1
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Schöpf J, Uhrig S, Heilig CE, Lee KS, Walther T, Carazzato A, Dobberkau AM, Weichenhan D, Plass C, Hartmann M, Diwan GD, Carrero ZI, Ball CR, Hohl T, Kindler T, Rudolph-Hähnel P, Helm D, Schneider M, Nilsson A, Øra I, Imle R, Banito A, Russell RB, Jones BC, Lipka DB, Glimm H, Hübschmann D, Hartmann W, Fröhling S, Scholl C. Multi-omic and functional analysis for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions. Nat Commun 2024; 15:51. [PMID: 38168093 PMCID: PMC10761971 DOI: 10.1038/s41467-023-44360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.
Collapse
Affiliation(s)
- Julia Schöpf
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Uhrig
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg, and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christoph E Heilig
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kwang-Seok Lee
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Tatjana Walther
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Alexander Carazzato
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Anna Maria Dobberkau
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | | | | | - Mark Hartmann
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Gaurav D Diwan
- Bioquant, Heidelberg University, Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Zunamys I Carrero
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD, Dresden, Germany
- Faculty of Biology, TUD Dresden University of Technology, Dresden, Germany
| | - Tobias Hohl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Thomas Kindler
- University Cancer Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center, Mainz, Germany
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Patricia Rudolph-Hähnel
- University Cancer Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center, Mainz, Germany
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | | | - Anna Nilsson
- Pediatric Oncology and Coagulation, Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Øra
- Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Roland Imle
- Soft-Tissue Sarcoma Junior Research Group, DKFZ, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ana Banito
- Soft-Tissue Sarcoma Junior Research Group, DKFZ, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
| | - Robert B Russell
- Bioquant, Heidelberg University, Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Barbara C Jones
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD, Dresden, Germany
- Translational Functional Cancer Genomics, DKFZ, Heidelberg, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg, and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Wolfgang Hartmann
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
3
|
Pomella S, Cassandri M, D'Archivio L, Porrazzo A, Cossetti C, Phelps D, Perrone C, Pezzella M, Cardinale A, Wachtel M, Aloisi S, Milewski D, Colletti M, Sreenivas P, Walters ZS, Barillari G, Di Giannatale A, Milano GM, De Stefanis C, Alaggio R, Rodriguez-Rodriguez S, Carlesso N, Vakoc CR, Velardi E, Schafer BW, Guccione E, Gatz SA, Wasti A, Yohe M, Ignatius M, Quintarelli C, Shipley J, Miele L, Khan J, Houghton PJ, Marampon F, Gryder BE, De Angelis B, Locatelli F, Rota R. MYOD-SKP2 axis boosts tumorigenesis in fusion negative rhabdomyosarcoma by preventing differentiation through p57 Kip2 targeting. Nat Commun 2023; 14:8373. [PMID: 38102140 PMCID: PMC10724275 DOI: 10.1038/s41467-023-44130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucrezia D'Archivio
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristina Cossetti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Doris Phelps
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Antonella Cardinale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Sara Aloisi
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - David Milewski
- Oncogenomics Section, Genetics Branch, National Cancer Institute, NIH,, Bethesda, MD, USA
| | - Marta Colletti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Zoë S Walters
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology, The Institute of Cancer Research, London, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Giuseppe Maria Milano
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | | | - Rita Alaggio
- Department of Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sonia Rodriguez-Rodriguez
- Department of Stem Cell and Regenerative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Nadia Carlesso
- Department of Stem Cell and Regenerative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Enrico Velardi
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Beat W Schafer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Ernesto Guccione
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Ajla Wasti
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, UK
| | - Marielle Yohe
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, NIH, Frederick, MD, USA
| | - Myron Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Janet Shipley
- Sarcoma Molecular Pathology, Divisions of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, NIH,, Bethesda, MD, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Science Center, San Antonio, TX, USA
| | - Francesco Marampon
- Department of Radiological Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Berkley E Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy.
| |
Collapse
|
4
|
Ibarra J, Hershenhouse T, Almassalha L, Walterhouse D, Backman V, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. Front Cell Dev Biol 2023; 11:1293891. [PMID: 38020905 PMCID: PMC10662331 DOI: 10.3389/fcell.2023.1293891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Tyler Hershenhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, United States
| | - David Walterhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Kyle L. MacQuarrie
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Ibarra J, Hershenhouse T, Almassalha L, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540394. [PMID: 37214969 PMCID: PMC10197681 DOI: 10.1101/2023.05.11.540394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Tyler Hershenhouse
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL
| | - Kyle L MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| |
Collapse
|
6
|
Zhan X, Liu Y, Jannu AJ, Huang S, Ye B, Wei W, Pandya PH, Ye X, Pollok KE, Renbarger JL, Huang K, Zhang J. Identify potential driver genes for PAX-FOXO1 fusion-negative rhabdomyosarcoma through frequent gene co-expression network mining. Front Oncol 2023; 13:1080989. [PMID: 36793601 PMCID: PMC9924292 DOI: 10.3389/fonc.2023.1080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a soft tissue sarcoma usually originated from skeletal muscle. Currently, RMS classification based on PAX-FOXO1 fusion is widely adopted. However, compared to relatively clear understanding of the tumorigenesis in the fusion-positive RMS, little is known for that in fusion-negative RMS (FN-RMS). Methods We explored the molecular mechanisms and the driver genes of FN-RMS through frequent gene co-expression network mining (fGCN), differential copy number (CN) and differential expression analyses on multiple RMS transcriptomic datasets. Results We obtained 50 fGCN modules, among which five are differentially expressed between different fusion status. A closer look showed 23% of Module 2 genes are concentrated on several cytobands of chromosome 8. Upstream regulators such as MYC, YAP1, TWIST1 were identified for the fGCN modules. Using in a separate dataset we confirmed that, comparing to FP-RMS, 59 Module 2 genes show consistent CN amplification and mRNA overexpression, among which 28 are on the identified chr8 cytobands. Such CN amplification and nearby MYC (also resides on one of the above cytobands) and other upstream regulators (YAP1, TWIST1) may work together to drive FN-RMS tumorigenesis and progression. Up to 43.1% downstream targets of Yap1 and 45.8% of the targets of Myc are differentially expressed in FN-RMS vs. normal comparisons, which also confirmed the driving force of these regulators. Discussion We discovered that copy number amplification of specific cytobands on chr8 and the upstream regulators MYC, YAP1 and TWIST1 work together to affect the downstream gene co-expression and promote FN-RMS tumorigenesis and progression. Our findings provide new insights for FN-RMS tumorigenesis and offer promising targets for precision therapy. Experimental investigation about the functions of identified potential drivers in FN-RMS are in progress.
