1
|
Frey Y, Lungu C, Olayioye MA. Regulation and functions of the DLC family of RhoGAP proteins: Implications for development and cancer. Cell Signal 2025; 125:111505. [PMID: 39549821 DOI: 10.1016/j.cellsig.2024.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
The DLC (Deleted in Liver Cancer) family of RhoGAP (Rho GTPase-activating) proteins has been extensively studied since the identification of the first family member nearly 30 years ago. Rho GTPase signaling is essential for various cellular processes, including cytoskeletal dynamics, cell migration, and proliferation. Members of the DLC family are key regulators of this signaling pathway, with well-established roles in development and carcinogenesis. Here, we provide a comprehensive review of research into DLC regulation and cellular functions over the last three decades. In particular, we summarize control mechanisms of DLC gene expression at both the transcriptional and post-transcriptional level. Additionally, recent advances in understanding the post-translational regulation of DLC proteins that allow for tuning of protein activity and localization are highlighted. This detailed overview will serve as resource for future studies aimed at further elucidating the complex regulatory mechanisms of DLC family proteins and exploring their potential as targets for therapeutic applications.
Collapse
Affiliation(s)
- Yannick Frey
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; Medical University of Innsbruck, Institute of Pathophysiology, Innsbruck, Austria
| | - Cristiana Lungu
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Monilola A Olayioye
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| |
Collapse
|
2
|
Huang J, Sun M, Wang M, Yu A, Zheng H, Bu C, Zhou J, Zhang Y, Qiao Y, Hu Z. Establishment and characterization of a highly metastatic hepatocellular carcinoma cell line. Bioengineered 2024; 15:2296775. [PMID: 38184822 PMCID: PMC10773622 DOI: 10.1080/21655979.2023.2296775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
The prevalence of alcohol-related hepatocellular carcinoma (HCC) has been increasing during the last decade. Cancer research requires cell lines suitable for both in vitro and in vivo assays. However, there is a lack of cell lines with a high in vivo metastatic capacity for this HCC subtype. Herein, a new HCC cell line was established, named HCC-ZJ, using cells from a patient diagnosed with alcohol-related HCC. The karyotype of HCC-ZJ was 46, XY, del (p11.2). Whole-exome sequencing identified several genetic variations in HCC-Z that occur frequently in alcohol-associated HCC, such as mutations in TERT, CTNNB1, ARID1A, CDKN2A, SMARCA2, and HGF. Cell counting kit-8 assays, colony formation assays, and Transwell assays were performed to evaluate the proliferation, migration, and sensitivity to sorafenib and lenvatinib of HCC-Z in vitro. HCC-ZJ showed a robust proliferation rate, a weak foci-forming ability, a strong migration capacity, and a moderate invasion tendency in vitro. Finally, the tumorigenicity and metastatic capacity of HCC-Z were evaluated using a subcutaneous xenograft model, an orthotopic xenograft model, and a tail-veil injection model. HCCZJ exhibited strong tumorigenicity in the subcutaneous xenograft and orthotopic tumor models. Moreover, HCC-ZJ spontaneously formed pulmonary metastases in the orthotopic tumor model. In summary, a new HCC cell line derived from a patient with alcohol-related HCC was established, which showed a high metastatic capacity and could be applied for in vitro and in vivo experiments during pre-clinical research.Highlights• An alcohol-related HCC cell line, HCC-ZJ, was established• HCC-ZJ was applicable for in vitro functional experiment and gene editing• HCC-ZJ was applicable for in vivo tumor growth and spontaneous metastasis models.
Collapse
Affiliation(s)
- Jiacheng Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Mengqing Sun
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglan Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Anning Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Huilin Zheng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Chiwen Bu
- Department of General Surgery, People’s Hospital of Guanyun County, Lianyungang, China
| | - Jie Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Qiao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhua Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Zhakula-Kostadinova N, Taylor AM. Patterns of Aneuploidy and Signaling Consequences in Cancer. Cancer Res 2024; 84:2575-2587. [PMID: 38924459 PMCID: PMC11325152 DOI: 10.1158/0008-5472.can-24-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.
Collapse
Affiliation(s)
- Nadja Zhakula-Kostadinova
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
4
|
Khalil H, Nada AH, Mahrous H, Hassan A, Rijo P, Ibrahim IA, Mohamed DD, AL-Salmi FA, Mohamed DD, Elmaksoud AIA. Amelioration effect of 18β-Glycyrrhetinic acid on methylation inhibitors in hepatocarcinogenesis -induced by diethylnitrosamine. Front Immunol 2024; 14:1206990. [PMID: 38322013 PMCID: PMC10844948 DOI: 10.3389/fimmu.2023.1206990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024] Open
Abstract
Aim suppression of methylation inhibitors (epigenetic genes) in hepatocarcinogenesis induced by diethylnitrosamine using glycyrrhetinic acid. Method In the current work, we investigated the effect of sole GA combined with different agents such as doxorubicin (DOX) or probiotic bacteria (Lactobacillus rhamanosus) against hepatocarcinogenesis induced by diethylnitrosamine to improve efficiency. The genomic DNA was isolated from rats' liver tissues to evaluate either methylation-sensitive or methylation-dependent resection enzymes. The methylation activity of the targeting genes DLC-1, TET-1, NF-kB, and STAT-3 was examined using specific primers and cleaved DNA products. Furthermore, flow cytometry was used to determine the protein expression profiles of DLC-1 and TET-1 in treated rats' liver tissue. Results Our results demonstrated the activity of GA to reduce the methylation activity in TET-1 and DLC-1 by 33.6% and 78%, respectively. As compared with the positive control. Furthermore, the association of GA with DOX avoided the methylation activity by 88% and 91% for TET-1 and DLC-1, respectively, as compared with the positive control. Similarly, the combined use of GA with probiotics suppressed the methylation activity in the TET-1 and DLC-1 genes by 75% and 81% for TET-1 and DLC-1, respectively. Also, GA and its combination with bacteria attenuated the adverse effect in hepatocarcinogenesis rats by altering potential methylomic genes such as NF-kb and STAT3 genes by 76% and 83%, respectively. Conclusion GA has an ameliorative effect against methylation inhibitors in hepatocellular carcinoma (HCC) by decreasing the methylation activity genes.
Collapse
Affiliation(s)
- Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Alaa H. Nada
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Hoda Mahrous
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Patricia Rijo
- Research Center for Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Ibrahim A. Ibrahim
- Department of Plant Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Dalia D. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Fawziah A. AL-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Doaa D. Mohamed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
| | - Ahmed I. Abd Elmaksoud
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City, Sadat, Egypt
- College of Biotechnology, Misr University of Science and Technology, Giza, Egypt
| |
Collapse
|
5
|
Huth T, Dreher EC, Lemke S, Fritzsche S, Sugiyanto RN, Castven D, Ibberson D, Sticht C, Eiteneuer E, Jauch A, Pusch S, Albrecht T, Goeppert B, Candia J, Wang XW, Ji J, Marquardt JU, Nahnsen S, Schirmacher P, Roessler S. Chromosome 8p engineering reveals increased metastatic potential targetable by patient-specific synthetic lethality in liver cancer. SCIENCE ADVANCES 2023; 9:eadh1442. [PMID: 38134284 PMCID: PMC10745716 DOI: 10.1126/sciadv.adh1442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Large-scale chromosomal aberrations are prevalent in human cancer, but their function remains poorly understood. We established chromosome-engineered hepatocellular carcinoma cell lines using CRISPR-Cas9 genome editing. A 33-mega-base pair region on chromosome 8p (chr8p) was heterozygously deleted, mimicking a frequently observed chromosomal deletion. Using this isogenic model system, we delineated the functional consequences of chr8p loss and its impact on metastatic behavior and patient survival. We found that metastasis-associated genes on chr8p act in concert to induce an aggressive and invasive phenotype characteristic for chr8p-deleted tumors. Genome-wide CRISPR-Cas9 viability screening in isogenic chr8p-deleted cells served as a powerful tool to find previously unidentified synthetic lethal targets and vulnerabilities accompanying patient-specific chromosomal alterations. Using this target identification strategy, we showed that chr8p deletion sensitizes tumor cells to targeting of the reactive oxygen sanitizing enzyme Nudix hydrolase 17. Thus, chromosomal engineering allowed for the identification of novel synthetic lethalities specific to chr8p loss of heterozygosity.
Collapse
Affiliation(s)
- Thorben Huth
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Emely C. Dreher
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Steffen Lemke
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Sarah Fritzsche
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Raisatun N. Sugiyanto
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Darko Castven
- Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Lübeck, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, 69120 Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Eva Eiteneuer
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Albrecht
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Benjamin Goeppert
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, 3008 Bern, Switzerland
- Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Julián Candia
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jens U. Marquardt
- Department of Medicine I, University Medical Center Schleswig Holstein, 23538 Lübeck, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- Biomedical Data Science, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- The M3 Research Center, University of Tübingen, 72076 Tübingen, Germany
| | - Peter Schirmacher
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Roessler
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Salah A, Sleem R, Abd-Elaziz A, Khalil H. Regulation of NF-κB Expression by Thymoquinone; A Role in Regulating Pro-Inflammatory Cytokines and Programmed Cell Death in Hepatic Cancer Cells. Asian Pac J Cancer Prev 2023; 24:3739-3748. [PMID: 38019231 PMCID: PMC10772774 DOI: 10.31557/apjcp.2023.24.11.3739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The miracle herb Nigella sativa (N. sativa) is a member of the Ranunculaceae family that possesses many properties, such as antioxidant, anticancer, analgesic, antibacterial, and anti-inflammatory. Thymoquinone (TQ) is the primary ingredient that makes up N. sativa, which is responsible for its many properties. So, our research focused on the biological role of TQ and its anticancer activities. METHODS A wide range of TQ concentrations (50µg/µl, 25µg/ µl, and 12.5µg µl) was prepared and evaluated for their potential regulatory role in cell lines of hepatocellular carcinoma (HepG2 cell line) compared with normal hepatocytes cells, untreated and DMSO-treated cells. RESULTS The more significant level of LDH obtained after TQ treatment compared to untreated cells provides evidence of the cytotoxic effects of TQ on HepG2 cells. Notably, the normal hepatocyte cells subjected to the same concentrations of TQ showed neglected influence in cell viability rate, indicating the selective regulatory role of TQ in cancer cell proliferation. Interestingly, as a critical mediator of malignancy transformation, the nuclear factor-kappa B expression level (NF-κB) significantly decreased in a time and dose-dependent manner of TQ treatment. Furthermore, we investigated whether TQ regulates the expression of deleted liver cancer 1 (DLC1) and Caspase 3 (Casp3). Notably, the treatment with TQ showed increased expression levels of DLC1 and Casp3 upon treatment. TQ extract sufficiently mediated the secretion of the released pro-inflammatory cytokines from treated cells. This regulation of released cytokines by TQ may affect the activation of NF-κB in treated cells. CONCLUSION These results indicate that TQ mediates the activation of Casp3, DLC1, and NF-κB, providing a new function of TQ in treating hepatocellular carcinoma (HCC).
