1
|
Jia Y, Jiang Q, Sun S. Embryonic expression patterns of TBL1 family in zebrafish. Gene Expr Patterns 2024; 51:119355. [PMID: 38272246 DOI: 10.1016/j.gep.2024.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Except the addition of TBL1Y in human, transducing beta like 1 (TBL1) family mainly consists of two members TBL1X and TBL1XR1, taking part in multiple intracellular signaling pathways such as Wnt/β-catenin and NF-κB in cancer progression. However, the gene expression patterns of this family during embryonic development remain largely unknown. Here we took advantage of zebrafish model to characterize the spatial and temporal expression patterns of TBL1 family genes including tbl1x, tbl1xr1a and tbl1xr1b. The in situ hybridization studies of gene expression showed robust expressions of tbl1x and tbl1xr1b as maternal transcripts except tbl1xr1a. As the embryo develops, zygotic expressions of all TBL1 family members occur and have a redundant and broad pattern including in brain, neural retina, pharyngeal arches, otic vesicles, and pectoral fins. Ubiquitous expression of all family members were ranked from the strongest to the weakest: tbl1xr1a, tbl1x, and tbl1xr1b. In addition, one tbl1xr1a transcript tbl1xr1a202 showed unique and rich expression in the developing heart and lateral line neuromasts. Overall, all members of zebrafish TBL1 family shared numerous similarities and exhibited certain distinctions in the expression patterns, indicating that they might have redundant and exclusive functions to be further explored.
Collapse
Affiliation(s)
- Yuanqi Jia
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, PR China
| | - Qiu Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Shuna Sun
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, PR China.
| |
Collapse
|
2
|
Identification and characterization of small molecule inhibitors of the ubiquitin ligases Siah1/2 in melanoma and prostate cancer cells. Cancer Lett 2019; 449:145-162. [PMID: 30771432 DOI: 10.1016/j.canlet.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022]
Abstract
Inhibition of ubiquitin ligases with small molecule remains a very challenging task, given the lack of catalytic activity of the target and the requirement of disruption of its interactions with other proteins. Siah1/2, which are E3 ubiquitin ligases, are implicated in melanoma and prostate cancer and represent high-value drug targets. We utilized three independent screening approaches in our efforts to identify small-molecule Siah1/2 inhibitors: Affinity Selection-Mass Spectrometry, a protein thermal shift-based assay and an in silico based screen. Inhibitors were assessed for their effect on viability of melanoma and prostate cancer cultures, colony formation, prolyl-hydroxylase-HIF1α signaling, expression of selected Siah2-related transcripts, and Siah2 ubiquitin ligase activity. Several analogs were further characterized, demonstrating improved efficacy. Combination of the top hits identified in the different assays demonstrated an additive effect, pointing to complementing mechanisms that underlie each of these Siah1/2 inhibitors.
Collapse
|
3
|
Nguyen MB, Vuong LT, Choi KW. Ebi modulates wing growth by ubiquitin-dependent downregulation of Crumbs in Drosophila. Development 2016; 143:3506-3513. [PMID: 27702784 DOI: 10.1242/dev.142059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
Abstract
Notch signaling at the dorsoventral (DV) boundary is essential for patterning and growth of wings in Drosophila The WD40 domain protein Ebi has been implicated in the regulation of Notch signaling at the DV boundary. Here we show that Ebi regulates wing growth by antagonizing the function of the transmembrane protein Crumbs (Crb). Ebi physically binds to the extracellular domain of Crb (Crbext), and this interaction is specifically mediated by WD40 repeats 7-8 of Ebi and a laminin G domain of Crbext Wing notching resulting from reduced levels of Ebi is suppressed by decreasing the Crb function. Consistent with this antagonistic genetic relationship, Ebi knockdown in the DV boundary elevates the Crb protein level. Furthermore, we show that Ebi is required for downregulation of Crb by ubiquitylation. Taken together, we propose that the interplay of Crb expression in the DV boundary and ubiquitin-dependent Crb downregulation by Ebi provides a mechanism for the maintenance of Notch signaling during wing development.
Collapse
Affiliation(s)
- Minh Binh Nguyen
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Linh Thuong Vuong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
4
|
Lim YM, Tsuda L. Ebi, a Drosophila homologue of TBL1, regulates the balance between cellular defense responses and neuronal survival. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:62-68. [PMID: 27073743 PMCID: PMC4788732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/02/2016] [Indexed: 06/05/2023]
Abstract
Transducin β-like 1 (TBL1), a transcriptional co-repressor complex, is a causative factor for late-onset hearing impairments. Transcriptional co-repressor complexes play pivotal roles in gene expression by making a complex with divergent transcription factors. However, it remained to be clarified how co-repressor complex regulates cellular survival. We herein demonstrated that ebi, a Drosophila homologue of TBL1, suppressed photoreceptor cell degeneration in the presence of excessive innate immune signaling. We also showed that the balance between NF-κB and AP-1 is a key component of cellular survival under stress conditions. Given that Ebi plays an important role in innate immune responses by regulating NF-κB activity and inhibition of apoptosis induced by associating with AP-1, it may be involved in the regulation of photoreceptor cell survival by modulating cross-talk between NF-κB and AP-1.
Collapse
Affiliation(s)
- Young-Mi Lim
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu Aichi, Japan
| | - Leo Tsuda
- Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu Aichi, Japan
| |
Collapse
|
5
|
Lim YM, Yagi Y, Tsuda L. Cellular Defense and Sensory Cell Survival Require Distinct Functions of ebi in Drosophila. PLoS One 2015; 10:e0141457. [PMID: 26524764 PMCID: PMC4629896 DOI: 10.1371/journal.pone.0141457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/08/2015] [Indexed: 12/14/2022] Open
Abstract
The innate immune response and stress-induced apoptosis are well-established signaling pathways related to cellular defense. NF-κB and AP-1 are redox-sensitive transcription factors that play important roles in those pathways. Here we show that Ebi, a Drosophila homolog of the mammalian co-repressor molecule transducin β-like 1 (TBL1), variously regulates the expression of specific genes that are targets of redox-sensitive transcription factors. In response to different stimuli, Ebi activated gene expression to support the acute immune response in fat bodies, whereas Ebi repressed genes that are involved in apoptosis in photoreceptor cells. Thus, Ebi seems to act as a regulatory switch for genes that are activated or repressed in response to different external stimuli. Our results offer clear in vivo evidence that the Ebi-containing co-repressor complex acts in a distinct manner to regulate transcription that is required for modulating the output of various processes during Drosophila development.
Collapse
Affiliation(s)
- Young-Mi Lim
- Animal Models of Aging Project Team, Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, Japan
| | - Yoshimasa Yagi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Leo Tsuda
- Animal Models of Aging Project Team, Center for Development of Advanced Medicine for Dementia (CAMD), National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, Japan
| |
Collapse
|
6
|
Huang J, Cardamone MD, Johnson HE, Neault M, Chan M, Floyd ZE, Mallette FA, Perissi V. Exchange Factor TBL1 and Arginine Methyltransferase PRMT6 Cooperate in Protecting G Protein Pathway Suppressor 2 (GPS2) from Proteasomal Degradation. J Biol Chem 2015; 290:19044-54. [PMID: 26070566 DOI: 10.1074/jbc.m115.637660] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 12/18/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is a multifunctional protein involved in the regulation of a number of metabolic organs. First identified as part of the NCoR-SMRT corepressor complex, GPS2 is known to play an important role in the nucleus in the regulation of gene transcription and meiotic recombination. In addition, we recently reported a non-transcriptional role of GPS2 as an inhibitor of the proinflammatory TNFα pathway in the cytosol. Although this suggests that the control of GPS2 localization may be an important determinant of its molecular functions, a clear understanding of GPS2 differential targeting to specific cellular locations is still lacking. Here we show that a fine balance between protein stabilization and degradation tightly regulates GPS2 nuclear function. Our findings indicate that GPS2 is degraded upon polyubiquitination by the E3 ubiquitin ligase Siah2. Unexpectedly, interaction with the exchange factor TBL1 is required to protect GPS2 from degradation, with methylation of GPS2 by arginine methyltransferase PRMT6 regulating the interaction with TBL1 and inhibiting proteasome-dependent degradation. Overall, our findings indicate that regulation of GPS2 by posttranslational modifications provides an effective strategy for modulating its molecular function within the nuclear compartment.
