1
|
Malone K, LaCasse E, Beug ST. Cell death in glioblastoma and the central nervous system. Cell Oncol (Dordr) 2025; 48:313-349. [PMID: 39503973 PMCID: PMC11997006 DOI: 10.1007/s13402-024-01007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.
Collapse
Affiliation(s)
- Kyle Malone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Eric LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
2
|
Zeng M, Wang K, Wu Q, Ding J, Xie D, Qi X, Shao F. Dissecting caspase-2-mediated cell death: from intrinsic PIDDosome activation to chemical modulation. Protein Cell 2024; 15:889-905. [PMID: 38676703 PMCID: PMC11637483 DOI: 10.1093/procel/pwae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Caspase-2, a highly conserved member of the caspase family, is considered an initiator caspase that triggers apoptosis in response to some cellular stresses. Previous studies suggest that an intracellular multi-protein complex PIDDosome, induced by genotoxic stress, serves as a platform for caspase-2 activation. Due to caspase-2's inability to process effector caspases, however, the mechanism underlying caspase-2-mediated cell death upon PIDDosome activation remains unclear. Here, we conducted an unbiased genome-wide genetic screen and identified that the Bcl2 family protein BID is required for PIDDosome-induced, caspase-2-mediated apoptosis. PIDDosome-activated caspase-2 directly and functionally processes BID to signal the mitochondrial pathway for apoptosis induction. In addition, a designed chemical screen identified a compound, HUHS015, which specifically activates caspase-2-mediated apoptosis. HUHS015-stimulated apoptosis also requires BID but is independent of the PIDDosome. Through extensive structure-activity relationship efforts, we identified a derivative with a potency of ~60 nmol/L in activating caspase-2-mediated apoptosis. The HUHS015-series of compounds act as efficient agonists that directly target the interdomain linker in caspase-2, representing a new mode of initiator caspase activation. Human and mouse caspase-2 differ in two crucial residues in the linker, rendering a selectivity of the agonists for human caspase-2. The caspase-2 agonists are valuable tools to explore the physiological roles of caspase-2-mediated cell death and a base for developing small-molecule drugs for relevant diseases.
Collapse
Affiliation(s)
- Mengxue Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Kun Wang
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Jingjin Ding
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
| | - Feng Shao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Research Unit of Pyroptosis and Immunity, Chinese Academy of Medical Sciences and National Institute of Biological Sciences, Beijing, Beijing 102206, China
- Changping Laboratory, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
- New Cornerstone Science Laboratory, Shenzhen 518000, China
| |
Collapse
|
3
|
Basu V, Shabnam, Murghai Y, Ali M, Sahu S, Verma BK, Seervi M. ONC212, alone or in synergistic conjunction with Navitoclax (ABT-263), promotes cancer cell apoptosis via unconventional mitochondrial-independent caspase-3 activation. Cell Commun Signal 2024; 22:441. [PMID: 39272099 PMCID: PMC11395312 DOI: 10.1186/s12964-024-01817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria-targeting agents, known as mitocans, are emerging as potent cancer therapeutics due to pronounced metabolic and apoptotic adaptations in the mitochondria of cancer cells. ONC212, an imipridone-family compound initially identified as a ClpP agonist, is currently under investigation as a potential mitocan with demonstrated preclinical efficacy against multiple malignancies. Despite this efficacy, the molecular mechanism underlying the cell death induced by ONC212 remains unclear. This study systematically investigates the mitochondrial involvement and signaling cascades associated with ONC212-induced cell death, utilizing HeLa and A549 cancer cells. Treated cancer cells exhibited characteristic apoptotic features, such as annexin-V positivity and caspase-3 activation; however, these occurred independently of typical mitochondrial events like membrane potential loss (ΔΨm) and cytochrome c release, as well as caspase-8 activation associated with the extrinsic pathway. Additionally, ONC212 treatment increased the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL, which impeded apoptosis, as the overexpression of Bcl-2-GFP and Bcl-xL-GFP significantly reduced ONC212-mediated cell death. Furthermore, combining a sub-lethal dose of the Bcl-2/Bcl-xL inhibitor Navitoclax with ONC212 markedly augmented caspase-3 activation and cell death, still without any notable ΔΨm loss or cytochrome c release. Moreover, inhibition of caspase-9 activity unexpectedly augmented, rather than attenuated, caspase-3 activation and the subsequent cell death. Collectively, our research identifies ONC212 as an atypical mitochondrial-independent, yet Bcl-2/Bcl-xL-inhibitable, caspase-3-mediated apoptotic cell death inducer, highlighting its potential for combination therapies in tumors with defective mitochondrial apoptotic signaling.
Collapse
Affiliation(s)
- Vishal Basu
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Shabnam
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Yamini Murghai
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Maqsood Ali
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Swetangini Sahu
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Bhupendra K Verma
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
4
|
Zotta A, O'Neill LAJ, Yin M. Unlocking potential: the role of the electron transport chain in immunometabolism. Trends Immunol 2024; 45:259-273. [PMID: 38503657 DOI: 10.1016/j.it.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
The electron transport chain (ETC) couples electron transfer with proton pumping to generate ATP and it also regulates particular innate and adaptive immune cell function. While NLRP3 inflammasome activation was initially linked to reactive oxygen species (ROS) produced from Complexes I and III, recent research suggests that an intact ETC fueling ATP is needed. Complex II may be responsible for Th1 cell proliferation and in some cases, effector cytokine production. Complex III is required for regulatory T (Treg) cell function, while oxidative phosphorylation (OXPHOS) and Complexes I, IV, and V sustain proliferation and antibody production in B lymphocytes, with OXPHOS also being required for B regulatory (Breg) cell function. Despite challenges, the ETC shows therapeutic targeting potential for immune-related diseases and in immuno-oncology.
Collapse
Affiliation(s)
- Alessia Zotta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Maureen Yin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Tian L, Li Y, Shi Y. Dark and Dronc activation in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2312784121. [PMID: 38381783 PMCID: PMC10907274 DOI: 10.1073/pnas.2312784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
The onset of apoptosis is characterized by a cascade of caspase activation, where initiator caspases are activated by a multimeric adaptor complex known as the apoptosome. In Drosophila melanogaster, the initiator caspase Dronc undergoes autocatalytic activation in the presence of the Dark apoptosome. Despite rigorous investigations, the activation mechanism for Dronc remains elusive. Here, we report the cryo-EM structures of an auto-inhibited Dark monomer and a single-layered, multimeric Dark/Dronc complex. Our biochemical analysis suggests that the auto-inhibited Dark oligomerizes upon binding to Dronc, which is sufficient for the activation of both Dark and Dronc. In contrast, the previously observed double-ring Dark apoptosome may represent a non-functional or "off-pathway" conformation. These findings expand our understanding on the molecular mechanism of apoptosis in Drosophila.
Collapse
Affiliation(s)
- Lu Tian
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yini Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yigong Shi
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake Institute for Advanced Study, Hangzhou310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou310024, China
| |
Collapse
|
6
|
Dyachenko EI, Bel’skaya LV. The Role of Amino Acids in Non-Enzymatic Antioxidant Mechanisms in Cancer: A Review. Metabolites 2023; 14:28. [PMID: 38248831 PMCID: PMC10818545 DOI: 10.3390/metabo14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Currently, the antioxidant properties of amino acids and their role in the physicochemical processes accompanying oxidative stress in cancer remain unclear. Cancer cells are known to extensively uptake amino acids, which are used as an energy source, antioxidant precursors that reduce oxidative stress in cancer, and as regulators of inhibiting or inducing tumor cell-associated gene expression. This review examines nine amino acids (Cys, His, Phe, Met, Trp, Tyr, Pro, Arg, Lys), which play a key role in the non-enzymatic oxidative process in various cancers. Conventionally, these amino acids can be divided into two groups, in one of which the activity increases (Cys, Phe, Met, Pro, Arg, Lys) in cancer, and in the other, it decreases (His, Trp, Tyr). The review examines changes in the metabolism of nine amino acids in eleven types of oncology. We have identified the main nonspecific mechanisms of changes in the metabolic activity of amino acids, and described direct and indirect effects on the redox homeostasis of cells. In the future, this will help to understand better the nature of life of a cancer cell and identify therapeutic targets more effectively.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, Omsk 644099, Russia;
| |
Collapse
|
7
|
Casciano F, Zauli E, Busin M, Caruso L, AlMesfer S, Al-Swailem S, Zauli G, Yu AC. State of the Art of Pharmacological Activators of p53 in Ocular Malignancies. Cancers (Basel) 2023; 15:3593. [PMID: 37509256 PMCID: PMC10377487 DOI: 10.3390/cancers15143593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The pivotal role of p53 in the regulation of a vast array of cellular functions has been the subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations in the p53 gene with loss of function represent one of the major mechanisms for cancer development. As expected, due to its key role, p53 is expressed throughout the human body including the eye. Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis of these ocular tumors and outlines the various pharmacological activators of p53 that are currently under investigation for the treatment of ocular malignancies.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| |
Collapse
|
8
|
Fleischmann J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. The Effect of Xevinapant Combined with Ionizing Radiation on HNSCC and Normal Tissue Cells and the Impact of Xevinapant on Its Targeted Proteins cIAP1 and XIAP. Cells 2023; 12:1653. [PMID: 37371123 DOI: 10.3390/cells12121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The poor prognosis of HNSCC is partly due to treatment resistance. The SMAC mimetic Xevinapant is a promising new approach to targeted cancer therapy. Xevinapant inhibits cIAP1/2 and XIAP, leading to apoptosis, necroptosis and inhibition of prosurvival signaling. Combining Xevinapant with IR could improve therapeutic potential. The effect of Xevinapant in combination with IR on HNSCC and healthy tissue cells was investigated. Cell growth, cell death, clonogenic survival and DNA double-strand breaks (DSBs) were studied, and intracellular cIAP1 and XIAP levels were evaluated. Xevinapant had cytostatic and cytotoxic, as well as radiosensitizing, effects on the malignant cells, while healthy tissue cells were less affected. Apoptotic and necrotic cell death was particularly affected, but the increase in residual DSBs and the reduced survival implied an additional effect of Xevinapant on DNA damage repair and other cell inactivation mechanisms. cIAP1 and XIAP levels varied for each cell line and were affected by Xevinapant and IR treatment. There was an association between higher IAP levels and increased cell death. Xevinapant appears to be a potent new drug for HNSCC therapy, especially in combination with IR. IAP levels could be an indicator for impaired DNA damage repair and increased susceptibility to cellular stress.