Collapse
|
7
|
Li X, Huang H, Liu M, Luo H. Tumor Suppressor LncRNA on Chromosome 8p12 (TSLNC8): A Concise Review in Human Malignancies. J Cancer 2023; 14:2867-2877. [PMID: 37781073 PMCID: PMC10539563 DOI: 10.7150/jca.87801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Tumor Suppressor Long Non-Coding RNA on Chromosome 8p12 (TSLNC8) is an RNA gene that generates a long non-coding RNA transcribed intergenically from both strands. Its significant role in human malignancies attracted significant attention in recent years. Expression analysis of TSLNC8 has been conducted in tissue specimens and cell lines using various techniques, including reverse transcription-quantitative polymerase chain reaction (RT-qPCR), in situ hybridization (ISH), and microarray analysis. Furthermore, functional studies involving the loss and/or gain of TSLNC8 function in cellular and animal models have been carried out. These investigations have highlighted the impact of TSLNC8 on key tumor-related processes, including migration, invasion, and metastasis. Moreover, TSLNC8 has emerged as a regulator capable of modulating critical signaling pathways, such as the Hippo, STAT3, WNT/β-catenin, and MAPK pathways. In this review, we comprehensively synthesize the findings derived from in vitro and in vivo studies, along with analyses conducted on clinical samples, to provide a comprehensive understanding of the multifaceted role of TSLNC8 as a promising tumor biomarker and a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Xia Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
- Department of Spleen and Stomach Diseases, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332005, Jiangxi, China
| | - He Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| | - Meichen Liu
- Second School of Clinical Medicine, Nanchang University, Nanchang 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, Jiangxi, China
| |
Collapse
|
8
|
Ko FCF, Yan S, Lee KW, Lam SK, Ho JCM. Chimera and Tandem-Repeat Type Galectins: The New Targets for Cancer Immunotherapy. Biomolecules 2023; 13:902. [PMID: 37371482 DOI: 10.3390/biom13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In humans, a total of 12 galectins have been identified. Their intracellular and extracellular biological functions are explored and discussed in this review. These galectins play important roles in controlling immune responses within the tumour microenvironment (TME) and the infiltration of immune cells, including different subsets of T cells, macrophages, and neutrophils, to fight against cancer cells. However, these infiltrating cells also have repair roles and are hijacked by cancer cells for pro-tumorigenic activities. Upon a better understanding of the immunomodulating functions of galectin-3 and -9, their inhibitors, namely, GB1211 and LYT-200, have been selected as candidates for clinical trials. The use of these galectin inhibitors as combined treatments with current immune checkpoint inhibitors (ICIs) is also undergoing clinical trial investigations. Through their network of binding partners, inhibition of galectin have broad downstream effects acting on CD8+ cytotoxic T cells, regulatory T cells (Tregs), Natural Killer (NK) cells, and macrophages as well as playing pro-inflammatory roles, inhibiting T-cell exhaustion to support the fight against cancer cells. Other galectin members are also included in this review to provide insight into potential candidates for future treatment(s). The pitfalls and limitations of using galectins and their inhibitors are also discussed to cognise their clinical application.
Collapse
Affiliation(s)
- Frankie Chi Fat Ko
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Sheng Yan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ka Wai Lee
- Pathology Department, Baptist Hospital, Waterloo Road, Kowloon, Hong Kong, China
| | - Sze Kwan Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
9
|
Lungu C, Meyer F, Hörning M, Steudle J, Braun A, Noll B, Benz D, Fränkle F, Schmid S, Eisler SA, Olayioye MA. Golgi screen identifies the RhoGEF Solo as a novel regulator of RhoB and endocytic transport. Traffic 2023; 24:162-176. [PMID: 36562184 DOI: 10.1111/tra.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The control of intracellular membrane trafficking by Rho GTPases is central to cellular homeostasis. How specific guanine nucleotide exchange factors and GTPase-activating proteins locally balance GTPase activation in this process is nevertheless largely unclear. By performing a microscopy-based RNAi screen, we here identify the RhoGEF protein Solo as a functional counterplayer of DLC3, a RhoGAP protein with established roles in membrane trafficking. Biochemical, imaging and optogenetics assays further uncover Solo as a novel regulator of endosomal RhoB. Remarkably, we find that Solo and DLC3 control not only the activity, but also total protein levels of RhoB in an antagonistic manner. Together, the results of our study uncover the first functionally connected RhoGAP-RhoGEF pair at endomembranes, placing Solo and DLC3 at the core of endocytic trafficking.
Collapse
Affiliation(s)
- Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Marcel Hörning
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany.,Institute of Biomaterials and Biomolecular Systems, Biobased Materials Group, University of Stuttgart, Stuttgart, Germany
| | - Jasmin Steudle
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Anja Braun
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - David Benz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Felix Fränkle
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stephan A Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Xiao H, Wang G, Zhao M, Shuai W, Ouyang L, Sun Q. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets? Eur J Med Chem 2023; 248:115104. [PMID: 36641861 DOI: 10.1016/j.ejmech.2023.115104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
To search more therapeutic strategies for Ras-mutant tumors, regulators of the Ras superfamily involved in the GTP/GDP (guanosine triphosphate/guanosine diphosphate) cycle have been well concerned for their anti-tumor potentials. GTPase activating proteins (GAPs) provide the catalytic group necessary for the hydrolysis of GTPs, which accelerate the switch by cycling between GTP-bound active and GDP-bound inactive forms. Inactivated GAPs lose their function in activating GTPase, leading to the continuous activation of downstream signaling pathways, uncontrolled cell proliferation, and eventually carcinogenesis. A growing number of evidence has shown the close link between GAPs and human tumors, and as a result, GAPs are believed as potential anti-tumor targets. The present review mainly summarizes the critically important role of GAPs in human tumors by introducing the classification, function and regulatory mechanism. Moreover, we comprehensively describe the relationship between dysregulated GAPs and the certain type of tumor. Finally, the current status, research progress, and clinical value of GAPs as therapeutic targets are also discussed, as well as the challenges and future direction in the cancer therapy.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Min Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Huang Q, Baudis M. Candidate targets of copy number deletion events across 17 cancer types. Front Genet 2023; 13:1017657. [PMID: 36726722 PMCID: PMC9885371 DOI: 10.3389/fgene.2022.1017657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Genome variation is the direct cause of cancer and driver of its clonal evolution. While the impact of many point mutations can be evaluated through their modification of individual genomic elements, even a single copy number aberration (CNA) may encompass hundreds of genes and therefore pose challenges to untangle potentially complex functional effects. However, consistent, recurring and disease-specific patterns in the genome-wide CNA landscape imply that particular CNA may promote cancer-type-specific characteristics. Discerning essential cancer-promoting alterations from the inherent co-dependency in CNA would improve the understanding of mechanisms of CNA and provide new insights into cancer biology and potential therapeutic targets. Here we implement a model using segmental breakpoints to discover non-random gene coverage by copy number deletion (CND). With a diverse set of cancer types from multiple resources, this model identified common and cancer-type-specific oncogenes and tumor suppressor genes as well as cancer-promoting functional pathways. Confirmed by differential expression analysis of data from corresponding cancer types, the results show that for most cancer types, despite dissimilarity of their CND landscapes, similar canonical pathways are affected. In 25 analyses of 17 cancer types, we have identified 19 to 169 significant genes by copy deletion, including RB1, PTEN and CDKN2A as the most significantly deleted genes among all cancer types. We have also shown a shared dependence on core pathways for cancer progression in different cancers as well as cancer type separation by genome-wide significance scores. While this work provides a reference for gene specific significance in many cancers, it chiefly contributes a general framework to derive genome-wide significance and molecular insights in CND profiles with a potential for the analysis of rare cancer types as well as non-coding regions.
Collapse
Affiliation(s)
- Qingyao Huang
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Michael Baudis
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
12
|
Wang J, Thomas HR, Chen Y, Percival SM, Waldrep SC, Ramaker RC, Thompson RG, Cooper SJ, Chong Z, Parant JM. Reduced sister chromatid cohesion acts as a tumor penetrance modifier. PLoS Genet 2022; 18:e1010341. [PMID: 35994499 PMCID: PMC9436123 DOI: 10.1371/journal.pgen.1010341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/01/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sister chromatid cohesion (SCC) is an important process in chromosome segregation. ESCO2 is essential for establishment of SCC and is often deleted/altered in human cancers. We demonstrate that esco2 haploinsufficiency results in reduced SCC and accelerates the timing of tumor onset in both zebrafish and mouse p53 heterozygous null models, but not in p53 homozygous mutant or wild-type animals. These data indicate that esco2 haploinsufficiency accelerates tumor onset in a loss of heterozygosity (LOH) sensitive background. Analysis of The Cancer Genome Atlas (TCGA) confirmed ESCO2 deficient tumors have elevated number of LOH events throughout the genome. Further, we demonstrated heterozygous loss of sgo1, important in maintaining SCC, also results in reduced SCC and accelerated tumor formation in a p53 heterozygous background. Surprisingly, while we did observe elevated levels of chromosome missegregation and micronuclei formation in esco2 heterozygous mutant animals, this chromosomal instability did not contribute to the accelerated tumor onset in a p53 heterozygous background. Interestingly, SCC also plays a role in homologous recombination, and we did observe elevated levels of mitotic recombination derived p53 LOH in tumors from esco2 haploinsufficient animals; as well as elevated levels of mitotic recombination throughout the genome of human ESCO2 deficient tumors. Together these data suggest that reduced SCC contributes to accelerated tumor penetrance through elevated mitotic recombination. Tumorigenesis often involves the inactivation of tumor suppressor genes. This often encompasses an inactivation mutation in one allele and loss of the other wild-type allele, referred to as loss of heterozygosity (LOH). The rate at which the cells lose the wild-type allele can influence the timing of tumor onset, and therefore an indicator of a patient’s risk of cancer. Factors that influence this process could be used as a predictive indicator of cancer risk, however these factors are still unclear. We demonstrate that partial impairment of sister chromatid cohesion (SCC), a fundamental component of the chromosome segregation in mitosis and homologous recombination repair, enhanced tumorigenesis. Our data suggest this is through elevated levels of mitotic recombination derived p53 LOH. This study emphasizes the importance of understanding how impaired SCC, mitotic recombination rates, and LOH rates influence cancer risk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Yu Chen
- Department of Genetics, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, University of Alabama at Birmingham Heersink School of Medicine, Alabama, United States of America
| | - Stefanie M. Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Ryne C. Ramaker
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Sara J. Cooper
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Zechen Chong
- Department of Genetics, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, University of Alabama at Birmingham Heersink School of Medicine, Alabama, United States of America
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
13
|
Chau JE, Vish KJ, Boggon TJ, Stiegler AL. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nat Commun 2022; 13:4788. [PMID: 35970859 PMCID: PMC9378701 DOI: 10.1038/s41467-022-32541-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
RhoGAP proteins are key regulators of Rho family GTPases and influence a variety of cellular processes, including cell migration, adhesion, and cytokinesis. These GTPase activating proteins (GAPs) downregulate Rho signaling by binding and enhancing the intrinsic GTPase activity of Rho proteins. Deleted in liver cancer 1 (DLC1) is a tumor suppressor and ubiquitously expressed RhoGAP protein; its activity is regulated in part by binding p120RasGAP, a GAP protein for the Ras GTPases. In this study, we report the co-crystal structure of the p120RasGAP SH3 domain bound directly to DLC1 RhoGAP, at a site partially overlapping the RhoA binding site and impinging on the catalytic arginine finger. We demonstrate biochemically that mutation of this interface relieves inhibition of RhoGAP activity by the SH3 domain. These results reveal the mechanism for inhibition of DLC1 RhoGAP activity by p120RasGAP and demonstrate the molecular basis for direct SH3 domain modulation of GAP activity.