Collapse
Affiliation(s)
- Xiaohui Zhan
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yusong Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Asha Jacob Jannu
- Department of Biostatistics and Health Data Science, Indiana University, School of Medicine, Indianapolis, IN, United States
| | | | - Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Pankita H Pandya
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Xiufen Ye
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Karen E Pollok
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Jamie L Renbarger
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
7
|
Kahsay A, Rodriguez-Marquez E, López-Pérez A, Hörnblad A, von Hofsten J. Pax3 loss of function delays tumour progression in kRAS-induced zebrafish rhabdomyosarcoma models. Sci Rep 2022; 12:17149. [PMID: 36229514 PMCID: PMC9561152 DOI: 10.1038/s41598-022-21525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
Rhabdomyosarcoma is a soft tissue cancer that arises in skeletal muscle due to mutations in myogenic progenitors that lead to ineffective differentiation and malignant transformation. The transcription factors Pax3 and Pax7 and their downstream target genes are tightly linked with the fusion positive alveolar subtype, whereas the RAS pathway is usually involved in the embryonal, fusion negative variant. Here, we analyse the role of Pax3 in a fusion negative context, by linking alterations in gene expression in pax3a/pax3b double mutant zebrafish with tumour progression in kRAS-induced rhabdomyosarcoma tumours. Several genes in the RAS/MAPK signalling pathway were significantly down-regulated in pax3a/pax3b double mutant zebrafish. Progression of rhabdomyosarcoma tumours was also delayed in the pax3a/pax3b double mutant zebrafish indicating that Pax3 transcription factors have an unappreciated role in mediating malignancy in fusion negative rhabdomyosarcoma.
Collapse
Affiliation(s)
- A. Kahsay
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - E. Rodriguez-Marquez
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - A. López-Pérez
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - A. Hörnblad
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - J. von Hofsten
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| |
Collapse
|
8
|
Codenotti S, Zizioli D, Mignani L, Rezzola S, Tabellini G, Parolini S, Giacomini A, Asperti M, Poli M, Mandracchia D, Vezzoli M, Bernardi S, Russo D, Mitola S, Monti E, Triggiani L, Tomasini D, Gastaldello S, Cassandri M, Rota R, Marampon F, Fanzani A. Hyperactive Akt1 Signaling Increases Tumor Progression and DNA Repair in Embryonal Rhabdomyosarcoma RD Line and Confers Susceptibility to Glycolysis and Mevalonate Pathway Inhibitors. Cells 2022; 11:cells11182859. [PMID: 36139434 PMCID: PMC9497225 DOI: 10.3390/cells11182859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
In pediatric rhabdomyosarcoma (RMS), elevated Akt signaling is associated with increased malignancy. Here, we report that expression of a constitutively active, myristoylated form of Akt1 (myrAkt1) in human RMS RD cells led to hyperactivation of the mammalian target of rapamycin (mTOR)/70-kDa ribosomal protein S6 kinase (p70S6K) pathway, resulting in the loss of both MyoD and myogenic capacity, and an increase of Ki67 expression due to high cell mitosis. MyrAkt1 signaling increased migratory and invasive cell traits, as detected by wound healing, zymography, and xenograft zebrafish assays, and promoted repair of DNA damage after radiotherapy and doxorubicin treatments, as revealed by nuclear detection of phosphorylated H2A histone family member X (γH2AX) through activation of DNA-dependent protein kinase (DNA-PK). Treatment with synthetic inhibitors of phosphatidylinositol-3-kinase (PI3K) and Akt was sufficient to completely revert the aggressive cell phenotype, while the mTOR inhibitor rapamycin failed to block cell dissemination. Furthermore, we found that pronounced Akt1 signaling increased the susceptibility to cell apoptosis after treatments with 2-deoxy-D-glucose (2-DG) and lovastatin, enzymatic inhibitors of hexokinase, and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), especially in combination with radiotherapy and doxorubicin. In conclusion, these data suggest that restriction of glucose metabolism and the mevalonate pathway, in combination with standard therapy, may increase therapy success in RMS tumors characterized by a dysregulated Akt signaling.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Delia Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Simona Bernardi
- Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Department of Clinical and Experimental Sciences, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Davide Tomasini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
- Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai 264003, China
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717567
| |
Collapse
|
9
|
Butler E, Xu L, Rakheja D, Schwettmann B, Toubbeh S, Guo L, Kim J, Skapek SX, Zheng Y. Exon skipping in genes encoding lineage-defining myogenic transcription factors in rhabdomyosarcoma. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006190. [PMID: 35933111 PMCID: PMC9528969 DOI: 10.1101/mcs.a006190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood sarcoma composed of myoblast-like cells, which suggests a defect in terminal skeletal muscle differentiation. To explore potential defects in the differentiation program, we searched for mRNA splicing variants in genes encoding transcription factors driving skeletal muscle lineage commitment and differentiation. We studied two RMS cases and identified altered splicing resulting in "skipping" the second of three exons in MYOD1. RNA-Seq data from 42 tumors and additional RMS cell lines revealed exon 2 skipping in both MYOD1 and MYF5 but not in MYF6 or MYOG. Complementary molecular analysis of MYOD1 mRNA found evidence for exon skipping in 5 additional RMS cases. Functional studies showed that so-called MYODΔEx2 protein failed to robustly induce muscle-specific genes, and its ectopic expression conferred a selective advantage in cultured fibroblasts and an RMS xenograft. In summary, we present previously unrecognized exon skipping within MYOD1 and MYF5 in RMS, and we propose that alternative splicing can represent a mechanism to alter the function of these two transcription factors in RMS.