Collapse
Affiliation(s)
- Julia Fleischmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Laura S Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
9
|
Devi S, Indramohan M, Jäger E, Carriere J, Chu LH, de Almeida L, Greaves DR, Stehlik C, Dorfleutner A. CARD-only proteins regulate in vivo inflammasome responses and ameliorate gout. Cell Rep 2023; 42:112265. [PMID: 36930645 PMCID: PMC10151391 DOI: 10.1016/j.celrep.2023.112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Inflammatory responses are crucial for controlling infections and initiating tissue repair. However, excessive and uncontrolled inflammation causes inflammatory disease. Processing and release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 depend on caspase-1 activation within inflammasomes. Assembly of inflammasomes is initiated upon activation of cytosolic pattern recognition receptors (PRRs), followed by sequential polymerization of pyrin domain (PYD)-containing and caspase recruitment domain (CARD)-containing proteins mediated by homotypic PYD and CARD interactions. Small PYD- or CARD-only proteins (POPs and COPs, respectively) evolved in higher primates to target these crucial interactions to limit inflammation. Here, we show the ability of COPs to regulate inflammasome activation by modulating homotypic CARD-CARD interactions in vitro and in vivo. CARD16, CARD17, and CARD18 displace crucial CARD interactions between caspase-1 proteins through competitive binding and ameliorate uric acid crystal-mediated NLRP3 inflammasome activation and inflammatory disease. COPs therefore represent an important family of inflammasome regulators and ameliorate inflammatory disease.
Collapse
Affiliation(s)
- Savita Devi
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mohanalaxmi Indramohan
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Elisabeth Jäger
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lan H Chu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; The Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
10
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
11
|
Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL, Fan XL. Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment. Front Immunol 2023; 14:1120034. [PMID: 36845112 PMCID: PMC9948402 DOI: 10.3389/fimmu.2023.1120034] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
PANoptosis, a new research hotspot at the moment, is a cell death pattern in which pyroptosis, apoptosis, and necroptosis all occur in the same cell population. In essence, PANoptosis is a highly coordinated and dynamically balanced programmed inflammatory cell death pathway that combines the main features of pyroptosis, apoptosis, and necroptosis. Many variables, such as infection, injury, or self-defect, may be involved in the occurrence of PANoptosis, with the assembly and activation of the PANoptosome being the most critical. PANoptosis has been linked to the development of multiple systemic diseases in the human body, including infectious diseases, cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, it is necessary to clarify the process of occurrence, the regulatory mechanism of PANoptosis, and its relation to diseases. In this paper, we summarized the differences and relations between PANoptosis and the three types of programmed cell death, and emphatically expounded molecular mechanism and regulatory patterns of PANoptosis, with the expectation of facilitating the application of PANoptosis regulation in disease treatment.
Collapse
Affiliation(s)
- Peng Zhu
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhuo-Ran Ke
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing-Xian Chen
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Shi-Jin Li
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lei Fan
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Formal verification confirms the role of p53 protein in cell fate decision mechanism. Theory Biosci 2023; 142:29-45. [PMID: 36510032 PMCID: PMC9925526 DOI: 10.1007/s12064-022-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
The bio-cell cycle is controlled by a complex biochemical network of signaling pathways. Modeling such challenging networks accurately is imperative for the understanding of their detailed dynamical behavior. In this paper, we construct, analyze, and verify a hybrid Petri net (HPN) model of a complex biochemical network that captures the role of an important protein (namely p53) in deciding the fate of the cell. We model the behavior of the cell nucleus and cytoplasm as two stochastic and continuous Petri nets, respectively, combined together into a single HPN. We use simulative model checking to verify three different properties that capture the dynamical behavior of p53 protein with respect to the intensity of the ionizing radiation (IR) to which the cell is exposed. For each IR dose, 1000 simulation runs are carried out to verify each property. Our verification results showed that the fluctuations in p53, which relies on IR intensity, are compatible with the findings of the preceding simulation studies that have previously examined the role of p53 in cell fate decision.
Collapse
|
13
|
Udayantha HMV, Samaraweera AV, Liyanage DS, Sandamalika WMG, Lim C, Yang H, Lee JH, Lee S, Lee J. Molecular characterization, antiviral activity, and UV-B damage responses of Caspase-9 from Amphiprion clarkii. FISH & SHELLFISH IMMUNOLOGY 2022; 125:247-257. [PMID: 35588907 DOI: 10.1016/j.fsi.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Apoptosis plays a vital role in maintaining cellular homeostasis in multicellular organisms. Caspase-9 (casp-9) is one of the major initiator caspases that induces apoptosis by activating downstream intrinsic apoptosis pathway genes. Here, we isolated the cDNA sequence (1992 bp) of caspase-9 from Amphiprion clarkii (Accasp-9) that consists of a 1305 bp coding region and encodes a 434 aa protein. In silico analysis showed that Accasp-9 has a theoretical isoelectric point of 5.81 and a molecular weight of 48.45 kDa. Multiple sequence alignment revealed that the CARD domain is located at the N-terminus, whereas the large P-20 and small P-10 domains are located at the C-terminus. Moreover, a highly conserved pentapeptide active site (296QACGG301), as well as histidine and cysteine active sites, are also retained at the C-terminus. In phylogenetic analysis, Accasp-9 formed a clade with casp-9 from different species, distinct from other caspases. Accasp-9 was highly expressed in the gill and intestine compared with other tissues analyzed in healthy A. clarkii. Accasp-9 expression was significantly elevated in the blood after stimulation with Vibrio harveyi and polyinosinic:polycytidylic acid (poly I:C; 12-48 h), but not with lipopolysaccharide. The nucleoprotein expression of the viral hemorrhagic septicemia virus was significantly reduced in Accasp-9 overexpressed fathead minnow (FHM) cells compared with that in the control. In addition, other in vitro assays revealed that cell apoptosis was significantly elevated in poly I:C and UV-B-treated Accasp-9 transfected FHM cells. However, H248P or C298S mutated Accasp-9 significantly reduced apoptosis in UV-B irradiated cells. Collectively, our results show that Accasp-9 might play a defensive role against invading pathogens and UV-B radiation and H248 and C298 active residues are significantly involved in apoptosis in teleosts.
Collapse
Affiliation(s)
- H M V Udayantha
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Anushka Vidurangi Samaraweera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ji Hun Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
14
|
Bao J, Jiang Z, Ding W, Cao Y, Yang L, Liu J. Silver nanoparticles induce mitochondria-dependent apoptosis and late non-canonical autophagy in HT-29 colon cancer cells. NANOTECHNOLOGY REVIEWS 2022; 11:1911-1926. [DOI: 10.1515/ntrev-2022-0114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Abstract
The interactions of nanomaterials with biological materials such as immortalized cell lines are recently on the rise. Owing to this superiority, the biosynthesis of AgNPs using gallic acid as a reductant was implemented in this study. After being synthesized, the AgNPs were characterized using techniques such as dynamic light scattering, transmission electron microscopy, selected area electron diffraction, and X-ray diffraction methods. Furthermore, the AgNPs were assessed for their cytotoxic effects on the colorectal adenocarcinoma cell line HT-29. The mechanisms of such cell-killing effect were investigated by analyzing the expressions of 14 mRNAs using quantitative polymerase chain reaction. The outcomes indicate that the synthesized AgNPs were cytotoxic on HT-29 cells. The expressions of all apoptotic genes analyzed including cyt-C, p53, Bax, Bcl2, CASP3, CASP8, CASP9, and CASP12 were upregulated. With regard to the autophagy-related genes, Beclin-1, XBP-1, CHOP, and LC3-II were upregulated, whereas the expressions of ATG3 and ATG12 were downregulated. To conclude, the AgNPs induced mitochondria-dependent apoptosis and non-canonical autophagy in HT-29 cells. A crosstalk did occur between autophagy and apoptosis in such a cell-killing effect. Hence, further studies are required to elucidate the exact mechanisms in animal models for further use of AgNPs in clinical medicine for the treatment of neoplasms of the digestive tract.
