1
|
Guo S, Hu X, Cotton JL, Ma L, Li Q, Cui J, Wang Y, Thakare RP, Tao Z, Ip YT, Wu X, Wang J, Mao J. VGLL2 and TEAD1 fusion proteins identified in human sarcoma drive YAP/TAZ-independent tumorigenesis by engaging EP300. eLife 2025; 13:RP98386. [PMID: 40338073 PMCID: PMC12061476 DOI: 10.7554/elife.98386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEADs. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in human spindle cell rhabdomyosarcoma. We demonstrate that in contrast to VGLL2 and TEAD1 the fusion proteins are potent activators of TEAD-dependent transcription, and the function of these fusion proteins does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase EP300 to control TEAD-mediated transcriptional and epigenetic landscapes. We show that small-molecule EP300 inhibition can suppress fusion protein-induced oncogenic transformation both in vitro and in vivo in mouse models. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.
Collapse
Affiliation(s)
- Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongjie Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ritesh P Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical SchoolCharlestownUnited States
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
2
|
Gheller JM, Silva WALD, Souza-Cáceres MB, Silva AFD, Ribeiro Ferreira MGC, Santana TDS, Dos Santos AC, Pereira-Junior SA, Nogueira É, Alencar SAD, Macedo GG, Seneda MM, Chiaratti MR, Melo-Sterza FDA. Transcriptomic analysis of heifers according to antral follicle count. Theriogenology 2025; 237:178-187. [PMID: 40024020 DOI: 10.1016/j.theriogenology.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
While antral follicle count (AFC) has been associated with higher pregnancy rates, at present, our understanding of it as a reproductive parameter remains incomplete. This study aimed to characterize gene expression profile of oocytes from crossbred Bos taurus x Bos indicus heifers with high and low AFCs. Crossbred Nelore-Angus heifers (n = 50) with a mean (SD) age of 9.6 ± 0.55 months, a weight of 295.4 ± 32.6 kg, and a BCS of 3.44 ± 0.41 were studied in a feedlot system. The heifers received a hormonal protocol based on injectable progesterone and estradiol cypionate administered 12 days apart, and ovarian ultrasonography (US) was performed 12 days after to assess the AFC. Based on AFC, heifers were divided into low (≤14 follicles) and high (≥31 follicles) AFC, groups.Forty-five days after US, 14 heifers were slaughtered, and their ovaries were collected for morphological analysis and follicle aspiration. Cumulus-oocyte complexes (COCs) from the high and low AFC groups were graded according to their quality. Only best-quality COCs were stored for RNA-seq analysis. No differences were found in the presence or diameter of the dominant follicle and corpus luteum in the US, nor in the volume of the dominant follicle postmortem. The quantity of COCs recovered from high-AFC heifers was higher than that from low-AFC heifers (P < 0.05), and a tendency (P = 0.07) toward a higher amount of grade II COCs was observed. Thirty-two genes were differentially expressed between the groups, of which 30 were up-regulated and two down-regulated in the low AFC group. Among these, 22 % (7/32) were associated with fertility (CAB39, SLC2A6, CITED2, FDX1, HSD11B2, CD81, and PLA2G12B). Moreover, 9 and 2 exclusive genes were identified in the high and low AFC groups, respectively. Enrichment analyses showed that genes exclusive to oocytes from low-AFC heifers were associated with fundamental cellular processes, such as biosynthesis/biogenesis of ribosomes, peptides, amides, and nucleotides, and also with autophagy, mitophagy and mTOR signalling pathways.On the other hand, only one pathway was enriched in the high AFC group, but this cannot be related to the events studied No differences were observed in the ovarian structures after pre-synchronization of the estrus cycle of young Crossbred Nelore-Angus heifers. However, a tendency of a higher amount of grade II COCs was observed in heifers with high AFC than in those with low AFC. RNA sequencing results indicated that the main differences between high and low AFC heifers were not reflected in the genes directly related to fertility.
Collapse
Affiliation(s)
- Janaina Menegazzo Gheller
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Wilian Aparecido Leite da Silva
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Mirela Brochado Souza-Cáceres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Aldair Félix da Silva
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Mariane Gabriela Cesar Ribeiro Ferreira
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Taynara Dos Santos Santana
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil
| | - Angélica Camargo Dos Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Sérgio Antonio Pereira-Junior
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Ériklis Nogueira
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Gado de Corte, Av. Rádio Maia, 830 - Vila Popular, Campo Grande, MS, Brazil
| | - Sérgio Amorim de Alencar
- Universidade Católica de Brasília, QS 07, Lote 01, Taguatinga Sul - Taguatinga, Brasília, DF, Brazil
| | - Gustavo Guerino Macedo
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil
| | - Marcelo Marcondes Seneda
- Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380, Londrina, PR, Brazil
| | - Marcos Roberto Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luís km 235, Jardim Guanabara, São Carlos, SP, Brazil
| | - Fabiana de Andrade Melo-Sterza
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Av. Sen. Filinto Müler, 2443 - Pioneiros, Campo Grande - MS, Brazil; Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural - Camisão, Aquidauana, MS, Brazil.
| |
Collapse
|
3
|
Nakanishi K, Takamura Y, Nakano Y, Inatani M, Oki M. The HAT Inhibitor ISOX-DUAL Diminishes Ischemic Areas in a Mouse Model of Oxygen-Induced Retinopathy. Genes Cells 2025; 30:e13196. [PMID: 39916601 PMCID: PMC11803434 DOI: 10.1111/gtc.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
Retinal ischemic disease results in significant visual impairment due to the development of fragile and disorganized, pathologically running blood vessels in the eye. Currently, the mainstay treatment for this disease is the intravitreal administration of anti-VEGF drugs targeting vascular endothelial growth factor (VEGF), which induces angiogenesis. However, current anti-VEGF drugs do not diminish the ischemic areas that lead to angiogenesis, making fundamental treatment challenging. Since retinopathy is an acquired disease caused by hypoxic stimulation from ischemia, we paid particular attention to histone acetylases. We conducted a drug screening experiment using a mouse model of oxygen-induced retinopathy (OIR), which replicates retinal ischemic disease, through the intraperitoneal administration of 17 distinct inhibitors targeting histone acetyltransferases (HAT). The results indicated that, among the 17 inhibitors, only ISOX-DUAL decreased neovascularization and ischemic regions. Furthermore, microarray analysis was conducted on the drug-treated samples to refine genes altered by the administration of ISOX-DUAL. There were 21 genes associated with angiogenesis, including Angpt2, Hmox1, Edn1, and Serpine1, exhibited upregulation in OIR mice and downregulation following treatment with ISOX-DUAL. Furthermore, STRING analysis confirmed that the aforementioned four genes are downstream factors of hypoxia-inducible factors and are assumed to be important factors in retinal ischemic diseases.
Collapse
Affiliation(s)
- Kengo Nakanishi
- Department of Industrial Creation Engineering, Graduate School of EngineeringUniversity of FukuiFukuiJapan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Yusei Nakano
- Department of Industrial Creation Engineering, Graduate School of EngineeringUniversity of FukuiFukuiJapan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of EngineeringUniversity of FukuiFukuiJapan
- Life Science Innovation CenterUniversity of FukuiFukuiJapan
| |
Collapse
|
4
|
Guo S, Hu X, Cotton JL, Ma L, Li Q, Cui J, Wang Y, Thakare RP, Tao Z, Ip YT, Wu X, Wang J, Mao J. VGLL2 and TEAD1 fusion proteins drive YAP/TAZ-independent tumorigenesis by engaging p300. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.01.592016. [PMID: 38746415 PMCID: PMC11092657 DOI: 10.1101/2024.05.01.592016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEAD. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in spindle cell rhabdomyosarcoma. We demonstrate that in contrast to VGLL2 and TEAD1, the fusion proteins are strong activators of TEAD-dependent transcription, and their function does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase p300 to control TEAD-mediated transcriptional and epigenetic landscapes. We showed that small molecule p300 inhibition can suppress fusion proteins-induced oncogenic transformation both in vitro and in vivo. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.