Collapse
Affiliation(s)
- Jiawen Huang
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - M Dafne Cardamone
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Holly E Johnson
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mathieu Neault
- the Chromatin Structure and Cellular Senescence Research Unit, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Quebec H1T 2M4, Canada
| | - Michelle Chan
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Z Elizabeth Floyd
- the Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, and
| | - Frédérick A Mallette
- the Chromatin Structure and Cellular Senescence Research Unit, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Quebec H1T 2M4, Canada, the Département de Médecine, Université de Montréal, Montréal, Quebec H1T 2M4, Canada
| | - Valentina Perissi
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
7
|
Li JY, Daniels G, Wang J, Zhang X. TBL1XR1 in physiological and pathological states. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2015; 3:13-23. [PMID: 26069883 PMCID: PMC4446378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Transducin (beta)-like 1X related protein 1 (TBL1XR1/TBLR1) is an integral subunit of the NCoR (nuclear receptor corepressor) and SMRT (silencing mediator of retinoic acid and thyroid hormone receptors) repressor complexes. It is an evolutionally conserved protein that shares high similarity across all species. TBL1XR1 is essential for transcriptional repression mediated by unliganded nuclear receptors (NRs) and othe regulated transcription factors (TFs). However, it can also act as a transcription activator through the recruitment of the ubiquitin-conjugating/19S proteasome complex that mediates the exchange of corepressors for coactivators. TBL1XR1 is required for the activation of multiple intracellular signaling pathways. TBL1XR1 germline mutations and recurrent mutations are linked to intellectual disability. Upregulation of TBL1XR1 is observed in a variety of solid tumors, which is associated with advanced tumor stage, metastasis and poor prognosis. A variety of genomic alterations, such as translocation, deletion and mutation have been identified in many types of neoplasms. Loss of TBL1XR1 in B-lymphoblastic leukemia disrupts glucocorticoid receptor recruitment to chromatin and results in glucocorticoid resistance. However, the mechanisms of other types of genomic changes in tumorogenesis are still not clear. A pre-clinical study has shown that the disruption of the interaction between TBL1X and β-catenin using a small molecule can inhibit the growth of AML stem and blast cells both in vitro and in vivo. These findings shed light on the therapeutic potentials of targeting TBL1XR1 related proteins in cancer treatment.
Collapse
Affiliation(s)
- Jian Yi Li
- Department of Pathology and Laboratory Medicine, Hofstra North Shore-LIJ School of MedicineNew York, USA
| | - Garrett Daniels
- Department of Pathology, New York University School of MedicineNew York, USA
| | - Jing Wang
- Department of Pathology and Laboratory Medicine, Hofstra North Shore-LIJ School of MedicineNew York, USA
| | - Xinmin Zhang
- Department of Pathology and Laboratory Medicine, Hofstra North Shore-LIJ School of MedicineNew York, USA
| |
Collapse
|
8
|
Omata Y, Lim YM, Akao Y, Tsuda L. Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2014; 3:134-142. [PMID: 25628964 PMCID: PMC4299720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Aging is a major risk factor for Alzheimer's disease (AD). Aggregation of amyloid beta (Aβ) in cerebral cortex and hippocampus is a hallmark of AD. Many factors have been identified as causative elements for onset and progression of AD; for instance, tau seems to mediate the neuronal toxicity of Aβ, and downregulation of macroautophagy (autophagy) is thought to be a causative element of AD pathology. Expression of autophagy-related genes is reduced with age, which leads to increases in oxidative stress and aberrant protein accumulation. In this study, we found that expression of the autophagy-related genes atg1, atg8a, and atg18 in Drosophila melanogaster was regulated with aging as well as their own activities. In addition, the level of atg18 was maintained by dfoxo (foxo) and dsir2 (sir2) activities in concert with aging. These results indicate that some autophagy-related gene expression is regulated by foxo/sir2-mediated aging processes. We further found that reduced autophagy activity correlated with late-onset neuronal dysfunction caused by neuronal induction of Aβ. These data support the idea that age-related dysfunction of autophagy is a causative element in onset and progression of AD.
Collapse
Affiliation(s)
- Yasuhiro Omata
- Department of Occupational and Environmental Health, Graduate School of Medicine, Nagoya UniversityNagoya, Aichi, Japan
| | - Young-Mi Lim
- Animal Models of Aging, CAMD, National Center for Geriatrics and GerontologyObu, Aichi, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu UniversityGifu City, Gifu, Japan
| | - Leo Tsuda
- Animal Models of Aging, CAMD, National Center for Geriatrics and GerontologyObu, Aichi, Japan
| |
Collapse
|
9
|
Wong MM, Guo C, Zhang J. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:169-187. [PMID: 25374920 PMCID: PMC4219314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy.
Collapse
Affiliation(s)
- Madeline M Wong
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Chun Guo
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Jinsong Zhang
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| |
Collapse
|
10
|
Tsuda L, Lim YM. Regulatory system for the G1-arrest during neuronal development in Drosophila. Dev Growth Differ 2014; 56:358-67. [PMID: 24738783 DOI: 10.1111/dgd.12130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/25/2023]
Abstract
Neuronal network consists of many types of neuron and glial cells. This diversity is guaranteed by the constant cell proliferation of neuronal stem cells following stop cell cycle re-entry, which leads to differentiation during development. Neuronal differentiation occurs mainly at the specific cell cycle phase, the G1 phase. Therefore, cell cycle exit at the G1 phase is quite an important issue in understanding the process of neuronal cell development. Recent studies have revealed that aberrant S phase re-entry from the G1 phase often links cellular survival. In this review we discuss the different types of G1 arrest on the process of neuronal development in Drosophila. We also describe the issue that aberrant S phase entry often causes apoptosis, and the same mechanism might contribute to sensory organ defects, such as deafness.
Collapse
Affiliation(s)
- Leo Tsuda
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
| | | |
Collapse
|
11
|
Mannervik M. Control of Drosophila embryo patterning by transcriptional co-regulators. Exp Cell Res 2013; 321:47-57. [PMID: 24157250 DOI: 10.1016/j.yexcr.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/29/2022]
Abstract
A combination of broadly expressed transcriptional activators and spatially restricted repressors are used to pattern embryos into cells of different fate. Transcriptional co-regulators are essential mediators of transcription factor function, and contribute to selective transcriptional responses in embryo development. A two step mechanism of transcriptional regulation is discussed, where remodeling of chromatin is initially required, followed by stimulation of recruitment or release of RNA polymerase from the promoter. Transcriptional co-regulators are essential for both of these steps. In particular, most co-activators are associated with histone acetylation and co-repressors with histone deacetylation. In the early Drosophila embryo, genome-wide studies have shown that the CBP co-activator has a preference for associating with some transcription factors and regulatory regions. The Groucho, CtBP, Ebi, Atrophin and Brakeless co-repressors are selectively used to limit zygotic gene expression. New findings are summarized which show that different co-repressors are often utilized by a single repressor, that the context in which a co-repressor is recruited to DNA can affect its activity, and that co-regulators may switch from co-repressors to co-activators and vice versa. The possibility that co-regulator activity is regulated and plays an instructive role in development is discussed as well. This review highlights how findings in Drosophila embryos have contributed to the understanding of transcriptional regulation in eukaryotes as well as to mechanisms of animal embryo patterning.