Collapse
Affiliation(s)
- Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
14
|
Heidari Z, Asemi-Rad A, Moudi B, Mahmoudzadeh-Sagheb H. mRNA expression and epigenetic-based role of chromodomain helicase DNA-binding 5 in hepatocellular carcinoma. J Int Med Res 2022; 50:3000605221105344. [PMID: 35808817 PMCID: PMC9274423 DOI: 10.1177/03000605221105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective Chromodomain helicase DNA-binding 5 (CHD5) acts as a tumor
suppressor gene in some cancers. CHD5 expression levels may affect an
individual’s susceptibility to hepatocellular carcinoma (HCC). This study
aimed to evaluate the methylation pattern of the CHD5
promoter region and the gene’s corresponding mRNA expression in HCC patients
compared with healthy individuals. Methods In this case–control study, CHD5 mRNA gene expression levels
and DNA methylation patterns were analyzed in 81 HCC patients and 90 healthy
individuals by quantitative reverse transcription polymerase chain reaction
and methylation-specific polymerase chain reaction, respectively. Results The CHD5 gene was hypermethylated in 61.8% of the HCC
patients and 54.4% of the controls, and this difference was statistically
significant. The CHD5 mRNA expression levels were
significantly lower in the HCC patient group. Conclusions Hypermethylation of the CHD5 promoter region may
significantly lower the expression of this gene, affecting the incidence and
severity of HCC. The methylation status of CHD5 can also be
further studied as a prognostic factor in HCC.
Collapse
Affiliation(s)
- Zahra Heidari
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azam Asemi-Rad
- Department of Anatomical Sciences, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
15
|
Tian L, Zhao L, Sze KM, Kam CS, Ming VS, Wang X, Zhang VX, Ho DW, Cheung T, Chan L, Ng IO. Dysregulation of RalA signaling through dual regulatory mechanisms exerts its oncogenic functions in hepatocellular carcinoma. Hepatology 2022; 76:48-65. [PMID: 34767674 PMCID: PMC9299834 DOI: 10.1002/hep.32236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Ras-like (Ral) small guanosine triphosphatases (GTPases), RalA and RalB, are proto-oncogenes directly downstream of Ras and cycle between the active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms. RalGTPase-activating protein (RalGAP) complex exerts a negative regulation. Currently, the role of Ral up-regulation in cancers remains unclear. We aimed to examine the clinical significance, functional implications, and underlying mechanisms of RalA signaling in HCC. APPROACH AND RESULTS Our in-house and The Cancer Genome Atlas RNA sequencing data and quantitative PCR data revealed significant up-regulation of RalA in patients' HCCs. Up-regulation of RalA was associated with more aggressive tumor behavior and poorer prognosis. Consistently, knockdown of RalA in HCC cells attenuated cell proliferation and migration in vitro and tumorigenicity and metastasis in vivo. We found that RalA up-regulation was driven by copy number gain and uncovered that SP1 and ETS proto-oncogene 2 transcription factor cotranscriptionally drove RalA expression. On the other hand, RalGAPA2 knockdown increased the RalA activity and promoted intrahepatic and extrahepatic metastasis in vivo. Consistently, we observed significant RalGAPA2 down-regulation in patients' HCCs. Intriguingly, HCC tumors showing simultaneous down-regulation of RalGAPA2 and up-regulation of RalA displayed a significant association with more aggressive tumor behavior in terms of more frequent venous invasion, more advanced tumor stage, and poorer overall survival. Of note, Ral inhibition by a Ral-specific inhibitor RBC8 suppressed the oncogenic functions in a dose-dependent manner and sensitized HCC cells to sorafenib treatment, with an underlying enhanced inhibition of mammalian target of rapamycin signaling. CONCLUSIONS Our results provide biological insight that dysregulation of RalA signaling through dual regulatory mechanisms supports its oncogenic functions in HCC. Targeting RalA may serve as a potential alternative therapeutic approach alone or in combination with currently available therapy.
Collapse
Affiliation(s)
- Lu Tian
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Luqing Zhao
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong,Present address:
Department of PathologyXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Karen Man‐Fong Sze
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Charles Shing Kam
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Vanessa Sheung‐In Ming
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Xia Wang
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Vanilla Xin Zhang
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Daniel Wai‐Hung Ho
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Tan‐To Cheung
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong,Department of SurgeryThe University of Hong KongHong Kong
| | - Lo‐Kong Chan
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Irene Oi‐Lin Ng
- Department of PathologyThe University of Hong KongHong Kong,State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| |
Collapse
|
16
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
17
|
Riazalhosseini B, Mohamed R, Devi Apalasamy Y, Mohamed Z. Association of deleted in liver cancer-1 gene polymorphism with increased risk of chronicity of disease among Malaysian patients with hepatitis B infection. Pharmacogenet Genomics 2021; 31:185-190. [PMID: 34320605 DOI: 10.1097/fpc.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study is to examine the association between genetic variations in deleted in liver cancer 1 (DLC1) gene with progression of the hepatitis B virus (HBV) infection. METHODS A total of 623 subjects were included in this study, of whom, 423 were chronic hepatitis B (CHB) patients without liver cirrhosis or hepatocellular carcinoma (HCC), 103 CHB with either liver cirrhosis ± HCC and 97 individuals who had resolved HBV. Two single-nucleotide polymorphisms rs3739298 and rs532841 of DLC1 gene were genotyped using the Sequenom MassARRAY platform. RESULTS Our results indicated significant differences between the chronic HBV and resolved HBV groups in genotype and allele frequencies of DLC1-rs3739298 [odds ratio (OR) = 2.23; 95% confidence interval (CI): 1.24-3.99; P = 0.007] and (OR = 1.54; 95% CI: 1.07-2.22; P = 0.021), respectively. Moreover, haplotype analysis revealed significant associations between chronicity of HBV with TG and GA haplotypes (P = 0.041 and P = 0.042), respectively. CONCLUSION A significant association exists between the rs3739298 variant and susceptibility to CHB infection.
Collapse
Affiliation(s)
| | | | - Yamunah Devi Apalasamy
- Social Wellbeing Research Centre, Faculty of Economics and Administration, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
18
|
Li J, Bao S, Wang L, Wang R. CircZKSCAN1 Suppresses Hepatocellular Carcinoma Tumorigenesis by Regulating miR-873-5p/Downregulation of Deleted in Liver Cancer 1. Dig Dis Sci 2021; 66:4374-4383. [PMID: 33439397 DOI: 10.1007/s10620-020-06789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated mortality worldwide. CircZKSCAN1 (hsa_circ_0001727) was reported to be related to HCC development. The present study aims to elucidate the potential role and molecular mechanism of circZKSCAN1 in the regulation of HCC progression. METHODS CircZKSCAN1, miR-873-5p, and downregulation of deleted in liver cancer 1 (DLC1) in HCC tissues and cells were detected by RT-qPCR. Correlation between circZKSCAN1 expression and overall survival rate was measured by Kaplan-Meier survival analysis. The effects of circZKSCAN1, miR-873-5p, and DLC1 on proliferation, migration, and invasion were analyzed by CCK-8 and transwell assays, respectively. CyclinD1, Matrix metalloproteinase (MMP)-9, MMP-2, and DLC1 in HCC cells were detected by Western blot assay. The binding relationship between miR-873-5p and circZKSCAN1 or DLC1 was predicted by the Circinteractome or Starbase, and then confirmed by dual-luciferase reporter assays, respectively. Tumor volume and tumor weight were measured in vivo. RESULTS CircZKSCAN1 was downregulated in HCC tissues and cells. Kaplan-Meier survival analysis suggested that there was a positive correlation between circZKSCAN1 expression and overall survival rate. Functionally, circZKSCAN1 blocked proliferation, migration, and invasion of HCC cells. MiR-873-5p was a target miRNA of circZKSCAN1, and miR-873-5p directly bound with DLC1. Rescue experiments confirmed that miR-873-5p overexpression or DLC1 knockdown attenuated the suppressive effects of circZKSCAN1 on HCC tumor growth in vitro. Besides, circZKSCAN1 inhibited HCC cell growth in vivo. CONCLUSIONS This study firstly revealed that circZKSCAN1 curbed HCC progression via modulating miR-873-5p/DLC1 axis, providing a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jing Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Jinghu District, Wuhu City, 241000, Anhui Province, China.