Collapse
Affiliation(s)
- Susu Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jennifer L. Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Yongjie Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Ritesh P. Thakare
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 01605, USA
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No 241, West Huaihai Road, Shanghai, P. R., 200030, China
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, 01605, USA
| |
Collapse
|
5
|
Zhang Z, Qin Y, Huang J, Wang Y, Zeng L, Wang Y, Zhuyun F, Wang L. Oestrogen promotes the progression of adenomyosis by inhibiting CITED2 through miR-145. Reprod Biomed Online 2024; 49:104108. [PMID: 39293195 DOI: 10.1016/j.rbmo.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 09/20/2024]
Abstract
RESEARCH QUESTION Is the microRNA miR-145 involved in adenomyosis, and by what mechanisms does it affect disease development and is itself regulated? DESIGN Fluorescence in-situ hybridization was used to observe the expression pattern of miR-145 in adenomyosis ectopic endometrium (n = 13), adenomyosis eutopic endometrium (n = 15) and non-adenomyosis eutopic endometrium (n = 14). RNA sequencing was used to screen target genes as well as downstream pathways of miR-145, which were validated by reporter gene assay, quantitative polymerase chain reaction and western blot, and further analysed using cell migration assay and chromatin immunoprecipitation assay. RESULTS The fluorescence in-situ hybridization assay revealed a noteworthy elevation in miR-145 expression in adenomyosis tissue compared with non-adenomyosis tissue. Furthermore, RNA sequencing analysis revealed that overexpression of miR-145 resulted in heightened expression of genes associated with the cytokine signalling pathway, nucleotide-binding and oligomerization domain-like pathway and adhesion pathway, including IL-1β and IL-6. Our study has identified CITED2 as a downstream direct target gene of miR-145, which is implicated in the inhibition of stromal cell migration induced by miR-145. Moreover, chromatin immunoprecipitation was used to validate the direct effect of oestradiol on the promoter region of miR-145, mediated by oestrogen receptor α, which facilitates the upregulation of miR-145 expression. CONCLUSION Our findings provide evidence supporting the role of oestradiol, acting through its receptor α, in modulating the discovered miR-145-CITED2 signalling axis, thereby promoting the progression of adenomyosis.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China; The Subcenter of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Clinical Research Center for Obstetrics and Gynecology of Jiangxi province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China.
| | - Yunna Qin
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Jia Huang
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Yaoqing Wang
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Liqin Zeng
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Yuanqin Wang
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Fu Zhuyun
- Jiujiang Blood Central, Jiujiang, Jiangxi, PR China.
| | - Liqun Wang
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China.
| |
Collapse
|
6
|
Kuna M, Soares MJ. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024; 46:e2300118. [PMID: 38922923 PMCID: PMC11331489 DOI: 10.1002/bies.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.
Collapse
Affiliation(s)
- Marija Kuna
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
7
|
Wiggins DA, Maxwell JN, Nelson DE. Exploring the role of CITED transcriptional regulators in the control of macrophage polarization. Front Immunol 2024; 15:1365718. [PMID: 38646545 PMCID: PMC11032013 DOI: 10.3389/fimmu.2024.1365718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Macrophages are tissue resident innate phagocytic cells that take on contrasting phenotypes, or polarization states, in response to the changing combination of microbial and cytokine signals at sites of infection. During the opening stages of an infection, macrophages adopt the proinflammatory, highly antimicrobial M1 state, later shifting to an anti-inflammatory, pro-tissue repair M2 state as the infection resolves. The changes in gene expression underlying these transitions are primarily governed by nuclear factor kappaB (NF-κB), Janus kinase (JAK)/signal transducer and activation of transcription (STAT), and hypoxia-inducible factor 1 (HIF1) transcription factors, the activity of which must be carefully controlled to ensure an effective yet spatially and temporally restricted inflammatory response. While much of this control is provided by pathway-specific feedback loops, recent work has shown that the transcriptional co-regulators of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxy-terminal domain (CITED) family serve as common controllers for these pathways. In this review, we describe how CITED proteins regulate polarization-associated gene expression changes by controlling the ability of transcription factors to form chromatin complexes with the histone acetyltransferase, CBP/p300. We will also cover how differences in the interactions between CITED1 and 2 with CBP/p300 drive their contrasting effects on pro-inflammatory gene expression.
Collapse
Affiliation(s)
| | | | - David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
8
|
Arriaga JM, Ronaldson-Bouchard K, Picech F, Nunes de Almeida F, Afari S, Chhouri H, Vunjak-Novakovic G, Abate-Shen C. In vivo genome-wide CRISPR screening identifies CITED2 as a driver of prostate cancer bone metastasis. Oncogene 2024; 43:1303-1315. [PMID: 38454137 PMCID: PMC11101692 DOI: 10.1038/s41388-024-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Most cancer deaths are due to metastatic dissemination to distant organs. Bone is the most frequently affected organ in metastatic prostate cancer and a major cause of prostate cancer deaths. Yet, our partial understanding of the molecular factors that drive bone metastasis has been a limiting factor for developing preventative and therapeutic strategies to improve patient survival and well-being. Although recent studies have uncovered molecular alterations that occur in prostate cancer metastasis, their functional relevance for bone metastasis is not well understood. Using genome-wide CRISPR activation and inhibition screens we have identified multiple drivers and suppressors of prostate cancer metastasis. Through functional validation, including an innovative organ-on-a-chip invasion platform for studying bone tropism, our study identifies the transcriptional modulator CITED2 as a novel driver of prostate cancer bone metastasis and uncovers multiple new potential molecular targets for bone metastatic disease.
Collapse
Affiliation(s)
- Juan M Arriaga
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Oncological Sciences, Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | | | - Florencia Picech
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Francisca Nunes de Almeida
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stephanie Afari
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Houssein Chhouri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Sipko EL, Chappell GF, Berlow RB. Multivalency emerges as a common feature of intrinsically disordered protein interactions. Curr Opin Struct Biol 2024; 84:102742. [PMID: 38096754 DOI: 10.1016/j.sbi.2023.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Intrinsically disordered proteins (IDPs) use their unique molecular properties and conformational plasticity to interact with cellular partners in a wide variety of biological contexts. Multivalency is an important feature of IDPs that allows for utilization of an expanded toolkit for interactions with other macromolecules and confers additional complexity to molecular recognition processes. Recent studies have offered insights into how multivalent interactions of IDPs enable responsive and sensitive regulation in the context of transcription and cellular signaling. Multivalency is also widely recognized as an important feature of IDP interactions that mediate formation of biomolecular condensates. We highlight recent examples of multivalent interactions of IDPs across diverse contexts to illustrate the breadth of biological processes that utilize multivalency in molecular interactions.
Collapse
Affiliation(s)
- Emily L Sipko
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Garrett F Chappell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca B Berlow
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Jank M, Schwartz J, Miyake Y, Ozturk Aptekmann A, Patel D, Boettcher M, Keijzer R. Dysregulation of CITED2 in abnormal lung development in the nitrofen rat model. Pediatr Surg Int 2024; 40:43. [PMID: 38291157 DOI: 10.1007/s00383-023-05607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE CITED2 both modulates lung, heart and diaphragm development. The role of CITED2 in the pathogenesis of congenital diaphragmatic hernia (CDH) is unknown. We aimed to study CITED2 during abnormal lung development in the nitrofen model. METHODS Timed-pregnant rats were given nitrofen on embryonic day (E) 9 to induce CDH. Fetal lungs were harvested on E15, 18 and 21. We performed RT-qPCR, RNAscope™ in situ hybridization and immunofluorescence staining for CITED2. RESULTS We observed no difference in RT-qPCR (control: 1.09 ± 0.22 and nitrofen: 0.95 ± 0.18, p = 0.64) and in situ hybridization (1.03 ± 0.03; 1.04 ± 0.03, p = 0.97) for CITED2 expression in E15 nitrofen and control pups. At E18, CITED2 expression was reduced in in situ hybridization of nitrofen lungs (1.47 ± 0.05; 1.14 ± 0.07, p = 0.0006), but not altered in RT-qPCR (1.04 ± 0.16; 0.81 ± 0.13, p = 0.33). In E21 nitrofen lungs, CITED2 RNA expression was increased in RT-qPCR (1.04 ± 0.11; 1.52 ± 0.17, p = 0.03) and in situ hybridization (1.08 ± 0.07, 1.29 ± 0.04, p = 0.02). CITED2 protein abundance was higher in immunofluorescence staining of E21 nitrofen lungs (2.96 × 109 ± 0.13 × 109; 4.82 × 109 ± 0.25 × 109, p < 0.0001). CONCLUSION Our data suggest that dysregulation of CITED2 contributes to abnormal lung development of CDH, as demonstrated by the distinct spatial-temporal distribution in nitrofen-induced lungs.