Collapse
Affiliation(s)
- Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Arrheniuslaboratories E3, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Niepielko MG, Marmion RA, Kim K, Luor D, Ray C, Yakoby N. Chorion patterning: a window into gene regulation and Drosophila species' relatedness. Mol Biol Evol 2013; 31:154-64. [PMID: 24109603 DOI: 10.1093/molbev/mst186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Changes in gene regulation are associated with the evolution of morphologies. However, the specific sequence information controlling gene expression is largely unknown and discovery is time and labor consuming. We use the intricate patterning of follicle cells to probe species' relatedness in the absence of sequence information. We focus on one of the major families of genes that pattern the Drosophila eggshell, the Chorion protein (Cp). Systematically screening for the spatiotemporal patterning of all nine Cp genes in three species (Drosophila melanogaster, D. nebulosa, and D. willistoni), we found that most genes are expressed dynamically during mid and late stages of oogenesis. Applying an annotation code, we transformed the data into binary matrices that capture the complexity of gene expression. Gene patterning is sufficient to predict species' relatedness, consistent with their phylogeny. Surprisingly, we found that expression domains of most genes are different among species, suggesting that Cp regulation is rapidly evolving. In addition, we found a morphological novelty along the dorsalmost side of the eggshell, the dorsal ridge. Our matrix analysis placed the dorsal ridge domain in a cluster of epidermal growth factor receptor associated domains, which was validated through genetic and chemical perturbations. Expression domains are regulated cooperatively or independently by signaling pathways, supporting that complex patterns are combinatorially assembled from simple domains.
Collapse
Affiliation(s)
- Matthew G Niepielko
- Center for Computational and Integrative Biology, Rutgers, The State University of NJ
| | | | | | | | | | | |
Collapse
|
13
|
Lim YM, Yamasaki Y, Tsuda L. Ebi alleviates excessive growth signaling through multiple epigenetic functions inDrosophila. Genes Cells 2013; 18:909-20. [DOI: 10.1111/gtc.12088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/14/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Young-Mi Lim
- Animal Models of Aging; National Center for Geriatrics and Gerontology; Obu Aichi 474-8511 Japan
| | - Yasutoyo Yamasaki
- Animal Models of Aging; National Center for Geriatrics and Gerontology; Obu Aichi 474-8511 Japan
| | - Leo Tsuda
- Animal Models of Aging; National Center for Geriatrics and Gerontology; Obu Aichi 474-8511 Japan
| |
Collapse
|
14
|
Stebbins JL, Santelli E, Feng Y, De SK, Purves A, Motamedchaboki K, Wu B, Ronai ZA, Liddington RC, Pellecchia M. Structure-based design of covalent Siah inhibitors. ACTA ACUST UNITED AC 2013; 20:973-82. [PMID: 23891150 DOI: 10.1016/j.chembiol.2013.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
Abstract
The E3 ubiquitin ligase Siah regulates key cellular events that are central to cancer development and progression. A promising route to Siah inhibition is disrupting its interactions with adaptor proteins. However, typical of protein-protein interactions, traditional unbiased approaches to ligand discovery did not produce viable hits against this target, despite considerable effort and a multitude of approaches. Ultimately, a rational structure-based design strategy was successful for the identification of Siah inhibitors in which peptide binding drives specific covalent bond formation with the target. X-ray crystallography, mass spectrometry, and functional data demonstrate that these peptide mimetics are efficient covalent inhibitors of Siah and antagonize Siah-dependent regulation of Erk and Hif signaling in the cell. The proposed strategy may result useful as a general approach to the design of peptide-based inhibitors of other protein-protein interactions.
Collapse
Affiliation(s)
- John L Stebbins
- Signal Transduction Program and Cell Death Program, Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Treisman JE. Retinal differentiation in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:545-57. [PMID: 24014422 DOI: 10.1002/wdev.100] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila eye development has been extensively studied, due to the ease of genetic screens for mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval development by the Pax6 homolog Eyeless and a network of downstream transcription factors. Expression of these factors is regulated by signaling molecules and also indirectly by growth of the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog. Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral inhibition induce and refine the expression of the transcription factor Atonal, which specifies the founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each ommatidial cell its specific identity. During the pupal stages, rhodopsins are expressed, and the photoreceptors and accessory cells take on their final positions and morphologies to form the adult retina. Over the past few decades, the genetic analysis of this small number of cell types arranged in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms controlling cell differentiation and morphological rearrangement.
Collapse
Affiliation(s)
- Jessica E Treisman
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
A Systematic Phenotypic Screen of F-box Genes Through a Tissue-specific RNAi-based Approach in Drosophila. J Genet Genomics 2012; 39:397-413. [DOI: 10.1016/j.jgg.2012.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/25/2012] [Accepted: 05/30/2012] [Indexed: 02/03/2023]
|
17
|
Lim YM, Hayashi S, Tsuda L. Ebi/AP-1 suppresses pro-apoptotic genes expression and permits long-term survival of Drosophila sensory neurons. PLoS One 2012; 7:e37028. [PMID: 22666340 PMCID: PMC3364243 DOI: 10.1371/journal.pone.0037028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/11/2012] [Indexed: 12/23/2022] Open
Abstract
Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1) is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box–like and WD40 repeats–containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1) and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.
Collapse
Affiliation(s)
- Young-Mi Lim
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
| | - Leo Tsuda
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Gengo, Obu, Aichi, Japan
- * E-mail:
| |
Collapse
|
18
|
Marygold SJ, Walker C, Orme M, Leevers S. Genetic characterization of ebi reveals its critical role in Drosophila wing growth. Fly (Austin) 2011; 5:291-303. [PMID: 22041576 DOI: 10.4161/fly.5.4.18276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ebi gene of Drosophila melanogaster has been implicated in diverse signalling pathways, cellular functions and developmental processes. However, a thorough genetic analysis of this gene has been lacking and the true extent of its biological roles is unclear. Here, we characterize eleven ebi mutations and find that ebi has a novel role in promoting growth of the wing imaginal disc: viable combinations of mutant alleles give rise to adults with small wings. Wing discs with reduced EBI levels are correspondingly small and exhibit down-regulation of Notch target genes. Furthermore, we show that EBI colocalizes on polytene chromosomes with Smrter (SMR), a transcriptional corepressor, and Suppressor of Hairless (SU(H)), the primary transcription factor involved in Notch signalling. Interestingly, the mammalian orthologs of ebi, transducin β-like 1 (TBL1) and TBL-related 1 (TBLR1), function as corepressor/coactivator exchange factors and are required for transcriptional activation of Notch target genes. We hypothesize that EBI acts to activate (de-repress) transcription of Notch target genes important for Drosophila wing growth by functioning as a corepressor/coactivator exchange factor for SU(H).
Collapse
|
19
|
RBF and Rno promote photoreceptor differentiation onset through modulating EGFR signaling in the Drosophila developing eye. Dev Biol 2011; 359:190-8. [PMID: 21920355 DOI: 10.1016/j.ydbio.2011.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/21/2011] [Accepted: 08/28/2011] [Indexed: 01/13/2023]
Abstract
The retinoblastoma gene Rb is the prototype tumor suppressor and is conserved in Drosophila. We use the developing fly retina as a model system to investigate the role of Drosophila Rb (rbf) during differentiation. This report shows that mutation of rbf and rhinoceros (rno), which encodes a PHD domain protein, leads to a synergistic delay in photoreceptor cell differentiation in the developing eye disc. We show that this differentiation delay phenotype is caused by decreased levels of different components of the Epidermal Growth Factor Receptor (EGFR) signaling pathway in the absence of rbf and rno. We show that rbf is required for normal expression of Rhomboid proteins and activation of MAP kinase in the morphogenetic furrow (MF), while rno is required for the expression of Pointed (Pnt) and Ebi proteins, which are key factors that mediate EGFR signaling output in the nucleus. Interestingly, while removing the transcription activation function of dE2F1 is sufficient to suppress the synergistic differentiation delay, a mutant form of de2f1 that disrupts the binding with RBF but retains the transcription activation function does not mimic the effect of rbf loss. These observations suggest that RBF has additional functions besides dE2F1 binding that regulates EGFR signaling and photoreceptor differentiation.