Collapse
Affiliation(s)
- Jun Bao
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University , Nanjing 210009 , China
| | - Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing 210028 , China
| | - Wenlong Ding
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing 210028 , China
| | - Yuepeng Cao
- Department of Colorectal Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University , Nanjing 210009 , China
| | - Liu Yang
- Department of Colorectal Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University , Nanjing 210009 , China
| | - Jingbing Liu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine , Nanjing 210028 , China
- Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028 , China
| |
Collapse
|
15
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
16
|
Roufayel R, Younes K, Al-Sabi A, Murshid N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life (Basel) 2022; 12:life12020256. [PMID: 35207544 PMCID: PMC8875537 DOI: 10.3390/life12020256] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an evolutionarily conserved and tightly regulated cell death pathway. Physiological cell death is important for maintaining homeostasis and optimal biological conditions by continuous elimination of undesired or superfluous cells. The BH3-only pro-apoptotic members are strong inducers of apoptosis. The pro-apoptotic BH3-only protein Noxa activates multiple death pathways by inhibiting the anti-apoptotic Bcl-2 family protein, Mcl-1, and other protein members leading to Bax and Bak activation and MOMP. On the other hand, Puma is induced by p53-dependent and p53-independent apoptotic stimuli in several cancer cell lines. Moreover, this protein is involved in several physiological and pathological processes, such as immunity, cancer, and neurodegenerative diseases. Future heat shock research could disclose the effect of hyperthermia on both Noxa and BH3-only proteins. This suggests post-transcriptional mechanisms controlling the translation of both Puma and Noxa mRNA in heat-shocked cells. This study was also the chance to recapitulate the different reactional mechanisms investigated for caspases.
Collapse
|
17
|
Shanmugam G, Rakshit S, Sarkar K. HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol 2022; 16:101312. [PMID: 34922087 PMCID: PMC8688863 DOI: 10.1016/j.tranon.2021.101312] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play a key role in the epigenetic regulation of gene expression by remodeling chromatin. Inhibition of HDACs is a prospective therapeutic approach for reversing epigenetic alteration in several diseases. In preclinical research, numerous types of HDAC inhibitors were discovered to exhibit powerful and selective anticancer properties. However, such research has revealed that the effects of HDAC inhibitors may be far broader and more intricate than previously thought. This review will provide insight into the HDAC inhibitors and their mechanism of action with special emphasis on the significance of HDAC inhibitors in the treatment of Chronic Obstructive Pulmonary Disease and lung cancer. Nanocarrier-mediated HDAC inhibitor delivery and new approaches for targeting HDACs are also discussed.
Collapse
Affiliation(s)
- Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
18
|
Maruta N, Burdett H, Lim BYJ, Hu X, Desa S, Manik MK, Kobe B. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics 2022; 74:5-26. [PMID: 34981187 PMCID: PMC8813719 DOI: 10.1007/s00251-021-01242-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
Animals and plants have NLRs (nucleotide-binding leucine-rich repeat receptors) that recognize the presence of pathogens and initiate innate immune responses. In plants, there are three types of NLRs distinguished by their N-terminal domain: the CC (coiled-coil) domain NLRs, the TIR (Toll/interleukin-1 receptor) domain NLRs and the RPW8 (resistance to powdery mildew 8)-like coiled-coil domain NLRs. CC-NLRs (CNLs) and TIR-NLRs (TNLs) generally act as sensors of effectors secreted by pathogens, while RPW8-NLRs (RNLs) signal downstream of many sensor NLRs and are called helper NLRs. Recent studies have revealed three dimensional structures of a CNL (ZAR1) including its inactive, intermediate and active oligomeric state, as well as TNLs (RPP1 and ROQ1) in their active oligomeric states. Furthermore, accumulating evidence suggests that members of the family of lipase-like EDS1 (enhanced disease susceptibility 1) proteins, which are uniquely found in seed plants, play a key role in providing a link between sensor NLRs and helper NLRs during innate immune responses. Here, we summarize the implications of the plant NLR structures that provide insights into distinct mechanisms of action by the different sensor NLRs and discuss plant NLR-mediated innate immune signalling pathways involving the EDS1 family proteins and RNLs.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Hayden Burdett
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Bryan Y J Lim
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xiahao Hu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sneha Desa
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Kawsar Manik
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
19
|
Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, Wang J. Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal 2021; 19:120. [PMID: 34922574 PMCID: PMC8684172 DOI: 10.1186/s12964-021-00799-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Regulated cell death (RCD) is a ubiquitous process in living organisms that is essential for tissue homeostasis or to restore biological balance under stress. Over the decades, various forms of RCD have been reported and are increasingly being found to involve in human pathologies and clinical outcomes. We focus on five high-profile forms of RCD, including apoptosis, pyroptosis, autophagy-dependent cell death, necroptosis and ferroptosis. Cumulative evidence supports that not only they have different features and various pathways, but also there are extensive cross-talks between modes of cell death. As the understanding of RCD pathway in evolution, development, physiology and disease continues to improve. Here we review an updated classification of RCD on the discovery and features of processes. The prominent focus will be placed on key mechanisms of RCD and its critical role in neurodegenerative disease. Video abstract.
Collapse
Affiliation(s)
- Juntao Cui
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Suhan Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- School of Clinical Medicine, Qingdao University, Qingdao, 266071 China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Bingjing Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
20
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
21
|
Alausa A, Victor UC, Celestine UO, Eweje IA, Balogun TA, Adeyemi R, Olatinwo M, Ogunlana AT, Oladipo O, Olaleke B. Phytochemical based sestrin2 pharmacological modulators in the treatment of adenocarcinomas. PHYTOMEDICINE PLUS 2021; 1:100133. [DOI: 10.1016/j.phyplu.2021.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Nguyen TTM, Gillet G, Popgeorgiev N. Caspases in the Developing Central Nervous System: Apoptosis and Beyond. Front Cell Dev Biol 2021; 9:702404. [PMID: 34336853 PMCID: PMC8322698 DOI: 10.3389/fcell.2021.702404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
The caspase family of cysteine proteases represents the executioners of programmed cell death (PCD) type I or apoptosis. For years, caspases have been known for their critical roles in shaping embryonic structures, including the development of the central nervous system (CNS). Interestingly, recent findings have suggested that aside from their roles in eliminating unnecessary neural cells, caspases are also implicated in other neurodevelopmental processes such as axon guidance, synapse formation, axon pruning, and synaptic functions. These results raise the question as to how neurons regulate this decision-making, leading either to cell death or to proper development and differentiation. This review highlights current knowledge on apoptotic and non-apoptotic functions of caspases in the developing CNS. We also discuss the molecular factors involved in the regulation of caspase-mediated roles, emphasizing the mitochondrial pathway of cell death.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Germain Gillet
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Nikolay Popgeorgiev
- Centre de Recherche en Cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
23
|
The HSP70 chaperone as sensor of the NEDD8 cycle upon DNA damage. Biochem Soc Trans 2021; 49:1075-1083. [PMID: 34156462 DOI: 10.1042/bst20200381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Molecular chaperones are essential components of the protein quality control system and maintenance of homeostasis. Heat Shock Protein 70 (HSP70), a highly evolutionarily conserved family of chaperones is a key regulator of protein folding, oligomerisation and prevents the aggregation of misfolded proteins. HSP70 chaperone function depends on the so-called 'HSP70-cycle', where HSP70 interacts with and is released from substrates via ATP hydrolysis and the assistance of HSP70 co-factors/co-chaperones, which also provide substrate specificity. The identification of regulatory modules for HSP70 allows the elucidation of HSP70 specificity and target selectivity. Here, we discuss how the HSP70 cycle is functionally linked with the cycle of the Ubiquitin-like molecule NEDD8. Using as an example the DNA damage response, we present a model where HSP70 acts as a sensor of the NEDD8 cycle. The NEDD8 cycle acts as a regulatory module of HSP70 activity, where conversion of poly-NEDD8 chains into mono-NEDD8 upon DNA damage activates HSP70, facilitating the formation of the apoptosome and apoptosis execution.
Collapse
|
24
|
Abstract
Proteolytic maturation of the pore-forming protein gasdermin D (GSDMD) by inflammasome-activated caspase-1 is crucial for initiating pyroptosis, a lytic form of cell death. In this issue of Immunity, Lui et al. report the X-ray structure of the caspase-1-GSDMD complex, mapping the interaction interfaces that determine recognition and cleavage of GSDMD by inflammatory caspases.