Collapse
MESH Headings
- Animals
- Female
- Pregnancy
- Rats
- 2,4-Dinitrophenol
- Disease Models, Animal
- Gene Expression Regulation, Developmental
- Hernias, Diaphragmatic, Congenital/chemically induced
- Hernias, Diaphragmatic, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/metabolism
- Lung/abnormalities
- Lung Diseases/metabolism
- Phenyl Ethers/toxicity
- Rats, Sprague-Dawley
- Respiratory System Abnormalities
Collapse
Affiliation(s)
- Marietta Jank
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Jacquelyn Schwartz
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Yuichiro Miyake
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Arzu Ozturk Aptekmann
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Daywin Patel
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.
| |
Collapse
|
11
|
Dyson HJ, Wright PE. From Immunogenic Peptides to Intrinsically Disordered Proteins. Isr J Chem 2023; 63:e202300051. [PMID: 38454968 PMCID: PMC10919381 DOI: 10.1002/ijch.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 03/09/2024]
Abstract
It is hard to evaluate the role of individual mentors in the genesis of important ideas. In the case of our realization that proteins do not have to be stably folded to be functional, the influence of Richard Lerner and our collaborative work in the 1980s on the conformations of immunogenic peptides provided a base level of thinking about the nature of polypeptides in water solutions that led us to formulate and develop our ideas on the importance of intrinsic disorder in proteins. This review describes how the insights gained into the behavior of peptides led directly to the realization that proteins were not only capable of being functional while disordered, but also that disorder provided a distinct functional advantage in many important cellular processes.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
12
|
Wang S, Wu X, Wang H, Song S, Hu Y, Guo Y, Chang S, Cheng Y, Zeng S. Role of FBXL5 in redox homeostasis and spindle assembly during oocyte maturation in mice. FASEB J 2023; 37:e23080. [PMID: 37462473 DOI: 10.1096/fj.202300244rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
As an E3 ubiquitin ligase, F-box and leucine-rich repeat protein 5 (FBXL5) participates in diverse biologic processes. However, the role of Fbxl5 in mouse oocyte meiotic maturation has not yet been fully elucidated. The present study revealed that mouse oocytes depleted of Fbxl5 were unable to complete meiosis, as Fbxl5 silencing led to oocyte meiotic failure with reduced rates of GVBD and polar body extrusion. In addition, Fbxl5 depletion induced aberrant mitochondrial dynamics as we noted the overproduction of reactive oxygen species (ROS) and the accumulation of phosphorylated γH2AX with Fbxl5 knockdown. We also found that Fbxl5-KD led to the abnormal accumulation of CITED2 proteins in mouse oocytes. Our in vitro ubiquitination assay showed that FBXL5 interacted with CITED2 and that it mediated the degradation of CITED2 protein through the ubiquitination-proteasome pathway. Collectively, our data revealed critical functions of FBXL5 in redox hemostasis and spindle assembly during mouse oocyte maturation.
Collapse
Affiliation(s)
- Shiwei Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Han Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Song
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuling Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siyu Chang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuanweilu Cheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Suresh MV, Aggarwal V, Raghavendran K. The Intersection of Pulmonary Vascular Disease and Hypoxia-Inducible Factors. Interv Cardiol Clin 2023; 12:443-452. [PMID: 37290846 DOI: 10.1016/j.iccl.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hypoxia-inducible factors (HIFs) are a family of nuclear transcription factors that serve as the master regulator of the adaptive response to hypoxia. In the lung, HIFs orchestrate multiple inflammatory pathways and signaling. They have been reported to have a major role in the initiation and progression of acute lung injury, chronic obstructive pulmonary disease, pulmonary fibrosis, and pulmonary hypertension. Although there seems to be a clear mechanistic role for both HIF 1α and 2α in pulmonary vascular diseases including PH, a successful translation into a definitive therapeutic modality has not been accomplished to date.
Collapse
Affiliation(s)
| | - Vikas Aggarwal
- Division of Cardiology (Frankel Cardiovascular Center), Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Section of Cardiology, Department of Internal Medicine, Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Krishnan Raghavendran
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
15
|
Chaltel-Lima L, Domínguez F, Domínguez-Ramírez L, Cortes-Hernandez P. The Role of the Estrogen-Related Receptor Alpha (ERRa) in Hypoxia and Its Implications for Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24097983. [PMID: 37175690 PMCID: PMC10178695 DOI: 10.3390/ijms24097983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Under low oxygen conditions (hypoxia), cells activate survival mechanisms including metabolic changes and angiogenesis, which are regulated by HIF-1. The estrogen-related receptor alpha (ERRα) is a transcription factor with important roles in the regulation of cellular metabolism that is overexpressed in hypoxia, suggesting that it plays a role in cell survival in this condition. This review enumerates and analyses the recent evidence that points to the role of ERRα as a regulator of hypoxic genes, both in cooperation with HIF-1 and through HIF-1- independent mechanisms, in invertebrate and vertebrate models and in physiological and pathological scenarios. ERRα's functions during hypoxia include two mechanisms: (1) direct ERRα/HIF-1 interaction, which enhances HIF-1's transcriptional activity; and (2) transcriptional activation by ERRα of genes that are classical HIF-1 targets, such as VEGF or glycolytic enzymes. ERRα is thus gaining recognition for its prominent role in the hypoxia response, both in the presence and absence of HIF-1. In some models, ERRα prepares cells for hypoxia, with important clinical/therapeutic implications.
Collapse
Affiliation(s)
- Leslie Chaltel-Lima
- Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fabiola Domínguez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| | - Lenin Domínguez-Ramírez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| | - Paulina Cortes-Hernandez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| |
Collapse
|
16
|
Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K. Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation 2023; 46:491-508. [PMID: 36596930 PMCID: PMC9811056 DOI: 10.1007/s10753-022-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive response to hypoxia. There is also an essential link between hypoxia and inflammation, and HIFs have been implicated in the dysregulated immune response to various insults. Despite the prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of arguments both in favor and against its role as adaptive or injurious in the propagation of the acute inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological modulation of HIFs as a new class of therapeutics in the modern intensive care unit.
Collapse
Affiliation(s)
| | | | - Sumeet Solanki
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | | | - Yatrik M Shah
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
17
|
González-García I, García-Clavé E, Cebrian-Serrano A, Le Thuc O, Contreras RE, Xu Y, Gruber T, Schriever SC, Legutko B, Lintelmann J, Adamski J, Wurst W, Müller TD, Woods SC, Pfluger PT, Tschöp MH, Fisette A, García-Cáceres C. Estradiol regulates leptin sensitivity to control feeding via hypothalamic Cited1. Cell Metab 2023; 35:438-455.e7. [PMID: 36889283 PMCID: PMC10028007 DOI: 10.1016/j.cmet.2023.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elena García-Clavé
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Raian E Contreras
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sonja C Schriever
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jutta Lintelmann
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive 8, Singapore 117597, Singapore; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, LudwigMaximilians Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stephen C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Paul T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Research Unit NeuroBiology of Diabetes, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, 80333 Munich, Germany
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
18
|
Yfantis A, Mylonis I, Chachami G, Nikolaidis M, Amoutzias GD, Paraskeva E, Simos G. Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells 2023; 12:cells12050798. [PMID: 36899934 PMCID: PMC10001186 DOI: 10.3390/cells12050798] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The Hypoxia Inducible Factor 1 (HIF-1) plays a major role in the cellular response to hypoxia by regulating the expression of many genes involved in adaptive processes that allow cell survival under low oxygen conditions. Adaptation to the hypoxic tumor micro-environment is also critical for cancer cell proliferation and therefore HIF-1 is also considered a valid therapeutical target. Despite the huge progress in understanding regulation of HIF-1 expression and activity by oxygen levels or oncogenic pathways, the way HIF-1 interacts with chromatin and the transcriptional machinery in order to activate its target genes is still a matter of intense investigation. Recent studies have identified several different HIF-1- and chromatin-associated co-regulators that play important roles in the general transcriptional activity of HIF-1, independent of its expression levels, as well as in the selection of binding sites, promoters and target genes, which, however, often depends on cellular context. We review here these co-regulators and examine their effect on the expression of a compilation of well-characterized HIF-1 direct target genes in order to assess the range of their involvement in the transcriptional response to hypoxia. Delineating the mode and the significance of the interaction between HIF-1 and its associated co-regulators may offer new attractive and specific targets for anticancer therapy.
Collapse
Affiliation(s)
- Angelos Yfantis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence:
| |
Collapse
|
19
|
Subramani A, Hite MEL, Garcia S, Maxwell J, Kondee H, Millican GE, McClelland EE, Seipelt-Thiemann RL, Nelson DE. Regulation of macrophage IFNγ-stimulated gene expression by the transcriptional coregulator CITED1. J Cell Sci 2023; 136:jcs260529. [PMID: 36594555 PMCID: PMC10112972 DOI: 10.1242/jcs.260529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023] Open
Abstract
Macrophages serve as a first line of defense against microbial pathogens. Exposure to interferon-γ (IFNγ) increases interferon-stimulated gene (ISG) expression in these cells, resulting in enhanced antimicrobial and proinflammatory activity. Although this response must be sufficiently vigorous to ensure the successful clearance of pathogens, it must also be carefully regulated to prevent tissue damage. This is controlled in part by CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2), a transcriptional coregulator that limits ISG expression by inhibiting STAT1 and IRF1. Here, we show that the closely related Cited1 is an ISG, which is expressed in a STAT1-dependent manner, and that IFNγ stimulates the nuclear accumulation of CITED1 protein. In contrast to CITED2, ectopic CITED1 enhanced the expression of a subset of ISGs, including Ccl2, Ifit3b, Isg15 and Oas2. This effect was reversed in a Cited1-null cell line produced by CRISPR-based genomic editing. Collectively, these data show that CITED1 maintains proinflammatory gene expression during periods of prolonged IFNγ exposure and suggest that there is an antagonistic relationship between CITED proteins in the regulation of macrophage inflammatory function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aarthi Subramani
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Maria E. L. Hite
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Sarah Garcia
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jack Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Hursha Kondee
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Grace E. Millican
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Erin E. McClelland
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | | | - David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
20
|
Sakai M. Exploring the signal-dependent transcriptional regulation involved in the liver pathology of type 2 diabetes. Diabetol Int 2023; 14:15-20. [PMID: 36636166 PMCID: PMC9829930 DOI: 10.1007/s13340-022-00610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Excess glucagon activity in diabetes increases hepatic glucose production via gluconeogenic gene induction, thus exacerbating hyperglycemia. Glucagon receptor-activated cAMP-dependent protein kinase A (PKA) induces proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) expression via the cAMP response element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) pathway. Transcriptional coactivator PGC-1α subsequently coactivates transcription factors, such as forkhead box O1 (FoxO1) and hepatocyte nuclear factor 4 alpha (HNF4α), to induce gluconeogenic genes. The current review first summarizes the mechanism by which transcriptional cofactor CBP and p300-activated transactivator with glutamic acid and aspartic acid-rich COOH-terminal domain 2 (CITED2) activates gluconeogenesis via the regulation of PGC-1α and general control of amino acid synthesis protein 5-like 2 (GCN5). Type 2 diabetes is closely linked with non-alcoholic fatty liver disease (NAFLD). Between 10 and 20% of NAFLD progresses to non-alcoholic steatohepatitis (NASH), which can cause liver cirrhosis and can also lead to hepatocellular carcinoma. Liver macrophages are considered to be related to inflammation and fibrosis observed in NASH. This review outlines liver-derived signals underlying the differentiation of liver macrophages and the mechanism of myeloid cell diversification in NASH.
