematodes. Finally, we zoom in on the host cues that induce exit from the hypobiotic stage and introduce two hypotheses on how these signals might feed into the dauer signalling pathway for plant-parasitic nematodes. With this work, we contribute to the deeper understanding of the molecular mechanisms underlying hypobiosis in parasitic nematodes. Based on this, novel strategies for the control of parasitic nematodes can be developed.
Collapse
Affiliation(s)
- Lieke E Vlaar
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andre Bertran
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Implications of Phosphoinositide 3-Kinase-Akt (PI3K-Akt) Pathway in the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2021; 59:354-385. [PMID: 34699027 DOI: 10.1007/s12035-021-02611-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the foremost type of dementia that afflicts considerable morbidity and mortality in aged population. Several transcription molecules, pathways, and molecular mechanisms such as oxidative stress, inflammation, autophagy, and immune system interact in a multifaceted way that disrupt physiological processes (cell growth, differentiation, survival, lipid and energy metabolism, endocytosis) leading to apoptosis, tauopathy, β-amyloidopathy, neuron, and synapse loss, which play an important role in AD pathophysiology. Despite of stupendous advancements in pathogenic mechanisms, treatment of AD is still a nightmare in the field of medicine. There is compelling urgency to find not only symptomatic but effective disease-modifying therapies. Recently, phosphoinositide 3-kinase (PI3K) and Akt are identified as a pathway triggered by diverse stimuli, including insulin, growth factors, cytokines, and cellular stress, that link amyloid-β, neurofibrillary tangles, and brain atrophy. The present review aims to explore and analyze the role of PI3K-Akt pathway in AD and agents which may modulate Akt and have therapeutic prospects in AD. The literature was researched using keywords "PI3K-Akt" and "Alzheimer's disease" from PubMed, Web of Science, Bentham, Science Direct, Springer Nature, Scopus, and Google Scholar databases including books. Articles published from 1992 to 2021 were prioritized and analyzed for their strengths and limitations, and most appropriate ones were selected for the purpose of review. PI3K-Akt pathway regulates various biological processes such as cell proliferation, motility, growth, survival, and metabolic functions, and inhibits many neurotoxic mechanisms. Furthermore, experimental data indicate that PI3K-Akt signaling might be an important therapeutic target in treatment of AD.
Collapse
|
41
|
Clark JF, Ciccarelli EJ, Kayastha P, Ranepura G, Yamamoto KK, Hasan MS, Madaan U, Meléndez A, Savage-Dunn C. BMP pathway regulation of insulin signaling components promotes lipid storage in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009836. [PMID: 34634043 PMCID: PMC8530300 DOI: 10.1371/journal.pgen.1009836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
A small number of peptide growth factor ligands are used repeatedly in development and homeostasis to drive programs of cell differentiation and function. Cells and tissues must integrate inputs from these diverse signals correctly, while failure to do so leads to pathology, reduced fitness, or death. Previous work using the nematode C. elegans identified an interaction between the bone morphogenetic protein (BMP) and insulin/IGF-1-like signaling (IIS) pathways in the regulation of lipid homeostasis. The molecular components required for this interaction, however, were not fully understood. Here we report that INS-4, one of 40 insulin-like peptides (ILPs), is regulated by BMP signaling to modulate fat accumulation. Furthermore, we find that the IIS transcription factor DAF-16/FoxO, but not SKN-1/Nrf, acts downstream of BMP signaling in lipid homeostasis. Interestingly, BMP activity alters sensitivity of these two transcription factors to IIS-promoted cytoplasmic retention in opposite ways. Finally, we probe the extent of BMP and IIS interactions by testing additional IIS functions including dauer formation, aging, and autophagy induction. Coupled with our previous work and that of other groups, we conclude that BMP and IIS pathways have at least three modes of interaction: independent, epistatic, and antagonistic. The molecular interactions we identify provide new insight into mechanisms of signaling crosstalk and potential therapeutic targets for IIS-related pathologies such as diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- James F. Clark
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Emma J. Ciccarelli
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Peter Kayastha
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Gehan Ranepura
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Katerina K. Yamamoto
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Muhammad S. Hasan
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
| | - Uday Madaan