Collapse
Affiliation(s)
- Erin Butler
- University of Texas Southwestern Medical Center;
| | - Lin Xu
- University of Texas Southwestern Medical Center
| | | | | | | | - Lei Guo
- University of Texas Southwestern Medical Center
| | - Jiwoon Kim
- University of Texas Southwestern Medical Center
| | | | | |
Collapse
|
10
|
Hsu JY, Danis EP, Nance S, O'Brien JH, Gustafson AL, Wessells VM, Goodspeed AE, Talbot JC, Amacher SL, Jedlicka P, Black JC, Costello JC, Durbin AD, Artinger KB, Ford HL. SIX1 reprograms myogenic transcription factors to maintain the rhabdomyosarcoma undifferentiated state. Cell Rep 2022; 38:110323. [PMID: 35108532 PMCID: PMC8917510 DOI: 10.1016/j.celrep.2022.110323] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/21/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric muscle sarcoma characterized by expression of the myogenic lineage transcription factors (TFs) MYOD1 and MYOG. Despite high expression of these TFs, RMS cells fail to terminally differentiate, suggesting the presence of factors that alter their functions. Here, we demonstrate that the developmental TF SIX1 is highly expressed in RMS and critical for maintaining a muscle progenitor-like state. SIX1 loss induces differentiation of RMS cells into myotube-like cells and impedes tumor growth in vivo. We show that SIX1 maintains the RMS undifferentiated state by controlling enhancer activity and MYOD1 occupancy at loci more permissive to tumor growth over muscle differentiation. Finally, we demonstrate that a gene signature derived from SIX1 loss correlates with differentiation status and predicts RMS progression in human disease. Our findings demonstrate a master regulatory role of SIX1 in repression of RMS differentiation via genome-wide alterations in MYOD1 and MYOG-mediated transcription.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA
| | - Etienne P Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Stephanie Nance
- Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jenean H O'Brien
- Department of Biology, College of St. Scholastica, Duluth, MN, USA
| | - Annika L Gustafson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Molecular Biology Graduate Program, UC-AMC, Aurora, CO, USA
| | | | - Andrew E Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Jared C Talbot
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Joshua C Black
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Adam D Durbin
- Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristin B Artinger
- Department of Craniofacial Biology, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA.
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA.
| |
Collapse
|
11
|
Tidyman WE, Goodwin AF, Maeda Y, Klein OD, Rauen KA. MEK-inhibitor-mediated rescue of skeletal myopathy caused by activating Hras mutation in a Costello syndrome mouse model. Dis Model Mech 2022; 15:272258. [PMID: 34553752 PMCID: PMC8617311 DOI: 10.1242/dmm.049166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Costello syndrome (CS) is a congenital disorder caused by heterozygous activating germline HRAS mutations in the canonical Ras/mitogen-activated protein kinase (Ras/MAPK) pathway. CS is one of the RASopathies, a large group of syndromes caused by mutations within various components of the Ras/MAPK pathway. An important part of the phenotype that greatly impacts quality of life is hypotonia. To gain a better understanding of the mechanisms underlying hypotonia in CS, a mouse model with an activating HrasG12V allele was utilized. We identified a skeletal myopathy that was due, in part, to inhibition of embryonic myogenesis and myofiber formation, resulting in a reduction in myofiber size and number that led to reduced muscle mass and strength. In addition to hyperactivation of the Ras/MAPK and PI3K/AKT pathways, there was a significant reduction in p38 signaling, as well as global transcriptional alterations consistent with the myopathic phenotype. Inhibition of Ras/MAPK pathway signaling using a MEK inhibitor rescued the HrasG12V myopathy phenotype both in vitro and in vivo, demonstrating that increased MAPK signaling is the main cause of the muscle phenotype in CS. Summary: A Costello syndrome (CS) mouse model carrying a heterozygous Hras p.G12V mutation was utilized to investigate Ras pathway dysregulation, revealing that increased MAPK signaling is the main cause of the muscle phenotype in CS.
Collapse
Affiliation(s)
- William E Tidyman
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| | - Alice F Goodwin
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
| | - Yoshiko Maeda
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA.,UC Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
12
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
13
|
Feedback regulation of Notch signaling and myogenesis connected by MyoD-Dll1 axis. PLoS Genet 2021; 17:e1009729. [PMID: 34370738 PMCID: PMC8376015 DOI: 10.1371/journal.pgen.1009729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
Muscle precursor cells known as myoblasts are essential for muscle development and regeneration. Notch signaling is an ancient intercellular communication mechanism that plays prominent roles in controlling the myogenic program of myoblasts. Currently whether and how the myogenic cues feedback to refine Notch activities in these cells are largely unknown. Here, by mouse and human gene gain/loss-of-function studies, we report that MyoD directly turns on the expression of Notch-ligand gene Dll1 which activates Notch pathway to prevent precautious differentiation in neighboring myoblasts, while autonomously inhibits Notch to facilitate a myogenic program in Dll1 expressing cells. Mechanistically, we studied cis-regulatory DNA motifs underlying the MyoD-Dll1-Notch axis in vivo by characterizing myogenesis of a novel E-box deficient mouse model, as well as in human cells through CRISPR-mediated interference. These results uncovered the crucial transcriptional mechanism that mediates the reciprocal controls of Notch and myogenesis.