Collapse
Affiliation(s)
- Mashito Sakai
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602 Japan
| |
Collapse
|
21
|
Wen B, Zhang W, Zhang Y, Lei H, Cao Y, Li W, Wang W. Self-Effected Allosteric Coupling and Cooperativity in Hypoxic Response Regulation with Disordered Proteins. J Phys Chem Lett 2022; 13:9201-9209. [PMID: 36170455 DOI: 10.1021/acs.jpclett.2c02065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypersensitive regulation of cellular hypoxic response relies on cooperative displacement of one disordered protein (HIF-1α) by another disordered protein (CITED2) from the target in a negative feedback loop. Considering the weak intramolecule coupling in disordered proteins, the molecular mechanism of high cooperativity in the molecular displacement event remains elusive. Herein, we show that disordered proteins utilize a "self-effected allostery" mechanism to achieve high binding cooperativity. Different from the conventional allostery mechanisms shown by many structured or disordered proteins, this mechanism utilizes one part of the disordered protein as the effector to trigger the allosteric coupling and enhance the binding of the remaining part of the same disordered protein, contributing to high cooperativity of the displacement event. The conserved charge motif of CITED2 is the key determinant of the molecular displacement event by serving as the effector of allosteric coupling. Such self-effected allostery provides an efficient strategy to achieve high cooperativity in the molecular events involving disordered proteins.
Collapse
Affiliation(s)
- Bin Wen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Weiwei Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yangyang Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hai Lei
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Lu M, Liu Y, Xian Z, Yu X, Chen J, Tan S, Zhang P, Guo Y. VEGF to CITED2 ratio predicts the collateral circulation of acute ischemic stroke. Front Neurol 2022; 13:1000992. [PMID: 36247751 PMCID: PMC9563238 DOI: 10.3389/fneur.2022.1000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The research objective was to evaluate the predicting role of the vascular endothelial growth factor to CBP/P300-interacting transactivator with Glu/Asp-rich C-terminal domain 2 Ratio (VEGF/CITED2) from peripheral blood mononuclear cells (PBMCs) in the collateral circulation of acute ischemic stroke (AIS). Methods In an observational study of patients with AIS, the western blot was applied to test the protein expression of VEGF and CITED2. Then, we calculated the VEGF/CITED2 and collected other clinical data. Binary logistic regression analysis between collateral circulation and clinical data was performed. Finally, receiver operating characteristic (ROC) curve analysis was used to explore the predictive value of VEGF/CITED2. Results A total of 67 patients with AIS were included in the study. Binary logistic regression analysis indicated the VEGF/CITED2 (OR 165.79, 95%CI 7.25–3,791.54, P = 0.001) was an independent protective factor. The ROC analyses showed an area under the ROC curve of the VEGF/CITED2 was 0.861 (95%CI 0.761–0.961). The optimal cutoff value of 1.013 for VEGF/CITED2 had a sensitivity of 89.1% and a specificity of 85.7%. Conclusion In patients with AIS, the VEGF/CITED2 was related to the establishment of collateral circulation. The VEGF/CITED2 is a potentially valuable biomarker for predicting collateral circulation. Clinical trial registration ClinicalTrials.gov, identifier: NCT05345366.
Collapse
Affiliation(s)
- Minyi Lu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuben Liu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqiang Xian
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyao Yu
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Peidong Zhang
| | - Yang Guo
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Yang Guo
| |
Collapse
|
23
|
Chen Z, Chen HX, Hou HT, Yin XY, Yang Q, Han J, He GW. Genetic Variants of CITED2 Gene Promoter in Human Atrial Septal Defects: Case-Control Study and Cellular Functional Verification. J Cardiovasc Dev Dis 2022; 9:321. [PMID: 36286273 PMCID: PMC9604052 DOI: 10.3390/jcdd9100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Atrial septal defect (ASD) is one of the most common forms of congenital heart disease (CHD). Genetic variants in the coding region of the CITED2 gene are known to be significantly correlated with CHD, but the role of variants in the promoter region of CITED2 is unknown. We investigated variants in the promoter of the CITED2 gene in 625 subjects (332 ASD and 293 healthy controls) through Sanger sequencing. Four variants in the CITED2 gene promoter were found only in eight ASD patients with zero occurrence in the control subjects (one case of g.4078A>C(rs1165649373), one case of g.4240C>A(rs1235857801), four cases of g.4935C>T(rs111470468), two cases of g.5027C>T(rs112831934)). Cellular functional analysis showed that these four variants significantly changed the transcriptional activity of the CITED2 gene promoter in HEK-293 and HL-1 cells. Electrophoretic mobility change assay results and JASPAR database analysis demonstrated that these variants created or destroyed a series of possible transcription factor binding sites, resulting in changes in the expression of CITED2 protein. We conclude that the variants of CITED2 promoter in ASD patients affect the transcriptional activity and are likely involved in the occurrence and development of ASD. These findings provide new perspectives on the pathogenesis and potential therapeutic insights of ASD.
Collapse
Affiliation(s)
- Zhuo Chen
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China and The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases and Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University and Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Hai-Tao Hou
- The Institute of Cardiovascular Diseases and Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University and Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Xiu-Yun Yin
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China and The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases and Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University and Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Guo-Wei He
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui 241002, China and The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- The Institute of Cardiovascular Diseases and Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University and Chinese Academy of Medical Sciences, Tianjin 300457, China
| |
Collapse
|
24
|
Devaux CA, Raoult D. The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Front Physiol 2022; 13:960308. [PMID: 36091390 PMCID: PMC9454615 DOI: 10.3389/fphys.2022.960308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cases of coronavirus disease 2019 (COVID-19) have been reported worldwide. However, one epidemiological report has claimed a lower incidence of the disease in people living at high altitude (>2,500 m), proposing the hypothesis that adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection. This publication was initially greeted with skepticism, because social, genetic, or environmental parametric variables could underlie a difference in susceptibility to the virus for people living in chronic hypobaric hypoxia atmospheres. Moreover, in some patients positive for SARS-CoV-2, early post-infection ‘happy hypoxia” requires immediate ventilation, since it is associated with poor clinical outcome. If, however, we accept to consider the hypothesis according to which the adaptation to hypoxia may prove to be advantageous with respect to SARS-CoV-2 infection, identification of the molecular rational behind it is needed. Among several possibilities, HIF-1 regulation appears to be a molecular hub from which different signaling pathways linking hypoxia and COVID-19 are controlled. Interestingly, HIF-1α was reported to inhibit the infection of lung cells by SARS-CoV-2 by reducing ACE2 viral receptor expression. Moreover, an association of the rs11549465 variant of HIF-1α with COVID-19 susceptibility was recently discovered. Here, we review the evidence for a link between HIF-1α, ACE2 and AT1R expression, and the incidence/severity of COVID-19. We highlight the central role played by the HIF-1α signaling pathway in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
- *Correspondence: Christian Albert Devaux,
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
25
|
Ouellette MM, Zhou S, Yan Y. Cell Signaling Pathways That Promote Radioresistance of Cancer Cells. Diagnostics (Basel) 2022; 12:diagnostics12030656. [PMID: 35328212 PMCID: PMC8947583 DOI: 10.3390/diagnostics12030656] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy (RT) is a standard treatment for solid tumors and about 50% of patients with cancer, including pediatric cancer, receive RT. While RT has significantly improved the overall survival and quality of life of cancer patients, its efficacy has still been markedly limited by radioresistance in a significant number of cancer patients (intrinsic or acquired), resulting in failure of the RT control of the disease. Radiation eradicates cancer cells mainly by causing DNA damage. However, radiation also concomitantly activates multiple prosurvival signaling pathways, which include those mediated by ATM, ATR, AKT, ERK, and NF-κB that promote DNA damage checkpoint activation/DNA repair, autophagy induction, and/or inhibition of apoptosis. Furthermore, emerging data support the role of YAP signaling in promoting the intrinsic radioresistance of cancer cells, which occurs through its activation of the transcription of many essential genes that support cell survival, DNA repair, proliferation, and the stemness of cancer stem cells. Together, these signaling pathways protect cancer cells by reducing the magnitude of radiation-induced cytotoxicity and promoting radioresistance. Thus, targeting these prosurvival signaling pathways could potentially improve the radiosensitivity of cancer cells. In this review, we summarize the contribution of these pathways to the radioresistance of cancer cells.
