1
|
Montella A, Tirelli M, Lasorsa VA, Aievola V, Cerbone V, Manganiello R, Iolascon A, Capasso M. Regulatory non-coding somatic mutations as drivers of neuroblastoma. Br J Cancer 2025; 132:469-480. [PMID: 39843641 PMCID: PMC11876587 DOI: 10.1038/s41416-025-02939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/05/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Emerging evidence suggests that non-coding somatic single nucleotide variants (SNVs) in cis-regulatory elements (CREs) contribute to cancer by disrupting gene expression networks. However, the role of non-coding SNVs in cancer, particularly neuroblastoma, remains largely unclear. METHODS SNVs effect on CREs activity was evaluated by luciferase assays. Motif analysis and ChIP-qPCR experiments were employed to reveal the transcription factors (TFs) involved in these processes. We exploited CRISPR-Cas9 experiments to elucidate the role of these SNVs on the CREs target genes expression. Cell proliferation and invasion assays were performed to assess their role in neuroblastoma tumorigenesis. RESULTS Our findings demonstrate that non-coding SNVs modify the transcriptional activity of two CREs altering the binding of STAT3 and SIN3A. Therefore, these SNVs reduce the expression of CTTNBP2 and MCF2L. We demonstrate that these two genes act as tumor suppressor in neuroblastoma. These pathogenetic SNVs may serve as oncogenic drivers by impairing the transcriptional programs essential for neuronal development and differentiation in which both the investigated TFs and target genes are involved. CONCLUSION Overall, the understanding of the functional role of non-coding variants elucidates their impact on tumorigenesis and can uncover new potential targets of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Annalaura Montella
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Matilde Tirelli
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | | | - Vincenzo Aievola
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy
| | | | | | - Achille Iolascon
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Mario Capasso
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| |
Collapse
|
2
|
Sun F, Yao F, Zeng C, Zhao Y, Liang B, Li S, Wang Y, Wu Q, Shi Y, Yao Z, Wang J, Jiang Y, Gu C, Huang Q, Liao W, Huang N, Wang C, Rong X, Wu J, Tan Y, Peng J, Li Y, Shi M. Targeting adenosine enhances immunotherapy in MSS colorectal cancer with EGFRvIII mutation. J Immunother Cancer 2025; 13:e010126. [PMID: 39947814 PMCID: PMC11831272 DOI: 10.1136/jitc-2024-010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/07/2025] [Indexed: 02/19/2025] Open
Abstract
BACKGROUND Patients with microsatellite stable (MSS) colorectal cancer (CRC) often display resistance to immunotherapy. Epidermal growth factor receptor (EGFR)-targeted therapies have shown potential in enhancing immunotherapy, yet clinical benefits remain unfulfilled, which may relate to inadequate patient stratification. METHODS Circulating tumor cells and tumor tissues were collected from multicenter cohorts of patients with CRC receiving cetuximab to analyze EGFR variant type III (EGFRvIII) expression and immune infiltration. Syngeneic mouse models of EGFRvIII CRC were used to investigate the combined efficacy of adenosine inhibition and antiprogrammed cell death protein 1 (anti-PD-1). RESULTS EGFRvIII mutations are found in about 10% of MSS CRC and are associated with poor response to cetuximab therapy. EGFRvIII-mutated patients with CRC exhibit an adenosine-mediated immunosuppressive tumor microenvironment (TME) subtype. Combination therapy with adenosine inhibitors remodels the TME, reversing cetuximab resistance and enhancing anti-PD-1 efficacy in EGFRvIII CRC. CONCLUSIONS Our findings identified EGFRvIII-positive CRC as a distinct subtype characterized by adenosine-mediated immunosuppressive TME. Targeting adenosine significantly improved the efficacy of anti-PD-1 in MSS CRC.
Collapse
Affiliation(s)
- Fei Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangzhen Yao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunting Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bishan Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaowei Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yawen Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qijing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqi Yao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiao Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Jiang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunhui Gu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wu
- Department of Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjun Peng
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Li
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Sternberg C, Raigel M, Limberger T, Trachtová K, Schlederer M, Lindner D, Kodajova P, Yang J, Ziegler R, Kalla J, Stoiber S, Dey S, Zwolanek D, Neubauer HA, Oberhuber M, Redmer T, Hejret V, Tichy B, Tomberger M, Harbusch NS, Pencik J, Tangermann S, Bystry V, Persson JL, Egger G, Pospisilova S, Eferl R, Wolf P, Sternberg F, Högler S, Lagger S, Rose-John S, Kenner L. Cell-autonomous IL6ST activation suppresses prostate cancer development via STAT3/ARF/p53-driven senescence and confers an immune-active tumor microenvironment. Mol Cancer 2024; 23:245. [PMID: 39482716 PMCID: PMC11526557 DOI: 10.1186/s12943-024-02114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/05/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Prostate cancer ranks as the second most frequently diagnosed cancer in men worldwide. Recent research highlights the crucial roles IL6ST-mediated signaling pathways play in the development and progression of various cancers, particularly through hyperactivated STAT3 signaling. However, the molecular programs mediated by IL6ST/STAT3 in prostate cancer are poorly understood. METHODS To investigate the role of IL6ST signaling, we constitutively activated IL6ST signaling in the prostate epithelium of a Pten-deficient prostate cancer mouse model in vivo and examined IL6ST expression in large cohorts of prostate cancer patients. We complemented these data with in-depth transcriptomic and multiplex histopathological analyses. RESULTS Genetic cell-autonomous activation of the IL6ST receptor in prostate epithelial cells triggers active STAT3 signaling and significantly reduces tumor growth in vivo. Mechanistically, genetic activation of IL6ST signaling mediates senescence via the STAT3/ARF/p53 axis and recruitment of cytotoxic T-cells, ultimately impeding tumor progression. In prostate cancer patients, high IL6ST mRNA expression levels correlate with better recurrence-free survival, increased senescence signals and a transition from an immune-cold to an immune-hot tumor. CONCLUSIONS Our findings demonstrate a context-dependent role of IL6ST/STAT3 in carcinogenesis and a tumor-suppressive function in prostate cancer development by inducing senescence and immune cell attraction. We challenge the prevailing concept of blocking IL6ST/STAT3 signaling as a functional prostate cancer treatment and instead propose cell-autonomous IL6ST activation as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Christina Sternberg
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Biochemical Institute, University of Kiel, Kiel, Germany.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Martin Raigel
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Tanja Limberger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria
| | - Karolína Trachtová
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Desiree Lindner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jiaye Yang
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Roman Ziegler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Cell Biology, Charles University, Prague, Czech Republic and Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czech Republic
| | - Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Stefan Stoiber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Saptaswa Dey
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Daniela Zwolanek
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Oberhuber
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria
| | - Torben Redmer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Václav Hejret
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martina Tomberger
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria
| | - Nora S Harbusch
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria
| | - Jan Pencik
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vojtech Bystry
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jenny L Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robert Eferl
- Center for Cancer Research, Medical University of Vienna & Comprehensive Cancer Center, Vienna, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Felix Sternberg
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Biological Sciences and Pathobiology, Physiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria.
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Styria, Austria.
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Zhang J, Wang Q, Qi S, Duan Y, Liu Z, Liu J, Zhang Z, Li C. An oncogenic enhancer promotes melanoma progression via regulating ETV4 expression. J Transl Med 2024; 22:547. [PMID: 38849954 PMCID: PMC11157841 DOI: 10.1186/s12967-024-05356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Enhancers are important gene regulatory elements that promote the expression of critical genes in development and disease. Aberrant enhancer can modulate cancer risk and activate oncogenes that lead to the occurrence of various cancers. However, the underlying mechanism of most enhancers in cancer remains unclear. Here, we aim to explore the function and mechanism of a crucial enhancer in melanoma. METHODS Multi-omics data were applied to identify an enhancer (enh17) involved in melanoma progression. To evaluate the function of enh17, CRISPR/Cas9 technology were applied to knockout enh17 in melanoma cell line A375. RNA-seq, ChIP-seq and Hi-C data analysis integrated with luciferase reporter assay were performed to identify the potential target gene of enh17. Functional experiments were conducted to further validate the function of the target gene ETV4. Multi-omics data integrated with CUT&Tag sequencing were performed to validate the binding profile of the inferred transcription factor STAT3. RESULTS An enhancer, named enh17 here, was found to be aberrantly activated and involved in melanoma progression. CRISPR/Cas9-mediated deletion of enh17 inhibited cell proliferation, migration, and tumor growth of melanoma both in vitro and in vivo. Mechanistically, we identified ETV4 as a target gene regulated by enh17, and functional experiments further support ETV4 as a target gene that is involved in cancer-associated phenotypes. In addition, STAT3 acts as a transcription factor binding with enh17 to regulate the transcription of ETV4. CONCLUSIONS Our findings revealed that enh17 plays an oncogenic role and promotes tumor progression in melanoma, and its transcriptional regulatory mechanisms were fully elucidated, which may open a promising window for melanoma prevention and treatment.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
5
|
Bose M, Sanders A, Handa A, Vora A, Cardona MR, Brouwer C, Mukherjee P. Molecular crosstalk between MUC1 and STAT3 influences the anti-proliferative effect of Napabucasin in epithelial cancers. Sci Rep 2024; 14:3178. [PMID: 38326371 PMCID: PMC10850135 DOI: 10.1038/s41598-024-53549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
MUC1 is a transmembrane glycoprotein that is overexpressed and aberrantly glycosylated in epithelial cancers. The cytoplasmic tail of MUC1 (MUC1 CT) aids in tumorigenesis by upregulating the expression of multiple oncogenes. Signal transducer and activator of transcription 3 (STAT3) plays a crucial role in several cellular processes and is aberrantly activated in many cancers. In this study, we focus on recent evidence suggesting that STAT3 and MUC1 regulate each other's expression in cancer cells in an auto-inductive loop and found that their interaction plays a prominent role in mediating epithelial-to-mesenchymal transition (EMT) and drug resistance. The STAT3 inhibitor Napabucasin was in clinical trials but was discontinued due to futility. We found that higher expression of MUC1 increased the sensitivity of cancer cells to Napabucasin. Therefore, high-MUC1 tumors may have a better outcome to Napabucasin therapy. We report how MUC1 regulates STAT3 activity and provide a new perspective on repurposing the STAT3-inhibitor Napabucasin to improve clinical outcome of epithelial cancer treatment.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| | - Alexa Sanders
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aashna Handa
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Aabha Vora
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Manuel R Cardona
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Cory Brouwer
- Department of Bioinformatics, UNC Charlotte, Charlotte, NC, 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, UNC Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
6
|
Adesoye T, Tripathy D, Hunt KK, Keyomarsi K. Exploring Novel Frontiers: Leveraging STAT3 Signaling for Advanced Cancer Therapeutics. Cancers (Basel) 2024; 16:492. [PMID: 38339245 PMCID: PMC10854592 DOI: 10.3390/cancers16030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) plays a significant role in diverse physiologic processes, including cell proliferation, differentiation, angiogenesis, and survival. STAT3 activation via phosphorylation of tyrosine and serine residues is a complex and tightly regulated process initiated by upstream signaling pathways with ligand binding to receptor and non-receptor-linked kinases. Through downstream deregulation of target genes, aberrations in STAT3 activation are implicated in tumorigenesis, metastasis, and recurrence in multiple cancers. While there have been extensive efforts to develop direct and indirect STAT3 inhibitors using novel drugs as a therapeutic strategy, direct clinical application remains in evolution. In this review, we outline the mechanisms of STAT3 activation, the resulting downstream effects in physiologic and malignant settings, and therapeutic strategies for targeting STAT3. We also summarize the pre-clinical and clinical evidence of novel drug therapies targeting STAT3 and discuss the challenges of establishing their therapeutic efficacy in the current clinical landscape.