Collapse
|
14
|
Pomella S, Sreenivas P, Gryder BE, Wang L, Milewski D, Cassandri M, Baxi K, Hensch NR, Carcarino E, Song Y, Chou HC, Yohe ME, Stanton BZ, Amadio B, Caruana I, De Stefanis C, De Vito R, Locatelli F, Chen Y, Chen EY, Houghton P, Khan J, Rota R, Ignatius MS. Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma. Nat Commun 2021; 12:192. [PMID: 33420019 PMCID: PMC7794422 DOI: 10.1038/s41467-020-20386-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/26/2020] [Indexed: 01/29/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | | | - Long Wang
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | | | - Matteo Cassandri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Nicole R Hensch
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Elena Carcarino
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Young Song
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Marielle E Yohe
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Pediatric Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | - Benjamin Z Stanton
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, 43205, USA
| | - Bruno Amadio
- SAFU Laboratory, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rita De Vito
- Department of Pathology Unit, Department of Laboratories, Bambino Gesu' Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Departmentof Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Eleanor Y Chen
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Peter Houghton
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| | - Rossella Rota
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Myron S Ignatius
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Sciences Center, San Antonio, Texas, USA.
| |
Collapse
|
15
|
Ultimate Precision: Targeting Cancer But Not Normal Self-Replication. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zhang H, Wen J, Bigot A, Chen J, Shang R, Mouly V, Bi P. Human myotube formation is determined by MyoD-Myomixer/Myomaker axis. SCIENCE ADVANCES 2020; 6:eabc4062. [PMID: 33355126 PMCID: PMC11206528 DOI: 10.1126/sciadv.abc4062] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Myoblast fusion is essential for formations of myofibers, the basic cellular and functional units of skeletal muscles. Recent genetic studies in mice identified two long-sought membrane proteins, Myomaker and Myomixer, which cooperatively drive myoblast fusion. It is unknown whether and how human muscles, with myofibers of tremendously larger size, use this mechanism to achieve multinucleations. Here, we report an interesting fusion model of human myoblasts where Myomaker is sufficient to induce low-grade fusion, while Myomixer boosts its efficiency to generate giant myotubes. By CRISPR mutagenesis and biochemical assays, we identified MyoD as the key molecular switch of fusion that is required and sufficient to initiate Myomixer and Myomaker expression. Mechanistically, we defined the E-box motifs on promoters of Myomixer and Myomaker by which MyoD induces their expression for multinucleations of human muscle cells. Together, our study uncovered the key molecular apparatus and the transcriptional control mechanism underlying human myoblast fusion.
Collapse
Affiliation(s)
- Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Junfei Wen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Anne Bigot
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - Jiacheng Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Vincent Mouly
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Boscolo Sesillo F, Fox D, Sacco A. Muscle Stem Cells Give Rise to Rhabdomyosarcomas in a Severe Mouse Model of Duchenne Muscular Dystrophy. Cell Rep 2020; 26:689-701.e6. [PMID: 30650360 DOI: 10.1016/j.celrep.2018.12.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
Most human cancers originate from high-turnover tissues, while low-proliferating tissues, like skeletal muscle, exhibit a lower incidence of tumor development. In Duchenne muscular dystrophy (DMD), which induces increased skeletal muscle regeneration, tumor incidence is increased. Rhabdomyosarcomas (RMSs), a rare and aggressive type of soft tissue sarcoma, can develop in this context, but the impact of DMD severity on RMS development and its cell of origin are poorly understood. Here, we show that RMS latency is affected by DMD severity and that muscle stem cells (MuSCs) can give rise to RMS in dystrophic mice. We report that even before tumor formation, MuSCs exhibit increased self-renewal and an expression signature associated with RMSs. These cells can form tumorspheres in vitro and give rise to RMSs in vivo. Finally, we show that the inflammatory genes Ccl11 and Rgs5 are involved in RMS growth. Together, our results show that DMD severity drives MuSC-mediated RMS development.
Collapse
Affiliation(s)
- Francesca Boscolo Sesillo
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Fox
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Integrative Bayesian Analysis Identifies Rhabdomyosarcoma Disease Genes. Cell Rep 2019; 24:238-251. [PMID: 29972784 DOI: 10.1016/j.celrep.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Identifying oncogenic drivers and tumor suppressors remains a challenge in many forms of cancer, including rhabdomyosarcoma. Anticipating gene expression alterations resulting from DNA copy-number variants to be particularly important, we developed a computational and experimental strategy incorporating a Bayesian algorithm and CRISPR/Cas9 "mini-pool" screen that enables both genome-scale assessment of disease genes and functional validation. The algorithm, called iExCN, identified 29 rhabdomyosarcoma drivers and suppressors enriched for cell-cycle and nucleic-acid-binding activities. Functional studies showed that many iExCN genes represent rhabdomyosarcoma line-specific or shared vulnerabilities. Complementary experiments addressed modes of action and demonstrated coordinated repression of multiple iExCN genes during skeletal muscle differentiation. Analysis of two separate cohorts revealed that the number of iExCN genes harboring copy-number alterations correlates with survival. Our findings highlight rhabdomyosarcoma as a cancer in which multiple drivers influence disease biology and demonstrate a generalizable capacity for iExCN to unmask disease genes in cancer.