Collapse
Affiliation(s)
- Michel M. Ouellette
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Correspondence:
| |
Collapse
|
26
|
Multivalency enables unidirectional switch-like competition between intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:2117338119. [PMID: 35012986 PMCID: PMC8784115 DOI: 10.1073/pnas.2117338119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Intrinsically disordered proteins must compete for binding to common regulatory targets to carry out their biological functions. Previously, we showed that the activation domains of two disordered proteins, the transcription factor HIF-1α and its negative regulator CITED2, function as a unidirectional, allosteric molecular switch to control transcription of critical adaptive genes under conditions of oxygen deprivation. These proteins achieve transcriptional control by competing for binding to the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300 (CREB: cyclic-AMP response element binding protein). To characterize the mechanistic details behind this molecular switch, we used solution NMR spectroscopy and complementary biophysical methods to determine the contributions of individual binding motifs in CITED2 to the overall competition process. An N-terminal region of the CITED2 activation domain, which forms a helix when bound to TAZ1, plays a critical role in initiating competition with HIF-1α by enabling formation of a ternary complex in a process that is highly dependent on the dynamics and disorder of the competing partners. Two other conserved binding motifs in CITED2, the LPEL motif and an aromatic/hydrophobic motif that we term ϕC, function synergistically to enhance binding of CITED2 and inhibit rebinding of HIF-1α. The apparent unidirectionality of competition between HIF-1α and CITED2 is lost when one or more of these binding regions is altered by truncation or mutation of the CITED2 peptide. Our findings illustrate the complexity of molecular interactions involving disordered proteins containing multivalent interaction motifs and provide insight into the unique mechanisms by which disordered proteins compete for occupancy of common molecular targets within the cell.
Collapse
|
27
|
Hóbor F, Hegedüs Z, Ibarra AA, Petrovicz VL, Bartlett GJ, Sessions RB, Wilson AJ, Edwards TA. Understanding p300-transcription factor interactions using sequence variation and hybridization. RSC Chem Biol 2022; 3:592-603. [PMID: 35656479 PMCID: PMC9092470 DOI: 10.1039/d2cb00026a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
The hypoxic response is central to cell function and plays a significant role in the growth and survival of solid tumours. HIF-1 regulates the hypoxic response by activating over 100...
Collapse
Affiliation(s)
- Fruzsina Hóbor
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Amaurys Avila Ibarra
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Vencel L Petrovicz
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Gail J Bartlett
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol, Life Sciences Building Tyndall Avenue Bristol BS8 1TQ UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
28
|
Appling FD, Berlow RB, Stanfield RL, Dyson HJ, Wright PE. The molecular basis of allostery in a facilitated dissociation process. Structure 2021; 29:1327-1338.e5. [PMID: 34520739 PMCID: PMC8642270 DOI: 10.1016/j.str.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
Facilitated dissociation provides a mechanism by which high-affinity complexes can be rapidly disassembled. The negative feedback regulator CITED2 efficiently downregulates the hypoxic response by displacing the hypoxia-inducible transcription factor HIF-1α from the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300. Displacement occurs by a facilitated dissociation mechanism involving a transient ternary intermediate formed by binding of the intrinsically disordered CITED2 activation domain to the TAZ1:HIF-1α complex. The short lifetime of the intermediate precludes straightforward structural investigations. To obtain insights into the molecular determinants of facilitated dissociation, we model the ternary intermediate by generating a fusion peptide composed of the primary CITED2 and HIF-1α binding motifs. X-ray crystallographic and NMR studies of the fusion peptide complex reveal TAZ1-mediated negative cooperativity that results in nearly mutually exclusive binding of specific CITED2 and HIF-1α interaction motifs, providing molecular-level insights into the allosteric switch that terminates the hypoxic response.
Collapse
Affiliation(s)
- Francis D Appling
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Lawson H, van de Lagemaat LN, Barile M, Tavosanis A, Durko J, Villacreces A, Bellani A, Mapperley C, Georges E, Martins-Costa C, Sepulveda C, Allen L, Campos J, Campbell KJ, O'Carroll D, Göttgens B, Cory S, Rodrigues NP, Guitart AV, Kranc KR. CITED2 coordinates key hematopoietic regulatory pathways to maintain the HSC pool in both steady-state hematopoiesis and transplantation. Stem Cell Reports 2021; 16:2784-2797. [PMID: 34715054 PMCID: PMC8581166 DOI: 10.1016/j.stemcr.2021.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 10/26/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic differentiation hierarchy and sustain multilineage hematopoiesis. Here, we show that the transcriptional regulator CITED2 is essential for life-long HSC maintenance. While hematopoietic-specific Cited2 deletion has a minor impact on steady-state hematopoiesis, Cited2-deficient HSCs are severely depleted in young mice and fail to expand upon aging. Moreover, although they home normally to the bone marrow, they fail to reconstitute hematopoiesis upon transplantation. Mechanistically, CITED2 is required for expression of key HSC regulators, including GATA2, MCL-1, and PTEN. Hematopoietic-specific expression of anti-apoptotic MCL-1 partially rescues the Cited2-deficient HSC pool and restores their reconstitution potential. To interrogate the Cited2→Pten pathway in HSCs, we generated Cited2;Pten compound heterozygous mice, which had a decreased number of HSCs that failed to reconstitute the HSC compartment. In addition, CITED2 represses multiple pathways whose elevated activity causes HSC exhaustion. Thus, CITED2 promotes pathways necessary for HSC maintenance and suppresses those detrimental to HSC integrity.
Collapse
Affiliation(s)
- Hannah Lawson
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Louie N van de Lagemaat
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Melania Barile
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jozef Durko
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Arnaud Villacreces
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Aarushi Bellani
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christopher Mapperley
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Elise Georges
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Catarina Sepulveda
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lewis Allen
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Joana Campos
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Dónal O'Carroll
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Amelie V Guitart
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, 33000 Bordeaux, France.
| | - Kamil R Kranc
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
30
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
31
|
Zafar A, Pong Ng H, Diamond-Zaluski R, Kim GD, Ricky Chan E, Dunwoodie SL, Smith JD, Mahabeleshwar GH. CITED2 inhibits STAT1-IRF1 signaling and atherogenesis. FASEB J 2021; 35:e21833. [PMID: 34365659 DOI: 10.1096/fj.202100792r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Macrophages are the principal component of the innate immune system. They play very crucial and multifaceted roles in the pathogenesis of inflammatory vascular diseases. There is an increasing recognition that transcriptionally dynamic macrophages are the key players in the pathogenesis of inflammatory vascular diseases. In this context, the accumulation and aberrant activation of macrophages in the subendothelial layers govern atherosclerotic plaque development. Macrophage-mediated inflammation is an explicitly robust biological response that involves broad alterations in inflammatory gene expression. Thus, cell-intrinsic negative regulatory mechanisms must exist which can restrain inflammatory response in a spatiotemporal manner. In this study, we identified CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) as one such cell-intrinsic negative regulator of inflammation. Our in vivo studies show that myeloid-CITED2-deficient mice on the Apoe-/- background have larger atherosclerotic lesions on both control and high-fat/high-cholesterol diets. Our integrated transcriptomics and gene set enrichment analyses studies show that CITED2 deficiency elevates STAT1 and interferon regulatory factor 1 (IRF1) regulated pro-inflammatory gene expression in macrophages. At the molecular level, our studies identify that CITED2 deficiency elevates IFNγ-induced STAT1 transcriptional activity and STAT1 enrichment on IRF1 promoter in macrophages. More importantly, siRNA-mediated knockdown of IRF1 completely reversed elevated pro-inflammatory target gene expression in CITED2-deficient macrophages. Collectively, our study findings demonstrate that CITED2 restrains the STAT1-IRF1 signaling axis in macrophages and limits the development of atherosclerotic plaques.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rachel Diamond-Zaluski
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gun-Dong Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ernest Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,Faculties of Medicine and Science, UNSW Sydney, Sydney, NSW, Australia
| | - Jonathan D Smith
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
32
|
Transcriptome sequencing provides insights into the mechanism of hypoxia adaption in bighead carp (Hypophthalmichthys nobilis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100891. [PMID: 34404015 DOI: 10.1016/j.cbd.2021.100891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Hypoxia negatively affects the behavior, immunology, physiology, and growth of fish. Therefore, uncovering the genetic mechanisms underlying hypoxia adaptation and tolerance in fish prior to any genetic improvement is essential. Bighead carp is one of the most important freshwater fish species in aquaculture worldwide; however, this species does not have a strong ability to tolerate hypoxia. In this study, the dissolved oxygen level (0.6 mg/L) was maintained above the asphyxiation point of bighead carp for a long time to simulate hypoxia stress. The liver, gills, and heart were sampled before (0 h) and after (1 h, 2 h, 4 h) the hypoxia tests. Glutathione peroxidase (GPx) and catalase (CAT) activities and malondialdehyde (MDA) levels in the liver were significantly (p < 0.05) elevated at 1 h after hypoxic stress. By observing tissue morphology, the cell structure of the liver and gill tissues was found to change to varying degrees before and after hypoxia stress. Transcriptome sequencing was performed on 36 samples of gill, liver, and heart at four time points, and a total of 293.55G of data was obtained. In the early phase (0-1 h), differentially expressed genes (DEGs, 807 genes upregulated, 654 genes downregulated) were mainly enriched in signal transduction, such as cytokine-cytokine receptor interactions and ECM-receptor interactions. In the middle phase (0-2 h), DEGs (1201 genes upregulated and 2036 genes downregulated) were mainly enriched in regulation and adaptation, such as the MAPK and FoxO signaling pathways. Finally, in the later phase (0-4 h), DEGs (3975 genes upregulated and 4412 genes downregulated) were mainly enriched in tolerance and apoptosis, such as the VEGF signaling pathway and apoptosis. The genes with the most remarkable upregulation at different time points in the three tissues had some similarities. Genetic differences in these genes may be responsible for the differences in hypoxia tolerance among individuals. Altogether, our study provides new insights into the molecular mechanisms of hypoxia adaptation in fish. Further, the key regulatory genes identified provide genetic resources for breeding hypoxia-tolerant bighead carp species.