| | - Siyang Bao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Jinghu District, Wuhu City, 241000, Anhui Province, China
| | - Linqi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Jinghu District, Wuhu City, 241000, Anhui Province, China
| | - Ronglong Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Wannan Medical College, No. 10 Kangfu Road, Jinghu District, Wuhu City, 241000, Anhui Province, China
| |
Collapse
|
19
|
Schreyer L, Mittermeier C, Franz MJ, Meier MA, Martin DE, Maier KC, Huebner K, Schneider-Stock R, Singer S, Holzer K, Fischer D, Ribback S, Liebl B, Gudermann T, Aigner A, Muehlich S. Tetraspanin 5 (TSPAN5), a Novel Gatekeeper of the Tumor Suppressor DLC1 and Myocardin-Related Transcription Factors (MRTFs), Controls HCC Growth and Senescence. Cancers (Basel) 2021; 13:cancers13215373. [PMID: 34771537 PMCID: PMC8582588 DOI: 10.3390/cancers13215373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) ranks second among the leading causes of cancer-related death. Since current therapeutic options are very limited, a deeper understanding of the molecular mechanisms underlying the tumor onset and progression of HCC holds great potential for improved therapeutic options. Although it has been shown that deleted in liver cancer 1 (DLC1) acts as a tumor suppressor whose allele is lost in 50% of liver cancers, alterations in gene expression initiated by DLC1 loss have not yet been the primary focus of liver cancer research. To identify novel gene targets that allow for a personalized medicine approach for HCC therapy, we performed gene expression profiling for HepG2 cells stably expressing DLC1shRNA. We provide evidence that TSPAN5 is required for HCC growth, migration and invasion, and dissected the underlying molecular mechanisms involving myocardin-related transcription factors. Thus, TSPAN5 represents a novel therapeutic target for the treatment of HCC characterized by DLC1 loss. Abstract Human hepatocellular carcinoma (HCC) is among the most lethal and common cancers in the human population, and new molecular targets for therapeutic intervention are urgently needed. Deleted in liver cancer 1 (DLC1) was originally identified as a tumor suppressor gene in human HCC. DLC1 is a Rho-GTPase-activating protein (RhoGAP) which accelerates the return of RhoGTPases to an inactive state. We recently described that the restoration of DLC1 expression induces cellular senescence. However, this principle is not amenable to direct therapeutic targeting. We therefore performed gene expression profiling for HepG2 cells depleted of DLC1 to identify druggable gene targets mediating the effects of DLC1 on senescence induction. This approach revealed that versican (VCAN), tetraspanin 5 (TSPAN5) and N-cadherin (CDH2) were strongly upregulated upon DLC1 depletion in HCC cells, but only TSPAN5 affected the proliferation of HCC cells and human HCC. The depletion of TSPAN5 induced oncogene-induced senescence (OIS), mediated by the p16INK4a/pRb pathways. Mechanistically, silencing TSPAN5 reduced actin polymerization and thereby myocardin-related transcription factor A- filamin A (MRTF-A-FLNA) complex formation, resulting in decreased expression of MRTF/SRF-dependent target genes and senescence induction in vitro and in vivo. Our results identify TSPAN5 as a novel druggable target for HCC.
Collapse
Affiliation(s)
- Laura Schreyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
| | - Constanze Mittermeier
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Miriam J. Franz
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
| | - Melanie A. Meier
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
| | - Dietmar E. Martin
- Gene Center, Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.E.M.); (K.C.M.)
| | - Kerstin C. Maier
- Gene Center, Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.E.M.); (K.C.M.)
| | - Kerstin Huebner
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.H.); (R.S.-S.)
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.H.); (R.S.-S.)
| | - Stephan Singer
- Department for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.S.); (K.H.)
| | - Kerstin Holzer
- Department for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.S.); (K.H.)
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
| | - Silvia Ribback
- Institute for Pathology, University of Greifswald, 17475 Greifswald, Germany;
| | - Bernhard Liebl
- LGL Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, 85764 Oberschleißheim, Germany;
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany;
| | - Achim Aigner
- Rudolf Boehm Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04107 Leipzig, Germany;
| | - Susanne Muehlich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
- Correspondence: ; Tel.: +49-(0)9131-8565665
| |
Collapse
|
20
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
21
|
Murugesan K, Sharaf R, Montesion M, Moore JA, Pao J, Pavlick DC, Frampton GM, Upadhyay VA, Alexander BM, Miller VA, Javle MM, Bekaii Saab TS, Albacker LA, Ross JS, Ali SM. Genomic Profiling of Combined Hepatocellular Cholangiocarcinoma Reveals Genomics Similar to Either Hepatocellular Carcinoma or Cholangiocarcinoma. JCO Precis Oncol 2021; 5:PO.20.00397. [PMID: 34476330 PMCID: PMC8384404 DOI: 10.1200/po.20.00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/05/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Combined hepatocellular cholangiocarcinoma (cHCC-CCA) is a rare, aggressive primary liver carcinoma, with morphologic features of both hepatocellular carcinomas (HCC) and liver cholangiocarcinomas (CCA). METHODS The genomic profiles of 4,975 CCA, 1,470 HCC, and 73 cHCC-CCA cases arising from comprehensive genomic profiling in the course of clinical care were reviewed for genomic alterations (GA), tumor mutational burden, microsatellite instability status, genomic loss of heterozygosity, chromosomal aneuploidy, genomic ancestry, and hepatitis B virus status. RESULTS In cHCC-CCA, GA were most common in TP53 (65.8%), TERT (49.3%), and PTEN (9.6%), and 24.6% cHCC-CCA harbored potentially targetable GA. Other GA were predominantly associated with either HCC or CCA, including, but not limited to, TERT, FGFR2, IDH1, and presence of hepatitis B virus. On the basis of these features, a machine learning (ML) model was trained to classify a cHCC-CCA case as CCA-like or HCC-like. Of cHCC-CCA cases, 16% (12/73) were ML-classified as CCA-like and 58% (42/73) cHCC-CCA were ML-classified as HCC-like. The ML model classified more than 70% of cHCC-CCA as CCA-like or HCC-like on the basis of genomic profiles, without additional clinico-pathologic input. CONCLUSION These findings demonstrate the use of ML for classification as based on a targeted exome panel used during routine clinical care. Classification of cHCC-CCA by genomic features alone creates insights into the biology of the disease and warrants further investigation for relevance to clinical care.
Collapse
Affiliation(s)
| | | | | | | | - James Pao
- Foundation Medicine Inc, Cambridge, MA
| | | | | | - Vivek A Upadhyay
- Foundation Medicine Inc, Cambridge, MA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | | | | | - Milind M Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Jeffrey S Ross
- Foundation Medicine Inc, Cambridge, MA.,Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY
| | | |
Collapse
|
22
|
Niu N, Ma X, Liu H, Zhao J, Lu C, Yang F, Qi W. DLC1 inhibits lung adenocarcinoma cell proliferation, migration and invasion via regulating MAPK signaling pathway. Exp Lung Res 2021; 47:173-182. [PMID: 33678109 DOI: 10.1080/01902148.2021.1885524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD), one of the most common cancers, is a major threat to people's health due to its high mortality, and the survival of most patients suffering LUAD remains poor. This study aimed to explore the mechanism of Deleted in Liver Cancer 1 (DLC1) as a tumor suppressor underlying the occurrence and progression of LUAD. As revealed by bioinformatics analysis and qRT-PCR, DLC1 was significantly down-regulated in LUAD tumor tissue and cells. A series of cellular experiments including CCK-8, wound healing and Transwell assays were performed to detect the effect of DLC1 on the biological function of LUAD cells. It was found that overexpressing DLC1 significantly inhibited LUAD cell proliferative, migratory and invasive abilities, while knockdown of DLC1 promoted these abilities. Gene Set Enrichment Analysis (GSEA) and dual-luciferase assay were used to explore the downstream signaling pathway of DLC1, finding that DLC1 could remarkably inhibit the activity of mitogen-activated protein kinase (MAPK) signaling pathway. Western blot implemented for MAPK signaling pathway-related proteins further identified that DLC1 restrained the activation of MAPK/ERK signaling pathway. Furthermore, rescue experiments suggested that DLC1 inhibited LUAD cell proliferation and invasion by suppressing the MAPK/ERK signaling pathway. Overall, our study discussed the DLC1-dependent mechanism involved in LUAD. We found that the up-regulation of DLC1 may inhibit the malignant progression of LUAD by suppressing MAPK signaling pathway, which supports the view that DLC1 may serve as a molecular target for the targeted therapy of LUAD patients.
Collapse
Affiliation(s)
- Niu Niu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Xingjie Ma
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Haitao Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Junjie Zhao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Chao Lu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Fan Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), Jiaxing, Zhejiang, China
| |
Collapse
|
23
|
Singh D, Bharti A, Biswas D, Tewari M, Kar AG, Ansari MA, Singh S, Narayan G. Frequent Downregulation and Promoter Hypermethylation of DLC1: Relationship with Clinical Outcome in Gallbladder Cancer. J Gastrointest Cancer 2021; 53:237-244. [PMID: 33417200 DOI: 10.1007/s12029-020-00560-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Down regulation of DLC1 is associated with poor prognosis in many cancers, however, its role in gallbladder cancer (GBC) is still unclear. In present study, we investigated the expression profile and promoter methylation status of DLC1. METHODS Expression profiles of DLC1 in 55 GBC and their paired adjacent control samples were analyzed through real time RT-PCR and immunohistochemistry. The mRNA data was correlated with clinico-pathological parameters. Promoter hypermethylation was analyzed through MSP. RESULTS DLC1 shows downregulation in 76.4%, upregulation in 10.9% whereas no change in 12.7% of GBC samples. Its underexpression shows significant correlation with tumor grade and nodal spread. IHC shows cytoplasmic expression of DLC1 in normal as well as tumor samples. IHC result was concordant to mRNA result. Samples having downregulated DLC1 expression show heterozygous methylation in 83.3% of samples and homozygous methylation in 9.5% of samples whereas 7% of samples have no methylation. Kaplan-Meier analysis shows patient with decreased mRNA of DLC1 have significant low mean survival compared to patients with higher mRNA expression of DLC1. CONCLUSION Our findings suggested that dysregulated expression of DLC1 and its hypermethylation may be one of the events playing roles in tumorigenesis of GBC and may serve as a potential target for development of future GBC gene therapy.