Collapse
Affiliation(s)
- Taiwo Adesoye
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Kwon H, Yun M, Kwon TH, Bang M, Lee J, Lee YS, Ko HY, Chong K. Fibronectin Type III Domain Containing 3B as a Potential Prognostic and Therapeutic Biomarker for Glioblastoma. Biomedicines 2023; 11:3168. [PMID: 38137388 PMCID: PMC10741045 DOI: 10.3390/biomedicines11123168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is a representative malignant brain tumor characterized by a dismal prognosis, with survival rates of less than 2 years and high recurrence rates. Despite surgical resection and several alternative treatments, GBM remains a refractory disease due to its aggressive invasiveness and resistance to anticancer therapy. In this report, we explore the role of fibronectin type III domain containing 3B (FNDC3B) and its potential as a prognostic and therapeutic biomarker in GBM. GBM exhibited a significantly higher cancer-to-normal ratio compared to other organs, and patients with high FNDC3B expression had a poor prognosis (p < 0.01). In vitro studies revealed that silencing FNDC3B significantly reduced the expression of Survivin, an apoptosis inhibitor, and also reduced cell migration, invasion, extracellular matrix adhesion ability, and stem cell properties in GBM cells. Furthermore, we identified that FNDC3B regulates PTEN/PI3K/Akt signaling in GBM cells using MetaCore integrated pathway bioinformatics analysis and a proteome profiler phospho-kinase array with sequential western blot analysis. Collectively, our findings suggest FNDC3B as a potential biomarker for predicting GBM patient survival and for the development of treatment strategies for GBM.
Collapse
Affiliation(s)
- Hyukjun Kwon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Minji Yun
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; (M.Y.); (M.B.)
| | - Taek-Hyun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University Medicine, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea; (T.-H.K.); (Y.S.L.)
| | - Minji Bang
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; (M.Y.); (M.B.)
| | - Jungsul Lee
- 3billion Inc., 416, Teheran-ro, Gangnam-gu, Seoul 06193, Republic of Korea;
| | - Yeo Song Lee
- Department of Neurosurgery, Korea University Guro Hospital, Korea University Medicine, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea; (T.-H.K.); (Y.S.L.)
| | - Hae Young Ko
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; (M.Y.); (M.B.)
| | - Kyuha Chong
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea; (M.Y.); (M.B.)
| |
Collapse
|
8
|
Yin J, Seo Y, Rhim J, Jin X, Kim TH, Kim SS, Hong JH, Gwak HS, Yoo H, Park JB, Kim JH. Cross-talk between PARN and EGFR-STAT3 Signaling Facilitates Self-Renewal and Proliferation of Glioblastoma Stem Cells. Cancer Res 2023; 83:3693-3709. [PMID: 37747775 DOI: 10.1158/0008-5472.can-22-3965] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Glioblastoma is the most common type of malignant primary brain tumor and displays highly aggressive and heterogeneous phenotypes. The transcription factor STAT3 has been reported to play a key role in glioblastoma malignancy. Thus, discovering targets and functional downstream networks regulated by STAT3 that govern glioblastoma pathogenesis may lead to improved treatment strategies. In this study, we identified that poly(A)-specific ribonuclease (PARN), a key modulator of RNA metabolism, activates EGFR-STAT3 signaling to support glioblastoma stem cells (GSC). Functional integrative analysis of STAT3 found PARN as the top-scoring transcriptional target involved in RNA processing in patients with glioblastoma, and PARN expression was strongly correlated with poor patient survival and elevated malignancy. PARN positively regulated self-renewal and proliferation of GSCs through its 3'-5' exoribonuclease activity. EGFR was identified as a clinically relevant target of PARN in GSCs. PARN positively modulated EGFR by negatively regulating the EGFR-targeting miRNA miR-7, and increased EGFR expression created a positive feedback loop to increase STAT3 activation. PARN depletion in GSCs reduced infiltration and prolonged survival in orthotopic brain tumor xenografts; similar results were observed using siRNA nanocapsule-mediated PARN targeting. Pharmacological targeting of STAT3 also confirmed PARN regulation by STAT3 signaling. In sum, these results suggest that a STAT3-PARN regulatory network plays a pivotal role in tumor progression and thus may represent a target for glioblastoma therapeutics. SIGNIFICANCE A positive feedback loop comprising PARN and EGFR-STAT3 signaling supports self-renewal and proliferation of glioblastoma stem cells to drive tumor progression and can be targeted in glioblastoma therapeutics.
Collapse
Affiliation(s)
- Jinlong Yin
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Yoona Seo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Jiho Rhim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| | - Xiong Jin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Tae Hoon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Sung Soo Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jun-Hee Hong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Korea
- Department of Cancer Control, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Heon Yoo
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jong Heon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
9
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
11
|
Pencik J, Philippe C, Schlederer M, Atas E, Pecoraro M, Grund-Gröschke S, Li WJ, Tracz A, Heidegger I, Lagger S, Trachtová K, Oberhuber M, Heitzer E, Aksoy O, Neubauer HA, Wingelhofer B, Orlova A, Witzeneder N, Dillinger T, Redl E, Greiner G, D'Andrea D, Östman JR, Tangermann S, Hermanova I, Schäfer G, Sternberg F, Pohl EE, Sternberg C, Varady A, Horvath J, Stoiber D, Malcolm TI, Turner SD, Parkes EE, Hantusch B, Egger G, Rose-John S, Poli V, Jain S, Armstrong CWD, Hoermann G, Goffin V, Aberger F, Moriggl R, Carracedo A, McKinney C, Kennedy RD, Klocker H, Speicher MR, Tang DG, Moazzami AA, Heery DM, Hacker M, Kenner L. STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway. Mol Cancer 2023; 22:133. [PMID: 37573301 PMCID: PMC10422794 DOI: 10.1186/s12943-023-01825-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023] Open
Abstract
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.
Collapse
Affiliation(s)
- Jan Pencik
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Biomarker Research in Medicine, 8010, Graz, Austria.
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria.
| | - Cecile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Michaela Schlederer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Emine Atas
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, 6500, Bellinzona, Switzerland
| | - Sandra Grund-Gröschke
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Wen Jess Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Amanda Tracz
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Sabine Lagger
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Karolína Trachtová
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Central European Institute of Technology, Masaryk University, 60177, Brno, Czech Republic
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, 1090, Vienna, Austria
| | | | - Ellen Heitzer
- Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
| | - Osman Aksoy
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Department for Basic and Translational Oncology and Hematology, Division Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Bettina Wingelhofer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Dillinger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elisa Redl
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - David D'Andrea
- Department of Urology, Medical University of Vienna, 1090, Vienna, Austria
| | - Johnny R Östman
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Simone Tangermann
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Ivana Hermanova
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), 20850, Derio, Spain
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Felix Sternberg
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Elena E Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Christina Sternberg
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Biochemical Institute, University of Kiel, 24098, Kiel, Germany
| | - Adam Varady
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Jaqueline Horvath
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Tim I Malcolm
- Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, CB20QQ, UK
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Eileen E Parkes
- Department of Oncology, University of Oxford, Oxford, OX37DQ, UK
| | - Brigitte Hantusch
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, 1090, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | | | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126, Turin, Italy
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
| | - Chris W D Armstrong
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
| | | | - Vincent Goffin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015, Paris, France
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, 5020, Salzburg, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance (BRTA), 20850, Derio, Spain
| | - Cathal McKinney
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
- Almac Diagnostics, Craigavon, BT63 5QD, UK
| | - Richard D Kennedy
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT71NN, UK
- Almac Diagnostics, Craigavon, BT63 5QD, UK
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Michael R Speicher
- Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria.
- Center for Biomarker Research in Medicine, 8010, Graz, Austria.