Collapse
|
33
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
34
|
Tan L, Tran L, Ferreyra S, Moran JA, Skovgaard Z, Trujillo A, ibili E, Zhao Y. Downregulation of SUV39H1 and CITED2 Exerts Additive Effect on Promoting Adipogenic Commitment of Human Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:485-501. [PMID: 33691475 PMCID: PMC8106253 DOI: 10.1089/scd.2020.0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 11/12/2022] Open
Abstract
Human adipogenesis is the process through which uncommitted human mesenchymal stem cells (hMSCs) differentiate into adipocytes. Through a siRNA-based high-throughput screen that identifies adipogenic regulators whose expression knockdown leads to enhanced adipogenic differentiation of hMSCs, two new regulators, SUV39H1, a histone methyltransferase that catalyzes H3K9Me3, and CITED2, a CBP/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 were uncovered. Both SUV39H1 and CITED2 are normally downregulated during adipogenic differentiation of hMSCs. Further expression knockdown induced by siSUV39H1 or siCITED2 at the adipogenic initiation stage significantly enhanced adipogenic differentiation of hMSCs as compared with siControl treatment, with siSUV39H1 acting by both accelerating fat accumulation in individual adipocytes and increasing the total number of committed adipocytes, whereas siCITED2 acting predominantly by increasing the total number of committed adipocytes. In addition, both siSUV39H1 and siCITED2 were able to redirect hMSCs to undergo adipogenic differentiation in the presence of osteogenic inducing media, which normally only induces osteogenic differentiation of hMSCs in the absence of siSUV39H1 or siCITED2. Interestingly, simultaneous knockdown of both SUV39H1 and CITED2 resulted in even greater levels of adipogenic differentiation of hMSCs and expression of CEBPα and PPARγ, two master regulators of adipogenesis, as compared with those elicited by single gene knockdown. Furthermore, the effects of co-knockdown were equivalent to the additive effect of individual gene knockdown. Taken together, this study demonstrates that SUV39H1 and CITED2 are both negative regulators of human adipogenesis, and downregulation of both genes exerts an additive effect on promoting adipogenic differentiation of hMSCs through augmented commitment.
Collapse
Affiliation(s)
- Lun Tan
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Linh Tran
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Stephanie Ferreyra
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Jose A. Moran
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Zachary Skovgaard
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Amparo Trujillo
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Esra ibili
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| | - Yuanxiang Zhao
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, USA
| |
Collapse
|
35
|
A gain-of-function mutation in CITED2 is associated with congenital heart disease. Mutat Res 2021; 822:111741. [PMID: 33706167 DOI: 10.1016/j.mrfmmm.2021.111741] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
CITED2 is a transcription co-activator that interacts with TFAP2 and CBP/ P300 transcription factors to regulate the proliferation and differentiation of the cardiac progenitor cells. It acts upstream to NODAL-PITX2 pathways and regulates the left-right asymmetry. Both human genetic and model organism studies have shown that altered expression of CITED2 causes various forms of congenital heart disease. Therefore, we sought to screen the coding region of CITED2 to identify rare genetic variants and assess their impact on the structure and function of the protein. Here, we have screened 271 non-syndromic, sporadic CHD cases by Sanger's sequencing method and detected a non-synonymous variant (c.301C>T, p.P101S) and two synonymous variants (c.21C>A, p.A7A; c.627C>G, p.P209P). The non-synonymous variant c.301C>T (rs201639244) is a rare variant with a minor allele frequency of 0.00011 in the gnomAD browser and 0.0018 in the present study. in vitro analysis has demonstrated that p.P101S mutation upregulates the expression of downstream target genes Gata4, Mef2c, Nfatc1&2, Nodal, Pitx2, and Tbx5 in P19 cells. Luciferase reporter assay also demonstrates enhanced activation of downstream target promoters. Further, in silico analyses implicate that increased activity of mutant CITED2 is possibly due to phosphorylation of Serine residue by proline-directed kinases. Homology modeling and alignment analysis have also depicted differences in hydrogen bonding and tertiary structures of wild-type versus mutant protein. The impact of synonymous variations on the mRNA structure of CITED2has been analyzed by Mfold and relative codon bias calculations. Mfold results have revealed that both the synonymous variants can alter the mRNA structure and stability. Relative codon usage analysis has suggested that the rate of translation is attenuated due to these variations. Altogether, our results from genetic screening as well as in vitro and in silico studies support a possible role of nonsynonymous and synonymous mutations in CITED2contributing to pathogenesis of CHD.
Collapse
|
36
|
Akinsiku OE, Soremekun OS, Soliman MES. Update and Potential Opportunities in CBP [Cyclic Adenosine Monophosphate (cAMP) Response Element-Binding Protein (CREB)-Binding Protein] Research Using Computational Techniques. Protein J 2021; 40:19-27. [PMID: 33394237 PMCID: PMC7868315 DOI: 10.1007/s10930-020-09951-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
CBP [cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB)-binding protein] is one of the most researched proteins for its therapeutic function. Several studies have identified its vast functions and interactions with other transcription factors to initiate cellular signals of survival. In cancer and other diseases such as Alzheimer's, Rubinstein-taybi syndrome, and inflammatory diseases, CBP has been implicated and hence an attractive target in drug design and development. In this review, we explore the various computational techniques that have been used in CBP research, furthermore we identified computational gaps that could be explored to facilitate the development of highly therapeutic CBP inhibitors.
Collapse
Affiliation(s)
- Oluwayimika E Akinsiku
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
| |
Collapse
|
37
|
Baddar NWAH, Dwaraka VB, Ponomareva LV, Thorson JS, Voss SR. Chemical genetics of regeneration: Contrasting temporal effects of CoCl
2
on axolotl tail regeneration. Dev Dyn 2021; 250:852-865. [DOI: 10.1002/dvdy.294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Nour W. Al Haj Baddar
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center University of Kentucky Lexington Kentucky USA
| | - Varun B. Dwaraka
- Department of Biology University of Kentucky Lexington Kentucky USA
| | - Larissa V. Ponomareva
- College of Pharmacy and Center for Pharmaceutical Research and Innovation University of Kentucky Lexington Kentucky USA
| | - Jon S. Thorson
- College of Pharmacy and Center for Pharmaceutical Research and Innovation University of Kentucky Lexington Kentucky USA
| | - S. Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center University of Kentucky Lexington Kentucky USA
| |
Collapse
|
38
|
SRF Fusions Other Than With RELA Expand the Molecular Definition of SRF-fused Perivascular Tumors. Am J Surg Pathol 2021; 44:1725-1735. [PMID: 33021523 DOI: 10.1097/pas.0000000000001546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pericytic tumors encompass several entities sharing morphologic and immunohistochemical features. A subset of perivascular myoid tumors associated with the SRF-RELA fusion gene was previously described. Herein, we report a series of 13 tumors belonging to this group, in which we have identified new fusion genes by RNA-sequencing, thus expanding the molecular spectrum of this entity. All patients except 1 were children and infants. The tumors, frequently located in the head (n=8), had a mean size of 38 mm (range 10 to 150 mm) and were mostly (n=9) well-circumscribed. Exploration of the follow-up data (ranging from 3 to 68 mo) confirmed the benign behavior of these tumors. These neoplasms presented a spectrum of morphologies, ranging from perivascular patterns to myoid appearance. Tumor cells presented mitotic figures but without marked atypia. Some of these tumors could mimic sarcoma. The immunohistochemical profiles confirmed a pericytic differentiation with the expression of the smooth muscle actin and the h-caldesmon, as well as the frequent positivity for pan-cytokeratin. The molecular analysis identified the expected SRF-RELA fusion gene, in addition to other genetic alterations, all involving SRF fused to CITED1, CITED2, NFKBIE, or NCOA2. The detection of SRF-NCOA2 fusions in spindle cell rhabdomyosarcoma of the infant has previously been described, representing a risk of misdiagnosis, although the cases reported herein did not express MyoD1. Finally, clustering analyses confirmed that this group of SRF-fused perivascular myoid tumors forms a distinct entity, different from other perivascular tumors, spindle cell rhabdomyosarcomas of the infant, and smooth muscle tumors.