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Alicia Meléndez
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
| | - Cathy Savage-Dunn
- Biology Department, Queens College, City University of New York (CUNY), New York City, New York, United States of America
- Ph.D. Program in Biology, The Graduate Center, City University of New York (CUNY), New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
43
|
Tashiro E, Nagasawa Y, Itoh S, Imoto M. Involvement of miR-3180-3p and miR-4632-5p in palmitic acid-induced insulin resistance. Mol Cell Endocrinol 2021; 534:111371. [PMID: 34157350 DOI: 10.1016/j.mce.2021.111371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023]
Abstract
Insulin resistance is defined as a failure to trigger the activation of the PI3K-AKT pathway by normal levels of insulin; therefore, it is well linked to metabolic disorders. Although multiple mechanisms contribute to insulin resistance, one major cause is elevated concentrations of plasma free fatty acids, which are known to suppress insulin signaling. However, the underlying mechanism is still elusive. Here, we found that palmitic acid increased the expression of two miRNAs, miR-3180-3p and miR-4632-5p, in HepG2 cells. Transfection of HepG2 cells with miR-3180-3p or miR-4632-5p reduced insulin-induced activation of the PI3K-AKT pathway. Moreover, palmitic acid or two miRNAs inhibited insulin-induced phosphorylation of Tyr612 on IRS-1 without affecting insulin receptor activation. Therefore, two miRNAs are suggested to be involved in palmitic acid-induced insulin resistance through suppression of insulin-induced IRS-1 phosphorylation. Identification of miR-3180-3p and miR-4632-5p targets could provide valuable information for the development of therapeutic drugs for type 2 diabetes.
Collapse
Affiliation(s)
- Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan; Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan.
| | - Yumi Nagasawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan; Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Beasley HK, Rodman TA, Collins GV, Hinton A, Exil V. TMEM135 is a Novel Regulator of Mitochondrial Dynamics and Physiology with Implications for Human Health Conditions. Cells 2021; 10:cells10071750. [PMID: 34359920 PMCID: PMC8303332 DOI: 10.3390/cells10071750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane proteins (TMEMs) are integral proteins that span biological membranes. TMEMs function as cellular membrane gates by modifying their conformation to control the influx and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of various intracellular organelles. Despite much knowledge about the biological importance of TMEMs, their role in metabolic regulation is poorly understood. This review highlights the role of a single TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty acid metabolism, and peroxisomal function. This review highlights our current understanding of the various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Greg V. Collins
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
- Correspondence: (A.H.J.); (V.E.)
| | - Vernat Exil
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (A.H.J.); (V.E.)
| |
Collapse
|
45
|
Grushko D, Boocholez H, Levine A, Cohen E. Temporal requirements of SKN-1/NRF as a regulator of lifespan and proteostasis in Caenorhabditis elegans. PLoS One 2021; 16:e0243522. [PMID: 34197476 PMCID: PMC8248617 DOI: 10.1371/journal.pone.0243522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Lowering the activity of the Insulin/IGF-1 Signaling (IIS) cascade results in elevated stress resistance, enhanced protein homeostasis (proteostasis) and extended lifespan of worms, flies and mice. In the nematode Caenorhabditis elegans (C. elegans), the longevity phenotype that stems from IIS reduction is entirely dependent upon the activities of a subset of transcription factors including the Forkhead factor DAF-16/FOXO (DAF-16), Heat Shock Factor-1 (HSF-1), SKiNhead/Nrf (SKN-1) and ParaQuat Methylviologen responsive (PQM-1). While DAF-16 determines lifespan exclusively during early adulthood and governs proteostasis in early adulthood and midlife, HSF-1 executes these functions foremost during development. Despite the central roles of SKN-1 as a regulator of lifespan and proteostasis, the temporal requirements of this transcription factor were unknown. Here we employed conditional knockdown techniques and discovered that in C. elegans, SKN-1 is primarily important for longevity and proteostasis during late larval development through early adulthood. Our findings indicate that events that occur during late larval developmental through early adulthood affect lifespan and proteostasis and suggest that subsequent to HSF-1, SKN-1 sets the conditions, partially overlapping temporally with DAF-16, that enable IIS reduction to promote longevity and proteostasis. Our findings raise the intriguing possibility that HSF-1, SKN-1 and DAF-16 function in a coordinated and sequential manner to promote healthy aging.