- Unit for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Mekala JR, Adusumilli K, Chamarthy S, Angirekula HSR. Novel sights on therapeutic, prognostic, and diagnostics aspects of non-coding RNAs in glioblastoma multiforme. Metab Brain Dis 2023; 38:1801-1829. [PMID: 37249862 PMCID: PMC10227410 DOI: 10.1007/s11011-023-01234-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The survival period of GBM patients is only 12-15 months. Therefore, novel treatment modalities for GBM treatment are urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression, the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for managing GBM. Studies have highlighted the role of Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials. Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM. Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India.
| | - Kowsalya Adusumilli
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Sahiti Chamarthy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| | - Hari Sai Ram Angirekula
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
13
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Cheung SKK, Kwok J, Or PMY, Wong CW, Feng B, Choy KW, Chang RCC, Burbach JPH, Cheng ASL, Chan AM. Neuropathological signatures revealed by transcriptomic and proteomic analysis in Pten-deficient mouse models. Sci Rep 2023; 13:6763. [PMID: 37185447 PMCID: PMC10130134 DOI: 10.1038/s41598-023-33869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
PTEN hamartoma tumour syndrome is characterised by mutations in the human PTEN gene. We performed transcriptomic and proteomic analyses of neural tissues and primary cultures from heterozygous and homozygous Pten-knockout mice. The somatosensory cortex of heterozygous Pten-knockout mice was enriched in immune response and oligodendrocyte development Gene Ontology (GO) terms. Parallel proteomic analysis revealed differentially expressed proteins (DEPs) related to dendritic spine development, keratinisation and hamartoma signatures. However, primary astrocytes (ASTs) from heterozygous Pten-knockout mice were enriched in the extracellular matrix GO term, while primary cortical neurons (PCNs) were enriched in immediate-early genes. In ASTs from homozygous Pten-knockout mice, cilium-related activity was enriched, while PCNs exhibited downregulation of forebrain neuron generation and differentiation, implying an altered excitatory/inhibitory balance. By integrating DEPs with pre-filtered differentially expressed genes, we identified the enrichment of traits of intelligence, cognitive function and schizophrenia, while DEPs in ASTs were significantly associated with intelligence and depression.
Collapse
Affiliation(s)
- Stanley K K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jacinda Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Penelope M Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Chi Wai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Raymond C C Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - J Peter H Burbach
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alfred S L Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Brain and Mind Institute, The Chinese University of Hong Kong, 4/F, Hui Yeung Shing Building, Hong Kong, SAR, China.
| |
Collapse
|
15
|
Loras A, Gonzalez-Bonet LG, Gutierrez-Arroyo JL, Martinez-Cadenas C, Marques-Torrejon MA. Neural Stem Cells as Potential Glioblastoma Cells of Origin. Life (Basel) 2023; 13:life13040905. [PMID: 37109434 PMCID: PMC10145968 DOI: 10.3390/life13040905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor in adults and it remains incurable. These tumors are very heterogeneous, resistant to cytotoxic therapies, and they show high rates of invasiveness. Therefore, patients face poor prognosis, and the survival rates remain very low. Previous research states that GBM contains a cell population with stem cell characteristics called glioma stem cells (GSCs). These cells are able to self-renew and regenerate the tumor and, therefore, they are partly responsible for the observed resistance to therapies and tumor recurrence. Recent data indicate that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells of origin of GBM, that is, the cell type acquiring the initial tumorigenic mutation. The involvement of SVZ-NSCs is also associated with GBM progression and recurrence. Identifying the cellular origin of GBM is important for the development of early detection techniques and the discovery of early disease markers. In this review, we analyze the SVZ-NSC population as a potential GBM cell of origin, and its potential role for GBM therapies.
Collapse
Affiliation(s)
- Alba Loras
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | - Julia L. Gutierrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | | | - Maria Angeles Marques-Torrejon
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Correspondence: ; Tel.: +34-964-387-478
| |
Collapse
|
16
|
Tian Y, Liu H, Wang M, Wang R, Yi G, Zhang M, Chen R. Role of STAT3 and NRF2 in Tumors: Potential Targets for Antitumor Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248768. [PMID: 36557902 PMCID: PMC9781355 DOI: 10.3390/molecules27248768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) and nuclear factor erythroid-derived 2-like 2 (NRF2, also known as NFE2L2), are two of the most complicated transcription regulators, which participate in a variety of physiological processes. Numerous studies have shown that they are overactivated in multiple types of tumors. Interestingly, STAT3 and NRF2 can also interact with each other to regulate tumor progression. Hence, these two important transcription factors are considered key targets for developing a new class of antitumor drugs. This review summarizes the pivotal roles of the two transcription regulators and their interactions in the tumor microenvironment to identify potential antitumor drug targets and, ultimately, improve patients' health and survival.
Collapse
Affiliation(s)
- Yanjun Tian
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Haiqing Liu
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Mengwei Wang
- School of Stomatology, Jining Medical University, Jining 272067, China
| | - Ruihao Wang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Guandong Yi
- School of Nursing, Jining Medical University, Jining 272067, China
| | - Meng Zhang
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Ruijiao Chen
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
- Correspondence: ; Tel.: +86-537-361-6216
| |
Collapse
|
17
|
Halder S, Parte S, Kshirsagar P, Muniyan S, Nair HB, Batra SK, Seshacharyulu P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188737. [PMID: 35680099 PMCID: PMC9793423 DOI: 10.1016/j.bbcan.2022.188737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| |
Collapse
|
18
|
Abstract
Genetic modification of T cells to express chimeric antigen receptors (CARs) has yielded remarkable clinical outcomes and initiated a novel era for cancer immunotherapy. The impressive clinical responses seen in hematologic malignancies have led to the investigation of CAR T cells in solid tumors but attaining similar results has been challenging to date. Glioblastoma (GBM) presents a particularly challenging malignancy for treatment and despite some progress in treatments over the past decade, prognosis remains poor for the vast majority of patients. However, recent data support the clinical efficacy and safety of CAR T cell therapy in GBM. In this review, common challenges associated with treating GBM will be discussed in addition to how CAR T cells can overcome such barriers. Additionally, emerging techniques of optimizing CAR T cell therapy for GBM will be emphasized, highlighting the prospective promise of cellular immunotherapy.
Collapse
|
19
|
Cekic S, Huriyet H, Hortoglu M, Kasap N, Ozen A, Karakoc-Aydiner E, Metin A, Ocakoglu G, Demiroz Abakay C, Temel SG, Ozemri Sag S, Baris S, Cavas T, Kilic SS. Full Increased radiosensitivity and impaired DNA repair in patients with STAT3-LOF and ZNF341 deficiency, potentially contributing to malignant transformations. Clin Exp Immunol 2022; 209:83-89. [PMID: 35511492 PMCID: PMC9307231 DOI: 10.1093/cei/uxac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
STAT3 plays an important role in various complex and sometimes contradictory pathways such as proliferation, differentiation, migration, inflammation, and apoptosis. The transcriptional activity of the STAT3 gene is controlled by a transcription factor called ZNF341. There is insufficient data on radiation sensitivity and post-radiation DNA repair in STAT3- loss-of-function (LOF) patients. We aimed to investigate the radiosensitivity in patients with STAT3-LOF and ZNF341 deficiency. Twelve patients with STAT3-LOF and four ZNF341-deficiency patients were recruited from three clinical immunology centers in Turkey and evaluated for radiosensitivity by the Comet assay, comparing to 14 age- and sex-matched healthy controls. The Tail length (μm), Tail DNA (%), Olive Tail Moment (OTM) (arbitrary units) were evaluated at the same time for baseline (spontaneous), initial (immediately after 2Gy irradiation), and recovery (2h after irradiation) periods by using a computerized image-analysis system, estimating DNA damage. Except for a patient with ZNF341 deficiency who developed nasal cell primitive neuroendocrine tumor and papillary thyroid cancer during the follow-up, there was no cancer in both groups. During the recovery period of irradiation, TL, TDNA%, and OTM values of healthy controls decreased rapidly towards the baseline, while these values of patients with STAT3-LOF and ZNF341 deficiency continued to increase, implying impaired DNA repair mechanisms. Increased radiosensitivity and impaired DNA repair were demonstrated in patients diagnosed with STAT3-LOF and ZNF341 deficiency, potentially explaining the susceptibility to malignant transformation.
Collapse
Affiliation(s)
- Sukru Cekic
- Division of Pediatric Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Huzeyfe Huriyet
- Faculty of Sciences and Letters, Biology Department, Uludag University, Bursa, Turkey
| | - Melika Hortoglu
- Faculty of Sciences and Letters, Biology Department, Uludag University, Bursa, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayse Metin
- Division of Pediatric Allergy and Immunology, University of Health Sciences/Ankara City Hospital/Children's Hospital, Ankara, Turkey
| | - Gokhan Ocakoglu
- Department of Biostatistics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Candan Demiroz Abakay
- Department of Radiation Oncology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Tolga Cavas
- Faculty of Sciences and Letters, Biology Department, Uludag University, Bursa, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey.,Bursa Uludag University, Translational Medicine, Bursa, Turkey
| |
Collapse
|
20
|
Park JY, Yoo KD, Bae E, Kim KH, Lee JW, Shin SJ, Lee JS, Kim YS, Yang SH. Blockade of STAT3 signaling alleviates progression of acute kidney injury-to-chronic kidney disease through anti-apoptosis. Am J Physiol Renal Physiol 2022; 322:F553-F572. [PMID: 35311382 DOI: 10.1152/ajprenal.00595.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a pivotal mediator of IL-6-type cytokine signaling. However, the roles of its full-length and truncated isoforms in acute kidney injury (AKI) and its transition to chronic kidney disease (CKD) remain elusive. Herein, the role of STAT3 isoforms in AKI-to-CKD transition was characterized using an ischemia-reperfusion injury (IRI) mouse model. IRI was induced in C57BL/6 mice. Stattic®, a STAT3 inhibitor, was administered to the mice 3 h prior to IRI. Intrarenal cytokine expression was quantified using real-time PCR, and FACS analysis was performed. The effect of Stattic® on human tubular epithelial cells (TECs) cultured under hypoxic conditions was also evaluated. Phosphorylated STAT3 isoforms were detected by western blotting. Stattic® treatment attenuated IRI-induced tubular damage and inflammatory cytokine/chemokine expression, while decreasing macrophage infiltration and fibrosis in mouse unilateral IRI and UUO models. Similarly, in vitro STAT3 inhibition downregulated fibrosis and apoptosis in 72-h hypoxia-induced human TECs and reduced pSTAT3α-mediated inflammation. Moreover, pSTAT3 expression was increased in human acute tubular necrosis and CKD tissues. STAT3 activation is associated with IRI progression, and STAT3-α may be a significant contributor. Hence, STAT3 may affect AKI-to-CKD transition, suggesting a novel strategy for AKI management with STAT3 inhibitors.