Collapse
|
39
|
Wagner NR, MacDonald JL. Atypical Neocortical Development in the Cited2 Conditional Knockout Leads to Behavioral Deficits Associated with Neurodevelopmental Disorders. Neuroscience 2020; 455:65-78. [PMID: 33346116 DOI: 10.1016/j.neuroscience.2020.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
The mammalian neocortex develops from a single layer of neuroepithelial cells to form a six-layer heterogeneous mosaic of differentiated neurons and glial cells. This process requires a complex choreography of temporally and spatially restricted transcription factors and epigenetic regulators. Even subtle disruptions in this regulation can alter the way the neocortex forms and functions, leading to a neurodevelopmental disorder. One epigenetic regulator that is essential for the precise development of the neocortex is CITED2 (CBP/p300 Interacting Transactivator with ED-rich termini). Cited2 is highly expressed by intermediate progenitor cells in the subventricular zone during the generation of the superficial layers of the neocortex. A forebrain-specific conditional knockout of Cited2 (cKO) exhibits reduced proliferation of intermediate progenitor cells embryonically, leading to reduced thickness of the superficial layers and reduced corpus callosum (CC) volume postnatally. Further, the Cited2 cKO display disruptions in balanced neocortical arealization, with a specific reduction in the somatosensory neocortical length, and dysregulation of precise, area-specific neuronal connectivity. Here, we explore the behavioral consequences resulting from this aberrant neocortical development. We demonstrate that Cited2 cKO mice display decreased maternal separation-induced ultrasonic vocalizations (USVs) as neonates, and an increase in rearing behavior and lack of habituation following repeated acoustic startle as adults. They do not display alterations in anxiety-like behavior, overall locomotor activity, or social interactions. Together with the morphological, molecular, and connectivity disruptions, these results identify the Cited2 cKO neocortex as an ideal system to study mechanisms underlying neurodevelopmental and neuroanatomical disruptions with relevance to human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nikolaus R Wagner
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse NY, United States
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse NY, United States.
| |
Collapse
|
40
|
An allosteric peptide inhibitor of HIF-1α regulates hypoxia-induced retinal neovascularization. Proc Natl Acad Sci U S A 2020; 117:28297-28306. [PMID: 33106407 DOI: 10.1073/pnas.2017234117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinal neovascularization (NV), a leading cause of vision loss, results from localized hypoxia that stabilizes the hypoxia-inducible transcription factors HIF-1α and HIF-2α, enabling the expression of angiogenic factors and genes required to maintain homeostasis under conditions of oxygen stress. HIF transcriptional activity depends on the interaction between its intrinsically disordered C-terminal domain and the transcriptional coactivators CBP/p300. Much effort is currently directed at disrupting protein-protein interactions between disease-associated transcription factors like HIF and their cellular partners. The intrinsically disordered protein CITED2, a direct product of HIF-mediated transcription, functions as a hypersensitive negative regulator that attenuates the hypoxic response by competing allosterically with HIF-1α for binding to CBP/p300. Here, we show that a peptide fragment of CITED2 is taken up by retinal cells and efficiently regulates pathological angiogenesis in murine models of ischemic retinopathy. Both vaso-obliteration (VO) and NV were significantly inhibited in an oxygen-induced retinopathy (OIR) model following intravitreal injection of the CITED2 peptide. The CITED2 peptide localized to retinal neurons and glia, resulting in decreased expression of HIF target genes. Aflibercept, a commonly used anti-VEGF therapy for retinal neovascular diseases, rescued NV but not VO in OIR. However, a combination of the CITED2 peptide and a reduced dose of aflibercept significantly decreased both NV and VO. In contrast to anti-VEGF agents, the CITED2 peptide can rescue hypoxia-induced retinal NV by modulating the hypoxic response through direct competition with HIF for CBP/p300, suggesting a dual targeting strategy for treatment of ischemic retinal diseases and other neovascular disorders.
Collapse
|
41
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
42
|
Pong Ng H, Kim GD, Ricky Chan E, Dunwoodie SL, Mahabeleshwar GH. CITED2 limits pathogenic inflammatory gene programs in myeloid cells. FASEB J 2020; 34:12100-12113. [PMID: 32697413 PMCID: PMC7496281 DOI: 10.1096/fj.202000864r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Monocyte‐derived macrophages are the major innate immune cells that provide the first line of cellular defense against infections or injuries. These recruited macrophages at the site of inflammation are exposed to a broad range of cytokines that categorically incite a robust pro‐inflammatory response. However, macrophage pro‐inflammatory activation must be under exquisite control to avert unbridled inflammation. Thus, endogenous mechanisms must exist that rigorously preserve macrophage quiescence and yet, allow nimble pro‐inflammatory macrophage response with precise spatiotemporal control. Herein, we identify the CBP/p300‐interacting transactivator with glutamic acid/aspartic acid‐rich carboxyl‐terminal domain 2 (CITED2) as a critical intrinsic negative regulator of inflammation, which broadly attenuates pro‐inflammatory gene programs in macrophages. Our in vivo studies revealed that myeloid‐CITED2 deficiency significantly heightened macrophages and neutrophils recruitment to the site of inflammation. Our integrated transcriptomics and gene set enrichment analysis (GSEA) studies uncovered that CITED2 deficiency broadly enhances NFκB targets, IFNγ/IFNα responses, and inflammatory response gene expression in macrophages. Using complementary gain‐ and loss‐of‐function studies, we observed that CITED2 overexpression attenuate and CITED2 deficiency elevate LPS‐induced NFκB transcriptional activity and NFκB‐p65 recruitment to target gene promoter in macrophages. More importantly, blockade of NFκB signaling completely reversed elevated pro‐inflammatory gene expression in macrophages. Collectively, our findings show that CITED2 restrains NFκB activation and curtails broad pro‐inflammatory gene programs in myeloid cells.
Collapse
Affiliation(s)
- Hang Pong Ng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gun-Dong Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, Australia.,UNSW Sydney, Sydney, Australia
| | - Ganapati H Mahabeleshwar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
43
|
Bina M. Discovering candidate imprinted genes and imprinting control regions in the human genome. BMC Genomics 2020; 21:378. [PMID: 32475352 PMCID: PMC7262774 DOI: 10.1186/s12864-020-6688-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genomic imprinting is a process thereby a subset of genes is expressed in a parent-of-origin specific manner. This evolutionary novelty is restricted to mammals and controlled by genomic DNA segments known as Imprinting Control Regions (ICRs) and germline Differentially Methylated Regions (gDMRs). Previously, I showed that in the mouse genome, the fully characterized ICRs/gDMRs often includes clusters of 2 or more of a set of composite-DNA-elements known as ZFBS-morph overlaps. RESULTS Because of the importance of the ICRs to regulating parent-of-origin specific gene expression, I developed a genome-wide strategy for predicting their positions in the human genome. My strategy consists of creating plots to display the density of ZFBS-morph overlaps along the entire chromosomal DNA sequences. In initial evaluations, I found that peaks in these plots pinpointed several of the known ICRs/gDMRs along the DNA in chromosomal bands. I deduced that in density-plots, robust peaks corresponded to actual or candidate ICRs in the DNA. By locating the genes in the vicinity of candidate ICRs, I could discover potential imprinting genes. Additionally, my assessments revealed a connection between several of the potential imprinted genes and human developmental anomalies. Examples include Leber congenital amaurosis 11, Coffin-Siris syndrome, progressive myoclonic epilepsy-10, microcephalic osteodysplastic primordial dwarfism type II, and microphthalmia, cleft lip and palate, and agenesis of the corpus callosum. CONCLUSION With plots displaying the density of ZFBS-morph overlaps, researchers could locate candidate ICRs and imprinted genes. Since the datafiles are available for download and display at the UCSC genome browser, it is possible to examine the plots in the context of Single nucleotide polymorphisms (SNPs) to design experiments to discover novel ICRs and imprinted genes in the human genome.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
44
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
45
|
CDK7 Inhibition is Effective in all the Subtypes of Breast Cancer: Determinants of Response and Synergy with EGFR Inhibition. Cells 2020; 9:cells9030638. [PMID: 32155786 PMCID: PMC7140476 DOI: 10.3390/cells9030638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023] Open
Abstract
CDK7, a transcriptional cyclin-dependent kinase, is emerging as a novel cancer target. Triple-negative breast cancers (TNBC) but not estrogen receptor-positive (ER+) breast cancers have been reported to be uniquely sensitive to the CDK7 inhibitor THZ1 due to the inhibition of a cluster of TNBC-specific genes. However, bioinformatic analysis indicates that CDK7 RNA expression is associated with negative prognosis in all the major subtypes of breast cancer. To further elucidate the effects of CDK7 inhibition in breast cancer, we profiled a panel of cell lines representing different breast cancer subtypes. THZ1 inhibited cell growth in all subtypes (TNBC, HER2+, ER+, and HER2+/ER+) with no apparent subtype selectivity. THZ1 inhibited CDK7 activity and induced G1 arrest and apoptosis in all the tested cell lines, but THZ1 sensitivity did not correlate with CDK7 inhibition or CDK7 expression levels. THZ1 sensitivity across the cell line panel did not correlate with TNBC-specific gene expression but it was found to correlate with the differential inhibition of three genes: CDKN1B, MYC and transcriptional coregulator CITED2. Response to THZ1 also correlated with basal CITED2 protein expression, a potential marker of CDK7 inhibitor sensitivity. Furthermore, all of the THZ1-inhibited genes examined were inducible by EGF but THZ1 prevented this induction. THZ1 had synergistic or additive effects when combined with the EGFR inhibitor erlotinib, with no outward selectivity for a particular subtype of breast cancer. These results suggest a potential broad utility for CDK7 inhibitors in breast cancer therapy and the potential for combining CDK7 and EGFR inhibitors.