Collapse
|
20
|
Siddall NA, Hime GR, Pollock JA, Batterham P. Ttk69-dependent repression of lozenge prevents the ectopic development of R7 cells in the Drosophila larval eye disc. BMC DEVELOPMENTAL BIOLOGY 2009; 9:64. [PMID: 20003234 PMCID: PMC2797499 DOI: 10.1186/1471-213x-9-64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022]
Abstract
Background During the development of the Drosophila eye, specific cell types differentiate from an initially equipotent group of uncommitted precursor cells. The lozenge (lz) gene, which is a member of the Runt family of transcriptional regulators, plays a pivotal role in mediating this process through regulating the expression of several fate-specifying transcription factors. However, the regulation of lz, and the control of lz expression levels in different cell types is not fully understood. Results Here, we show a genetic interaction between Tramtrack69 (Ttk69) a key transcriptional repressor and an inhibitor of neuronal fate specification, and lz, the master patterning gene of cells posterior to the morphogenetic furrow in the Drosophila eye disc. Loss of Ttk69 expression causes the development of ectopic R7 cells in the third instar eye disc, with these cells being dependent upon Lz for their development. Using the binary UAS Gal4 system, we show that overexpression of Ttk69 causes the loss of lz-dependent differentiating cells, and a down-regulation of Lz expression in the developing eye. The loss of lz-dependent cells can be rescued by overexpressing lz via a GMR-lz transgene. We provide additional data showing that factors functioning upstream of Ttk69 in eye development regulate lz in a Ttk69-dependent manner. Conclusions Our results lead us to conclude that Ttk69 can either directly or indirectly repress lz gene expression to prevent the premature development of R7 precursor cells in the developing eye of Drosophila. We therefore define a mechanism for the tight regulatory control of the master pre-patterning gene, lz, in early Drosophila eye development and provide insight into how differential levels of lz expression can be achieved to effect specific cell fate outcomes.
Collapse
Affiliation(s)
- Nicole A Siddall
- Department of Genetics, University of Melbourne, Parkville, Vic 3010, Australia.
| | | | | | | |
Collapse
|
21
|
Abstract
The molting process in arthropods is regulated by steroid hormones acting via nuclear receptor proteins. The most common molting hormone is the ecdysteroid, 20-hydroxyecdysone. The receptors of 20-hydroxyecdysone have also been identified in many arthropod species, and the amino acid sequences determined. The functional molting hormone receptors consist of two members of the nuclear receptor superfamily, namely the ecdysone receptor and the ultraspiracle, although the ecdysone receptor may be functional, in some instances, without the ultraspiracle. Generally, the ecdysone receptor/ultraspiracle heterodimer binds to a number of ecdysone response elements, sequence motifs that reside in the promoter of various ecdysteroid-responsive genes. In the ensuing transcriptional induction, the ecdysone receptor/ultraspiracle complex binds to 20-hydroxyecdysone or to a cognate ligand that, in turn, leads to the release of a corepressor and the recruitment of coactivators. 3D structures of the ligand-binding domains of the ecdysone receptor and the ultraspiracle have been solved for a few insect species. Ecdysone agonists bind to ecdysone receptors specifically, and ligand-ecdysone receptor binding is enhanced in the presence of the ultraspiracle in insects. The basic mode of ecdysteroid receptor action is highly conserved, but substantial functional differences exist among the receptors of individual species. Even though the transcriptional effects are apparently similar for ecdysteroids and nonsteroidal compounds such as diacylhydrazines, the binding shapes are different between them. The compounds having the strongest binding affinity to receptors ordinarily have strong molting hormone activity. The ability of the ecdysone receptor/ultraspiracle complex to manifest the effects of small lipophilic agonists has led to their use as gene switches for medical and agricultural applications.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
22
|
Shi Y, Noll M. Determination of cell fates in the R7 equivalence group of the Drosophila eye by the concerted regulation of D-Pax2 and TTK88. Dev Biol 2009; 331:68-77. [PMID: 19406115 DOI: 10.1016/j.ydbio.2009.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/06/2009] [Accepted: 04/22/2009] [Indexed: 11/30/2022]
Abstract
In the developing Drosophila eye, the precursors of the neuronal photoreceptor cells R1/R6/R7 and non-neuronal cone cells share the same developmental potential and constitute the R7 equivalence group. It is not clear how cells of this group elaborate their distinct fates. Here we show that both TTK88 and D-Pax2 play decisive roles in cone cell development and act in concert to transform developing R1/R6/R7 into cone cells: while TTK88 blocks neuronal development, D-Pax2 promotes cone cell specification. In addition, ectopic TTK88 in R cells induces apoptosis, which is suppressed by ectopic D-Pax2. We further demonstrate that Phyllopod (Phyl), previously shown to promote the neuronal fate in R1/R6/R7 by targeting TTK for degradation, also inhibits D-Pax2 transcription to prevent cone cell specification. Thus, the fates of R1/R6/R7 and cone cells are determined by a dual mechanism that coordinately activates one fate while inhibiting the other.
Collapse
Affiliation(s)
- Yandong Shi
- Institute for Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
23
|
Tabata T, Kokura K, Ten Dijke P, Ishii S. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5. Genes Cells 2008; 14:17-28. [PMID: 19032343 DOI: 10.1111/j.1365-2443.2008.01246.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.
Collapse
Affiliation(s)
- Takanori Tabata
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | |
Collapse
|
24
|
Basolateral junctions utilize warts signaling to control epithelial-mesenchymal transition and proliferation crucial for migration and invasion of Drosophila ovarian epithelial cells. Genetics 2008; 178:1947-71. [PMID: 18430928 DOI: 10.1534/genetics.108.086983] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fasciclin2 (Fas2) and Discslarge (Dlg) localize to the basolateral junction (BLJ) of Drosophila follicle epithelial cells and inhibit their proliferation and invasion. To identify a BLJ signaling pathway we completed a genomewide screen for mutants that enhance dlg tumorigenesis. We identified two genes that encode known BLJ scaffolding proteins, lethal giant larvae (lgl) and scribble (scrib), and several not previously associated with BLJ function, including warts (wts) and roughened eye (roe), which encode a serine-threonine kinase and a transcription factor, respectively. Like scrib, wts and roe also enhance Fas2 and lgl tumorigenesis. Further, scrib, wts, and roe block border cell migration, and cause noninvasive tumors that resemble dlg partial loss of function, suggesting that the BLJ utilizes Wts signaling to repress EMT and proliferation, but not motility. Apicolateral junction proteins Fat (Ft), Expanded (Ex), and Merlin (Mer) either are not involved in these processes, or have highly spatio-temporally restricted roles, diminishing their significance as upstream inputs to Wts in follicle cells. This is further indicated in that Wts targets, CyclinE and DIAP1, are elevated in Fas2, dlg, lgl, wts, and roe cells, but not Fat, ex, or mer cells. Thus, the BLJ appears to regulate epithelial polarity and dynamics not only as a localized scaffold, but also by communicating signals to the nucleus. Wts may be regulated by distinct junction inputs depending on developmental context.
Collapse
|
25
|
Ujfaludi Z, Boros IM, Bálint E. Different sets of genes are activated by p53 upon UV or ionizing radiation in Drosophila melanogaster. ACTA BIOLOGICA HUNGARICA 2008; 58 Suppl:65-79. [PMID: 18297795 DOI: 10.1556/abiol.58.2007.suppl.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The p53 tumour suppressor plays central role in the maintenance of genome integrity. P53 deficient fruit flies are highly sensitive to ionizing radiation (IR) and show genome instability suggesting that the Drosophila melanogaster p53 (Dmp53) is necessary for the proper damage response upon IR. We found that Dmp53 null fruit flies are highly sensitive to ultraviolet radiation (UV) as well. We analyzed the expression levels of apoptotic genes in wild type and Dmp53 null mutant animals after UV or IR using quantitative real-time RT-PCR. Ark (Apaf-1 related killer) was induced in a Dmp53-dependent way upon UV treatment but not by IR, hid (head involution defective/wrinkled) was induced upon both types of DNA damage, while reaper was induced only upon IR but not UV treatment. Using microarray analysis we identified several further genes that are activated upon UV irradiation in the presence of wild type Dmp53 only. Some but not all of these genes show Dmp53-dependent activation upon IR treatment as well. These results suggest that Dmp53 activates distinct cellular pathways through regulation of different target genes after different types of DNA damage.