Collapse
Affiliation(s)
- Jae Yoon Park
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang-si, Korea (South), Republic of
| | - Kyung Don Yoo
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (South), Republic of
| | - Eunjin Bae
- Department of Internal Medicine, Gyeongsang National University College of Medicine, Gyeongsang University Changwon Hospital, Changwon, Korea (South), Republic of
| | - Kyu Hong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea (South), Republic of
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center of Korea, Seoul, Korea (South), Republic of
| | - Sung Joon Shin
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang-si, Korea (South), Republic of
| | - Jong Soo Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea (South), Republic of
| | - Yon Su Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea (South), Republic of.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea (South), Republic of.,Kidney Research Institute, Seoul National University, Seoul, Korea (South), Republic of.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (South), Republic of
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea (South), Republic of.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (South), Republic of
| |
Collapse
|
21
|
Srivastava A, Sharma H, Khanna S, Sadhu Balasundaram T, Chowdhury S, Chowdhury R, Mukherjee S. Interleukin-6 Induced Proliferation Is Attenuated by Transforming Growth Factor-β-Induced Signaling in Human Hepatocellular Carcinoma Cells. Front Oncol 2022; 11:811941. [PMID: 35127527 PMCID: PMC8810489 DOI: 10.3389/fonc.2021.811941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is often associated with an inflammatory setting. A plethora of cytokines are secreted in this milieu, actively contributing to the progression of the disease; however, the extent of cytokine interaction and how it contributes to HCC development remains an enigma. In this regard, our analysis of available patient-derived data suggests that cytokines like interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) are enriched in HCC. We further analyzed the effect of these cytokines independently or in combination on HCC cells. Importantly, IL-6 was found to induce a STAT-3-dependent proliferation and mediate its pro-proliferative effects through activation and direct interaction with the p65 subunit of NFkB. Alternatively, TGF-β was found to induce a SMAD-dependent induction of epithelial to mesenchymal transition (EMT) coupled to growth arrest in these cells. Interestingly, the simultaneous addition of IL-6 and TGF-β failed to profoundly impact EMT markers but resulted in attenuation of IL-6-induced pro-proliferative effects. Analysis of the putative molecular mechanism revealed a decrease in IL-6 receptor (IL-6R) transcript levels, reduced expression of IL-6-induced STAT-3, and its nuclear localization upon addition of TGF-β along with IL-6. Consequently, a reduced p65 activation was also observed in combination treatment. Importantly, SMAD levels were unperturbed and the cells showed more TGF-β-like features under combination treatment. Finally, we observed that TGF-β resulted in enrichment of repressive chromatin mark (H3K27me3) coupled to growth arrest, while IL-6 induced an open chromatin signature (H3K4me3) associated with an enhanced expression of EZH2. Overall, for the first time, we show that TGF-β attenuates IL-6-induced effects by regulating the receptor level, downstream signaling, and the epigenome. Understanding the complex interactions between these cytokines can be imperative to a better understanding of the disease, and manipulation of cytokine balance can act as a prospective future therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Rajasthan, India
| |
Collapse
|
22
|
Papavassiliou KA, Papavassiliou AG. Transcription factors in glioblastoma - Molecular pathogenesis and clinical implications. Biochim Biophys Acta Rev Cancer 2021; 1877:188667. [PMID: 34894431 DOI: 10.1016/j.bbcan.2021.188667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is one of the most lethal human cancers, however, the molecular mechanisms driving GBM remain largely elusive. Recent studies have revealed that transcription factors are significantly involved in GBM biology. Transcription factors (TFs), which are proteins that bind DNA to regulate gene expression, have critical roles at focal points in signaling pathways, orchestrating many cellular processes, such as cell growth and proliferation, differentiation, apoptosis, immune responses, and metabolism. Dysregulated or mutated TFs are common in GBM, resulting in aberrant gene expression that promotes tumor initiation, progression, and resistance to conventional therapies. In the present Review, we focus on TFs that are implicated in GBM pathogenesis, highlighting their oncogenic or tumor suppressive functions and describing the molecular mechanisms underlying their effect on GBM cells. We also discuss their use as biomarkers for GBM prognosis and therapeutic response, as well as their targeting with drugs for GBM treatment. Deciphering the role of TFs in the biology of GBM will provide new insights into the pathological mechanisms and reveal novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece.
| |
Collapse
|
23
|
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.
Collapse
|
24
|
Cardona AF, Jaramillo-Velásquez D, Ruiz-Patiño A, Polo C, Jiménez E, Hakim F, Gómez D, Ramón JF, Cifuentes H, Mejía JA, Salguero F, Ordoñez C, Muñoz Á, Bermúdez S, Useche N, Pineda D, Ricaurte L, Zatarain-Barrón ZL, Rodríguez J, Avila J, Rojas L, Jaller E, Sotelo C, Garcia-Robledo JE, Santoyo N, Rolfo C, Rosell R, Arrieta O. Efficacy of osimertinib plus bevacizumab in glioblastoma patients with simultaneous EGFR amplification and EGFRvIII mutation. J Neurooncol 2021; 154:353-364. [PMID: 34498213 DOI: 10.1007/s11060-021-03834-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Amplification of EGFR and its active mutant EGFRvIII are common in glioblastoma (GB). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors or antibodies has shown limited efficacy. To improve the likelihood of effectiveness, we targeted adult patients with recurrent GB enriched for simultaneous EGFR amplification and EGFRvIII mutation, with osimertinib/bevacizumab at doses described for non-small cell lung cancer. METHODS We retrospectively explored whether previously described EGFRvIII mutation in association with EGFR gene amplification could predict response to osimertinib/bevacizumab combination in a subset of 15 patients treated at recurrence. The resistance pattern in a subgroup of subjects is described using a commercial next-generation sequencing panel in liquid biopsy. RESULTS There were ten males (66.7%), and the median patient's age was 56 years (range 38-70 years). After their initial diagnosis, 12 patients underwent partial (26.7%) or total resection (53.3%). Subsequently, all cases received IMRT and concurrent and adjuvant temozolomide (TMZ; the median number of cycles 9, range 6-12). The median follow-up after recurrence was 17.1 months (95% CI 12.3-22.6). All patients received osimertinib/bevacizumab as a second-line intervention with a median progression-free survival (PFS) of 5.1 months (95% CI 2.8-7.3) and overall survival of 9.0 months (95% CI 3.9-14.0). The PFS6 was 46.7%, and the overall response rate was 13.3%. After exposure to the osimertinib/bevacizumab combination, the main secondary alterations were MET amplification, STAT3, IGF1R, PTEN, and PDGFR. CONCLUSIONS While the osimertinib/bevacizumab combination was marginally effective in most GB patients with simultaneous EGFR amplification plus EGFRvIII mutation, a subgroup experienced a long-lasting meaningful benefit. The findings of this brief cohort justify the continuation of the research in a clinical trial. The pattern of resistance after exposure to osimertinib/bevacizumab includes known mechanisms in the regulation of EGFR, findings that contribute to the understanding and targeting in a stepwise rational this pathway.
Collapse
Affiliation(s)
- Andrés F Cardona
- Clinical and Translational Oncology Group, Brain Tumor Unit, Clínica del Country, Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia. .,Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia. .,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia. .,Thoracic Oncology Unit, Clínica del Country, Bogotá, Colombia.
| | | | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Polo
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Enrique Jiménez
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Fernando Hakim
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Diego Gómez
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | | | | | - Fernando Salguero
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Camila Ordoñez
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Álvaro Muñoz
- Radio-Oncology Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Sonia Bermúdez
- Neuroradiology Section, Radiology Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Nicolas Useche
- Neuroradiology Section, Radiology Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Diego Pineda
- Neuroradiology Section, Radiology Department, Clínica del Country, Bogotá, Colombia
| | | | | | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Jenny Avila
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Brain Tumor Unit, Clínica del Country, Calle 116 No. 9 - 72, c. 318, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia.,Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Elvira Jaller
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | | | - Nicolas Santoyo
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cáncer Center, Mount Sinai Hospital System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Oscar Arrieta
- Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
25
|
Sharanek A, Burban A, Hernandez-Corchado A, Madrigal A, Fatakdawala I, Najafabadi HS, Soleimani VD, Jahani-Asl A. Transcriptional control of brain tumor stem cells by a carbohydrate binding protein. Cell Rep 2021; 36:109647. [PMID: 34469737 DOI: 10.1016/j.celrep.2021.109647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Brain tumor stem cells (BTSCs) and intratumoral heterogeneity represent major challenges in glioblastoma therapy. Here, we report that the LGALS1 gene, encoding the carbohydrate binding protein, galectin1, is a key regulator of BTSCs and glioblastoma resistance to therapy. Genetic deletion of LGALS1 alters BTSC gene expression profiles and results in downregulation of gene sets associated with the mesenchymal subtype of glioblastoma. Using a combination of pharmacological and genetic approaches, we establish that inhibition of LGALS1 signaling in BTSCs impairs self-renewal, suppresses tumorigenesis, prolongs lifespan, and improves glioblastoma response to ionizing radiation in preclinical animal models. Mechanistically, we show that LGALS1 is a direct transcriptional target of STAT3 with its expression robustly regulated by the ligand OSM. Importantly, we establish that galectin1 forms a complex with the transcription factor HOXA5 to reprogram the BTSC transcriptional landscape. Our data unravel an oncogenic signaling pathway by which the galectin1/HOXA5 complex maintains BTSCs and promotes glioblastoma.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada
| | - Audrey Burban
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada
| | - Aldo Hernandez-Corchado
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Ariel Madrigal
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Idris Fatakdawala
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada; McGill Genome Centre, Montréal, QC H3A 0G1, Canada
| | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A OC7, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Gerald Bronfman Department of Oncology and Division of Experimental Medicine, McGill University, Montréal, QC H4A 3T2, Canada; Integrated program in Neuroscience, Montréal Neurological Institute, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
26
|
Christianson J, Oxford JT, Jorcyk CL. Emerging Perspectives on Leukemia Inhibitory Factor and its Receptor in Cancer. Front Oncol 2021; 11:693724. [PMID: 34395259 PMCID: PMC8358831 DOI: 10.3389/fonc.2021.693724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Tumorigenesis and metastasis have deep connections to inflammation and inflammatory cytokines, but the mechanisms underlying these relationships are poorly understood. Leukemia Inhibitory Factor (LIF) and its receptor (LIFR), part of the interleukin-6 (IL-6) cytokine family, make up one such ill-defined piece of the puzzle connecting inflammation to cancer. Although other members of the IL-6 family have been shown to be involved in the metastasis of multiple types of cancer, the role of LIF and LIFR has been challenging to determine. Described by others in the past as enigmatic and paradoxical, LIF and LIFR are expressed in a diverse array of cells in the body, and the narrative surrounding them in cancer-related processes has been vague, and at times even contradictory. Despite this, recent insights into their functional roles in cancer have highlighted interesting patterns that may allude to a broader understanding of LIF and LIFR within tumor growth and metastasis. This review will discuss in depth the signaling pathways activated by LIF and LIFR specifically in the context of cancer-the purpose being to summarize recent literature concerning the downstream effects of LIF/LIFR signaling in a variety of cancer-related circumstances in an effort to begin teasing out the intricate web of contradictions that have made this pair so challenging to define.