Collapse
Affiliation(s)
- Deepika Singh
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amisha Bharti
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Dipanjan Biswas
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.,Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai, 400012, India
| | - Mallika Tewari
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Amrita Ghosh Kar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Mumtaz Ahmed Ansari
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunita Singh
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
24
|
Molecular Mechanisms to Target Cellular Senescence in Hepatocellular Carcinoma. Cells 2020; 9:cells9122540. [PMID: 33255630 PMCID: PMC7761055 DOI: 10.3390/cells9122540] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as a major cause of cancer-related death and is the most common type of liver cancer. Due to the current paucity of drugs for HCC therapy there is a pressing need to develop new therapeutic concepts. In recent years, the role of Serum Response Factor (SRF) and its coactivators, Myocardin-Related Transcription Factors A and B (MRTF-A and -B), in HCC formation and progression has received considerable attention. Targeting MRTFs results in HCC growth arrest provoked by oncogene-induced senescence. The induction of senescence acts as a tumor-suppressive mechanism and therefore gains consideration for pharmacological interventions in cancer therapy. In this article, we describe the key features and the functional role of senescence in light of the development of novel drug targets for HCC therapy with a focus on MRTFs.
Collapse
|
25
|
Dysregulation of Rho GTPases in Human Cancers. Cancers (Basel) 2020; 12:cancers12051179. [PMID: 32392742 PMCID: PMC7281333 DOI: 10.3390/cancers12051179] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023] Open
Abstract
Rho GTPases play central roles in numerous cellular processes, including cell motility, cell polarity, and cell cycle progression, by regulating actin cytoskeletal dynamics and cell adhesion. Dysregulation of Rho GTPase signaling is observed in a broad range of human cancers, and is associated with cancer development and malignant phenotypes, including metastasis and chemoresistance. Rho GTPase activity is precisely controlled by guanine nucleotide exchange factors, GTPase-activating proteins, and guanine nucleotide dissociation inhibitors. Recent evidence demonstrates that it is also regulated by post-translational modifications, such as phosphorylation, ubiquitination, and sumoylation. Here, we review the current knowledge on the role of Rho GTPases, and the precise mechanisms controlling their activity in the regulation of cancer progression. In addition, we discuss targeting strategies for the development of new drugs to improve cancer therapy.
Collapse
|
26
|
Zheng X, Jia Y, Qiu L, Zeng X, Xu L, Wei M, Huang C, Liu C, Chen L, Han J. A potential target for liver cancer management, lysophosphatidic acid receptor 6 (LPAR6), is transcriptionally up-regulated by the NCOA3 coactivator. J Biol Chem 2020; 295:1474-1488. [PMID: 31914406 PMCID: PMC7008366 DOI: 10.1074/jbc.ra119.009899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Indexed: 02/05/2023] Open
Abstract
Lysophosphatidic acid receptor 6 (LPAR6) is a G protein-coupled receptor that plays critical roles in cellular morphology and hair growth. Although LPAR6 overexpression is also critical for cancer cell proliferation, its role in liver cancer tumorigenesis and the underlying mechanism are poorly understood. Here, using liver cancer and matched paracancerous tissues, as well as functional assays including cell proliferation, quantitative real-time PCR, RNA-Seq, and ChIP assays, we report that LPAR6 expression is controlled by a mechanism whereby hepatocyte growth factor (HGF) suppresses liver cancer growth. We show that high LPAR6 expression promotes cell proliferation in liver cancer. More importantly, we find that LPAR6 is transcriptionally down-regulated by HGF treatment and that its transcriptional suppression depends on nuclear receptor coactivator 3 (NCOA3). We note that enrichment of NCOA3, which has histone acetyltransferase activity, is associated with histone 3 Lys-27 acetylation (H3K27ac) at the LPAR6 locus in response to HGF treatment, indicating that NCOA3 transcriptionally regulates LPAR6 through the HGF signaling cascade. Moreover, depletion of either LPAR6 or NCOA3 significantly inhibited tumor cell growth in vitro and in vivo (in mouse tumor xenograft assays), similar to the effect of the HGF treatment. Collectively, our findings indicate an epigenetic link between LPAR6 and HGF signaling in liver cancer cells, and suggest that LPAR6 can serve as a biomarker and new strategy for therapeutic interventions for managing liver cancer.
Collapse
Affiliation(s)
- Xuan Zheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yinghui Jia
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Qiu
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinyi Zeng
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Liangliang Xu
- Department of liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Cong Liu
- Department of Paediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Junhong Han
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
27
|
Li C, Ma Y, Fei F, Zheng M, Li Z, Zhao Q, Du J, Liu K, Lu R, Zhang S. Critical role and its underlying molecular events of the plasminogen receptor, S100A10 in malignant tumor and non-tumor diseases. J Cancer 2020; 11:826-836. [PMID: 31949486 PMCID: PMC6959022 DOI: 10.7150/jca.36203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022] Open
Abstract
S100A10 is a small molecular weight protein expressed in the cytoplasm of many cells and one of the members of the S100 protein family that binds calcium and forms the largest subgroup of EF-hand proteins. The regulatory processes of S100A10 are complicated. S100A10 participates in the regulation of a variety of tumor and non-tumor diseases through cascade reactions with multitudinous signaling molecules. In malignant tumors, such as acute promyelocytic leukemia (APL) and lung cancer, S100A10 is likely involved in their progression, including invasion and metastasis through the regulation of plasmin production and subsequent plasmin-dependent stimulation of other proteases, such as matrix metalloproteinase (MMP)-2 and -9. Both the plasmin and MMPs are capable of inducing degradation of the extracellular matrix (ECM) and basement membrane, which is a critical step for tumor progression. In non-tumor diseases, the distribution of S100A10 in the brain and its interaction with 5-hydroxytryptamine 1B (5-HT1B) receptor, an important mediator in the central nervous system that maintains a dynamic balance of the neurotransmitters, correlates with depression-like behavior. S100A10 also participates in inflammatory responses through the regulation of peripheral macrophage migration to the inflammatory sites, which depends on the generation of plasmin and other proteinases at the surface of macrophages. Considerable attention should be paid to understand the significant role of S100A10 in the modulation of malignant tumor and non-tumor diseases.
Collapse
Affiliation(s)
- Chunyuan Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Yi Ma
- Department of ophthalmology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qi Zhao
- Tianjin Medical University, Tianjin, P.R. China
| | - Jiaxing Du
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Kai Liu
- Tianjin Medical University, Tianjin, P.R. China
| | - Rui Lu
- Tianjin Medical University, Tianjin, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, P.R. China
| |
Collapse
|
28
|
Joshi R, Qin L, Cao X, Zhong S, Voss C, Min W, Li SSC. DLC1 SAM domain-binding peptides inhibit cancer cell growth and migration by inactivating RhoA. J Biol Chem 2019; 295:645-656. [PMID: 31806702 DOI: 10.1074/jbc.ra119.011929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 12/25/2022] Open
Abstract
Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive function mainly through the Rho-GTPase-activating protein (RhoGAP) domain. When activated, the domain promotes the hydrolysis of RhoA-GTP, leading to reduced cell migration. DLC1 is kept in an inactive state by an intramolecular interaction between its RhoGAP domain and the DLC1 sterile α motif (SAM) domain. We have shown previously that this autoinhibited state of DLC1 may be alleviated by tensin-3 (TNS3) or PTEN. We show here that the TNS3/PTEN-DLC1 interactions are mediated by the C2 domains of the former and the SAM domain of the latter. Intriguingly, the DLC1 SAM domain was capable of binding to specific peptide motifs within the C2 domains. Indeed, peptides containing the binding motifs were highly effective in blocking the C2-SAM domain-domain interaction. Importantly, when fused to the tat protein-transduction sequence and subsequently introduced into cells, the C2 peptides potently promoted the RhoGAP function in DLC1, leading to decreased RhoA activation and reduced tumor cell growth in soft agar and migration in response to growth factor stimulation. To facilitate the development of the C2 peptides as potential therapeutic agents, we created a cyclic version of the TNS3 C2 domain-derived peptide and showed that this peptide readily entered the MDA-MB-231 breast cancer cells and effectively inhibited their migration. Our work shows, for the first time, that the SAM domain is a peptide-binding module and establishes the framework on which to explore DLC1 SAM domain-binding peptides as potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Rakesh Joshi
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; Departments of Surgery, Pathology and Oncology, Western University, London, Ontario N6A 5A5, Canada
| | - Lyugao Qin
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shanshan Zhong
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Courtney Voss
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Weiping Min
- Departments of Surgery, Pathology and Oncology, Western University, London, Ontario N6A 5A5, Canada.
| | - Shawn S C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
29
|
8p deletions in renal cell carcinoma are associated with unfavorable tumor features and poor overall survival. Urol Oncol 2019; 38:43.e13-43.e20. [PMID: 31757738 DOI: 10.1016/j.urolonc.2019.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND METHODS 8p deletions are common in renal cell carcinoma. To study their prognostic impact and association with kidney cancer phenotype, a tissue microarray with 1,809 cancers was analyzed by fluorescence in situ hybridization for 8p21 copy numbers. RESULTS One thousand four hundred and seventy four interpretable tumors showed substantial differences between renal cancer subtypes. That 8p deletion was only seen in 1 (0.5%) of 216 papillary carcinomas underscores the biologic uniqueness of papillary kidney cancer, which is also defined by a highly distinct morphology. 8p deletions were found in 13.2% of 976 clear cell carcinomas, 7.8% of 77 chromophobe carcinomas, 0.8% of 119 oncocytomas, but also in several rare tumor entities including 1 of 4 collecting duct cancers, 1 of 3 multilocular cystic clear cell renal cell neoplasm of low malignancy, 2 of 10 Xp11.2 translocation cancers, 3 of 18 not otherwise specified carcinomas, and 1 analyzed medullary carcinoma. In clear cell carcinomas, 8p deletions were significantly associated with higher International Society of Urologic Pathologists (ISUP) grading (P = 0.0014), Fuhrman (P = 0.0003) and Thoenes grade (P = 0.0033), advanced tumor stage (P = 0.0002), large tumor diameter (P = 0.0019), distant metastases (P = 0.0183), overall survival (P = 0.0394), and recurrence free survival (P < 0.0001). In multivariate analysis, the prognostic role of 8p deletions was not independent of established clinic-pathological parameters. In conclusion, 8p deletions are strongly linked to tumor aggressiveness in clear cell kidney cancer. CONCLUSIONS Because 8p deletions are easy to measure by fluorescence in situ hybridization, 8p deletion assessment, most likely in combination with other parameters, may have a role in future prognosis assessment in clear cell kidney cancer.