Collapse
Affiliation(s)
- Zsuzsanna Ujfaludi
- Department of Biochemistry and Molecular Biology, University of Szeged, Hungary
| | | | | |
Collapse
|
26
|
Drosophila Ebi mediates Snail-dependent transcriptional repression through HDAC3-induced histone deacetylation. EMBO J 2008; 27:898-909. [PMID: 18309295 DOI: 10.1038/emboj.2008.26] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 02/07/2008] [Indexed: 01/14/2023] Open
Abstract
The Drosophila Snail protein is a transcriptional repressor that is necessary for mesoderm formation. Here, we identify the Ebi protein as an essential Snail co-repressor. In ebi mutant embryos, Snail target genes are derepressed in the presumptive mesoderm. Ebi and Snail interact both genetically and physically. We identify a Snail domain that is sufficient for Ebi binding, and which functions independently of another Snail co-repressor, Drosophila CtBP. This Ebi interaction domain is conserved among all insect Snail-related proteins, is a potent repression domain and is required for Snail function in transgenic embryos. In mammalian cells, the Ebi homologue TBL1 is part of the NCoR/SMRT-HDAC3 (histone deacetylase 3) co-repressor complex. We found that Ebi interacts with Drosophila HDAC3, and that HDAC3 knockdown or addition of a HDAC inhibitor impairs Snail-mediated repression in cells. In the early embryo, Ebi is recruited to a Snail target gene in a Snail-dependent manner, which coincides with histone hypoacetylation. Our results demonstrate that Snail requires the combined activities of Ebi and CtBP, and indicate that histone deacetylation is a repression mechanism in early Drosophila development.
Collapse
|
27
|
Reiner O, Sapoznik S, Sapir T. Lissencephaly 1 linking to multiple diseases: mental retardation, neurodegeneration, schizophrenia, male sterility, and more. Neuromolecular Med 2008; 8:547-65. [PMID: 17028375 DOI: 10.1385/nmm:8:4:547] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Revised: 01/27/2006] [Accepted: 01/29/2006] [Indexed: 12/11/2022]
Abstract
Lissencephaly 1 (LIS1) was the first gene implicated in the pathogenesis of type-1 lissencephaly. More than a decade of research by multiple laboratories has revealed that LIS1 is a key node protein, which participates in several pathways, including association with the molecular motor cytoplasmic dynein, the reelin signaling pathway, and the platelet-activating factor pathway. Mutations in LIS1-interacting proteins, either in human, or in mouse models has suggested that LIS1 might play a role in the pathogenesis of numerous diseases such as male sterility, schizophrenia, neuronal degeneration, and viral infections.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | |
Collapse
|
28
|
Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. PLANT PHYSIOLOGY 2007; 145:1073-85. [PMID: 17873090 PMCID: PMC2048778 DOI: 10.1104/pp.107.104828] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The promoter of phytoene synthase, the first specific enzyme of carotenoid biosynthesis, shows two main regulatory regions: a G-box-containing region located near the TATA box, and a TATA box distal region containing the cis-acting element ATCTA, which mediates strong basal promoter activity. This second element was also present in the promoter of phytoene desaturase, the next step of the carotenoid pathway, suggesting a common regulatory mechanism. In this work, we demonstrate that AtRAP2.2, a member of the APETALA2 (AP2)/ethylene-responsive element-binding protein transcription factor family, binds to the ATCTA element. In Arabidopsis (Arabidopsis thaliana) leaves, AtRAP2.2 transcript and protein levels were tightly controlled as indicated by unchanged transcript and protein levels in T-DNA insertion mutants in the AtRAP2.2 promoter and 5' untranslated region and the lack of change in AtRAP2.2 protein levels in lines strongly overexpressing the AtRAP2.2 transcript. Homozygous loss-of-function mutants could not be obtained for the AtRAP2.2 5' untranslated region T-DNA insertion line indicating a lethal phenotype. In AtRAP2.2 overexpression lines, modest changes in phytoene synthase and phytoene desaturase transcripts were only observed in root-derived calli, which consequently showed a reduction in carotenoid content. The RING finger protein SEVEN IN ABSENTIA OF ARABIDOPSIS2 (SINAT2) was identified as an AtRAP2.2 interaction partner using a two-hybrid approach. The structure of SINAT2 and related proteins of Arabidopsis show homology to the SEVEN IN ABSENTIA protein of Drosophila that is involved in proteasome-mediated regulation in a variety of developmental processes. The action of SINAT2 may explain the recalcitrance of AtRAP2.2 protein levels to change by altering AtRAP2.2 transcription.
Collapse
Affiliation(s)
- Ralf Welsch
- Faculty of Biology, Center for Applied Biosciences, Universität Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
29
|
Cooper SE, Murawsky CM, Lowe N, Travers AA. Two modes of degradation of the tramtrack transcription factors by Siah homologues. J Biol Chem 2007; 283:1076-83. [PMID: 17962185 DOI: 10.1074/jbc.m707765200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Siah proteins, mammalian homologues of the Drosophila Sina protein, function as ubiquitin-protein isopeptide ligase enzymes to target a wide range of cellular proteins for degradation. We report here a novel Drosophila protein that is homologous to Sina, named Sina-Homologue (SinaH). We show that it can direct the degradation of the transcriptional repressor Tramtrack (Ttk) using two different mechanisms. One is similar to Sina and requires the adaptor Phyllopod, and the other is a novel mechanism of recognition. This novel mode of targeting for degradation is specific for the 69-kDa Ttk isoform, Ttk69. Ttk69 contains a region that is required for binding of SinaH and for SinaH-directed degradation. This region contains an AXVXP motif, which is the consensus sequence found in Siah substrate proteins. These results suggest that degradation directed by SinaH differs from that directed by Sina and is more similar to that found in vertebrates. We speculate that SinaH may be involved in regulating the levels of developmentally important transcription factors.
Collapse
Affiliation(s)
- Sarah E Cooper
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom.
| | | | | | | |
Collapse
|
30
|
Cooper SE. In vivo function of a novel Siah protein in Drosophila. Mech Dev 2007; 124:584-91. [PMID: 17561381 DOI: 10.1016/j.mod.2007.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/23/2007] [Accepted: 04/26/2007] [Indexed: 01/15/2023]
Abstract
The Siah proteins, mammalian homologues of the Drosophila Sina protein, function as E3 ubiquitin ligase enzymes and target a wide range of cellular proteins for degradation. Here, I investigate the in vivo function of the fly protein, Sina-Homologue (SinaH), which is highly similar to Sina. Flies that completely lack SinaH are viable and in combination with a mutation in the gene, Ebi, show an extra dorsal central bristle phenotype. I also show that SinaH and Ebi can interact with each other both in vivo and in vitro suggesting that they act in the same physical complex. Flies that lack both Sina and Sina-Homologue were also created and show visible eye and bristle phenotypes, which can be explained by an inability to degrade the neuronal repressor, Tramtrack. I find no evidence for redundancy in the function of Sina and SinaH.