Collapse
|
19
|
Wallner C, Drysch M, Hahn SA, Becerikli M, Puscz F, Wagner JM, Sacher M, Sogorski A, Dadras M, Lehnhardt M, Behr B. Alterations in pectoralis muscle cell characteristics after radiation of the human breast in situ. JOURNAL OF RADIATION RESEARCH 2019; 60:825-830. [PMID: 31665379 PMCID: PMC7357228 DOI: 10.1093/jrr/rrz067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The life-time risk of being diagnosed with breast cancer is ~12%, hence breast cancer is by far the most common cancer among women. The multimodal treatment concept of breast cancer often intends radiation. The utilized ionizing radiation leads changes in the tissue resulting in tissue damage due to an alteration of molecular factors. The goal of this study was to identify the role of muscle-catabolic proteins after radiation of human pectoralis major muscles in situ. Tissue of the pectoralis major muscle was collected in 12 breast cancer patients after radiation (maximum 3 years after radiation) undergoing a deep inferior epigastric perforator free-flap breast reconstruction. At the same time, an intraindividual comparison to rectus abdominis muscle was carried out upon free-flap elevation. Immunological properties, cell proliferation, differentiation as well as the expression profile of the muscle tissue were investigated through immunohistological reactions, a DNA-microarray and histology. We found significantly increased neutrophil immigration in the radiated muscle tissue. At the same time, proteins responsible for muscular atrophy and apoptosis were significantly elevated in immunohistochemistry. A DNA microarray detected immunological upregulation and myo-differentiative disorders in radiated muscle tissue. This novel study investigating catabolism in radiated muscle in situ can serve as a basis for the treatment of radiation-accompanied muscle disorders.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Marius Drysch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Stephan A Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Fleming Puscz
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Maxi Sacher
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Alexander Sogorski
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany
| |
Collapse
|
20
|
Yohe ME, Heske CM, Stewart E, Adamson PC, Ahmed N, Antonescu CR, Chen E, Collins N, Ehrlich A, Galindo RL, Gryder BE, Hahn H, Hammond S, Hatley ME, Hawkins DS, Hayes MN, Hayes-Jordan A, Helman LJ, Hettmer S, Ignatius MS, Keller C, Khan J, Kirsch DG, Linardic CM, Lupo PJ, Rota R, Shern JF, Shipley J, Sindiri S, Tapscott SJ, Vakoc CR, Wexler LH, Langenau DM. Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatr Blood Cancer 2019; 66:e27869. [PMID: 31222885 PMCID: PMC6707829 DOI: 10.1002/pbc.27869] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Overall survival rates for pediatric patients with high-risk or relapsed rhabdomyosarcoma (RMS) have not improved significantly since the 1980s. Recent studies have identified a number of targetable vulnerabilities in RMS, but these discoveries have infrequently translated into clinical trials. We propose streamlining the process by which agents are selected for clinical evaluation in RMS. We believe that strong consideration should be given to the development of combination therapies that add biologically targeted agents to conventional cytotoxic drugs. One example of this type of combination is the addition of the WEE1 inhibitor AZD1775 to the conventional cytotoxic chemotherapeutics, vincristine and irinotecan.
Collapse
Affiliation(s)
| | | | | | | | - Nabil Ahmed
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | - Rene L. Galindo
- University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Heidi Hahn
- University Medical Center Gӧttingen, Gӧttingen, Germany
| | | | - Mark E. Hatley
- St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Douglas S. Hawkins
- Seattle Children’s Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA 98105
| | - Madeline N. Hayes
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02114
| | | | - Lee J. Helman
- Children’s Hospital of Los Angeles, Los Angeles, CA 90027
| | | | | | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR 97005
| | - Javed Khan
- National Cancer Institute, Bethesda, MD 20892
| | | | | | - Philip J. Lupo
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Rossella Rota
- Children’s Hospital Bambino Gesù, IRCCS, Rome, Italy
| | | | - Janet Shipley
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | - David M. Langenau
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02114
| |
Collapse
|
21
|
TWIST1 Heterodimerization with E12 Requires Coordinated Protein Phosphorylation to Regulate Periostin Expression. Cancers (Basel) 2019; 11:cancers11091392. [PMID: 31540485 PMCID: PMC6770789 DOI: 10.3390/cancers11091392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/04/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022] Open
Abstract
Diffuse invasion into adjacent brain matter by glioblastoma (GBM) is largely responsible for their dismal prognosis. Previously, we showed that the TWIST1 (TW) bHLH transcription factor and its regulated gene periostin (POSTN) promote invasive phenotypes of GBM cells. Since TW functional effects are regulated by phosphorylation and dimerization, we investigated how phosphorylation of serine 68 in TW regulates TW dimerization, POSTN expression, and invasion in glioma cells. Compared with wild-type TW, the hypophosphorylation mutant, TW(S68A), impaired TW heterodimerization with the E12 bHLH transcription factor and cell invasion in vitro but had no effect on TW homodimerization. Overexpression of TW:E12 forced dimerization constructs (FDCs) increased glioma cell invasion and upregulated pro-invasive proteins, including POSTN, in concert with cytoskeletal reorganization. By contrast, TW:TW homodimer FDCs inhibited POSTN expression and cell invasion in vitro. Further, phosphorylation of analogous PXSP phosphorylation sites in TW:E12 FDCs (TW S68 and E12 S139) coordinately regulated POSTN and PDGFRa mRNA expression. These results suggested that TW regulates pro-invasive phenotypes in part through coordinated phosphorylation events in TW and E12 that promote heterodimer formation and regulate downstream targets. This new mechanistic understanding provides potential therapeutic strategies to inhibit TW-POSTN signaling in GBM and other cancers.
Collapse
|
22
|
Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Döring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 2019; 10:102-117. [PMID: 29618024 DOI: 10.1093/jmcb/mjy025] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
Myogenesis is a complex process required for skeletal muscle formation during embryonic development and for regeneration and growth of myofibers in adults. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play key roles in regulating cell fate decision and function in various tissues. However, the role of lncRNAs in the regulation of myogenesis remains poorly understood. In this study, we identified a novel muscle-enriched lncRNA called 'Myolinc (AK142388)', which we functionally characterized in the C2C12 myoblast cell line. Myolinc is predominately localized in the nucleus, and its levels increase upon induction of the differentiation. Knockdown of Myolinc impairs the expression of myogenic regulatory factors and formation of multi-nucleated myotubes in cultured myoblasts. Myolinc also regulates the expression of Filip1 in a cis-manner. Similar to Myolinc, knockdown of Filip1 inhibits myogenic differentiation. Furthermore, Myolinc binds to TAR DNA-binding protein 43 (TDP-43), a DNA/RNA-binding protein that regulates the expression of muscle genes (e.g. Acta1 and MyoD). Knockdown of TDP-43 inhibits myogenic differentiation. We also show that Myolinc-TDP-43 interaction is essential for the binding of TDP-43 to the promoter regions of muscle marker genes. Finally, we show that silencing of Myolinc inhibits skeletal muscle regeneration in adult mice. Altogether, our study identifies a novel lncRNA that controls key regulatory networks of myogenesis.