Collapse
|
30
|
Chen B, Xu M, Xu M. Upregulation of DLC-1 inhibits pancreatic cancer progression: Studies with clinical samples and a pancreatic cancer model. Oncol Lett 2019; 18:5600-5606. [PMID: 31612067 DOI: 10.3892/ol.2019.10871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Abstract
Deleted in liver cancer 1 (DLC-1) serves a vital role in the progression of multiple cancers, including those of the pancreas. Numerous studies have aimed to reveal the anti-cancer mechanisms of the DLC-1 gene, though few have focused on its impact on the development of pancreatic cancer. Using clinical pancreatic cancer samples and pancreatic cancer cell lines, the present study aimed to reveal the role of DLC-1 in this disease. The expression levels of DLC-1 were determined in pancreatic cancer and adjacent normal tissues from patients with pancreatic cancer, indicating a decreased expression level of DLC-1 in cancerous tissues. Using the pancreatic cancer cell line SW1990, the effect of DLC overexpression on cell proliferation, invasive capacity and the cell cycle and were assessed. Using a mouse tumor model, the tumor-progression capacity of transfected and untransfected SW1990 cells was investigated, indicating that DLC-1 transfection reduced the capacity for tumor progression. Thus, the present study indicated that the overexpression of DLC-1 inhibited the proliferation and reduced the invasive capacity of SW1990 cells both in vitro and in vivo, and that it may have significant inhibitory effects on the development of pancreatic cancer.
Collapse
Affiliation(s)
- Bo Chen
- Department of Hepatobiliary Surgery, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Mingzheng Xu
- Department of Emergency, Shanghai East Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Dongfang Hospital Affiliated to Tongji University, Shanghai 200120, P.R. China
| |
Collapse
|
31
|
Chakraborty S, Banerjee S, Raina M, Haldar S. Force-Directed “Mechanointeractome” of Talin–Integrin. Biochemistry 2019; 58:4677-4695. [DOI: 10.1021/acs.biochem.9b00442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Manasven Raina
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
32
|
Baity M, Wang L, Correa AM, Zhang X, Zhang R, Pataer A, Wu S, Meng QH, Antonoff MB, Hofstetter WL, Mehran RJ, Rice DC, Roth JA, Sepesi B, Swisher SG, Vaporciyan AA, Walsh GL, Zhao M, Gu J, Fang B. Glutathione reductase ( GSR) gene deletion and chromosome 8 aneuploidy in primary lung cancers detected by fluorescence in situ hybridization. Am J Cancer Res 2019; 9:1201-1211. [PMID: 31285952 PMCID: PMC6610060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023] Open
Abstract
Our recent study demonstrated that cancer cells with compromised glutathione homeostasis, including reduced expression of the glutathione reductase (GSR) gene, were selectively killed by inhibition of thioredoxin reductase. The human GSR gene is located on chromosome 8p, a region often lost in lung and other cancers. However, whether GSR is altered in primary lung cancer remains unknown. To analyze alterations of GSR in lung cancer, we performed fluorescence in situ hybridization with probes for GSR and the chromosome 8 centromere (CEP8) in 45 surgical specimens of primary lung cancer, including 24 lung adenocarcinomas, 10 squamous cell carcinomas, 8 neuroendocrine cancers, and 3 small cell lung cancers. Twenty-five surgically resected normal lung tissue specimens from these lung cancer patients were used as a controls. The signal ratio of GSR to CEP8 per cell was used to identify gain or loss of GSR. GSR loss was detected in 6 of 24 (25%) adenocarcinoma specimens and 5 of 10 (50%) squamous cell carcinoma specimens, but not in neuroendocrine cancer or small cell lung cancer specimens. We also found that 19 of 45 (42%) specimens had chromosome 8 aneuploidy (more or less than 2 signals for CEP8), including 8 with both aneuploidy and GSR deletion. Chromosome 8 aneuploidy was detected in all types of lung cancer analyzed. Univariate and multivariable logistic regression analyses indicated that male patients had an increased risk of GSR deletion (hazard ratio [HR] = 4.77, 95% confidence interval [CI] = 1.00-22.86, P = 0.051), and patients who had undergone preoperative radiation therapy or had a self-reported history of cigarette smoking had an increased risk of chromosome 8 aneuploidy (preoperative radiation: HR = 18.63, 95% CI = 0.90-384.17, P = 0.058; smoking: HR = 7.59, 95% CI = 0.86-66.75, P = 0.068), although the p values did not reach significance. Because GSR deficiency and chromosome 8 aneuploidy have implications in targeted therapy and/or immunotherapy for cancer, they might serve as predictive biomarkers for precision therapy of lung cancers.
Collapse
Affiliation(s)
- Mohamed Baity
- School of Health Professions, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Arlene M Correa
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Ran Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Garrett L Walsh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Ming Zhao
- School of Health Professions, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jun Gu
- School of Health Professions, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
33
|
Cooper J, Giancotti FG. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019; 35:347-367. [PMID: 30889378 PMCID: PMC6684107 DOI: 10.1016/j.ccell.2019.01.007] [Citation(s) in RCA: 559] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/10/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
Abstract
Integrins mediate cell adhesion and transmit mechanical and chemical signals to the cell interior. Various mechanisms deregulate integrin signaling in cancer, empowering tumor cells with the ability to proliferate without restraint, to invade through tissue boundaries, and to survive in foreign microenvironments. Recent studies have revealed that integrin signaling drives multiple stem cell functions, including tumor initiation, epithelial plasticity, metastatic reactivation, and resistance to oncogene- and immune-targeted therapies. Here, we discuss the mechanisms leading to the deregulation of integrin signaling in cancer and its various consequences. We place emphasis on novel functions, determinants of context dependency, and mechanism-based therapeutic opportunities.
Collapse
Affiliation(s)
- Jonathan Cooper
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Filippo G Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of Genitourinary Cancers, UT MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
34
|
Gökmen-Polar Y, True JD, Vieth E, Gu Y, Gu X, Qi GD, Mosley AL, Badve SS. Quantitative phosphoproteomic analysis identifies novel functional pathways of tumor suppressor DLC1 in estrogen receptor positive breast cancer. PLoS One 2018; 13:e0204658. [PMID: 30278072 PMCID: PMC6168143 DOI: 10.1371/journal.pone.0204658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
Deleted in Liver Cancer-1 (DLC1), a member of the RhoGAP family of proteins, functions as a tumor suppressor in several cancers including breast cancer. However, its clinical relevance is unclear in breast cancer. In this study, expression of DLC1 was correlated with prognosis using publicly available breast cancer gene expression datasets and quantitative Reverse Transcription PCR in cohorts of Estrogen Receptor-positive (ER+) breast cancer. Low expression of DLC1 correlates with poor prognosis in patients with ER+ breast cancer with further decrease in metastatic lesions. The Cancer Genome Atlas (TCGA) data showed that down regulation of DLC1 is not due to methylation or mutations. To seek further insights in understanding the role of DLC1 in ER+ breast cancer, we stably overexpressed DLC1-full-length (DLC1-FL) in T-47D breast cancer cells; this inhibited cell colony formation significantly in vitro compared to its control counterpart. Label-free global proteomic and TiO2 phosphopeptide enrichment assays (ProteomeXchange identifier PXD008220) showed that 205 and 122 phosphopeptides were unique to DLC1-FL cells and T-47D-control cells, respectively, whereas 6,726 were quantified by phosphoproteomics analysis in both conditions. The top three significant clusters of differentially phosphopeptides identified by DAVID pathway analysis represent cell-cell adhesion, mRNA processing and splicing, and transcription regulation. Phosphoproteomics analysis documented an inverse relation between DLC1 expression and several phosphopeptides including epithelial cell transforming sequence 2 (ECT2). Decreased phosphorylation of ECT2 at the residue T359, critical for its active conformational change, was validated by western blot. In addition, the ECT2 T359-containing phosphopeptide was detected in both basal and luminal patient-derived breast cancers breast cancer phosphoproteomics data on the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Assay portal. Together, for the first time, this implicates ECT2 phosphorylation in breast cancer, which has been proposed as a therapeutic target in lung cancer. In conclusion, this data suggests that low expression of DLC1 is associated with poor prognosis. Targeting ECT2 phosphopeptides could provide a promising mechanism for controlling poor prognosis seen in DLC1low ER+ breast cancer.
Collapse
Affiliation(s)
- Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail:
| | - Jason D. True
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Edyta Vieth
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yuan Gu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Xiaoping Gu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Guihong D. Qi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sunil S. Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States of America
| |
Collapse
|
35
|
Sotillos S, Aguilar-Aragon M, Hombría JCG. Functional analysis of the Drosophila RhoGAP Cv-c protein and its equivalence to the human DLC3 and DLC1 proteins. Sci Rep 2018; 8:4601. [PMID: 29545526 PMCID: PMC5854602 DOI: 10.1038/s41598-018-22794-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 01/21/2023] Open
Abstract
RhoGAP proteins control the precise regulation of the ubiquitous small RhoGTPases. The Drosophila Crossveinless-c (Cv-c) RhoGAP is homologous to the human tumour suppressor proteins Deleted in Liver Cancer 1-3 (DLC1-3) sharing an identical arrangement of SAM, GAP and START protein domains. Here we analyse in Drosophila the requirement of each Cv-c domain to its function and cellular localization. We show that the basolateral membrane association of Cv-c is key for its epithelial function and find that the GAP domain targeted to the membrane can perform its RhoGAP activity independently of the rest of the protein, implying the SAM and START domains perform regulatory roles. We propose the SAM domain has a repressor effect over the GAP domain that is counteracted by the START domain, while the basolateral localization is mediated by a central, non-conserved Cv-c region. We find that DLC3 and Cv-c expression in the Drosophila ectoderm cause identical effects. In contrast, DLC1 is inactive but becomes functional if the central non-conserved DLC1 domain is substituted for that of Cv-c. Thus, these RhoGAP proteins are functionally equivalent, opening up the use of Drosophila as an in vivo model to analyse pharmacologically and genetically the human DLC proteins.