Collapse
Affiliation(s)
- Danielle Grushko
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
| | - Amir Levine
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada (IMRIC), The Hebrew University School of Medicine, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
46
|
Zhang F, Weckhorst JL, Assié A, Hosea C, Ayoub CA, Khodakova AS, Cabrera ML, Vidal Vilchis D, Félix MA, Samuel BS. Natural genetic variation drives microbiome selection in the Caenorhabditis elegans gut. Curr Biol 2021; 31:2603-2618.e9. [PMID: 34048707 PMCID: PMC8222194 DOI: 10.1016/j.cub.2021.04.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the strain-level phylogenetic diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. elegans utilizes immune, xenobiotic, and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is correlated with faster animal growth rates and larger body size at the end of development. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of gut microbiome composition in C. elegans.
Collapse
Affiliation(s)
- Fan Zhang
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jessica L Weckhorst
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Ciara Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Christopher A Ayoub
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Anastasia S Khodakova
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Mario Loeza Cabrera
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Daniela Vidal Vilchis
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Marie-Anne Félix
- Ecole Normale Supérieure, IBENS, CNRS UMR8197, INSERM U1024, Paris, France
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Basu A, Behera S, Bhardwaj S, Dey S, Ghosh-Roy A. Regulation of UNC-40/DCC and UNC-6/Netrin by DAF-16 promotes functional rewiring of the injured axon. Development 2021; 148:268990. [PMID: 34109380 DOI: 10.1242/dev.198044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
The adult nervous system has a limited capacity to regenerate after accidental damage. Post-injury functional restoration requires proper targeting of the injured axon to its postsynaptic cell. Although the initial response to axonal injury has been studied in great detail, it is rather unclear what controls the re-establishment of a functional connection. Using the posterior lateral microtubule neuron in Caenorhabditis elegans, we found that after axotomy, the regrowth from the proximal stump towards the ventral side and accumulation of presynaptic machinery along the ventral nerve cord correlated to the functional recovery. We found that the loss of insulin receptor DAF-2 promoted 'ventral targeting' in a DAF-16-dependent manner. We further showed that coordinated activities of DAF-16 in neuron and muscle promoted 'ventral targeting'. In response to axotomy, expression of the Netrin receptor UNC-40 was upregulated in the injured neuron in a DAF-16-dependent manner. In contrast, the DAF-2-DAF-16 axis contributed to the age-related decline in Netrin expression in muscle. Therefore, our study revealed an important role for insulin signaling in regulating the axon guidance molecules during the functional rewiring process.