Collapse
Affiliation(s)
- Joe Christianson
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| |
Collapse
|
27
|
Ji W, Liu Y, Xu B, Mei J, Cheng C, Xiao Y, Yang K, Huang W, Jiao J, Liu H, Shao J. Bioinformatics Analysis of Expression Profiles and Prognostic Values of the Signal Transducer and Activator of Transcription Family Genes in Glioma. Front Genet 2021; 12:625234. [PMID: 34276757 PMCID: PMC8283826 DOI: 10.3389/fgene.2021.625234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) family genes—of which there are seven members: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6—have been associated with the progression of multiple cancers. However, their prognostic values in glioma remain unclear. In this study, we systematically investigated the expression, the prognostic value, and the potential mechanism of the STAT family genes in glioma. The expression of STAT1/2/3/5A/6 members were significantly higher and positively correlated with IDH mutations, while the expression of STAT5B was lower and negatively correlated with IDH mutations in glioma. Survival analysis indicated that the upregulation of STAT1/2/3/5A/6 and downregulation of STAT5B expression was associated with poorer overall survival in glioma. Joint effects analysis of STAT1/2/3/5A/5B/6 expression suggested that the prognostic value of the group was more significant than that of each individual gene. Thus, we constructed a risk score model to predict the prognosis of glioma. The receiver operating characteristic curve and calibration curves showed good performance as prognostic indicators in both TCGA (The Cancer Genome Atlas) and the CGGA (Chinese Glioma Genome Atlas) databases. Furthermore, we analyzed the correlation between STAT expression with immune infiltration in glioma. The Protein–protein interaction network and enrichment analysis showed that STAT members and co-expressed genes mainly participated in signal transduction activity, Hepatitis B, the Jak-STAT signaling pathway, transcription factor activity, sequence-specific DNA binding, and the cytokine-mediated signaling pathway in glioma. In summary, our study analyzed the expression, prognostic values, and biological roles of the STAT gene family members in glioma, based on which we developed a new risk score model to predict the prognosis of glioma more precisely.
Collapse
Affiliation(s)
- Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.,Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuankun Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jie Mei
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yong Xiao
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
28
|
Pylaeva E, Ozel I, Squire A, Spyra I, Wallner C, Korek M, Korschunow G, Domnich M, Siakaeva E, Goetz M, Bankfalvi A, Lang S, Kansy B, Jablonska J. B-Helper Neutrophils in Regional Lymph Nodes Correlate with Improved Prognosis in Patients with Head and Neck Cancer. Cancers (Basel) 2021; 13:cancers13123092. [PMID: 34205654 PMCID: PMC8234083 DOI: 10.3390/cancers13123092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Neutrophils exhibit multiple functions during cancer progression and are believed to regulate adaptive immune responses to cancer. In addition to their interactions with T cells in this context, these cells are also believed to interact with B cells. Neutrophils have been found in the marginal zone of the spleen, where they exhibit helper cell characteristics, supporting B cell proliferation and activation. Here, we investigate the effect of neutrophils on B cells in the regional lymph nodes (RLN) of head-and-neck cancer (HNC) patients. We have identified that, in RLNs, neutrophils express a helper cell phenotype that was associated with the increased activation and proliferation of B cells. Importantly, the high abundance of neutrophils in the B cell follicles of regional lymph nodes is associated with significantly improved HNC patient survival. Abstract The role of neutrophils during cancer formation and elimination is diverse. Here, for the first time, we investigate neutrophil helper cells (NBH), their influence on B cell activity in the regional lymph nodes (RLN) of head-and-neck cancer patients and the effect of this neutrophil/B cell interaction on patient prognosis. Circulating and RLN neutrophils of patients with stage I–IV head-and-neck squamous cell carcinoma were investigated with flow cytometry and qPCR. In addition, neutrophil/B cell co-localization in RLNs was evaluated using immunohistochemistry. B cell proliferation was assessed and correlated with the distance to neutrophils. Patient survival was evaluated. Neutrophils with the helper cell phenotype were identified in the RLN of HNC patients. B cells in close proximity to such NBH showed significantly higher proliferation rates, together with elevated activation-induced cytidine deaminase (AID) expression. Notably, patient survival was significantly higher in individuals with high NBH frequencies in the B follicles of RLNs. Neutrophils in RLN can support T cell-independent activation of the adaptive immune system through B cell stimulation, capturing helper cell phenotype character. The presence of such helper neutrophils in the RLNs of HNC patients positively correlates with patient prognosis.
Collapse
Affiliation(s)
- Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
| | - Irem Ozel
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
| | - Anthony Squire
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, 45141 Essen, Germany;
| | - Ilona Spyra
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
| | - Charlotte Wallner
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
| | - Magdalena Korek
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
| | - Georg Korschunow
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
| | - Maksim Domnich
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
| | - Elena Siakaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
| | - Moritz Goetz
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (M.G.); (A.B.)
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (M.G.); (A.B.)
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Benjamin Kansy
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, 45147 Essen, Germany
- Correspondence: (B.K.); (J.J.)
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (E.P.); (I.O.); (I.S.); (C.W.); (M.K.); (G.K.); (M.D.); (E.S.); (S.L.)
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, 45147 Essen, Germany
- Correspondence: (B.K.); (J.J.)
| |
Collapse
|
29
|
Tumor Suppressive Effects of miR-124 and Its Function in Neuronal Development. Int J Mol Sci 2021; 22:ijms22115919. [PMID: 34072894 PMCID: PMC8198231 DOI: 10.3390/ijms22115919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNA-124 (miR-124) is strongly expressed in neurons, and its expression increases as neurons mature. Through DNA methylation in the miR-124 promoter region and adsorption of miR-124 by non-coding RNAs, miR-124 expression is known to be reduced in many cancer cells, especially with high malignancy. Recently, numerous studies have focused on miR-124 due to its promising tumor-suppressive effects; however, the overview of their results is unclear. We surveyed the tumor-suppressive effect of miR-124 in glial cell lineage cancers, which are the most frequently reported cancer types involving miR-124, and in lung, colon, liver, stomach, and breast cancers, which are the top five causes of cancer death. Reportedly, miR-124 not only inhibits proliferation and accelerates apoptosis, but also comprehensively suppresses tumor malignant transformation. Moreover, we found that miR-124 exerts its anti-tumor effects by regulating a wide range of target genes, most notably STAT3 and EZH2. In addition, when compared to the original role of miR-124 in neuronal development, we found that the miR-124 target genes that contribute to neuronal maturation share similarities with genes that cause cancer cell metastasis and epithelial-mesenchymal transition. We believe that the two apparently unrelated fields, cancer and neuronal development, can bring new discoveries to each other through the study of miR-124.
Collapse
|
30
|
The two facets of gp130 signalling in liver tumorigenesis. Semin Immunopathol 2021; 43:609-624. [PMID: 34047814 PMCID: PMC8443519 DOI: 10.1007/s00281-021-00861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
The liver is a vital organ with multiple functions and a large regenerative capacity. Tumours of the liver are the second most frequently cause of cancer-related death and develop in chronically inflamed livers. IL-6-type cytokines are mediators of inflammation and almost all members signal via the receptor subunit gp130 and the downstream signalling molecule STAT3. We here summarize current knowledge on how gp130 signalling and STAT3 in tumour cells and cells of the tumour micro-environment drives hepatic tumorigenesis. We furthermore discuss very recent findings describing also anti-tumorigenic roles of gp130/STAT3 and important considerations for therapeutic interventions.