Collapse
Affiliation(s)
- Sol Sotillos
- CABD (CSIC/JA/Univ. Pablo de Olavide), Seville, Spain.
| | - Mario Aguilar-Aragon
- CABD (CSIC/JA/Univ. Pablo de Olavide), Seville, Spain.,The Francis Crick Institute, London, UK
| | | |
Collapse
|
36
|
Deletion of 8p is an independent prognostic parameter in prostate cancer. Oncotarget 2018; 8:379-392. [PMID: 27880722 PMCID: PMC5352127 DOI: 10.18632/oncotarget.13425] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/12/2016] [Indexed: 11/25/2022] Open
Abstract
Deletion of chromosome 8p is the second most frequent genomic alteration in prostate cancer. To better understand its clinical significance, 8p deletion was analyzed by fluorescence in-situ hybridization on a prostate cancer tissue microarray. 8p deletion was found in 2,581 of 7,017 cancers (36.8%), and was linked to unfavorable tumor phenotype. 8p deletion increased from 29.5% in 4,456 pT2 and 47.8% in 1,598 pT3a to 53.0% in 931 pT3b-pT4 cancers (P < 0,0001). Deletions of 8p were detected in 25.5% of 1,653 Gleason ≤ 3 + 3, 36.6% of 3,880 Gleason 3 + 4, 50.2% of 1,090 Gleason 4 + 3, and 51.1% of 354 Gleason ≥ 4 + 4 tumors (P < 0,0001). 8p deletions were strongly linked to biochemical recurrence (P < 0.0001) independently from established pre- and postoperative prognostic factors (P = 0.0100). However, analysis of morphologically defined subgroups revealed, that 8p deletion lacked prognostic significance in subgroups with very good (Gleason ≤ 3 + 3, 3 + 4 with ≤ 5% Gleason 4) or very poor prognosis (pT3b, Gleason ≥ 8, pN1). 8p deletions were markedly more frequent in cancers with (53.5%) than without PTEN deletions (36.4%; P < 0,0001) and were slightly more frequent in ERG-positive (40.9%) than in ERG-negative cancers (34.7%, P < 0.0001) due to the association with the ERG-associated PTEN deletion. Cancers with 8p/PTEN co-deletions had a strikingly worse prognosis than cancers with deletion of PTEN or 8p alone (P ≤ 0.0003). In summary, 8p deletion is an independent prognostic parameter in prostate cancer that may act synergistically with PTEN deletions. Even statistically independent prognostic biomarkers like 8p may have limited clinical impact in morphologically well defined high or low risk cancers.
Collapse
|
37
|
Wang D, Qian X, Rajaram M, Durkin ME, Lowy DR. DLC1 is the principal biologically-relevant down-regulated DLC family member in several cancers. Oncotarget 2018; 7:45144-45157. [PMID: 27174913 PMCID: PMC5216712 DOI: 10.18632/oncotarget.9266] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/10/2016] [Indexed: 01/12/2023] Open
Abstract
The RHO family of RAS-related GTPases in tumors may be activated by reduced levels of RHO GTPase accelerating proteins (GAPs). One common mechanism is decreased expression of one or more members of the Deleted in Liver Cancer (DLC) family of Rho-GAPs, which comprises three closely related genes (DLC1, DLC2, and DLC3) that are down-regulated in a wide range of malignancies. Here we have studied their comparative biological activity in cultured cells and used publicly available datasets to examine their mRNA expression patterns in normal and cancer tissues, and to explore their relationship to cancer phenotypes and survival outcomes. In The Cancer Genome Atlas (TCGA) database, DLC1 expression predominated in normal lung, breast, and liver, but not in colorectum. Conversely, reduced DLC1 expression predominated in lung squamous cell carcinoma (LSC), lung adenocarcinoma (LAD), breast cancer, and hepatocellular carcinoma (HCC), but not in colorectal cancer. Reduced DLC1 expression was frequently associated with promoter methylation in LSC and LAD, while DLC1 copy number loss was frequent in HCC. DLC1 expression was higher in TCGA LAD patients who remained cancer-free, while low DLC1 had a poorer prognosis than low DLC2 or low DLC3 in a more completely annotated database. The poorest prognosis was associated with low expression of both DLC1 and DLC2 (P < 0.0001). In cultured cells, the three genes induced a similar reduction of Rho-GTP and cell migration. We conclude that DLC1 is the predominant family member expressed in several normal tissues, and its expression is preferentially reduced in common cancers at these sites.
Collapse
Affiliation(s)
- Dunrui Wang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megha Rajaram
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.,Current address: BioTek Instruments Inc., Winooski, VT 05404, USA
| | - Marian E Durkin
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Tornesello ML, Buonaguro L, Izzo F, Buonaguro FM. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 2018; 7:25087-102. [PMID: 26943571 PMCID: PMC5041890 DOI: 10.18632/oncotarget.7837] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/20/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic infections with hepatitis B (HBV) and hepatitis C viruses (HCV) are the leading cause of cirrhosis and hepatocellular carcinoma (HCC) worldwide. Both viruses encode multifunctional regulatory proteins activating several oncogenic pathways, which induce accumulation of multiple genetic alterations in the infected hepatocytes. Gene mutations in HBV- and HCV-induced HCCs frequently impair the TP53, Wnt/b-catenin, RAS/RAF/MAPK kinase and AKT/mTOR pathways, which represent important anti-cancer targets. In this review, we highlight the molecular mechanisms underlying the pathogenesis of primary liver cancer, with particular emphasis on the host genetic variations identified by high-throughput technologies. In addition, we discuss the importance of genetic alterations, such as mutations in the telomerase reverse transcriptase (TERT) promoter, for the diagnosis, prognosis, and tumor stratification for development of more effective treatment approaches.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Francesco Izzo
- Hepato-Biliary Surgery Department, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| |
Collapse
|
39
|
Hepatitis B core protein promotes liver cancer metastasis through miR-382-5p/DLC-1 axis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1-11. [DOI: 10.1016/j.bbamcr.2017.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
|
40
|
Enane FO, Shuen WH, Gu X, Quteba E, Przychodzen B, Makishima H, Bodo J, Ng J, Chee CL, Ba R, Seng Koh L, Lim J, Cheong R, Teo M, Hu Z, Ng KP, Maciejewski J, Radivoyevitch T, Chung A, Ooi LL, Tan YM, Cheow PC, Chow P, Chan CY, Lim KH, Yerian L, Hsi E, Toh HC, Saunthararajah Y. GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition. J Clin Invest 2017; 127:3527-3542. [PMID: 28758902 DOI: 10.1172/jci93488] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/08/2017] [Indexed: 12/18/2022] Open
Abstract
The most frequent chromosomal structural loss in hepatocellular carcinoma (HCC) is of the short arm of chromosome 8 (8p). Genes on the remaining homologous chromosome, however, are not recurrently mutated, and the identity of key 8p tumor-suppressor genes (TSG) is unknown. In this work, analysis of minimal commonly deleted 8p segments to identify candidate TSG implicated GATA4, a master transcription factor driver of hepatocyte epithelial lineage fate. In a murine model, liver-conditional deletion of 1 Gata4 allele to model the haploinsufficiency seen in HCC produced enlarged livers with a gene expression profile of persistent precursor proliferation and failed hepatocyte epithelial differentiation. HCC mimicked this gene expression profile, even in cases that were morphologically classified as well differentiated. HCC with intact chromosome 8p also featured GATA4 loss of function via GATA4 germline mutations that abrogated GATA4 interactions with a coactivator, MED12, or by inactivating mutations directly in GATA4 coactivators, including ARID1A. GATA4 reintroduction into GATA4-haploinsufficient HCC cells or ARID1A reintroduction into ARID1A-mutant/GATA4-intact HCC cells activated hundreds of hepatocyte genes and quenched the proliferative precursor program. Thus, disruption of GATA4-mediated transactivation in HCC suppresses hepatocyte epithelial differentiation to sustain replicative precursor phenotype.
Collapse
Affiliation(s)
- Francis O Enane
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wai Ho Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Xiaorong Gu
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ebrahem Quteba
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Bartlomiej Przychodzen
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hideki Makishima
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Juraj Bodo
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joanna Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Chit Lai Chee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rebecca Ba
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Lip Seng Koh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Janice Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Rachael Cheong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Marissa Teo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Zhenbo Hu
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kwok Peng Ng
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaroslaw Maciejewski
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alexander Chung
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | | | - Yu Meng Tan
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Peng-Chung Cheow
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Pierce Chow
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary and Transplant Surgery and
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore
| | - Lisa Yerian
- Clinical Pathology, Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric Hsi
- Clinical Pathology, Pathology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Yogen Saunthararajah
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
41
|
Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proc Natl Acad Sci U S A 2017; 114:3648-3653. [PMID: 28320962 DOI: 10.1073/pnas.1620861114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.
Collapse
|
42
|
Hermanns C, Hampl V, Holzer K, Aigner A, Penkava J, Frank N, Martin DE, Maier KC, Waldburger N, Roessler S, Goppelt-Struebe M, Akrap I, Thavamani A, Singer S, Nordheim A, Gudermann T, Muehlich S. The novel MKL target gene myoferlin modulates expansion and senescence of hepatocellular carcinoma. Oncogene 2017; 36:3464-3476. [DOI: 10.1038/onc.2016.496] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/20/2022]
|
43
|
Oelsner KT, Guo Y, To SBC, Non AL, Barkin SL. Maternal BMI as a predictor of methylation of obesity-related genes in saliva samples from preschool-age Hispanic children at-risk for obesity. BMC Genomics 2017; 18:57. [PMID: 28068899 PMCID: PMC5223358 DOI: 10.1186/s12864-016-3473-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 12/26/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The study of epigenetic processes and mechanisms present a dynamic approach to assess complex individual variation in obesity susceptibility. However, few studies have examined epigenetic patterns in preschool-age children at-risk for obesity despite the relevance of this developmental stage to trajectories of weight gain. We hypothesized that salivary DNA methylation patterns of key obesogenic genes in Hispanic children would 1) correlate with maternal BMI and 2) allow for identification of pathways associated with children at-risk for obesity. RESULTS Genome-wide DNA methylation was conducted on 92 saliva samples collected from Hispanic preschool children using the Infinium Illumina HumanMethylation 450 K BeadChip (Illumina, San Diego, CA, USA), which interrogates >484,000 CpG sites associated with ~24,000 genes. The analysis was limited to 936 genes that have been associated with obesity in a prior GWAS Study. Child DNA methylation at 17 CpG sites was found to be significantly associated with maternal BMI, with increased methylation at 12 CpG sites and decreased methylation at 5 CpG sites. Pathway analysis revealed methylation at these sites related to homocysteine and methionine degradation as well as cysteine biosynthesis and circadian rhythm. Furthermore, eight of the 17 CpG sites reside in genes (FSTL1, SORCS2, NRF1, DLC1, PPARGC1B, CHN2, NXPH1) that have prior known associations with obesity, diabetes, and the insulin pathway. CONCLUSIONS Our study confirms that saliva is a practical human tissue to obtain in community settings and in pediatric populations. These salivary findings indicate potential epigenetic differences in Hispanic preschool children at risk for pediatric obesity. Identifying early biomarkers and understanding pathways that are epigenetically regulated during this critical stage of child development may present an opportunity for prevention or early intervention for addressing childhood obesity. TRIAL REGISTRATION The clinical trial protocol is available at ClinicalTrials.gov ( NCT01316653 ). Registered 3 March 2011.