Collapse
Affiliation(s)
- Sarah E Cooper
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
31
|
Mei Y, Xie C, Xie W, Wu Z, Wu M. Siah-1S, a novel splice variant of Siah-1 (seven in absentia homolog), counteracts Siah-1-mediated downregulation of beta-catenin. Oncogene 2007; 26:6319-31. [PMID: 17420721 DOI: 10.1038/sj.onc.1210449] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Siah-1 (seven in absentia homolog) is known to cause indirect degradation of beta-catenin through formation of a complex with Siah-interacting protein (SIP), Skp1 and Ebi. Here, we report the characterization of a novel splice variant of human Siah-1, designated Siah-1S, which is produced by an alternative splicing mechanism. The novel intron/exon junctions used to generate Siah-1S follow a non-conventional CT-AC rule. Siah-1S exhibits an even shorter half-life than Siah-1 and is able to catalyse self-ubiquitination that results in its subsequent degradation by proteasome. Siah-1S is shown to upregulate beta-catenin-dependent Tcf/Lef transcriptional activation and antagonize Siah-1's potentiation effect on the apoptosis induced by etoposide in MCF-7 cells. Additionally, Siah-1S is found to interact with Siah-1 to form heterodimer or with itself to form homodimer. Unlike homodimer Siah-1*Siah-1, neither Siah-1*Siah-1S nor Siah-1S*Siah-1S is able to bind to Siah-1-interacting protein, which may explain the underlying mechanism for Siah-1S's dominant negative effect on Siah-1. Importantly, results from in vitro soft agar assay demonstrated that Siah-1S displays a promotion effect on cells tumorigenicity.
Collapse
Affiliation(s)
- Y Mei
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | | | | | | | | |
Collapse
|
32
|
Nagaraj R, Banerjee U. Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye. Development 2007; 134:825-31. [PMID: 17251265 DOI: 10.1242/dev.02788] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing eye of Drosophila, the EGFR and Notch pathways integrate in a sequential, followed by a combinatorial, manner in the specification of cone-cell fate. Here, we demonstrate that the specification of primary pigment cells requires the reiterative use of the sequential integration between the EGFR and Notch pathways to regulate the spatiotemporal expression of Delta in pupal cone cells. The Notch signal from the cone cells then functions in the direct specification of primary pigment-cell fate. EGFR requirement in this process occurs indirectly through the regulation of Delta expression. Combined with previous work, these data show that unique combinations of only two pathways - Notch and EGFR - can specify at least five different cell types within the Drosophila eye.
Collapse
Affiliation(s)
- Raghavendra Nagaraj
- Department of Molecular, Cell and Developmental Biology, Department of Biological Chemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
33
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
34
|
Zhang XM, Chang Q, Zeng L, Gu J, Brown S, Basch RS. TBLR1 regulates the expression of nuclear hormone receptor co-repressors. BMC Cell Biol 2006; 7:31. [PMID: 16893456 PMCID: PMC1555579 DOI: 10.1186/1471-2121-7-31] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 08/07/2006] [Indexed: 12/02/2022] Open
Abstract
Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level) to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of the co-repressors by TBLR1 occurs because of a novel mechanism that protects them from degradation. Transient over expression of TBLR1 produces growth arrest. Conclusion TBLR1 is a multifunctional co-repressor of transcription. The structure of this family of molecules is highly conserved and closely related co-repressors have been found in all eukaryotic organisms. Regulation of co-repressor expression and the consequent alterations in transcriptional silencing play an important role in the regulation of differentiation.
Collapse
Affiliation(s)
- Xin-Min Zhang
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Qing Chang
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Lin Zeng
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Judy Gu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Stuart Brown
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Ross S Basch
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute, New York University Medical Center, New York, NY 10016, USA
| |
Collapse
|
35
|
Tsuda L, Kaido M, Lim YM, Kato K, Aigaki T, Hayashi S. An NRSF/REST-like repressor downstream of Ebi/SMRTER/Su(H) regulates eye development in Drosophila. EMBO J 2006; 25:3191-202. [PMID: 16763555 PMCID: PMC1500973 DOI: 10.1038/sj.emboj.7601179] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 05/15/2006] [Indexed: 11/09/2022] Open
Abstract
The corepressor complex that includes Ebi and SMRTER is a target of epidermal growth factor (EGF) and Notch signaling pathways and regulates Delta (Dl)-mediated induction of support cells adjacent to photoreceptor neurons of the Drosophila eye. We describe a mechanism by which the Ebi/SMRTER corepressor complex maintains Dl expression. We identified a gene, charlatan (chn), which encodes a C2H2-type zinc-finger protein resembling human neuronal restricted silencing factor/repressor element RE-1 silencing transcription factor (NRSF/REST). The Ebi/SMRTER corepressor complex represses chn transcription by competing with the activation complex that includes the Notch intracellular domain (NICD). Chn represses Dl expression and is critical for the initiation of eye development. Thus, under EGF signaling, double negative regulation mediated by the Ebi/SMRTER corepressor complex and an NRSF/REST-like factor, Chn, maintains inductive activity in developing photoreceptor cells by promoting Dl expression.
Collapse
Affiliation(s)
- Leo Tsuda
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Present address: Department of Mechanism of Aging, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | - Masako Kaido
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Young-Mi Lim
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Present address: Department of Mechanism of Aging, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | - Kagayaki Kato
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Shigeo Hayashi
- Morphogenetic Signaling Group, Riken Center for Developmental Biology, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Department of Life Science, Kobe University Graduate School of Science and Technology, Kobe, Japan
| |
Collapse
|
36
|
House CM, Hancock NC, Möller A, Cromer BA, Fedorov V, Bowtell DDL, Parker MW, Polekhina G. Elucidation of the substrate binding site of Siah ubiquitin ligase. Structure 2006; 14:695-701. [PMID: 16615911 DOI: 10.1016/j.str.2005.12.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/01/2005] [Accepted: 12/02/2005] [Indexed: 11/26/2022]
Abstract
The Siah family of RING proteins function as ubiquitin ligase components, contributing to the degradation of multiple targets involved in cell growth, differentiation, angiogenesis, oncogenesis, and inflammation. Previously, a binding motif (degron) was recognized in many of the Siah degradation targets, suggesting that Siah itself may facilitate substrate recognition. We report the crystal structure of the Siah in complex with a peptide containing the degron motif. Binding is within a groove formed in part by the zinc fingers and the first two beta strands of the TRAF-C domain of Siah. We show that residues in the degron, previously described to facilitate binding to Siah, interact with the protein. Mutagenesis of Siah at sites of interaction also abrogates both in vitro peptide binding and destabilization of a known Siah target.
Collapse
Affiliation(s)
- Colin M House
- Ian Potter Foundation Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, Locked Bag 1 A'Beckett Street, Melbourne, Victoria 8006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 2006; 20:1405-28. [PMID: 16751179 DOI: 10.1101/gad.1424806] [Citation(s) in RCA: 699] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A decade of intensive investigation of coactivators and corepressors required for regulated actions of DNA-binding transcription factors has revealed a network of sequentially exchanged cofactor complexes that execute a series of enzymatic modifications required for regulated gene expression. These coregulator complexes possess "sensing" activities required for interpretation of multiple signaling pathways. In this review, we examine recent progress in understanding the functional consequences of "molecular sensor" and "molecular adaptor" actions of corepressor/coactivator complexes in integrating signal-dependent programs of transcriptional responses at the molecular level. This strategy imposes a temporal order for modifying programs of transcriptional regulation in response to the cellular milieu, which is used to mediate developmental/homeostatic and pathological events.
Collapse
Affiliation(s)
- Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
38
|
Mateja A, Cierpicki T, Paduch M, Derewenda ZS, Otlewski J. The dimerization mechanism of LIS1 and its implication for proteins containing the LisH motif. J Mol Biol 2006; 357:621-31. [PMID: 16445939 DOI: 10.1016/j.jmb.2006.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/02/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
Miller-Dieker lissencephaly, or "smooth-brain" is a debilitating genetic developmental syndrome of the cerebral cortex, and is linked to mutations in the Lis1 gene. The LIS1 protein contains a so-called LisH motif at the N terminus, followed by a coiled-coil region and a seven WD-40 repeat forming beta-propeller structure. In vivo and in vitro, LIS1 is a dimer, and the dimerization is mediated by the N-terminal fragment and is essential for the protein's biological function. The recently determined crystal structure of the murine LIS1 N-terminal fragment encompassing residues 1-86 (N-LIS1) revealed that the LisH motif forms a tightly associated homodimer with a four-helix antiparallel bundle core, while the parallel coiled-coil situated downstream is stabilized by three canonical heptad repeats. This homodimer is uniquely asymmetric because of a distinct kink in one of the helices. Because the LisH motif is widespread among many proteins, some of which are implicated in human diseases, we investigated in detail the mechanism of N-LIS1 dimerization. We found that dimerization is dependent on both the LisH motif and the residues downstream of it, including the first few turns of the helix. We also have found that the coiled-coil does not contribute to dimerization, but instead is very labile and can adopt both supercoiled and helical conformations. These observations suggest that the presence of the LisH motif alone is not sufficient for high-affinity homodimerization and that other structural elements are likely to play an important role in this large family of proteins. The observed lability of the coiled-coil fragment in LIS1 is most likely of functional importance.