Collapse
Affiliation(s)
- Lieselotte Vande Walle
- Laboratory of Medical Innate Immunity, Department of Internal Medicine and Pediatrics, Ghent University, B-9000 Ghent, Belgium
| | - Mohamed Lamkanfi
- Laboratory of Medical Innate Immunity, Department of Internal Medicine and Pediatrics, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
25
|
Indrieri A, Franco B. Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA): An Unconventional Mitochondrial Disorder. Genes (Basel) 2021; 12:genes12020263. [PMID: 33670341 PMCID: PMC7918533 DOI: 10.3390/genes12020263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders, although heterogeneous, are traditionally described as conditions characterized by encephalomyopathy, hypotonia, and progressive postnatal organ failure. Here, we provide a systematic review of Linear Skin Defects with Multiple Congenital Anomalies (LSDMCA), a rare, unconventional mitochondrial disorder which presents as a developmental disease; its main clinical features include microphthalmia with different degrees of severity, linear skin lesions, and central nervous system malformations. The molecular basis of this disorder has been elusive for several years. Mutations were eventually identified in three X-linked genes, i.e., HCCS, COX7B, and NDUFB11, which are all endowed with defined roles in the mitochondrial respiratory chain. A peculiar feature of this condition is its inheritance pattern: X-linked dominant male-lethal. Only female or XX male individuals can be observed, implying that nullisomy for these genes is incompatible with normal embryonic development in mammals. All three genes undergo X-inactivation that, according to our hypothesis, may contribute to the extreme variable expressivity observed in this condition. We propose that mitochondrial dysfunction should be considered as an underlying cause in developmental disorders. Moreover, LSDMCA should be taken into consideration by clinicians when dealing with patients with microphthalmia with or without associated skin phenotypes.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy;
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-1923-0615
| |
Collapse
|
26
|
Asong G, Amissah F, Voshavar C, Nkembo AT, Ntantie E, Lamango NS, Ablordeppey SY. A Mechanistic Investigation on the Anticancer Properties of SYA013, a Homopiperazine Analogue of Haloperidol with Activity against Triple Negative Breast Cancer Cells. ACS OMEGA 2020; 5:32907-32918. [PMID: 33403252 PMCID: PMC7774091 DOI: 10.1021/acsomega.0c03495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/04/2020] [Indexed: 05/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the most malignant cancers associated with early metastasis, poor clinical prognosis, and high recurrence rate. TNBC is a distinct subtype of breast cancer that lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 receptors (HER2). Development of effective TNBC therapies has been limited partially due to the lack of specific molecular targets and chemotherapy involving different cytotoxic drugs suffers from significant side effects and drug-resistance development. Therefore, there is an unmet need for the development of novel and efficient therapeutic drugs with reduced side effects to treat TNBC. We have previously reported that certain analogues of haloperidol (a typical antipsychotic drug used for treating mental/mood disorders such as schizophrenia and bipolar disorder) suppress the viability of a variety of solid tumor cell lines, and we have identified 4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluoro-phenyl)butan-1-one (SYA013) with such antiproliferative properties. Interestingly, unlike haloperidol, SYA013 shows moderate selectivity toward σ2 receptors. In this study, we explored the potential of SYA013 in modulating the important biological events associated with cell survival and progression as well as the mechanistic aspects of apoptosis in a representative TNBC cell line (MDA-MB-231). Our results indicate that SYA013 inhibits the proliferation of MDA-MB-231 cells in a concentration-dependent manner and suppresses cell migration and invasion. Apoptotic studies were also conducted in MDA-MB-468 cells (cells derived from a 51-year old Black female with metastatic adenocarcinoma of the breast.). In addition, we have demonstrated that SYA013 induces MDA-MB-231 cell death through the intrinsic apoptotic pathway and may suppress tumor progression and metastasis. Taken together, our study presents a mechanistic pathway of the anticancer properties of SYA013 against TNBC cell lines and suggests a potential for exploring SYA013 as a lead agent for development against TNBC.
Collapse
Affiliation(s)
- Gladys
M. Asong
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Felix Amissah
- College
of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Chandrashekhar Voshavar
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Augustine T. Nkembo
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Elizabeth Ntantie
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Nazarius S. Lamango
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Seth Y. Ablordeppey
- College
of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, United States
| |
Collapse
|
27
|
Avcilar-Kucukgoze I, Kashina A. Hijacking tRNAs From Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology. Front Mol Biosci 2020; 7:610617. [PMID: 33392265 PMCID: PMC7773854 DOI: 10.3389/fmolb.2020.610617] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Transfer tRNAs (tRNAs) are small non-coding RNAs that are highly conserved in all kingdoms of life. Originally discovered as the molecules that deliver amino acids to the growing polypeptide chain during protein synthesis, tRNAs have been believed for a long time to play exclusive role in translation. However, recent studies have identified key roles for tRNAs and tRNA-derived small RNAs in multiple other processes, including regulation of transcription and translation, posttranslational modifications, stress response, and disease. These emerging roles suggest that tRNAs may be central players in the complex machinery of biological regulatory pathways. Here we overview these non-canonical roles of tRNA in normal physiology and disease, focusing largely on eukaryotic and mammalian systems.
Collapse
Affiliation(s)
- Irem Avcilar-Kucukgoze
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
Noori AR, Tashakor A, Nikkhah M, Eriksson LA, Hosseinkhani S, Fearnhead HO. Loss of WD2 subdomain of Apaf-1 forms an apoptosome structure which blocks activation of caspase-3 and caspase-9. Biochimie 2020; 180:23-29. [PMID: 33132160 DOI: 10.1016/j.biochi.2020.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
Split luciferase complementary assay has been used to investigate the effect of WD domain deletion on Apaf-1 oligomerization. Apaf-1 is an adaptor molecule in formation of apoptosome that activates caspase-9, an activation that is a key event in the mitochondrial cell death pathway. Structural studies suggest that normally Apaf-1 is held in an inactive conformation by intramolecular interactions between Apaf-1's nucleotide binding domain and one of its WD40 domains (WD1). In the prevailing model of Apaf-1 activation, cytochrome c binds to sites in WD1 and in Apaf-1's second WD40 domain (WD2), moving WD1 and WD2 closer together and rotating WD1 away from the nucleotide binding domain. This allows Apaf-1 to bind dATP or ATP and to form the apoptosome, which activates caspase-9. This model predicts that cytochrome c binding to both WD domains is necessary for apoptosome formation and that an Apaf-1 with only WD1 will be locked in an inactive conformation that cannot be activated by cytochrome c. Here we investigated the effect of removing one WD domain (Apaf-1 1-921) on Apaf-1 interactions and caspase activation. Apaf-1 1-921 could not activate caspase-9, even in the presence of cytochrome c. These data show that a single WD domain is sufficient to lock Apaf-1 in an inactive state and this state cannot be altered by cytochrome c.