Collapse
Affiliation(s)
- Giuseppe Militello
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - Mohammed Rabiul Hosen
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Yuliya Ponomareva
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Pascal Gellert
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Tyler Weirick
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Sajedah Mahmoud Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main 60590, Germany
| | - Lidan Zhang
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
23
|
Fernandez Garcia M, Moore CD, Schulz KN, Alberto O, Donague G, Harrison MM, Zhu H, Zaret KS. Structural Features of Transcription Factors Associating with Nucleosome Binding. Mol Cell 2019; 75:921-932.e6. [PMID: 31303471 DOI: 10.1016/j.molcel.2019.06.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Fate-changing transcription factors (TFs) scan chromatin to initiate new genetic programs during cell differentiation and reprogramming. Yet the protein structure domains that allow TFs to target nucleosomal DNA remain unexplored. We screened diverse TFs for binding to nucleosomes containing motif-enriched sequences targeted by pioneer factors in vivo. FOXA1, OCT4, ASCL1/E12α, PU1, CEBPα, and ZELDA display a range of nucleosome binding affinities that correlate with their cell reprogramming potential. We further screened 593 full-length human TFs on protein microarrays against different nucleosome sequences, followed by confirmation in solution, to distinguish among factors that bound nucleosomes, such as the neuronal AP-2α/β/γ, versus factors that only bound free DNA. Structural comparisons of DNA binding domains revealed that efficient nucleosome binders use short anchoring α helices to bind DNA, whereas weak nucleosome binders use unstructured regions and/or β sheets. Thus, specific modes of DNA interaction allow nucleosome scanning that confers pioneer activity to transcription factors.
Collapse
Affiliation(s)
- Meilin Fernandez Garcia
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Cedric D Moore
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katharine N Schulz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Oscar Alberto
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Greg Donague
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA.
| |
Collapse
|
24
|
Jeong HJ, Lee SJ, Lee HJ, Kim HB, Anh Vuong T, Cho H, Bae GU, Kang JS. Prmt7 promotes myoblast differentiation via methylation of p38MAPK on arginine residue 70. Cell Death Differ 2019; 27:573-586. [PMID: 31243342 PMCID: PMC7206020 DOI: 10.1038/s41418-019-0373-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 01/12/2023] Open
Abstract
MyoD functions as a master regulator to induce muscle-specific gene expression and myogenic differentiation. Here, we demonstrate a positive role of Protein arginine methyltransferase 7 (Prmt7) in MyoD-mediated myoblast differentiation through p38MAPK activation. Prmt7 depletion in primary or C2C12 myoblasts impairs cell cycle withdrawal and myogenic differentiation. Furthermore, Prmt7 depletion decreases the MyoD-reporter activities and the MyoD-mediated myogenic conversion of fibroblasts. Together with MyoD, Prmt7 is recruited to the Myogenin promoter region and Prmt7 depletion attenuates the recruitment of MyoD and its coactivators. The mechanistic study reveals that Prmt7 methylates p38MAPKα at the arginine residue 70, thereby promoting its activation which in turn enhances MyoD activities. The arginine residue 70 to alanine mutation in p38MAPKα impedes MyoD/E47 heterodimerization and the recruitment of Prmt7, MyoD and Baf60c to the Myogenin promoter resulting in blunted Myogenin expression. In conclusion, Prmt7 promotes MyoD-mediated myoblast differentiation through methylation of p38MAPKα at arginine residue 70.
Collapse
Affiliation(s)
- Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Single Cell Network Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang-Jin Lee
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hye-Jin Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Single Cell Network Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Been Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Single Cell Network Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Single Cell Network Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Single Cell Network Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Single Cell Network Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
25
|
Codenotti S, Faggi F, Ronca R, Chiodelli P, Grillo E, Guescini M, Megiorni F, Marampon F, Fanzani A. Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Lett 2019; 449:135-144. [DOI: 10.1016/j.canlet.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 02/10/2019] [Indexed: 11/15/2022]
|
26
|
Velcheti V, Schrump D, Saunthararajah Y. Ultimate Precision: Targeting Cancer but Not Normal Self-replication. Am Soc Clin Oncol Educ Book 2018; 38:950-963. [PMID: 30231326 DOI: 10.1200/edbk_199753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-replication is the engine that drives all biologic evolution, including neoplastic evolution. A key oncotherapy challenge is to target this, the heart of malignancy, while sparing the normal self-replication mandatory for health and life. Self-replication can be demystified: it is activation of replication, the most ancient of cell programs, uncoupled from activation of lineage-differentiation, metazoan programs more recent in origin. The uncoupling can be physiologic, as in normal tissue stem cells, or pathologic, as in cancer. Neoplastic evolution selects to disengage replication from forward-differentiation where intrinsic replication rates are the highest, in committed progenitors that have division times measured in hours versus weeks for tissue stem cells, via partial loss of function in master transcription factors that activate terminal-differentiation programs (e.g., GATA4) or in the coactivators they use for this purpose (e.g., ARID1A). These loss-of-function mutations bias master transcription factor circuits, which normally regulate corepressor versus coactivator recruitment, toward corepressors (e.g., DNMT1) that repress rather than activate terminal-differentiation genes. Pharmacologic inhibition of the corepressors rebalances to coactivator function, activating lineage-differentiation genes that dominantly antagonize MYC (the master transcription factor coordinator of replication) to terminate malignant self-replication. Physiologic self-replication continues, because the master transcription factors in tissue stem cells activate stem cell, not terminal-differentiation, programs. Druggable corepressor proteins are thus the barriers between self-replicating cancer cells and the terminal-differentiation fates intended by their master transcription factor content. This final common pathway to oncogenic self-replication, being separate and distinct from the normal, offers the favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - David Schrump
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| | - Yogen Saunthararajah
- From the Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Thoracic Oncology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
27
|
Wolff DW, Lee MH, Jothi M, Mal M, Li F, Mal AK. Camptothecin exhibits topoisomerase1-independent KMT1A suppression and myogenic differentiation in alveolar rhabdomyosarcoma cells. Oncotarget 2018; 9:25796-25807. [PMID: 29899822 PMCID: PMC5995248 DOI: 10.18632/oncotarget.25376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is an aggressive subtype of the most common soft tissue cancer in children. A hallmark of aRMS tumors is incomplete myogenic differentiation despite expression of master myogenic regulators such as MyoD. We previously reported that histone methyltransferase KMT1A suppresses MyoD function to maintain an undifferentiated state in aRMS cells, and that loss of KMT1A is sufficient to induce differentiation and suppress malignant phenotypes in these cells. Here, we develop a chemical compound screening approach using MyoD-responsive luciferase reporter myoblast cells to identify compounds that alleviate suppression of MyoD-mediated differentiation by KMT1A. A screen of pharmacological compounds yielded the topoisomerase I (TOP1) poison camptothecin (CPT) as the strongest hit in our assay system. Furthermore, treatment of aRMS cells with clinically relevant CPT derivative irinotecan restores MyoD function, and myogenic differentiation in vitro and in a xenograft model. This differentiated phenotype was associated with downregulation of the KMT1A protein. Remarkably, loss of KMT1A in CPT-treated cells occurs independently of its well-known anti-TOP1 mechanism. We further demonstrate that CPT can directly inhibit KMT1A activity in vitro. Collectively, these findings uncover a novel function of CPT that downregulates KMT1A independently of CPT-mediated TOP1 inhibition and permits differentiation of aRMS cells.