Collapse
|
31
|
Li Z, Zhao R, Yang W, Li C, Huang J, Wen Z, Du G, Jiang L. PLCG2 as a potential indicator of tumor microenvironment remodeling in soft tissue sarcoma. Medicine (Baltimore) 2021; 100:e25008. [PMID: 33725976 PMCID: PMC7982206 DOI: 10.1097/md.0000000000025008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 01/05/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the occurrence and development of soft tissue sarcoma (STS). A number of studies have shown that to inhibit tumor growth, the TME can be remodeled into an environment unsuitable for tumor proliferation. However, a lack of understanding exists regarding the dynamic regulation of TME.In this study, we used CIBERSORT and ESTIMATE calculation methods from the Cancer Genome Atlas (TCGA) database to calculate the proportion of tumor infiltrating immune cells (TICs) and the number of immune and stromal components in 263 STS samples. Differential expression genes (DEGs) shared by Immune Score and Stromal Score were obtained via difference analysis. Univariate Cox regression analysis and construction of protein-protein interaction (PPI) networks were applied to the DEGs.Through intersection analysis of univariate COX and PPI, PLCG2 was determined as the indicator. Further analysis showed that PLCG2 expression was positively correlated with the survival of STS patients. Gene set enrichment analysis (GSEA) showed that genes in the highly expressed PLCG2 group were enriched in immune-related activities. In the low-expression PLCG2 group, genes were enriched in the E2F, G2M, and MYC pathways. Difference analysis and correlation analysis showed that CD8+ T cells, gamma delta T cells, monocytes, and M1 macrophages were positively correlated with PLCG2 expression, indicating that PLCG2 may represent the immune status of TME.Therefore, the level of PLCG2 may aid in determining the prognosis of STS patients, especially the status of TME. These data provide additional insights into the remodeling of TME.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Lingling Jiang
- Department of Anesthesiology, The second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Zheng ZY, Yang PL, Luo W, Yu SX, Xu HY, Huang Y, Li RY, Chen Y, Xu XE, Liao LD, Wang SH, Huang HC, Li EM, Xu LY. STAT3β Enhances Sensitivity to Concurrent Chemoradiotherapy by Inducing Cellular Necroptosis in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13040901. [PMID: 33670049 PMCID: PMC7926856 DOI: 10.3390/cancers13040901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/05/2023] Open
Abstract
Concurrent chemoradiotherapy (CCRT), especially platinum plus radiotherapy, is considered to be one of the most promising treatment modalities for patients with advanced esophageal cancer. STAT3β regulates specific target genes and inhibits the process of tumorigenesis and development. It is also a good prognostic marker and a potential marker for response to adjuvant chemoradiotherapy (ACRT). We aimed to investigate the relationship between STAT3β and CCRT. We examined the expression of STAT3α and STAT3β in pretreatment tumor biopsies of 105 ESCC patients who received CCRT by immunohistochemistry. The data showed that ESCC patients who demonstrate both high STAT3α expression and high STAT3β expression in the cytoplasm have a significantly better survival rate, and STAT3β expression is an independent protective factor (HR = 0.424, p = 0.003). Meanwhile, ESCC patients with high STAT3β expression demonstrated a complete response to CCRT in 65 patients who received platinum plus radiation therapy (p = 0.014). In ESCC cells, high STAT3β expression significantly inhibits the ability of colony formation and cell proliferation, suggesting that STAT3β enhances sensitivity to CCRT (platinum plus radiation therapy). Mechanistically, through RNA-seq analysis, we found that the TNF signaling pathway and necrotic cell death pathway were significantly upregulated in highly expressed STAT3β cells after CCRT treatment. Overall, our study highlights that STAT3β could potentially be used to predict the response to platinum plus radiation therapy, which may provide an important insight into the treatment of ESCC.
Collapse
Affiliation(s)
- Zhen-Yuan Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Ping-Lian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Wei Luo
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Shuai-Xia Yu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Hong-Yao Xu
- Departments of Radiation Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; (H.-Y.X.); (H.-C.H.)
| | - Ying Huang
- Departments of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; (Y.H.); (S.-H.W.)
| | - Rong-Yao Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yang Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Xiu-E Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Lian-Di Liao
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
| | - Shao-Hong Wang
- Departments of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; (Y.H.); (S.-H.W.)
| | - He-Cheng Huang
- Departments of Radiation Oncology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; (H.-Y.X.); (H.-C.H.)
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Correspondence: (E.-M.L.); (L.-Y.X.)
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China; (Z.-Y.Z.); (P.-L.Y.); (W.L.); (S.-X.Y.); (R.-Y.L.); (Y.C.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China; (X.-E.X.); (L.-D.L.)
- Correspondence: (E.-M.L.); (L.-Y.X.)
| |
Collapse
|
33
|
Li M, Sun P, Dong K, Xin Y, TaiLulu A, Li Q, Sun J, Peng M, Shi P. Chemerin reverses the malignant phenotype and induces differentiation of human hepatoma SMMC7721 cells. Arch Pharm Res 2021; 44:194-204. [PMID: 33502677 DOI: 10.1007/s12272-021-01311-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Chemerin exhibits an inhibitory effect on hepatocellular carcinoma; however, the underlying mechanism is unclear. Here, low chemerin expression was confirmed in samples of liver cancer patients and hepatoma cells. Chemerin altered hepatoma cell morphology but had no effect on normal hepatocytes. Chemerin inhibited proliferation of several human hepatoma cell lines. Real-time PCR detection of hepatocellular carcinoma markers showed that mRNA levels of albumin and A-type gamma-glutamyl transferase increased whereas those of alpha-fetoprotein, alkaline phosphatase, B-type gamma-glutamyl transferase, insulin-like growth factor II, and human telomerase reverse transcriptase decreased in chemerin-treated SMMC7721 cells. Western blotting revealed that chemerin up-regulated albumin and vimentin expressions, and downregulated alpha-fetoprotein expression. Phosphorylated STAT3 was significantly up-regulated, whereas phosphorylated ERK and AKT were significantly downregulated by chemerin. Chemerin decreased phosphorylated ERK and AKT expression and the cell proliferation induced by PI3K activator 740 Y-P but could not significantly alter phosphorylated STAT3 expression and the cell growth induced by STAT3 inhibitor NSC74859. In conclusion, chemerin reversed the malignant phenotype and induced SMMC7721 cell differentiation by inhibiting MAPK/ERK and PI3K/AKT signaling; growth inhibition by chemerin is not directly related to the JAK/STAT signaling pathway. Our study provides novel evidence that chemerin could be utilized for liver cancer treatment.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pengcheng Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Kaikai Dong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ye Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Aslee TaiLulu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qinyu Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xiguan Avenue 59, Xining, 810001, China
| | - Min Peng
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xiguan Avenue 59, Xining, 810001, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xiguan Avenue 59, Xining, 810001, China.
| |
Collapse
|
34
|
Lombard A, Digregorio M, Delcamp C, Rogister B, Piette C, Coppieters N. The Subventricular Zone, a Hideout for Adult and Pediatric High-Grade Glioma Stem Cells. Front Oncol 2021; 10:614930. [PMID: 33575218 PMCID: PMC7870981 DOI: 10.3389/fonc.2020.614930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Both in adult and children, high-grade gliomas (WHO grades III and IV) account for a high proportion of death due to cancer. This poor prognosis is a direct consequence of tumor recurrences occurring within few months despite a multimodal therapy consisting of a surgical resection followed by chemotherapy and radiotherapy. There is increasing evidence that glioma stem cells (GSCs) contribute to tumor recurrences. In fact, GSCs can migrate out of the tumor mass and reach the subventricular zone (SVZ), a neurogenic niche persisting after birth. Once nested in the SVZ, GSCs can escape a surgical intervention and resist to treatments. The present review will define GSCs and describe their similarities with neural stem cells, residents of the SVZ. The architectural organization of the SVZ will be described both for humans and rodents. The migratory routes taken by GSCs to reach the SVZ and the signaling pathways involved in their migration will also be described hereafter. In addition, we will debate the advantages of the microenvironment provided by the SVZ for GSCs and how this could contribute to tumor recurrences. Finally, we will discuss the clinical relevance of the SVZ in adult GBM and pediatric HGG and the therapeutic advantages of targeting that neurogenic region in both clinical situations.
Collapse
Affiliation(s)
- Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Clément Delcamp
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurology, CHU of Liège, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Pediatrics, Division of Hematology-Oncology, CHU of Liège, Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| |
Collapse
|
35
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
36
|
Sanchez-Martin V, Lopez-Pujante C, Soriano-Rodriguez M, Garcia-Salcedo JA. An Updated Focus on Quadruplex Structures as Potential Therapeutic Targets in Cancer. Int J Mol Sci 2020; 21:ijms21238900. [PMID: 33255335 PMCID: PMC7734589 DOI: 10.3390/ijms21238900] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-canonical, four-stranded nucleic acids secondary structures are present within regulatory regions in the human genome and transcriptome. To date, these quadruplex structures include both DNA and RNA G-quadruplexes, formed in guanine-rich sequences, and i-Motifs, found in cytosine-rich sequences, as their counterparts. Quadruplexes have been extensively associated with cancer, playing an important role in telomere maintenance and control of genetic expression of several oncogenes and tumor suppressors. Therefore, quadruplex structures are considered attractive molecular targets for cancer therapeutics with novel mechanisms of action. In this review, we provide a general overview about recent research on the implications of quadruplex structures in cancer, firstly gathering together DNA G-quadruplexes, RNA G-quadruplexes as well as DNA i-Motifs.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute IBS, Granada, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, 18016 Granada, Spain
| | - Carmen Lopez-Pujante
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
| | - Miguel Soriano-Rodriguez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Centre for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAMBITAL), University of Almeria, 04001 Almeria, Spain
- Correspondence: (M.S.-R.); (J.A.G.-S.); Tel.: +34-958715500 (M.S.-R.); +34-958715500 (J.A.G.-S.)
| | - Jose A. Garcia-Salcedo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (V.S.-M.); (C.L.-P.)
- Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute IBS, Granada, 18014 Granada, Spain
- Correspondence: (M.S.-R.); (J.A.G.-S.); Tel.: +34-958715500 (M.S.-R.); +34-958715500 (J.A.G.-S.)
| |
Collapse
|
37
|
Influence of Lipoxygenase Inhibition on Glioblastoma Cell Biology. Int J Mol Sci 2020; 21:ijms21218395. [PMID: 33182324 PMCID: PMC7664864 DOI: 10.3390/ijms21218395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The relationship between glioblastoma (GBM) and fatty acid metabolism could be the key to elucidate more effective therapeutic targets. 15-lipoxygenase-1 (15-LOX), a linolenic acid and arachidonic acid metabolizing enzyme, induces both pro- and antitumorigenic effects in different cancer types. Its role in glioma activity has not yet been clearly described. The objective of this study was to identify the influence of 15-LOX and its metabolites on glioblastoma cell activity. METHODS GBM cell lines were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to identify 15-LOX metabolites. GBM cells treated with 15-LOX metabolites, 13-hydroxyoctadecadeinoic acid (HODE) and 9-HODE, and two 15-LOX inhibitors (luteolin and nordihydroguaiaretic acid) were also examined. Dose response/viability curves, RT-PCRs, flow cytometry, migration assays, and zymograms were performed to analyze GBM growth, migration, and invasion. RESULTS Higher quantities of 13-HODE were observed in five GBM cell lines compared to other lipids analyzed. Both 13-HODE and 9-HODE increased cell count in U87MG. 15-LOX inhibition decreased migration and increased cell cycle arrest in the G2/M phase. CONCLUSION 15-LOX and its linoleic acid (LA)-derived metabolites exercise a protumorigenic influence on GBM cells in vitro. Elevated endogenous levels of 13-HODE called attention to the relationship between linoleic acid metabolism and GBM cell activity.
Collapse
|
38
|
Wu S, Li X, Chai H, Feng L, Li W, Li H. Downregulation of N-myc Interactor Promotes Cervical Cancer Cells Growth by Activating Stat3 Signaling. Cell Biochem Biophys 2020; 79:103-111. [PMID: 33106998 DOI: 10.1007/s12013-020-00943-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
N-myc interactor (NMI), a member of the oncogene Myc family, has been reported to be closely related to the development of cancer. However, the character of NMI in cervical carcinoma has not been reported. Herein, we found that downregulation of NMI protein not only promoted the proliferation, migration, and invasion of HeLa cells, but also decreased their expression of Caspase-3 and Caspase-9. Silencing NMI promotes the epithelial-mesenchymal transition of human cervical carcinoma HeLa cells by upregulating N-cadherin, vimentin, and downregulating E-cadherin. Further investigation illustrated the downregulation of NMI can activate the STAT3 signaling pathway. In conclusion, we found that the downregulation of NMI plays an important role in the progression of cervical cancer, and may served as a novel therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Songbin Wu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
- Shenzhen Key Laboratory of Pain Medicine, Nanshan Hospital, Shenzhen, China
| | - Xiaotian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Huizi Chai
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Linyuan Feng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Wenjing Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Sang W, Xue J, Su LP, Gulinar A, Wang Q, Zhai YY, Hu YR, Gao HX, Li X, Li QX, Zhang W. Expression of YAP1 and pSTAT3-S727 and their prognostic value in glioma. J Clin Pathol 2020; 74:513-521. [PMID: 33020176 DOI: 10.1136/jclinpath-2020-206868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 11/04/2022]
Abstract
AIMS A growing research demonstrated that YAP1 played important roles in gliomagenesis. We explored the expression of YAP1 and STAT3, the relationship between them and the effect of YAP1, STAT3 on prognosis in glioma. METHODS Expression of YAP1, p-YAP1, STAT3, pSTAT3-S727 and pSTAT3-Y705 in 141 cases of low-grade gliomas (LGG) and 74 cases of high-grade gliomas (HGG) of surgical specimens were measured by immunohistochemistry. Pearson's X2 test was used to determine the correlation between immunohistochemical expressions and clinicopathological parameters. Pearson's or Spearman correlation test was used to determine the association between these proteins expression. Survival analysis was used to investigate the effect of these proteins on prognosis. RESULTS High expressions of YAP1, STAT3, pSTAT3-S727 and pSTAT3-Y705 were found in HGG compared with LGG (p=0.000). High expressions of YAP1, STAT3, pSTAT3-S727 and pSTAT3-Y705 were found in 63.5%, 59.5%, 66.2% and 31.1% cases of HGG, respectively. YAP1 expression was associated to tumour location, Ki-67 and P53, STAT3 expression was related with Ki-67 and P53, and the expression of pSTAT3-S727 was associated with Ki-67. There was a significantly positive correlation between YAP1 and pSTAT3-S727 (p<0.0001; r=0.5663). Survival analysis revealed that patients with YAP1 and pSTAT3-S727 coexpression had worse overall survival (OS) and progression-free survival (PFS) (p<0.0001). Tumour grade, age, Ki-67 and YAP1 expression were independent prognostic factors for OS. In LGG group, both YAP1 and pSTAT3-S727 expressions were negative correlation with IDH1 mutation, YAP1 and pSTAT3-S727 coexpression showed worse OS and PFS of glioma patients. CONCLUSION Our research showed that YAP1 and STAT3 were significantly activated in HGG compared with LGG. YAP1 significantly correlated with pSTAT3-S727 in glioma, YAP1 and pSTAT3-S727 coexpression may serve as a reliable prognostic biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Wei Sang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li-Ping Su
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Abulajiang Gulinar
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qian Wang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang-Yang Zhai
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yan-Ran Hu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hai-Xia Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinxia Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiao-Xing Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
40
|
Yang PL, Liu LX, Li EM, Xu LY. STAT3, the Challenge for Chemotherapeutic and Radiotherapeutic Efficacy. Cancers (Basel) 2020; 12:cancers12092459. [PMID: 32872659 PMCID: PMC7564975 DOI: 10.3390/cancers12092459] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Chemoradiotherapy is one of the most effective and extensively used strategies for cancer treatment. Signal transducer and activator of transcription 3 (STAT3) regulates vital biological processes, such as cell proliferation and cell growth. It is constitutively activated in various cancers and limits the application of chemoradiotherapy. Accumulating evidence suggests that STAT3 regulates resistance to chemotherapy and radiotherapy and thereby impairs therapeutic efficacy by mediating its feedback loop and several target genes. The alternative splicing product STAT3β is often identified as a dominant-negative regulator, but it enhances sensitivity to chemotherapy and offers a new and challenging approach to reverse therapeutic resistance. We focus here on exploring the role of STAT3 in resistance to receptor tyrosine kinase (RTK) inhibitors and radiotherapy, outlining the potential of targeting STAT3 to overcome chemo(radio)resistance for improving clinical outcomes, and evaluating the importance of STAT3β as a potential therapeutic approach to overcomes chemo(radio)resistance. In this review, we discuss some new insights into the effect of STAT3 and its subtype STAT3β on chemoradiotherapy sensitivity, and we explore how these insights influence clinical treatment and drug development for cancer.
Collapse
Affiliation(s)
- Ping-Lian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lu-Xin Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| |
Collapse
|
41
|
A co-formulation of interferons type I and II enhances temozolomide response in glioblastoma with unmethylated MGMT promoter status. Mol Biol Rep 2020; 47:5263-5271. [PMID: 32607953 DOI: 10.1007/s11033-020-05604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Temozolomide (TMZ) is a chemotherapeutic used for the treatment of glioblastoma. The MGMT repair enzyme (O'-(6)-methyl guanine-DNA-methyltransferase) promoter methylation is a predictive biomarker to TMZ response; interferons (IFNs) type I can downregulate MGMT expression improving survival in patients with unmethylated MGMT promoter. HeberFERON is a co-formulation of IFNs type I and II with higher antiproliferative effect over glioblastoma cell lines than individual IFNs. We investigated the proliferative response of patient-derived glioblastoma cultures to HeberFERON and its combination with TMZ in relation to MGMT promoter methylation and the regulation of MGMT transcript after HeberFERON treatment. Eleven glioblastoma-derived cultures, molecularly classified according to TCGA and MGMT promoter methylation, were assayed for proliferation inhibition with HeberFERON at low doses (1-25 IU/mL) [alone or combined with TMZ] or at higher doses (50-200 IU/mL) using CellTiter-Glo Luminescent Cell Viability Assay (Promega). Eight cultures were further treated with 100 IU/mL of HeberFERON for 72 h, total RNA purified (Qiagen) and converted to cDNA (Superscript III kit, Invitrogen) as quantitative PCR templates. Changes of MGMT&P53 transcripts level were monitored. Response of cultures to HeberFERON is variable, dose-dependent and apparently independent from TCGA classification and MGMT methylation status, based on the eight Classical cultures data. When combining HeberFERON with TMZ there was an increase in cell death for cultures, 2/4 with methylated and 5/5 with unmethylated MGMT promoter. In two out five cultures with unmethylated MGMT status, we observed a decrease of MGMT gene levels and an increase in P53 encoding gene levels. HeberFERON and TMZ combination should be further assayed in glioblastoma, mainly for those with unmethylated MGMT promoter.
Collapse
|
42
|
Su Y, Zhang W, Patro CPK, Zhao J, Mu T, Ma Z, Xu J, Ban K, Yi C, Zhou Y. STAT3 Regulates Mouse Neural Progenitor Proliferation and Differentiation by Promoting Mitochondrial Metabolism. Front Cell Dev Biol 2020; 8:362. [PMID: 32509786 PMCID: PMC7248371 DOI: 10.3389/fcell.2020.00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The proliferation and differentiation of neural progenitor lay the foundation for brain development. In neural progenitors, activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been found to promote proliferation and astrocytogenesis while suppressing neurogenesis. However, our study found that Stat3 conditional knockout in neural progenitors (Stat3 cKO) also results in increased proliferation and suppressed neurogenesis. To investigate how STAT3 regulates these processes, we attempted to identify potential STAT3 target genes by RNA-seq profiling of the control (CTL) and Stat3 cKO neural progenitors. We found that STAT3 promotes the expression of genes involved in the mitochondrial oxidative phosphorylation (OXPHOS), and thereby promotes mitochondrial respiration and negatively regulates reactive oxygen species (ROS) production. In addition, we demonstrated that Stat3 loss-of-function promotes proliferation via regulation of mitochondrial metabolism and downstream signaling pathways. Our study provides novel insights into the relation between STAT3, mitochondrial metabolism and the process of embryonic neurogenesis.