Collapse
Affiliation(s)
- Kathryn Tully Oelsner
- College of Medicine, Medical University of South Carolina, 96 Jonathan Lucas St, Suite 601, MSC 617, Charleston, SC 29425 USA
| | - Yan Guo
- Center for Quantitative Research, School of Medicine, Vanderbilt University, 2220 Pierce Ave, 571 Preston Research Building, Nashville, TN USA
| | - Sophie Bao-Chieu To
- Department of Biological Sciences, Vanderbilt University, 1210 BSB, 465 21st Ave S, Nashville, TN USA
| | - Amy L. Non
- Department of Anthropology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Shari L. Barkin
- Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children’s Way, Doctor’s Office Tower 8232, Nashville, TN 37232-9225 USA
- Pediatric Obesity Research, Diabetes Research and Training Center, Vanderbilt University School of Medicine, 2200 Children’s Way, Doctor’s Office Tower 8232, Nashville, TN 37232-9225 USA
| |
Collapse
|
44
|
Abstract
The spatial regulation of cellular Rho signaling by GEF and GAP proteins and the molecular mechanisms controlling the Rho regulators themselves are still incompletely understood. We previously reported that the poorly characterized RhoGAP protein DLC3 localizes to cell-cell adhesions and Rab8-positive membrane tubules. However, it was unclear how DLC3 is targeted to these subcellular sites to execute its functions. In our recent work, protein partners of DLC3 were identified by mass spectrometry, identifying the basolateral polarity protein Scribble as a scaffold for DLC3 at cell-cell contacts. We found that the PDZ-mediated interaction of DLC3 and Scribble is essential for junctional DLC3 recruitment and its role as a local regulator of RhoA-ROCK signaling controlling adherens junction integrity and Scribble localization. Furthermore, DLC3 and Scribble depletion interfered with polarized lumen formation in a 3D model of cyst morphogenesis, emphasizing the relevance of both proteins in epithelial polarity. These findings reveal a new mechanism for spatial Rho regulation at adherens junctions in polarized epithelial cells and highlight the necessity to investigate DLC3 localization and function also in cellular contexts that require cell junction remodeling.
Collapse
Affiliation(s)
- Janina Hendrick
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Monilola A Olayioye
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
45
|
Zou CD, Zhao WM, Wang XN, Li Q, Huang H, Cheng WP, Jin JF, Zhang H, Wu MJ, Tai S, Zou CX, Gao X. MicroRNA-107: a novel promoter of tumor progression that targets the CPEB3/EGFR axis in human hepatocellular carcinoma. Oncotarget 2016; 7:266-78. [PMID: 26497556 PMCID: PMC4807997 DOI: 10.18632/oncotarget.5689] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are dysregulated in many types of malignancies, including human hepatocellular carcinoma (HCC). MiR-107 has been implicated in several types of cancer regulation; however, relatively little is known about miR-107 in human HCC. In the present study, we showed that the overexpression of miR-107 accelerates the tumor progression of HCC in vitro and in vivo through its new target gene, CPEB3. Furthermore, our results demonstrated that CPEB3 is a newly discovered tumor suppressor that acts via the EGFR pathway. Therefore, our study demonstrates that the newly discovered miR-107/CPEB3/EGFR axis plays an important role in HCC progression and might represent a new potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Chen-Dan Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Wei-Ming Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xiao-Na Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Qiang Li
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Wan-Peng Cheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jian-Feng Jin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - He Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Ming-Juan Wu
- Academy of Traditional Chinese Medicines, Harbin, China
| | - Sheng Tai
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao-Xia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
46
|
Porter AP, Papaioannou A, Malliri A. Deregulation of Rho GTPases in cancer. Small GTPases 2016; 7:123-38. [PMID: 27104658 PMCID: PMC5003542 DOI: 10.1080/21541248.2016.1173767] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 12/28/2022] Open
Abstract
In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers.
Collapse
Affiliation(s)
- Andrew P. Porter
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alexandra Papaioannou
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- “Cellular and Genetic Etiology, Diagnosis and Treatment of Human Disease” Graduate Program, Medical School, University of Crete, Heraklion, Greece
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
47
|
Yang X, Zhou X, Tone P, Durkin ME, Popescu NC. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett 2016; 12:1591-1596. [PMID: 27446476 DOI: 10.3892/ol.2016.4781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is one of the most common types of cancer and has a very poor prognosis; thus, the development of effective therapies for the treatment of advanced HCC is of high clinical priority. In the present study, the anti-oncogenic effect of combined knockdown of c-Myc expression and ectopic restoration of deleted in liver cancer 1 (DLC1) expression was investigated in human liver cancer cells. Expression of c-Myc in human HCC cells was knocked down by stable transfection with a Myc-specific short hairpin (sh) RNA vector. DLC1 expression in Huh7 cells was restored by adenovirus transduction, and the effects of DLC1 expression and c-Myc knockdown on Ras homolog gene family, member A (RhoA) levels, cell proliferation, soft agar colony formation and cell invasion were measured. Downregulation of c-Myc or re-expression of DLC1 led to a marked reduction in RhoA levels, which was associated with decreases in cell proliferation, soft agar colony formation and invasiveness; this inhibitory effect was augmented with a combination of DLC1 transduction and c-Myc suppression. To determine whether liver cell-specific delivery of DLC1 was able to enhance the inhibitory effect of c-Myc knockdown on tumor growth in vivo, DLC1 vector DNA complexed with galactosylated polyethylene glycol-linear polyethyleneimine was administered by tail vein injection to mice bearing subcutaneous xenografts of Huh7 cells transfected with shMyc or control shRNA. A cooperative inhibitory effect of DLC1 expression and c-Myc knockdown on the growth of Huh7-derived tumors was observed, suggesting that targeted liver cell delivery of DLC1 and c-Myc shRNA may serve as a possible gene therapy modality for the treatment of human HCC.
Collapse
Affiliation(s)
- Xuyu Yang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD 2089-4262, USA
| | - Xiaoling Zhou
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA
| | - Paul Tone
- Department of Medicine, Richmond University Medical Center, Staten Island, NY 10310, USA
| | - Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| | - Nicholas C Popescu
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| |
Collapse
|
48
|
Epigenetic mechanisms regulating the development of hepatocellular carcinoma and their promise for therapeutics. Hepatol Int 2016; 11:45-53. [PMID: 27271356 DOI: 10.1007/s12072-016-9743-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers around the globe and third most fatal malignancy. Chronic liver disorders such as chronic hepatitis and liver cirrhosis often lead to the development of HCC. Accumulation of genetic and epigenetic alterations are involved in the development of HCC. Genetic research sparked by recent developments in next generation sequencing has identified the frequency of genetic alterations that occur in HCC and has led to the identification of genetic hotspots. Emerging evidence suggests that epigenetic aberrations are strongly associated with the initiation and development of HCC. Various important genes encoding tumor suppressors including P16, RASSF1A, DLC-1, RUNX3 and SOCS-1 are targets of epigenetic dysregulation during the development of HCC. The present review discusses the importance of epigenetic regulations including DNA methylation, histone modification and microRNA mediated regulation of gene expression during tumorigenesis and their use as disease biomarkers. Furthermore, these epigenetic alterations have been discussed in relationship with promising therapeutic perspectives for HCC and related cancers.
Collapse
|
49
|
Marusugi K, Nakano K, Sasaki H, Kimura J, Yanobu-Takanashi R, Okamura T, Sasaki N. Functional validation of tensin2 SH2-PTB domain by CRISPR/Cas9-mediated genome editing. J Vet Med Sci 2016; 78:1413-1420. [PMID: 27246398 PMCID: PMC5059368 DOI: 10.1292/jvms.16-0205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Podocytes are terminally differentiated and highly specialized cells in the glomerulus,
and they form a crucial component of the glomerular filtration barrier. The ICGN mouse is
a model of glomerular dysfunction that shows gross morphological changes in the podocyte
foot process, accompanied by proteinuria. Previously, we demonstrated that proteinuria in
ICR-derived glomerulonephritis mouse ICGN mice might be caused by a deletion mutation in
the tensin2 (Tns2) gene (designated Tns2nph).
To test whether this mutation causes the mutant phenotype, we created knockout (KO) mice
carrying a Tns2 protein deletion in the C-terminal Src homology and phosphotyrosine
binding (SH2-PTB) domains (designated Tns2ΔC) via
CRISPR/Cas9-mediated genome editing.
Tns2nph/Tns2ΔC compound
heterozygotes and Tns2ΔC/Tns2ΔC
homozygous KO mice displayed podocyte abnormalities and massive proteinuria similar to
ICGN mice, indicating that these two mutations are allelic. Further, this result suggests
that the SH2-PTB domain of Tns2 is required for podocyte integrity. Tns2
knockdown in a mouse podocyte cell line significantly enhanced actin stress fiber
formation and cell migration. Thus, this study provides evidence that alteration of actin
remodeling resulting from Tns2 deficiency causes morphological changes in podocytes and
subsequent proteinuria.
Collapse
Affiliation(s)
- Kiyoma Marusugi
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Sabbir MG, Dillon R, Mowat MRA. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation. Biol Open 2016; 5:452-60. [PMID: 26977077 PMCID: PMC4890663 DOI: 10.1242/bio.015859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/23/2016] [Indexed: 01/30/2023] Open
Abstract
The Deleted in liver cancer 1 (Dlc1) gene codes for a Rho GTPase-activating protein that also acts as a tumour suppressor gene. Several studies have consistently found that overexpression leads to excessive cell elongation, cytoskeleton changes and subsequent cell death. However, none of these studies have been able to satisfactorily explain the Dlc1-induced cell morphological phenotypes and the function of the different Dlc1 isoforms. Therefore, we have studied the interacting proteins associated with the three major Dlc1 transcriptional isoforms using a mass spectrometric approach in Dlc1 overexpressing cells. We have found and validated novel interacting partners in constitutive Dlc1-expressing cells. Our study has shown that Dlc1 interacts with non-muscle myosin heavy chain II-A (Myh9), plectin and spectrin proteins in different multiprotein complexes. Overexpression of Dlc1 led to increased phosphorylation of Myh9 protein and activation of Rac1 GTPase. These data support a role for Dlc1 in induced cell elongation morphology and provide some molecular targets for further analysis of this phenotype.
Collapse
Affiliation(s)
- Mohammad G Sabbir
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Rachelle Dillon
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Michael R A Mowat
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|