Collapse
Affiliation(s)
- David W. Wolff
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Min-Hyung Lee
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Current address: Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mathivanan Jothi
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Current address: Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, KA 560029, India
| | - Munmun Mal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Asoke K. Mal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
28
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
29
|
Repression of TCF3/E2A contributes to Hodgkin lymphomagenesis. Oncotarget 2018; 7:36854-36864. [PMID: 27166193 PMCID: PMC5095044 DOI: 10.18632/oncotarget.9210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
Although Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) derived from germinal or post germinal B cells, they have lost the B cell phenotype in the process of lymphomagenesis. The phenomenon can be at least partially explained by repression of B-cell-specific transcription factors including TCF3, early B-cell factor 1 (EBF1), SPI1/PU.1, and FOXO1, which are down-regulated by genetic and epigenetic mechanisms. The unique phenotype has been suspected to be advantageous for survival of HRS cells. Ectopic expression of some of these transcription factors (EBF1, PU.1, FOXO1) indeed impaired survival of cHL cells. Here we show that forced expression of TCF3 causes cell death and cell cycle arrest in cHL cell lines. Mechanistically, TCF3 overexpression modulated expression of multiple pro-apoptotic genes including BIK, APAF1, FASLG, BOK, and TNFRSF10A/DR4. We conclude that TCF3 inactivation contributes not only to extinguishing of B cell phenotype but also to cHL oncogenesis.
Collapse
|
30
|
Lee H, Lee SJ, Bae GU, Baek NI, Ryu JH. Canadine from Corydalis turtschaninovii Stimulates Myoblast Differentiation and Protects against Myotube Atrophy. Int J Mol Sci 2017; 18:ijms18122748. [PMID: 29258243 PMCID: PMC5751347 DOI: 10.3390/ijms18122748] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023] Open
Abstract
Cachexia and sarcopenia are the main causes of muscle atrophy. These result in a reduction in the muscle fiber area, myo-protein content, and muscle strength, with various molecular modulators being involved. Although several reports have proposed potential therapeutic agents, no effective treatments have been found for muscle atrophy. We searched for myogenic modulators from medicinal plants to treat muscle diseases. We isolated six alkaloids from Corydalis turtschaninovii and evaluated their myogenic potential by using the MyoD reporter gene assay in C2C12 cells. Among the tested compounds, canadine showed the strongest transactivation of MyoD and increased MHC expression during myogenesis. The activation of p38 MAP kinase and Akt are major mechanisms that contribute to the myogenesis by canadine. Canadine increased the number of multinucleated and cylinder-shaped myotubes during myogenesis of C2C12 myoblasts. To determine the preventive effect of canadine in cancer-induced muscle wasting, differentiated C2C12 myotubes were treated with conditioned media from CT26 colon carcinoma culture (CT26 CM) in the presence of canadine. Canadine ameliorated the muscle protein degradation caused by CT26-CM by down-regulating the muscle specific-E3 ligases, MAFbx/atrogin-1 and MuRF1. In this study, we found that canadine from C. turtschaninovii stimulates myogenesis and also inhibits muscle protein degradation. Therefore, we suggest canadine as a protective agent against muscle atrophy.
Collapse
Affiliation(s)
- Hyejin Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Sang-Jin Lee
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Gyu-Un Bae
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
| | - Nam-In Baek
- The Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Korea;
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control and College of Pharmacy, Sookmyung Women’s University, 100 Chungparo 47-Gil, Yongsan-Gu, Seoul 04310, Korea; (H.L.); (S.-J.L.); (G.-U.B.)