Collapse
Affiliation(s)
- Ali-Reza Noori
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Tashakor
- Pharmacology and Therapeutics, School of Medicine, NUI Galway, Galway, Ireland
| | - Maryam Nikkhah
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Howard O Fearnhead
- Pharmacology and Therapeutics, School of Medicine, NUI Galway, Galway, Ireland
| |
Collapse
|
29
|
Zhao F, Cao F, Li H, Teng M, Liang Y, Qiu L. The effects of a short-term exposure to propiconazole in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38212-38220. [PMID: 32623674 DOI: 10.1007/s11356-020-09968-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Propiconazole (PCZ) is a widely used fungicide around the world and was frequently detected in surface waters, which would pose risk to aquatic organisms. Previous studies indicated that PCZ has high toxicity to different kinds of fish. However, most of the studies focus on the toxicity and mechanisms of PCZ to adult fish, the potential toxicity mechanism of PCZ to fish embryos is still poorly understood. The present study investigated the effects of PCZ on content of reactive oxygen species (ROS) and malondialdehyde (MDA); activities of superoxide dismutase (SOD), catalase (CAT), and Na+-K+-ATPase; and expression level of genes related to oxidative stress, cell apoptosis, and innate immune system in zebrafish embryos after 96-h exposure. The results showed that 5.0 mg/L PCZ induced oxidative damage in zebrafish embryos, as indicated by increased ROS and MDA content and alteration of antioxidative enzyme activity. The activity of Na+-K+-ATPase in zebrafish embryos was significantly inhibited after exposure to 0.5 mg/L PCZ. The expression levels of bax, p53, casp-3, casp-9, and apaf-1 were significantly increased, indicating that cell apoptosis was caused in embryos by 5.0 mg/L PCZ. The expression level of interleukin-1b (IL-1b) and IL-8 increased after exposure to 0.5 mg/L PCZ, but that of IL-1b, IL-8, and cxcl-c1c (chemokine (C-X-C motif) ligand 18b) decreased in 5.0-mg/L PCZ treatment group, indicating an immunotoxicity effect. Our results suggest that oxidative damage, cell apoptosis, and immunotoxicity would be induced in zebrafish embryos after short-term exposure to PCZ.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Fangjie Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Hui Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yong Liang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Lihong Qiu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Bailly AP, Perrin A, Serrano-Macia M, Maghames C, Leidecker O, Trauchessec H, Martinez-Chantar ML, Gartner A, Xirodimas DP. The Balance between Mono- and NEDD8-Chains Controlled by NEDP1 upon DNA Damage Is a Regulatory Module of the HSP70 ATPase Activity. Cell Rep 2020; 29:212-224.e8. [PMID: 31577950 PMCID: PMC6899524 DOI: 10.1016/j.celrep.2019.08.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/27/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin and ubiquitin-like chains are finely balanced by conjugating and de-conjugating enzymes. Alterations in this balance trigger the response to stress conditions and are often observed in pathologies. How such changes are detected is not well understood. We identify the HSP70 chaperone as a sensor of changes in the balance between mono- and poly-NEDDylation. Upon DNA damage, the induction of the de-NEDDylating enzyme NEDP1 restricts the formation of NEDD8 chains, mainly through lysines K11/K48. This promotes APAF1 oligomerization and apoptosis induction, a step that requires the HSP70 ATPase activity. HSP70 binds to NEDD8, and, in vitro, the conversion of NEDD8 chains into mono-NEDD8 stimulates HSP70 ATPase activity. This effect is independent of NEDD8 conjugation onto substrates. The study indicates that the NEDD8 cycle is a regulatory module of HSP70 function. These findings may be important in tumorigenesis, as we find decreased NEDP1 levels in hepatocellular carcinoma with concomitant accumulation of NEDD8 conjugates. Restriction of NEDD8 chains by NEDP1 is required for DNA damage-induced apoptosis The HSP70 chaperone is a sensor of the balance between mono- and NEDD8 chains Mono-NEDD8 stimulates HSP70 activity, which allows the formation of the apoptosome NEDP1 levels are downregulated in mouse hepatocellular carcinoma
Collapse
Affiliation(s)
- Aymeric P Bailly
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France.
| | - Aurelien Perrin
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Marina Serrano-Macia
- Liver Disease Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Chantal Maghames
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Orsolya Leidecker
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - Helene Trauchessec
- CRBM, CNRS, Univ. Montpellier, UMR5237, Montpellier 34090, Cedex 5, France
| | - M L Martinez-Chantar
- Liver Disease Laboratory, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Anton Gartner
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
31
|
Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat 2020; 52:100712. [DOI: 10.1016/j.drup.2020.100712] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
|
32
|
Fullstone G, Bauer TL, Guttà C, Salvucci M, Prehn JHM, Rehm M. The apoptosome molecular timer synergises with XIAP to suppress apoptosis execution and contributes to prognosticating survival in colorectal cancer. Cell Death Differ 2020; 27:2828-2842. [PMID: 32341447 PMCID: PMC7493894 DOI: 10.1038/s41418-020-0545-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
The execution phase of apoptosis is a critical process in programmed cell death in response to a multitude of cellular stresses. A crucial component of this pathway is the apoptosome, a platform for the activation of pro-caspase 9 (PC9). Recent findings have shown that autocleavage of PC9 to Caspase 9 (C9) p35/p12 not only permits XIAP-mediated C9 inhibition but also temporally shuts down apoptosome activity, forming a molecular timer. In order to delineate the combined contributions of XIAP and the apoptosome molecular timer to apoptosis execution we utilised a systems modelling approach. We demonstrate that cooperative recruitment of PC9 to the apoptosome, based on existing PC9-apoptosome interaction data, is important for efficient formation of PC9 homodimers, autocatalytic cleavage and dual regulation by XIAP and the molecular timer across biologically relevant PC9 and APAF1 concentrations. Screening physiologically relevant concentration ranges of apoptotic proteins, we discovered that the molecular timer can prevent apoptosis execution in specific scenarios after complete or partial mitochondrial outer membrane permeabilisation (MOMP). Furthermore, its ability to prevent apoptosis is intricately tied to a synergistic combination with XIAP. Finally, we demonstrate that simulations of these processes are prognostic of survival in stage III colorectal cancer and that the molecular timer may promote apoptosis resistance in a subset of patients. Based on our findings, we postulate that the physiological function of the molecular timer is to aid XIAP in the shutdown of caspase-mediated apoptosis execution. This shutdown potentially facilitates switching to pro-inflammatory caspase-independent responses subsequent to Bax/Bak pore formation.
Collapse
Affiliation(s)
- Gavin Fullstone
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany.,Stuttgart Research Centre Systems Biology, Nobelstraße 15, 70569, Stuttgart, Germany
| | - Tabea L Bauer
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiano Guttà
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany.,SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany
| | - Manuela Salvucci
- SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Markus Rehm
- Institute for Cell Biology and Immunology, Allmandring 31, 70569, Stuttgart, Germany. .,Stuttgart Research Centre Systems Biology, Nobelstraße 15, 70569, Stuttgart, Germany. .,SimTech Cluster of Excellence, Pfaffenwaldring 5a, 70569, Stuttgart, Germany. .,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
33
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Abbas R, Larisch S. Targeting XIAP for Promoting Cancer Cell Death-The Story of ARTS and SMAC. Cells 2020; 9:E663. [PMID: 32182843 PMCID: PMC7140716 DOI: 10.3390/cells9030663] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Inhibitors of apoptosis (IAPs) are a family of proteins that regulate cell death and inflammation. XIAP (X-linked IAP) is the only family member that suppresses apoptosis by directly binding to and inhibiting caspases. On the other hand, cIAPs suppress the activation of the extrinsic apoptotic pathway by preventing the formation of pro-apoptotic signaling complexes. IAPs are negatively regulated by IAP-antagonist proteins such as Smac/Diablo and ARTS. ARTS can promote apoptosis by binding and degrading XIAP via the ubiquitin proteasome-system (UPS). Smac can induce the degradation of cIAPs but not XIAP. Many types of cancer overexpress IAPs, thus enabling tumor cells to evade apoptosis. Therefore, IAPs, and in particular XIAP, have become attractive targets for cancer therapy. In this review, we describe the differences in the mechanisms of action between Smac and ARTS, and we summarize efforts to develop cancer therapies based on mimicking Smac and ARTS. Several Smac-mimetic small molecules are currently under evaluation in clinical trials. Initial efforts to develop ARTS-mimetics resulted in a novel class of compounds, which bind and degrade XIAP but not cIAPs. Smac-mimetics can target tumors with high levels of cIAPs, whereas ARTS-mimetics are expected to be effective for cancers with high levels of XIAP.
Collapse
Affiliation(s)
| | - Sarit Larisch
- Laboratory of Cell Death and Cancer Research, Biology& Human Biology Departments, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
| |
Collapse
|
35
|
Zhang J, Qian L, Wang C, Teng M, Duan M, Zhou Y, Chen X, Bo R, Wang C, Li X. Dysregulation of endocrine disruption, apoptosis and the transgenerational toxicity induced by spirotetramat. CHEMOSPHERE 2020; 240:124900. [PMID: 31563099 DOI: 10.1016/j.chemosphere.2019.124900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Spirotetramat (SPT) is a new tetronic acid derivative insecticide used to control scales and aphids; the potential for endocrine disruptor effects in fish could not be finalized with the available data. In this study, zebrafish were selected to assess the endocrine-disrupting effects. Significant decrease of plasma estradiol (E2), testosterone (T) and 11-ketotestosterone (11-KT) were observed in both male and female following the spirotetramat exposure; the vitellogenin (VTG) level in females significantly decreased. The expression of the hypothalamic-pituitary-gonad (HPG) axis genes fshr, lhr and esr1 showed significant increase in the gonads, which expression in males is higher than in females. In addition, the activities of capspase-3 and caspase-9 significantly decreased in both males and females liver, while the capspase-3 and caspase-9 were increased in male testis, the mRNA expression levels of genes expression related to the apoptosis pathway were also significantly altered after the spirotetramat exposure. Additionally, we found the parental zebrafish exposed to spirotetramat induced the development delay of its offspring. Above all, the adverse effects induced by spirotetramat suggesting that spirotetramat is a potential exogenous hazardous agent.