Collapse
Affiliation(s)
- Yixun Su
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wenjun Zhang
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - C Pawan K Patro
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Singapore, Singapore
| | - Jing Zhao
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Tianhao Mu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Singapore, Singapore
| | - Zhongnan Ma
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,West China Hospital, Sichuan University, Chengdu, China.,Model Animal Research Center of Nanjing University, Nanjing, China
| | - Jianqiang Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kenneth Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chenju Yi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yi Zhou
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
STAT3: Versatile Functions in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12051107. [PMID: 32365499 PMCID: PMC7281271 DOI: 10.3390/cancers12051107] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) activation is frequently found in non-small cell lung cancer (NSCLC) patient samples/cell lines and STAT3 inhibition in NSCLC cell lines markedly impairs their survival. STAT3 also plays a pivotal role in driving tumor-promoting inflammation and evasion of anti-tumor immunity. Consequently, targeting STAT3 either directly or by inhibition of upstream regulators such as Interleukin-6 (IL-6) or Janus kinase 1/2 (JAK1/2) is considered as a promising treatment strategy for the management of NSCLC. In contrast, some studies also report STAT3 being a tumor suppressor in a variety of solid malignancies, including lung cancer. Here, we provide a concise overview of STAT3‘s versatile roles in NSCLC and discuss the yins and yangs of STAT3 targeting therapies.
Collapse
|
44
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Mohan CD, Rangappa S, Preetham HD, Chandra Nayaka S, Gupta VK, Basappa S, Sethi G, Rangappa KS. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2020; 80:157-182. [DOI: 10.1016/j.semcancer.2020.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
46
|
Swiatek-Machado K, Kaminska B. STAT Signaling in Glioma Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:203-222. [PMID: 32034715 DOI: 10.1007/978-3-030-30651-9_10] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
STAT (signal transducers and activators of transcription) are latent cytoplasmic transcription factors that function as downstream effectors of cytokine and growth factor receptor signaling. The canonical JAK/STAT signaling pathway involves the activation of Janus kinases (JAK) or growth factors receptor kinases, phosphorylation of STAT proteins, their dimerization and translocation into the nucleus where STATs act as transcription factors with pleiotropic downstream effects. STAT signaling is tightly controlled with restricted kinetics due to action of its negative regulators. While STAT1 is believed to play an important role in growth arrest and apoptosis, and to act as a tumor suppressor, STAT3 and 5 are involved in promoting cell cycle progression, cellular transformation, and preventing apoptosis. Aberrant activation of STATs, in particular STAT3 and STAT5, have been found in a large number of human tumors, including gliomas and may contribute to oncogenesis. In this chapter, we have (1) summarized the mechanisms of STAT activation in normal and malignant signaling; (2) discussed evidence for the critical role of constitutively activated STAT3 and STAT5 in glioma pathobiology; (3) disclosed molecular and pharmacological strategies to interfere with STAT signaling for potential therapeutic intervention in gliomas.
Collapse
Affiliation(s)
- Karolina Swiatek-Machado
- Laboratory of Transcription Regulation, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, PL 02-093, Warsaw, Poland.
| | - Bozena Kaminska
- Laboratory of Transcription Regulation, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, PL 02-093, Warsaw, Poland
| |
Collapse
|
47
|
Weng Q, Zhao M, Zheng J, Yang L, Xu Z, Zhang Z, Wang J, Wang J, Yang B, Richard Lu Q, Ying M, He Q. STAT3 dictates β-cell apoptosis by modulating PTEN in streptozocin-induced hyperglycemia. Cell Death Differ 2020; 27:130-145. [PMID: 31097787 PMCID: PMC7205876 DOI: 10.1038/s41418-019-0344-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/31/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Insufficient pancreatic β-cell mass or insulin-producing β-cells are implicated in all forms of diabetes mellitus. However, the molecular mechanisms underlying β-cell destruction are complex and not fully defined. Here we observed that activation of STAT3 is intensely and specifically inhibited in β-cells under hyperglycemic conditions. By knocking out STAT3 specifically in mouse β-cells, we found that the loss of STAT3 sensitized mice to three low doses of STZ stimulation resulting in hyperglycemia. Mechanistically, accumulating PTEN, induced by STAT3 deficiency, directly represses phosphorylation of AKT, which negatively modulates transcription factor activation, dysregulates β-cell function, positively promotes apoptotic signaling, and finally induces β-cell apoptosis. Notably, the defective secretion of insulin and β-cells apoptosis was completely rescued by PTEN ablation in STAT3-null islets or PTEN inhibitor bpv(phen) treatment. Thus our data suggest that STAT3 is a vital modulator of β-cell survival and function, highlighting a critical role for STAT3 in the negative regulation of PTEN-AKT signaling pathway associated with β-cell dysfunction and apoptosis.
Collapse
Affiliation(s)
- Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, 310058, Hangzhou, China
| | - Mengting Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiahuan Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lijun Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zijie Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhikang Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jincheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiajia Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Center for Drug Safety Evaluation and Research of Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
48
|
The IκB Kinase Inhibitor ACHP Targets the STAT3 Signaling Pathway in Human Non-Small Cell Lung Carcinoma Cells. Biomolecules 2019; 9:biom9120875. [PMID: 31847229 PMCID: PMC6995615 DOI: 10.3390/biom9120875] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
STAT3 is an oncogenic transcription factor that regulates the expression of genes which are involved in malignant transformation. Aberrant activation of STAT3 has been observed in a wide range of human malignancies and its role in negative prognosis is well-documented. In this report, we performed high-throughput virtual screening in search of STAT3 signaling inhibitors using a cheminformatics platform and identified 2-Amino-6-[2-(Cyclopropylmethoxy)-6-Hydroxyphenyl]-4-Piperidin-4-yl Nicotinonitrile (ACHP) as the inhibitor of the STAT3 signaling pathway. The predicted hit was evaluated in non-small cell lung cancer (NSCLC) cell lines for its STAT3 inhibitory activity. In vitro experiments suggested that ACHP decreased the cell viability and inhibited the phosphorylation of STAT3 on Tyr705 of NSCLC cells. In addition, ACHP imparted inhibitory activity on the constitutive activation of upstream protein tyrosine kinases, including JAK1, JAK2, and Src. ACHP decreased the nuclear translocation of STAT3 and downregulated its DNA binding ability. Apoptosis was evidenced by cleavage of caspase-3 and PARP with the subsequent decline in antiapoptotic proteins, including Bcl-2, Bcl-xl, and survivin. Overall, we report that ACHP can act as a potent STAT3 signaling inhibitor in NSCLC cell lines.
Collapse
|
49
|
Pivotal Role of STAT3 in Shaping Glioblastoma Immune Microenvironment. Cells 2019; 8:cells8111398. [PMID: 31698775 PMCID: PMC6912524 DOI: 10.3390/cells8111398] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma belongs to the most malignant intracranial tumors characterized by indispensable growth and aggressiveness that highly associates with dismal prognosis and therapy resistance. Tumor heterogeneity that often challenges therapeutic schemes is largely attributed to the complex interaction of neoplastic cells with tumor microenvironment (TME). Soluble immunoregulatory molecules secreted by glioma cells attract astrocytes, circulating stem cells and a range of immune cells to TME, inducing a local production of cytokines, chemokines and growth factors that reprogram immune cells to inflammatory phenotypes and manipulate host’s immune response in favor of cancer growth and metastasis. Accumulating evidence indicates that these tolerogenic properties are highly regulated by the constitutive and persistent activation of the oncogenic signal transducer and activator of transcription 3 (STAT3) protein, which impairs anti-tumor immunity and enhances tumor progression. Herein, we discuss current experimental and clinical evidence that highlights the pivotal role of STAT3 in glioma tumorigenesis and particularly in shaping tumor immune microenvironment in an effort to justify the high need of selective targeting for glioma immunotherapy.
Collapse
|
50
|
Search for novel STAT3-dependent genes reveals SERPINA3 as a new STAT3 target that regulates invasion of human melanoma cells. J Transl Med 2019; 99:1607-1621. [PMID: 31278347 DOI: 10.1038/s41374-019-0288-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/19/2019] [Accepted: 06/05/2019] [Indexed: 02/04/2023] Open
Abstract
Transcription factor signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers and promotes uncontrolled tumor growth and progression through multiple mechanisms. Compelling evidence shows tissue and cell-specific sets of STAT3 targets. Transcriptional targets of STAT3 in melanoma cells are largely unknown. Malignant melanoma is a deadly disease with highly aggressive and drug-resistant behavior. Less than 10% of patients with advanced melanomas reach the 5-year survival, partly due to the aggressive character of the tumor and ineffectiveness of current therapeutics for treating metastatic melanoma. STAT3 is constitutively activated in melanoma cells and plays important roles in its growth and angiogenesis in tumor xenograft studies. Moreover, highly metastatic melanoma cells have higher levels of active STAT3 than poorly metastatic ones. To identify genes that are driven by STAT3 in human melanoma cells, we performed JAK/STAT signaling specific and global gene expression profiling of human melanoma cells with silenced STAT3 expression. For selected genes, we performed computational identification of putative STAT3-binding sites and validated direct interactions STAT3 with defined promoters by using chromatin immunoprecipitation followed by qPCR. We found that STAT3 knockdown does not affect human melanoma cell viability, proliferation, or response to chemotherapeutics. We show that STAT3 regulates a discrete set of genes in melanoma cells, including SERPINA3, a novel STAT3 target gene, which is functionally involved in regulation of melanoma migration and invasion. Knockdown of STAT3 impaired cell migration and invasion, in part via regulation of its transcriptional target SERPINA3. Our results present novel targets and functions of STAT3 in melanoma cells.
Collapse
|