Collapse
|
46
|
Investigations of the underlying mechanisms of HIF-1α and CITED2 binding to TAZ1. Proc Natl Acad Sci U S A 2020; 117:5595-5603. [PMID: 32123067 DOI: 10.1073/pnas.1915333117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TAZ1 domain of CREB binding protein is crucial for transcriptional regulation and recognizes multiple targets. The interactions between TAZ1 and its specific targets are related to the cellular hypoxic negative feedback regulation. Previous experiments reported that one of the TAZ1 targets, CITED2, is an efficient competitor of another target, HIF-1α. Here, by developing the structure-based models of TAZ1 complexes, we have uncovered the underlying mechanisms of the competitions between the two intrinsic disordered proteins (IDPs) HIF-1α and CITED2 binding to TAZ1. Our results support the experimental hypothesis on the competition mechanisms and the apparent affinity. Furthermore, the simulations locate the dominant position of forming TAZ1-CITED2 complex in both thermodynamics and kinetics. For thermodynamics, TAZ1-CITED2 is the lowest basin located on the free energy surface of binding in the ternary system. For kinetics, the results suggest that CITED2 binds to TAZ1 faster than HIF-1α. In addition, the analysis of contact map and Φ values is important for guiding further experimental studies to understand the biomolecular functions of IDPs.
Collapse
|
47
|
Villanueva-Cañas JL, Horvath V, Aguilera L, González J. Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster. Nucleic Acids Res 2020; 47:6842-6857. [PMID: 31175824 PMCID: PMC6649756 DOI: 10.1093/nar/gkz490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
Although transposable elements are an important source of regulatory variation, their genome-wide contribution to the transcriptional regulation of stress-response genes has not been studied yet. Stress is a major aspect of natural selection in the wild, leading to changes in the transcriptional regulation of a variety of genes that are often triggered by one or a few transcription factors. In this work, we take advantage of the wealth of information available for Drosophila melanogaster and humans to analyze the role of transposable elements in six stress regulatory networks: immune, hypoxia, oxidative, xenobiotic, heat shock, and heavy metal. We found that transposable elements were enriched for caudal, dorsal, HSF, and tango binding sites in D. melanogaster and for NFE2L2 binding sites in humans. Taking into account the D. melanogaster population frequencies of transposable elements with predicted binding motifs and/or binding sites, we showed that those containing three or more binding motifs/sites are more likely to be functional. For a representative subset of these TEs, we performed in vivo transgenic reporter assays in different stress conditions. Overall, our results showed that TEs are relevant contributors to the transcriptional regulation of stress-response genes.
Collapse
Affiliation(s)
| | - Vivien Horvath
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Laura Aguilera
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
48
|
Massa V, Avagliano L, Grazioli P, De Castro SCP, Parodi C, Savery D, Vergani P, Cuttin S, Doi P, Bulfamante G, Copp AJ, Greene NDE. Dynamic acetylation profile during mammalian neurulation. Birth Defects Res 2019; 112:205-211. [PMID: 31758757 PMCID: PMC7004172 DOI: 10.1002/bdr2.1618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) result from failure of neural tube closure during embryogenesis. These severe birth defects of the central nervous system include anencephaly and spina bifida, and affect 0.5-2 per 1,000 pregnancies worldwide in humans. It has been demonstrated that acetylation plays a pivotal role during neural tube closure, as animal models for defective histone acetyltransferase proteins display NTDs. Acetylation represents an important component of the complex network of posttranslational regulatory interactions, suggesting a possible fundamental role during primary neurulation events. This study aimed to assess protein acetylation contribution to early patterning of the central nervous system both in human and murine specimens. METHODS We used both human and mouse (Cited2 -/- ) samples to analyze the dynamic acetylation of proteins during embryo development through immunohistochemistry, western blot analysis and quantitative polymerase chain reaction. RESULTS We report the dynamic profile of histone and protein acetylation status during neural tube closure. We also report a rescue effect in an animal model by chemical p53 inhibition. CONCLUSIONS Our data suggest that the p53-acetylation equilibrium may play a role in primary neurulation in mammals.
Collapse
Affiliation(s)
- Valentina Massa
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Laura Avagliano
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Sandra C P De Castro
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chiara Parodi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Dawn Savery
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Patrizia Vergani
- Department of Obstetrics and Gynaecology, Foundation MBBM, University of Milano-Bicocca, Monza, Italy
| | - Serena Cuttin
- Department of Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Patrizia Doi
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Andrew J Copp
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
49
|
Nyqvist I, Dogan J. Characterization of the dynamics and the conformational entropy in the binding between TAZ1 and CTAD-HIF-1α. Sci Rep 2019; 9:16557. [PMID: 31719609 PMCID: PMC6851107 DOI: 10.1038/s41598-019-53067-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/26/2019] [Indexed: 11/09/2022] Open
Abstract
The interaction between the C-terminal transactivation domain of HIF-1α (CTAD-HIF-1α) and the transcriptional adapter zinc binding 1 (TAZ1) domain of CREB binding protein participate in the initiation of gene transcription during hypoxia. Unbound CTAD-HIF-1α is disordered but undergoes a disorder-to-order transition upon binding to TAZ1. We have here performed NMR side chain and backbone relaxation studies on TAZ1 and side chain relaxation measurements on CTAD-HIF-1α in order to investigate the role of picosecond to nanosecond dynamics. We find that the internal motions are significantly affected upon binding, both on the side chain and the backbone level. The dynamic response corresponds to a conformational entropy change that contributes substantially to the binding thermodynamics for both binding partners. Furthermore, the conformational entropy change for the well-folded TAZ1 varies upon binding to different IDP targets. We further identify a cluster consisting of side chains in bound TAZ1 and CTAD-HIF-1α that experience extensive dynamics and are part of the binding region that involves the N-terminal end of the LPQL motif in CTAD-HIF-1α; a feature that might have an important role in the termination of the hypoxic response.
Collapse
Affiliation(s)
- Ida Nyqvist
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Jakob Dogan
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden.
| |
Collapse
|
50
|
Gao M, Yang J, Liu S, Su Z, Huang Y. Intrinsically Disordered Transactivation Domains Bind to TAZ1 Domain of CBP via Diverse Mechanisms. Biophys J 2019; 117:1301-1310. [PMID: 31521329 DOI: 10.1016/j.bpj.2019.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
CREB-binding protein is a multidomain transcriptional coactivator whose transcriptional adaptor zinc-binding 1 (TAZ1) domain mediates interactions with a number of intrinsically disordered transactivation domains (TADs), including the CREB-binding protein/p300-interacting transactivator with ED-rich tail, the hypoxia inducible factor 1α, p53, the signal transducer and activator of transcription 2, and the NF-κB p65 subunit. These five disordered TADs undergo partial disorder-to-order transitions upon binding TAZ1, forming fuzzy complexes with helical segments. Interestingly, they wrap around TAZ1 with different orientations and occupy the binding sites with various orders. To elucidate the microscopic molecular details of the binding processes of TADs with TAZ1, in this work, we carried out extensive molecular dynamics simulations using a coarse-grained topology-based model. After careful calibration of the models to reproduce the residual helical contents and binding affinities, our simulations were able to recapitulate the experimentally observed flexibility profiles. Although great differences exist in the complex structures, we found similarities between hypoxia inducible factor 1α and signal transducer and activator of transcription 2 as well as between CREB-binding protein/p300-interacting transactivator with ED-rich tail and NF-κB p65 subunit in the binding kinetics and binding thermodynamics. Although the origins of similarities and differences in the binding mechanisms remain unclear, our results provide some clues that indicate that binding of TADs to TAZ1 could be templated by the target as well as encoded by the TADs.
Collapse
Affiliation(s)
- Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jing Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|