Collapse
Affiliation(s)
- Jie Zhang
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Le Qian
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Manman Duan
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yimeng Zhou
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangguang Chen
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Rui Bo
- The Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
36
|
Sung CM, Kim RJ, Hah YS, Gwark JY, Park HB. In vitro effects of alendronate on fibroblasts of the human rotator cuff tendon. BMC Musculoskelet Disord 2020; 21:19. [PMID: 31926548 PMCID: PMC6955091 DOI: 10.1186/s12891-019-3014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Bone mineral density of the humeral head is an independent determining factor for postoperative rotator cuff tendon healing. Bisphosphonates, which are commonly used to treat osteoporosis, have raised concerns regarding their relationships to osteonecrosis of the jaw and to atypical fracture of the femur. In view of the prevalence of rotator cuff tear in osteoporotic elderly people, it is important to determine whether bisphosphonates affect rotator cuff tendon healing. However, no studies have investigated bisphosphonates’ cytotoxicity to human rotator cuff tendon fibroblasts (HRFs) or bisphosphonates’ effects on rotator cuff tendon healing. The purpose of this study was to evaluate the cytotoxicity of alendronate (Ald), a bisphosphonate, and its effects on HRF wound healing. Methods HRFs were obtained from human supraspinatus tendons, using primary cell cultures. The experimental groups were control, 0.1 μM Ald, 1 μM Ald, 10 μM Ald, and 100 μM Ald. Alendronate exposure was for 48 h, except during a cell viability analysis with durations from 1 day to 6 days. The experimental groups were evaluated for cell viability, cell cycle and cell proliferation, type of cell death, caspase activity, and wound-healing ability. Results The following findings regarding the 100 μM Ald group contrasted with those for all the other experimental groups: a significantly lower rate of live cells (p < 0.01), a higher rate of subG1 population, a lower rate of Ki-67 positive cells, higher rates of apoptosis and necrosis, a higher number of cells with DNA fragmentation, higher caspase-3/7 activity (p < 0.001), and a higher number of caspase-3 positive staining cells. In scratch-wound healing analyses of all the experimental groups, all the wounds healed within 48 h, except in the 100 μM Ald group (p < 0.001). Conclusions Low concentrations of alendronate appear to have little effect on HRF viability, proliferation, migration, and wound healing. However, high concentrations are significantly cytotoxic, impairing cellular proliferation, cellular migration, and wound healing in vitro.
Collapse
Affiliation(s)
- Chang-Meen Sung
- Department of Orthopaedic Surgery, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Ra Jeong Kim
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, South Korea
| | - Young-Sool Hah
- Institute of Health Sciences, Gyeongsang National University School of Medicine and Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, South Korea
| | - Ji-Yong Gwark
- Department of Orthopaedic Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea, 51472
| | - Hyung Bin Park
- Department of Orthopaedic Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea, 51472.
| |
Collapse
|
37
|
An HK, Chung KM, Park H, Hong J, Gim JE, Choi H, Lee YW, Choi J, Mun JY, Yu SW. CASP9 (caspase 9) is essential for autophagosome maturation through regulation of mitochondrial homeostasis. Autophagy 2019; 16:1598-1617. [DOI: 10.1080/15548627.2019.1695398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hyun-Kyu An
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kyung Min Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyunhee Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jihyun Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ji-Eun Gim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyosun Choi
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon, Republic of Korea
| | - Ye Won Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jieun Choi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
38
|
Xiong T, Zhang Z, Zheng R, Huang J, Guo L. N‑acetyl cysteine inhibits lipopolysaccharide‑induced apoptosis of human umbilical vein endothelial cells via the p38MAPK signaling pathway. Mol Med Rep 2019; 20:2945-2953. [PMID: 31524245 DOI: 10.3892/mmr.2019.10526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/05/2019] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) can regulate the expression of apoptotic factors, including caspase‑3, Bcl‑2 and Bcl‑2‑associated X protein (Bax). Nitric oxide (NO) plays an important role in apoptosis. N‑acetyl cysteine (NAC) has been shown to exhibit antioxidant effects in vitro. However, the effects of NAC on LPS‑induced apoptosis of human umbilical vein endothelial cells (HUVECs) and the associated mechanisms are not well characterized. The present study explored the effect of NAC on LPS‑induced apoptosis of HUVECs and determined the participation of the p38 mitogen‑activated protein kinase (MAPK) pathway in the process of apoptosis. Cell viability was assessed using the Cell Counting Kit‑8 (CCK‑8) assay. The expression of caspase‑3, Bax, Bcl‑2, phosphorylated (p)‑p38MAPK/total (t‑)p38MAPK and p‑endothelial e nitric oxide synthase (eNOS)/t‑eNOS proteins were determined by western blotting. The expression levels of caspase‑3, Bax and Bcl‑2 mRNA were determined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The rate of apoptosis was determined using flow cytometry. An NO detection kit (nitric reductase method) was used to determine NO concentration. The results of CCK‑8 and flow cytometric analyses showed that pretreatment of HUVECs with NAC or p38MAPK inhibitor (SB203580) attenuated LPS‑induced decrease in cell viability and increase in cell apoptosis. RT‑qPCR and western blotting showed that LPS promoted caspase‑3 and Bax expression, but inhibited that of Bcl‑2 in HUVECs; however, these effects were attenuated by pretreatment with NAC or SB203580. LPS stimulation significantly enhanced the expression of p‑p38MAPK protein and reduced the expression of p‑eNOS protein; however, these effects were attenuated by pretreatment with NAC or SB203580. NAC pretreatment attenuated LPS‑induced inhibition of NO synthesis, which was consistent with the effects of SB203580. The results demonstrated that NAC pretreatment alleviated LPS‑induced apoptosis and inhibition of NO production in HUVECs. Furthermore, these effects were proposed to be mediated via the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Ting Xiong
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhenzhen Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Rui Zheng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jialin Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
39
|
LZ-101, a novel derivative of danofloxacin, induces mitochondrial apoptosis by stabilizing FOXO3a via blocking autophagy flux in NSCLC cells. Cell Death Dis 2019; 10:484. [PMID: 31217472 PMCID: PMC6584698 DOI: 10.1038/s41419-019-1714-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022]
Abstract
Non-small-cell lung carcinoma (NSCLC) continues to be a vital disease worldwide for its high incidence and consequent mortality rate. In this study, we investigated the anti-cancer effect of LZ-101, a new derivative of danofloxacin, against non-small-cell lung cancer and the underlying mechanisms. In vitro, LZ-101 inhibited the viability of human non-small cell lung cancer cell lines. We demonstrated that LZ-101 induced mitochondrial-mediated apoptosis by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm), release of cytochrome c (Cyt c) and apoptosis-inducing factor (AIF) in A549 cells. Further research illuminated that LZ-101 induced apoptosis was related to the activation of FOXO3a/Bim pathway. Moreover, we found that LZ-101 increased the stability of FOXO3a by blocking autophagy-dependent FOXO3a degradation. However, inhibition of autophagosome formation abolished FOXO3a stabilization and apoptosis induced by LZ-101. In vivo, LZ-101 exerted a remarkable anti-tumor activity with high safety in xenograft model inoculated A549 tumor through the same mechanism as in our in vitro study. In conclusion, our findings indicated that LZ-101 induces mitochondrial apoptosis and stabilizes FOXO3a by blocking autophagy flux.
Collapse
|
40
|
Ganta KK, Chaubey B. Endoplasmic reticulum stress leads to mitochondria-mediated apoptosis in cells treated with anti-HIV protease inhibitor ritonavir. Cell Biol Toxicol 2019; 35:189-204. [PMID: 30386960 DOI: 10.1007/s10565-018-09451-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Endoplasmic reticulum (ER) stress is a growing concern for drug-induced toxicity which causes several side effects. Ritonavir, a potent HIV protease inhibitor, induces both ER and mitochondrial stress; however, the missing link between ER stress and mitochondrial damage has been unknown. In the present study, we have studied the sequential events that occur during ritonavir-induced cell cytotoxicity and elucidate the link between ER stress and mitochondrial damage. METHODS Cytotoxicity of ritonavir was calculated on different cells; Huh-7.5, 293T, HeLa, and Hepa RG cells using the MTT assay and also by measuring total protein content. Cellular stress response was evaluated by RT-PCR for stress marker genes. Entry of drug into the mitochondrial compartment was evaluated by HPLC. Mitochondria-mediated apoptosis was analyzed by western blotting. RESULTS Ritonavir treatment initially triggered ER stress during the early hours of treatment. Consequently, the BAX was activated which permeabilized the mitochondrial outer membrane. Simultaneously, upon entry of the drug into the mitochondrial compartment, change in mitochondrial membrane potential was observed which led to the release of cytochrome c in the cytoplasm. Release of cytochrome c activated mitochondria-mediated apoptosis by the activation of caspase-9/7 and parp-1. CONCLUSION The cytotoxic effects of ritonavir involved the interplay of ER stress and mitochondria-mediated apoptosis. This unusual mechanism of drug-induced toxicity expands our knowledge in understanding side effects caused by ritonavir.