Collapse
Affiliation(s)
- Agnieszka Mateja
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
39
|
Abstract
The Ras and Notch signaling pathways are used over and over again during development to control many different biological processes. Frequently, these two signaling pathways intersect to influence common processes, but sometimes they cooperate and sometimes they antagonize each other. The Caenorhabditis elegans vulva and the Drosophila eye are two classic paradigms for understanding how Ras and Notch affect cell fates, and how the two pathways work together to control biological pattern. Recent advances in these systems reveal some of the mechanisms by which Ras and Notch can interact. Similar types of interactions in mammals may be important for determining whether and how alterations in Ras or Notch lead to cancer.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
40
|
Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, Cagan RL. A Drosophila model of multiple endocrine neoplasia type 2. Genetics 2005; 171:1057-81. [PMID: 15965261 PMCID: PMC1456812 DOI: 10.1534/genetics.104.038018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dominant mutations in the Ret receptor tyrosine kinase lead to the familial cancer syndrome multiple endocrine neoplasia type 2 (MEN2). Mammalian tissue culture studies suggest that RetMEN2 mutations significantly alter Ret-signaling properties, but the precise mechanisms by which RetMEN2 promotes tumorigenesis remain poorly understood. To determine the signal transduction pathways required for RetMEN2 activity, we analyzed analogous mutations in the Drosophila Ret ortholog dRet. Overexpressed dRetMEN2 isoforms targeted to the developing retina led to aberrant cell proliferation, inappropriate cell fate specification, and excessive Ras pathway activation. Genetic analysis indicated that dRetMEN2 acts through the Ras-ERK, Src, and Jun kinase pathways. A genetic screen for mutations that dominantly suppress or enhance dRetMEN2 phenotypes identified new genes that are required for the phenotypic outcomes of dRetMEN2 activity. Finally, we identified human orthologs for many of these genes and examined their status in human tumors. Two of these loci showed loss of heterozygosity (LOH) within both sporadic and MEN2-associated pheochromocytomas, suggesting that they may contribute to Ret-dependent oncogenesis.
Collapse
Affiliation(s)
- Renee D Read
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
41
|
Yan HT, Shinka T, Kinoshita K, Sato Y, Umeno M, Chen G, Tsuji K, Unemi Y, Yang XJ, Iwamoto T, Nakahori Y. Molecular analysis of TBL1Y, a Y-linked homologue of TBL1X related with X-linked late-onset sensorineural deafness. J Hum Genet 2005; 50:175-181. [PMID: 15834507 DOI: 10.1007/s10038-005-0237-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/22/2005] [Indexed: 11/28/2022]
Abstract
Recent progress in sequencing the human Y chromosome has unveiled a series of X-Y homologous genes. In the present study, we focused on Transducin beta-like 1Y (TBL1Y), which is a Y-linked homologue of TBL1X that is related with X-linked late-onset sensorineural deafness. Recently, it has been shown that TBLR1, another homologue whose gene resides on chromosome 3, and TBL1X act as a corepressor/coactivator exchanger for several nuclear receptors and transcription factors. However, the expression pattern and function of TBL1Y remain unknown. The RT-PCR analysis of the TBL1 family revealed that TBL1Y was expressed in all 13 tissues examined but not in leukocytes. Among the cell lines tested, however, it was only expressed in NT2/D1 cells and in lymphoblasts transformed with Epstein Barr (EB) virus. To compare the functions of the TBL1 family, we generated a series of expression plasmids for GAL4DBD-fused proteins of the TBL1 family. We carried out dual luciferase assays using these plasmids in combination with a plasmid having a luciferase reporter gene harboring 5xGAL4 binding sites. Unlike the other constructs, GAL4DBD-fused TBL1Y did not repress the promoter activity. Moreover, we found three novel polymorphisms in the TBL1Y gene, IVS7+9G>A, G268C, and IVS7+1G>C, which is presumed to cause splicing error. These polymorphisms are found in males within Y-haplogroup O3 (XO3e), which is defined as the Y-haplogroup O3 excluding O3e, a branch of O3. The results show that TBL1Y differs from other members of the TBL1 family in expression and function, suggesting other roles in maleness.
Collapse
Affiliation(s)
- Hong-Tao Yan
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- The Researcher of Graduate School of Medical Sciences for 'Disease Proteomics for Multifactorial Disorder', 21st Century Center for Excellence (COE)Program. , University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Toshikatsu Shinka
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Keigo Kinoshita
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Youichi Sato
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Mayumi Umeno
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Gang Chen
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Keiko Tsuji
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yukiko Unemi
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Xin-Jun Yang
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Teruaki Iwamoto
- Department of Urology, School of Medicine, St. Marianna Medical University, 2-16-1 Sugao, Miyamae, Kawasaki, 216-8511, Japan
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yutaka Nakahori
- Department of Human Genetics and Public Health, Faculty of Medicine, Graduate School of Proteomics, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
- Core Research for Evolutional Science and Technology Corporation (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
42
|
Willems AR, Schwab M, Tyers M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:133-70. [PMID: 15571813 DOI: 10.1016/j.bbamcr.2004.09.027] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase family was discovered through genetic requirements for cell cycle progression in budding yeast. In these multisubunit enzymes, an invariant core complex, composed of the Skp1 linker protein, the Cdc53/Cul1 scaffold protein and the Rbx1/Roc1/Hrt1 RING domain protein, engages one of a suite of substrate adaptors called F-box proteins that in turn recruit substrates for ubiquitination by an associated E2 enzyme. The cullin-RING domain-adaptor architecture has diversified through evolution, such that in total many hundreds of distinct SCF and SCF-like complexes enable degradation of myriad substrates. Substrate recognition by adaptors often depends on posttranslational modification of the substrate, which thus places substrate stability under dynamic regulation by intracellular signaling events. SCF complexes control cell proliferation through degradation of critical regulators such as cyclins, CDK inhibitors and transcription factors. A plethora of other processes in development and disease are controlled by other SCF-like complexes, including those based on Cul2-SOCS-box adaptor protein and Cul3-BTB domain adaptor protein combinations. Recent structural insights into SCF-like complexes have begun to illuminate aspects of substrate recognition and catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Andrew R Willems
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada, M5G 1X5
| | | | | |
Collapse
|
43
|
Yoon HG, Choi Y, Cole PA, Wong J. Reading and function of a histone code involved in targeting corepressor complexes for repression. Mol Cell Biol 2005; 25:324-35. [PMID: 15601853 PMCID: PMC538779 DOI: 10.1128/mcb.25.1.324-335.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Revised: 08/11/2004] [Accepted: 09/28/2004] [Indexed: 11/20/2022] Open
Abstract
A central question in histone code theory is how various codes are recognized and utilized in vivo. Here we show that TBL1 and TBLR1, two WD-40 repeat proteins in the corepressor SMRT/N-CoR complexes, are functionally redundant and essential for transcriptional repression by unliganded thyroid hormone receptors (TR) but not essential for transcriptional activation by liganded TR. TBL1 and TBLR1 bind preferentially to hypoacetylated histones H2B and H4 in vitro and have a critical role in targeting the corepressor complexes to chromatin in vivo. We show that targeting SMRT/N-CoR complexes to the deiodinase 1 gene (D1) requires at least two interactions, one between unliganded TR and SMRT/N-CoR and the other between TBL1/TBLR1 and hypoacetylated histones. Neither interaction alone is sufficient for the stable association of the corepressor complexes with the D1 promoter. Our data support a feed-forward working model in which deacetylation exerted by initial unstable recruitment of SMRT/N-CoR complexes via their interaction with unliganded TR generates a histone code that serves to stabilize their own recruitment. Similarly, we find that targeting of the Sin3 complex to pericentric heterochromatin may also follow this model. Our studies provide an in vivo example that a histone code is not read independently but is recognized in the context of other interactions.