Collapse
Affiliation(s)
- Atrayee Basu
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Sibaram Behera
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Smriti Bhardwaj
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| | - Shirshendu Dey
- Fluorescence Microscopy Division, Bruker India Scientific PvT Ltd, International Trade Tower, Nehru Place, New Delhi 110019, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Nainwal Mode, Gurgaon, Haryana 122051, India
| |
Collapse
|
48
|
Wang Z, Sun L, Fang Z, Nisar T, Zou L, Li D, Guo Y. Lycium ruthenicum Murray anthocyanins effectively inhibit α-glucosidase activity and alleviate insulin resistance. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100949] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Robles P, Turner A, Zuco G, Adams S, Paganopolou P, Winton M, Hill B, Kache V, Bateson C, Pires-daSilva A. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. BMC Biol 2021; 19:102. [PMID: 34001117 PMCID: PMC8130380 DOI: 10.1186/s12915-021-01032-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Environmental stimuli experienced by the parental generation influence the phenotype of subsequent generations (Demoinet et al., Proc Natl Acad Sci U S A 114:E2689-E2698, 2017; Burton et al., Nat Cell Biol 19:252-257, 2017; Agrawal et al., Nature 401:60-63, 1999). The effects of these stimuli on the parental generation may be passed through the germline, but the mechanisms at the basis of this non-Mendelian type of inheritance, their level of conservation, how they lead to adaptive vs non-adaptive, and intergenerational vs transgenerational inheritance are poorly understood. Here we show that modulation of nutrient-sensing pathways in the parental generation of the nematode Auanema freiburgensis regulates phenotypic plasticity of its offspring. RESULTS In response to con-specific pheromones indicative of stress, AMP-activated protein kinase (AMPK), mechanistic target of rapamycin complex 1 (mTORC1), and insulin signaling regulate stress resistance and sex determination across one generation, and these effects can be mimicked by pathway modulators. The effectors of these pathways are closely associated with the chromatin, and their regulation affects the chromatin acetylation status in the germline. CONCLUSION These results suggest that highly conserved metabolic sensors regulate phenotypic plasticity through regulation of subcellular localization of their effectors, leading to changes in chromatin acetylation and epigenetic status of the germline.
Collapse
Affiliation(s)
- Pedro Robles
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Anisa Turner
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Giusy Zuco
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Michael Winton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Beth Hill
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Vikas Kache
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Christine Bateson
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Andre Pires-daSilva
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
50
|
Aghayeva U, Bhattacharya A, Sural S, Jaeger E, Churgin M, Fang-Yen C, Hobert O. DAF-16/FoxO and DAF-12/VDR control cellular plasticity both cell-autonomously and via interorgan signaling. PLoS Biol 2021; 19:e3001204. [PMID: 33891586 PMCID: PMC8099054 DOI: 10.1371/journal.pbio.3001204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/05/2021] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
Many cell types display the remarkable ability to alter their cellular phenotype in response to specific external or internal signals. Such phenotypic plasticity is apparent in the nematode Caenorhabditis elegans when adverse environmental conditions trigger entry into the dauer diapause stage. This entry is accompanied by structural, molecular, and functional remodeling of a number of distinct tissue types of the animal, including its nervous system. The transcription factor (TF) effectors of 3 different hormonal signaling systems, the insulin-responsive DAF-16/FoxO TF, the TGFβ-responsive DAF-3/SMAD TF, and the steroid nuclear hormone receptor, DAF-12/VDR, a homolog of the vitamin D receptor (VDR), were previously shown to be required for entering the dauer arrest stage, but their cellular and temporal focus of action for the underlying cellular remodeling processes remained incompletely understood. Through the generation of conditional alleles that allowed us to spatially and temporally control gene activity, we show here that all 3 TFs are not only required to initiate tissue remodeling upon entry into the dauer stage, as shown before, but are also continuously required to maintain the remodeled state. We show that DAF-3/SMAD is required in sensory neurons to promote and then maintain animal-wide tissue remodeling events. In contrast, DAF-16/FoxO or DAF-12/VDR act cell-autonomously to control anatomical, molecular, and behavioral remodeling events in specific cell types. Intriguingly, we also uncover non-cell autonomous function of DAF-16/FoxO and DAF-12/VDR in nervous system remodeling, indicating the presence of several insulin-dependent interorgan signaling axes. Our findings provide novel perspectives into how hormonal systems control tissue remodeling.
Collapse
Affiliation(s)
- Ulkar Aghayeva
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Abhishek Bhattacharya
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Eliza Jaeger
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Matthew Churgin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|