Collapse
Affiliation(s)
- Krishna Kumar Ganta
- Functional Genomics Laboratory, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Binay Chaubey
- Functional Genomics Laboratory, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
41
|
Mijanović O, Branković A, Panin AN, Savchuk S, Timashev P, Ulasov I, Lesniak MS. Cathepsin B: A sellsword of cancer progression. Cancer Lett 2019; 449:207-214. [PMID: 30796968 PMCID: PMC6488514 DOI: 10.1016/j.canlet.2019.02.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Clinical, biochemical and molecular biology studies have identified lysosome-encapsulated cellular proteases as critical risk factors for cancer progression. Cathepsins represent a group of such proteases aimed at maintenance of cellular homeostasis. Nevertheless, recent reports suggest that Cathepsin B executes other cellular programs such as controlling tumor growth, migration, invasion, angiogenesis, and metastases development. In fact, elevated levels of Cathepsins are found under different pathological conditions including inflammation, infection, neurodegenerative disease, and cancer. Furthermore, the discovery of Cathepsin B secretion and function as an extracellular matrix protein has broadened our appreciation for the impact of Cathepsin B on cancer progression. Underneath a façade of an intracellular protease with limited therapeutic potential hides a central role of cathepsins in extracellular functions. Moreover, this role is incredibly diverse from one condition to the next - from driving caspase-dependent apoptosis to facilitating tumor neovascularization and metastasis. Here we discuss the role of Cathepsin B in the oncogenic process and perspective the use of Cathepsin B for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Olja Mijanović
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Ana Branković
- Department of Forensics, Academy of Criminalistic and Police Studies, Belgrade, Serbia
| | - Alexander N Panin
- Moscow State University of Food Production, 11, Volokolamskoe Shosse, Moscow, 125080, Russia
| | - Solomiia Savchuk
- The University of Illinois at Chicago (UIC), Chicago, IL, USA; Northwestren University, Chicago, IL, 60611, USA
| | - Peter Timashev
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Ilya Ulasov
- Institute of Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Maciej S Lesniak
- The University of Illinois at Chicago (UIC), Chicago, IL, USA; Northwestren University, Chicago, IL, 60611, USA.
| |
Collapse
|
42
|
Yamada K, Yoshida K. Mechanical insights into the regulation of programmed cell death by p53 via mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:839-848. [DOI: 10.1016/j.bbamcr.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
|
43
|
Park HH. Caspase recruitment domains for protein interactions in cellular signaling (Review). Int J Mol Med 2019; 43:1119-1127. [PMID: 30664151 PMCID: PMC6365033 DOI: 10.3892/ijmm.2019.4060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The caspase recruitment domain (CARD), a well-known protein interaction module, belongs to the death domain (DD) superfamily, which includes DDs, death effector domains, and pyrin domains. The DD superfamily mediates the protein interactions necessary for apoptosis and immune cell signaling pathways. Among these domains, the CARD has been studied extensively as it mediates important cellular signaling events that are associated with various human diseases including cancer, neuro-degenerative diseases and immune disorders. Homo-type and hetero-type CARD-CARD interactions mediate the formation of large signaling complexes, including caspase-activating complexes and downstream signaling complexes. The present review summarizes and discusses the results of structural studies of various CARDs and their complexes. These studies shed light on the mechanisms that control the assembly and disassembly of signaling complexes and provide an improved understanding of cellular signaling processes.
Collapse
Affiliation(s)
- Hyun Ho Park
- Department of Pharmacy, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
44
|
Zhang MZ, Liu YF, Ding N, Zhao PX, Zhang X, Liu MY, Adzavon YM, Huang JN, Long X, Wang XJ, Wang YB, Qi Z. 2-Methoxyestradiol improves the apoptosis level in keloid fibroblasts through caspase-dependent mechanisms in vitro. Am J Transl Res 2018; 10:4017-4029. [PMID: 30662647 PMCID: PMC6325513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Apoptosis is a form of programmed cell death that occurs in multicellular organisms. Fibroblasts are the main cellular ingredients in keloid tissue, which has a relatively low apoptosis level. A natural metabolite of estradiol, 2-Methoxyestradiol (2ME2) exerts a pro-apoptotic effect on tumor cells. In this study, the expression levels of key factors in the apoptosis pathway and the expression level of the proliferating cell nuclear antigen (PCNA) were measured to assess the levels of apoptosis and proliferation in both normal skin fibroblasts and keloid fibroblasts. Twelve samples were obtained from 12 patients: 6 keloid patients and 6 non-keloid patients. All 12 of the patients were randomly selected from the Department of Plastic Surgery at Peking Union Medical College Hospital from June 2016 to December 2016. After cell culture, fibroblasts were divided into the following 6 groups: normal skin fibroblasts (S); keloid fibroblasts (K); keloid fibroblasts treated with 2ME2 (2ME2); keloid fibroblasts treated with DMSO (DMSO); keloid fibroblasts treated with the caspase inhibitor Ac-DEVD-CHO (IN); and keloid fibroblasts treated with both Ac-DEVD-CHO and 2ME2 (IN+2ME2). Fibroblasts at up to passage 3 were used for analysis. Cell activity was measured by the cell counting kit-8. TUNEL staining was used to observe the cell apoptotic morphology. The key apoptosis factors (caspase-3, caspase-8, caspase-9, Bcl-2, Bax, and cytochrome-c) and PCNA expression levels were detected by immunofluorescence analysis and Western blotting. A certain concentration of 2ME2 was also used in group S to evaluate the toxicity. Compared with that in the other groups, 2ME2 significantly inhibited cell activity and led to apoptotic appearance of fibroblasts. In protein analysis, 2ME2 remarkably increased the expression of apoptosis factors and decreased the PCNA expression. Apoptosis levels were reduced by both the caspase inhibitor and 2ME2; thus indicating that the pro-apoptosis effect of 2ME2 was achieved through a caspase-dependent mechanism in keloid fibroblasts. Toxicity assessment showed that 2ME2 had a very low influence on normal skin fibroblasts. 2ME2, considered to be a new promising type of chemotherapy drug, exerts a pro-apoptosis effect by regulating the caspase family and an anti-proliferation effect towards keloid fibroblasts, and it presents low toxicity towards normal fibroblasts in vitro.
Collapse
Affiliation(s)
- Ming-Zi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| | - Yi-Fang Liu
- International Education College, Beijing Vocational College of AgricultureBeijing 100012, China
| | - Ning Ding
- Department of Neurosurgery, Qingdao Huangdao District Hospital of Traditional Chinese MedicineQingdao 266500, Shandong, China
| | - Peng-Xiang Zhao
- College of Life Science and Bioengineering, Beijing University of TechnologyBeijing 100124, China
| | - Xin Zhang
- College of Life Science and Bioengineering, Beijing University of TechnologyBeijing 100124, China
| | - Meng-Yu Liu
- College of Life Science and Bioengineering, Beijing University of TechnologyBeijing 100124, China
| | - Yao Mawulikplimi Adzavon
- College of Life Science and Bioengineering, Beijing University of TechnologyBeijing 100124, China
| | - Jian-Nan Huang
- Department of Neurosurgery, Northern Jiangsu People’s Hospital, Dalian Medical UniversityDalian 116044, Liaoning, China
| | - Xiao Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| | - Xiao-Jun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| | - You-Bin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| | - Zheng Qi
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| |
Collapse
|
45
|
Datta A, Moitra S, Faruk SMO, Das PK, Mondal S, Hazra I, Basu AK, Tripathi SK, Chaudhuri S. Unravelling the apoptotic mechanisms in T-lymphocytes in an animal model for pollen induced airway allergy and studying the impact of specific immunotherapy. Immunobiology 2018; 224:183-195. [PMID: 30471949 DOI: 10.1016/j.imbio.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airways, increasing in prevalence worldwide. Reduced T cell apoptosis may interfere with the down-regulation of an immune response resulting in T cell accumulation contributing to the chronic inflammation of asthma. Most studies focused so far on apoptosis of eosinophils but the detailed role of T lymphocytes apoptosis in allergic diseases is unclear yet. The present experimental study was designed to discern the modulation of various apoptotic proteins of splenic T lymphocytes in a previously established rat model of Alstonia scholaris pollen induced airway allergy. Flowcytometry, immunoblotting, and immunofluorescence imaging techniques were employed for the present investigation. Annexin-V studies registered early apoptotic rate of lymphocytes with allergen sensitization and challenge which was corrected following mucosal immunotherapy. The study demonstrates that allergen sensitization and challenge reduced apoptosis of splenic T-lymphocytes via Fas mediated extrinsic pathway, Bax/Bcl2 regulated intrinsic pathway and also perforin/granzyme mediated pathway which were normalized following allergen specific intranasal immunotherapy. Inadequate T cell apoptosis in asthma appears to interfere with normal T cell elimination, resulting in T cell accumulation, which contributes to chronic inflammation and may be the major underlying cause for tissue damage which can be modulated by intranasal immunotherapy. Thus the apoptosis inducing effect of allergen immunotherapy necessitates more studies to elaborate on its effects on various effector cells of airway inflammation.