Collapse
Affiliation(s)
- Ho-Geun Yoon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Read RD, Bach EA, Cagan RL. Drosophila C-terminal Src kinase negatively regulates organ growth and cell proliferation through inhibition of the Src, Jun N-terminal kinase, and STAT pathways. Mol Cell Biol 2004; 24:6676-89. [PMID: 15254235 PMCID: PMC444864 DOI: 10.1128/mcb.24.15.6676-6689.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Src family kinases regulate multiple cellular processes including proliferation and oncogenesis. C-terminal Src kinase (Csk) encodes a critical negative regulator of Src family kinases. We demonstrate that the Drosophila melanogaster Csk ortholog, dCsk, functions as a tumor suppressor: dCsk mutants display organ overgrowth and excess cellular proliferation. Genetic analysis indicates that the dCsk(-/-) overgrowth phenotype results from activation of Src, Jun kinase, and STAT signal transduction pathways. In particular, blockade of STAT function in dCsk mutants severely reduced Src-dependent overgrowth and activated apoptosis of mutant tissue. Our data provide in vivo evidence that Src activity requires JNK and STAT function.
Collapse
Affiliation(s)
- Renee D Read
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
45
|
Voas MG, Rebay I. The novel plant homeodomain protein rhinoceros antagonizes Ras signaling in the Drosophila eye. Genetics 2004; 165:1993-2006. [PMID: 14704181 PMCID: PMC1462918 DOI: 10.1093/genetics/165.4.1993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sequential specification of cell fates in the Drosophila eye requires repeated activation of the epidermal growth factor receptor (EGFR)/Ras/MAP kinase (MAPK) pathway. Equally important are the multiple layers of inhibitory regulation that prevent excessive or inappropriate signaling. Here we describe the molecular and genetic analysis of a previously uncharacterized gene, rhinoceros (rno), that we propose functions to restrict EGFR signaling in the eye. Loss of rno results in the overproduction of photoreceptors, cone cells, and pigment cells and a corresponding reduction in programmed cell death, all phenotypes characteristic of hyperactivated EGFR signaling. Genetic interactions between rno and multiple EGFR pathway components support this hypothesis. rno encodes a novel but evolutionarily conserved nuclear protein with a PHD zinc-finger domain, a motif commonly found in chromatin-remodeling factors. Future analyses of rno will help to elucidate the regulatory strategies that modulate EGFR signaling in the fly eye.
Collapse
Affiliation(s)
- Matthew G Voas
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
46
|
Herr DR, Harris GL. Close head-to-head juxtaposition of genes favors their coordinate regulation inDrosophila melanogaster. FEBS Lett 2004; 572:147-53. [PMID: 15304339 DOI: 10.1016/j.febslet.2004.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 07/12/2004] [Accepted: 07/13/2004] [Indexed: 11/23/2022]
Abstract
This report identifies a large number of gene-pairs in Drosophila melanogaster that share a common upstream region. 877 gene-pairs (approximately 12% of the genome) are separated by less than 350 bp in a head-to-head orientation. This positional relationship is more highly favored in flies than in other organisms. These gene pairs have a higher correlation of expression than similarly spaced genes that have head-to-tail or tail-to-tail orientations. Thus, the positional arrangement of genes appears to play a significant role in coordinating relative expression patterns and may provide clues for identifying the functions of unknown genes.
Collapse
Affiliation(s)
- Deron R Herr
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614, USA.
| | | |
Collapse
|
47
|
Perissi V, Aggarwal A, Glass CK, Rose DW, Rosenfeld MG. A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 2004; 116:511-26. [PMID: 14980219 DOI: 10.1016/s0092-8674(04)00133-3] [Citation(s) in RCA: 435] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 01/05/2004] [Accepted: 01/06/2004] [Indexed: 01/30/2023]
Abstract
The mechanisms that control the precisely regulated switch from gene repression to gene activation represent a central question in mammalian development. Here, we report that transcriptional activation mediated by liganded nuclear receptors unexpectedly requires the actions of two highly related F box/WD-40-containing factors, TBL1 and TBLR1, initially identified as components of an N-CoR corepressor complex. TBL1/TBLR1 serve as specific adaptors for the recruitment of the ubiquitin conjugating/19S proteasome complex, with TBLR1 selectively serving to mediate a required exchange of the nuclear receptor corepressors, N-CoR and SMRT, for coactivators upon ligand binding. Tbl1 gene deletion in embryonic stem cells severely impairs PPARgamma-induced adipogenic differentiation, indicating that TBL1 function is also biologically indispensable for specific nuclear receptor-mediated gene activation events. The role of TBLR1 and TBL1 in cofactor exchange appears to also operate for c-Jun and NFkappaB and is therefore likely to be prototypic of similar mechanisms for other signal-dependent transcription factors.
Collapse
Affiliation(s)
- Valentina Perissi
- Howard Hughes Medical Institute, Department of Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The Drosophila eye is a highly ordered epithelial tissue composed of approximately 750 subunits called ommatidia arranged in a reiterated hexagonal pattern. At higher resolution, observation of the constituent photoreceptors, cone cells, and pigment cells of the eye reveals a highly ordered mosaic of amazing regularity. This relatively simple organization belies the repeated requirement for spatially and temporally coordinated inputs from the Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp), JAK-STAT, Notch, and receptor tyrosine kinase (RTK) signaling pathways. This review will discuss how signaling inputs from the Notch and RTK pathways, superimposed on the developmental history of a cell, facilitate context-specific and appropriate cell fate specification decisions in the developing fly eye. Lessons learned from investigating the combinatorial signal integration strategies underlying Drosophila eye development will likely reveal cell-cell communication paradigms relevant to many aspects of invertebrate and mammalian development. Developmental Dynamics 229:162-175, 2004.
Collapse
Affiliation(s)
- Matthew G Voas
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
49
|
Ou CY, Pi H, Chien CT. Control of protein degradation by E3 ubiquitin ligases in Drosophila eye development. Trends Genet 2003; 19:382-9. [PMID: 12850443 DOI: 10.1016/s0168-9525(03)00146-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chan-Yen Ou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
50
|
House CM, Frew IJ, Huang HL, Wiche G, Traficante N, Nice E, Catimel B, Bowtell DDL. A binding motif for Siah ubiquitin ligase. Proc Natl Acad Sci U S A 2003; 100:3101-6. [PMID: 12626763 PMCID: PMC152253 DOI: 10.1073/pnas.0534783100] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila SINA (seven in absentia) protein and its mammalian orthologs (Siah, seven in absentia homolog) are RING domain proteins that function in E3 ubiquitin ligase complexes and facilitate ubiquitination and degradation of a wide range of cellular proteins, including beta-catenin. Despite these diverse targets, the means by which SINASiah recognize substrates or binding proteins has remained unknown. Here we identify a peptide motif (RPVAxVxPxxR) that mediates the interaction of Siah protein with a range of protein partners. Sequence alignment and mutagenesis scanning revealed residues that are important to this interaction. This consensus sequence correctly predicted a high-affinity interaction with a peptide from the cytoskeletal protein plectin-1 (residues 95-117). The unusually high-affinity binding obtained with a 23-residue peptide (K(Dapp) = 29 nM with SINA) suggests that it may serve as a useful dominant negative reagent for SINASiah proteins.
Collapse
Affiliation(s)
- Colin M House
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne 8006, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|