Collapse
Affiliation(s)
- Ankur Datta
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India; Department of Clinical & Experimental Pharmacology, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Saibal Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Sk Md Omar Faruk
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Prasanta K Das
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Somnath Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India; Department of Clinical & Experimental Pharmacology, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Iman Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Anjan K Basu
- Department of Biochemistry & Medical Biotechnology, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Santanu K Tripathi
- Department of Clinical & Experimental Pharmacology, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Swapna Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
46
|
Tichý A. Apoptotic Machinery: The Bcl-2 Family Proteins in the Role of Inspectors and Superintendents. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2017.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Programmed cell death, apoptosis, plays an integral role in a variety of biological events, e.g. morphogenesis, removal of unwanted or harmful cells, tissue homeostasis etc. Members of the Bcl-2 family have been described as the key players in the regulation of the apoptotic process. This family consists of proteins that prevent apoptosis (Bcl-2–like) and two structurally distinct subgroups (Bax-like and BH3–only) that on the contrary promote cell death. Majority of their response is concentrated to the mitochondrial level. In this paper, besides reviewing some new information in this field we focused on how they interact among each other and on the way they sense and influence the death signals from the environment. Here, we compare Bcl-2 family to inspectors and superintendents since they supervise the manufacturing process of cell death and they determine whether the cell will die or it will resist and survive.
Collapse
|
47
|
Dorstyn L, Akey CW, Kumar S. New insights into apoptosome structure and function. Cell Death Differ 2018; 25:1194-1208. [PMID: 29765111 PMCID: PMC6030056 DOI: 10.1038/s41418-017-0025-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/08/2023] Open
Abstract
The apoptosome is a platform that activates apical procaspases in response to intrinsic cell death signals. Biochemical and structural studies in the past two decades have extended our understanding of apoptosome composition and structure, while illuminating the requirements for initiator procaspase activation. A number of studies have now provided high-resolution structures for apoptosomes from C. elegans (CED-4), D. melanogaster (Dark), and H. sapiens (Apaf-1), which define critical protein interfaces, including intra and interdomain interactions. This work also reveals interactions of apoptosomes with their respective initiator caspases, CED-3, Dronc and procaspase-9. Structures of the human apoptosome have defined the requirements for cytochrome c binding, which triggers the conversion of inactive Apaf-1 molecules to an extended, assembly competent state. While recent data have provided a detailed understanding of apoptosome formation and procaspase activation, they also highlight important evolutionary differences with functional implications for caspase activation. Comparison of the CARD/CARD disks and apoptosomes formed by CED-4, Dark and Apaf-1. Cartoons of the active states of the CARD-CARD disks, illustrating the two CED-4 CARD tetrameric ring layers (CED4a and CED4b; top row) and the binding of 8 Dronc CARDs and between 3-4 pc-9 CARDs, to the Dark and Apaf-1 CARD disk respectively (middle and lower rows). Ribbon diagrams of the active CED-4, Dark and Apaf-1 apoptosomes are shown (right column).
Collapse
Affiliation(s)
- Loretta Dorstyn
- Center for Cancer Biology, University of South Australia and SA Pathology, Frome Road, Adelaide, SA, 5001, Australia.
| | - Christopher W Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Sharad Kumar
- Center for Cancer Biology, University of South Australia and SA Pathology, Frome Road, Adelaide, SA, 5001, Australia.
| |
Collapse
|
48
|
Zafirlukast and vincamine ameliorate tamoxifen-induced oxidative stress and inflammation: Role of the JNK/ERK pathway. Life Sci 2018; 202:78-88. [DOI: 10.1016/j.lfs.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
|
49
|
Chuang YC, Wu HY, Lin YL, Tzou SC, Chuang CH, Jian TY, Chen PR, Chang YC, Lin CH, Huang TH, Wang CC, Chan YL, Liao KW. Blockade of ITGA2 Induces Apoptosis and Inhibits Cell Migration in Gastric Cancer. Biol Proced Online 2018; 20:10. [PMID: 29743821 PMCID: PMC5928594 DOI: 10.1186/s12575-018-0073-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 12/19/2022] Open
Abstract
Background Gastric cancer is currently the fourth leading cause of cancer-related death worldwide. Gastric cancer is often diagnosed at advanced stages and the outcome of the treatment is often poor. Therefore, identifying new therapeutic targets for this cancer is urgently needed. Integrin alpha 2 (ITGA2) subunit and the beta 1 subunit form a heterodimer for a transmembrane receptor for extracellular matrix, is an important molecule involved in tumor cell proliferation, survival and migration. Integrin α2β1 is over-expressed on a variety of cancer cells, but is low or absent in most normal organs and resting endothelial cells. Results In this report, we assessed the ITGA2 as the potential therapeutic target with the bioinformatics tools from the TCGA dataset in which composed of 375 gastric cancer tissues and 32 gastric normal tissues. According to the information from the Cancer Cell Line Encyclopedia (CCLE) database, the AGS cell line with ITGA2 high expression and the SUN-1 cell line with low expression were chosen for the further investigation. Interestingly, the anti-ITGA2 antibody (at 3 μg/ml) inhibited approximately 50% survival of the AGS cells (over-expressed ITGA2), but had no effect in SNU-1 cells (ITGA2 negative). The extents of antibody-mediated cancer inhibition positively correlated with the expression levels of the ITGA2. We further showed that the anti-ITGA2 antibody induced apoptosis by up-regulating the RhoA-p38 MAPK signaling to promote the expressions of Bim, Apaf-1 and Caspase-9, whereas the expressions of Ras and Bax/Bcl-2 were not affected. Moreover, blocking ITGA2 by the specific antibody at lower doses also inhibited cell migration of gastric cancer cells. Blockade of ITGA2 by a specific antibody down-regulated the expression of N-WASP, PAK and LIMK to impede actin organization and cell migration of gastric cancer cells. Conclusions Here, we showed that the mRNA expression levels of ITGA2 comparing to normal tissues significantly increased. In addition, the results revealed that targeting integrin alpha 2 subunit by antibodies did not only inhibit cell migration, but also induce apoptosis effect on gastric cancer cells. Interestingly, higher expression level of ITGA2 led to significant effects on apoptosis progression during anti-ITGA2 antibody treatment, which indicated that ITGA2 expression levels directly correlate with their functionality. Our findings suggest that ITGA2 is a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yu-Chang Chuang
- 1Departmet of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Hsin-Yi Wu
- 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Yu-Ling Lin
- 1Departmet of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China.,3Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Shey-Cherng Tzou
- 1Departmet of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China.,2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Cheng-Hsun Chuang
- 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Ting-Yan Jian
- 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Pin-Rong Chen
- 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Yuan-Ching Chang
- 4Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China
| | - Chi-Hsin Lin
- 5Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, Republic of China
| | - Tse-Hung Huang
- 6Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China.,7School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China.,8School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, Republic of China
| | - Chao-Ching Wang
- 6Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China
| | - Yi-Lin Chan
- 9Department of Life Science, Chinese Culture University, 55, Hwa-Kang Rd., Yang-Ming-Shan, Taipei, 11114 Taiwan, Republic of China
| | - Kuang-Wen Liao
- 1Departmet of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China.,2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China.,10College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.,11Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.,12Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
50
|
Gao XM, Zhu Y, Li JH, Wang XY, Zhang XF, Yi CH, Yang X. microRNA-26a induces a mitochondrial apoptosis mediated by p53 through targeting to inhibit Mcl1 in human hepatocellular carcinoma. Onco Targets Ther 2018; 11:2227-2239. [PMID: 29719405 PMCID: PMC5914889 DOI: 10.2147/ott.s160895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim We have previously found that microRNA-26a (miR-26a) is a potential tumor suppressor in hepatocellular carcinoma (HCC). In this study, we further explored the roles of miR-26a in HCC apoptosis. Methods miR-26a expression levels were detected in HCC tissues by real-time PCR. Statistical analysis was performed to explore the correlation between miR-26a expression and apoptotic cells and the antiapoptotic protein levels. In vitro assays were performed to investigate the roles of miR-26a in HCC apoptosis. The immunohistochemical staining analysis, Western blot, and luciferase reporter assay were performed to evaluate the relationship between miR-26a and its potential upstream regulating and downstream target genes. The potential mechanism of the combination treatment of interferon-α1b (IFN-α1b) and 5-fluorouracil (5-FU) was explored by in vitro and in vivo assays. Results miR-26a levels were significantly associated with the number of apoptotic cells and inversely correlated with the protein levels of Bcl-2, Bcl-xL, and Mcl1 in HCC tissues. Furthermore, miR-26a was proved to induce the mitochondrial apoptosis in vitro by directly targeting to inhibit Mcl1 in HCC cells. Moreover, p53 was demonstrated to mediate miR-26a-induced apoptosis, by activating its promoter in HCC. Meanwhile, the combination treatment of IFN-α1b and 5-FU could induce the expression of p53, which then upregulated miR-26a and downregulated Mcl1 levels, and finally promoted the apoptosis of HCC cells through a mitochondrial pathway. Conclusion These findings highlight the important and related molecular mechanism of miR-26a in the regulation of apoptosis and implicate the potential application of combination of IFN-α1b and 5-FU in HCC treatment.
Collapse
Affiliation(s)
- Xiao-Mei Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ying Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jian-Hua Li
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Fei Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Chen-He Yi
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xin Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|