- Correspondence: ; Tel.: +82-2-710-9568
| |
Collapse
|
31
|
Velcheti V, Radivoyevitch T, Saunthararajah Y. Higher-Level Pathway Objectives of Epigenetic Therapy: A Solution to the p53 Problem in Cancer. Am Soc Clin Oncol Educ Book 2017; 37:812-824. [PMID: 28561650 DOI: 10.1200/edbk_174175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Searches for effective yet nontoxic oncotherapies are searches for exploitable differences between cancer and normal cells. In its core of cell division, cancer resembles normal life, coordinated by the master transcription factor MYC. Outside of this core, apoptosis and differentiation programs, which dominantly antagonize MYC to terminate cell division, necessarily differ between cancer and normal cells, as apoptosis is suppressed by biallelic inactivation of the master regulator of apoptosis, p53, or its cofactor p16/CDKN2A in approximately 80% of cancers. These genetic alterations impact therapy: conventional oncotherapy applies stress upstream of p53 to upregulate it and causes apoptosis (cytotoxicity)-a toxic, futile intent when it is absent or nonfunctional. Differentiation, on the other hand, cannot be completely suppressed because it is a continuum along which all cells exist. Neoplastic evolution stalls advances along this continuum at its most proliferative points-in lineage-committed progenitors that have division times measured in hours compared with weeks for tissue stem cells. This differentiation arrest is by mutations/deletions in differentiation-driving transcription factors or their coactivators that shift balances of gene-regulating protein complexes toward corepressors that repress instead of activate hundreds of terminal differentiation genes. That is, malignant proliferation without differentiation, also referred to as cancer "stem" cell self-renewal, hinges on druggable corepressors. Inhibiting these corepressors (e.g., DNMT1) releases p53-independent terminal differentiation in cancer stem cells but preserves self-renewal of normal stem cells that express stem cell transcription factors. Thus, epigenetic-differentiation therapies exploit a fundamental distinction between cancer and normal stem cell self-renewal and have a pathway of action downstream of genetic defects in cancer, affording favorable therapeutic indices needed for clinical progress.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Tomas Radivoyevitch
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Yogen Saunthararajah
- From the Department of Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH; Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
32
|
An Examination of the Role of Transcriptional and Posttranscriptional Regulation in Rhabdomyosarcoma. Stem Cells Int 2017. [PMID: 28638414 PMCID: PMC5468592 DOI: 10.1155/2017/2480375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive family of soft tissue tumors that most commonly manifests in children. RMS variants express several skeletal muscle markers, suggesting myogenic stem or progenitor cell origin of RMS. In this review, the roles of both recently identified and well-established microRNAs in RMS are discussed and summarized in a succinct, tabulated format. Additionally, the subtypes of RMS are reviewed along with the involvement of basic helix-loop-helix (bHLH) proteins, Pax proteins, and microRNAs in normal and pathologic myogenesis. Finally, the current and potential future treatment options for RMS are outlined.
Collapse
|
33
|
Lee H, Tuong LT, Jeong JH, Lee SJ, Bae GU, Ryu JH. Isoquinoline alkaloids from Coptis japonica stimulate the myoblast differentiation via p38 MAP-kinase and Akt signaling pathway. Bioorg Med Chem Lett 2017; 27:1401-1404. [DOI: 10.1016/j.bmcl.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/24/2022]
|
34
|
El Demellawy D, McGowan-Jordan J, de Nanassy J, Chernetsova E, Nasr A. Update on molecular findings in rhabdomyosarcoma. Pathology 2017; 49:238-246. [PMID: 28256213 DOI: 10.1016/j.pathol.2016.12.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumour in children and adolescents. Histologically RMS resembles developing fetal striated skeletal muscle. RMS is stratified into different histological subtypes which appear to influence management plans and patient outcome. Importantly, molecular classification of RMS seems to more accurately capture the true biology and clinical course and prognosis of RMS to guide therapeutic decisions. The identification of PAX-FOXO1 fusion status in RMS is one of the most important updates in the risk stratification of RMS. There are several genes close to PAX that are frequently altered including the RAS family, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. As with most paediatric blue round cell tumours and sarcomas, chemotherapy is the key regimen for RMS therapy. Currently there are no direct inhibitors against PAX-FOXO1 fusion oncoproteins and targeting epigenetic cofactors is limited to clinical trials. Failure of therapy in RMS is usually related to drug resistance and metastatic disease. Through this review we have highlighted most of the molecular aspects in RMS and have attempted to correlate with RMS classification, treatment and prognosis.
Collapse
Affiliation(s)
- Dina El Demellawy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada.
| | - Jean McGowan-Jordan
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Genetics, Children's Hospital of Eastern Ontario, Ontario, Canada
| | - Joseph de Nanassy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada
| | | | - Ahmed Nasr
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Tenente IM, Hayes MN, Ignatius MS, McCarthy K, Yohe M, Sindiri S, Gryder B, Oliveira ML, Ramakrishnan A, Tang Q, Chen EY, Petur Nielsen G, Khan J, Langenau DM. Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma. eLife 2017; 6. [PMID: 28080960 PMCID: PMC5231408 DOI: 10.7554/elife.19214] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth. DOI:http://dx.doi.org/10.7554/eLife.19214.001
Collapse
Affiliation(s)
- Inês M Tenente
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,GABBA Program, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Madeline N Hayes
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Myron S Ignatius
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Molecular Medicine, Greehey Children's Cancer Research Institute, San Antonio, United States
| | - Karin McCarthy
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Marielle Yohe
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Sivasish Sindiri
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Berkley Gryder
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Mariana L Oliveira
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ashwin Ramakrishnan
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Qin Tang
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Eleanor Y Chen
- Department of Pathology, University of Washington, Seattle, United States
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - David M Langenau
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
36
|
CRISPR screen identifies the NCOR/HDAC3 complex as a major suppressor of differentiation in rhabdomyosarcoma. Proc Natl Acad Sci U S A 2016; 113:15090-15095. [PMID: 27956629 DOI: 10.1073/pnas.1610270114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dysregulated gene expression resulting from abnormal epigenetic alterations including histone acetylation and deacetylation has been demonstrated to play an important role in driving tumor growth and progression. However, the mechanisms by which specific histone deacetylases (HDACs) regulate differentiation in solid tumors remains unclear. Using pediatric rhabdomyosarcoma (RMS) as a paradigm to elucidate the mechanism blocking differentiation in solid tumors, we identified HDAC3 as a major suppressor of myogenic differentiation from a high-efficiency Clustered regularly interspaced short palindromic repeats (CRISPR)-based phenotypic screen of class I and II HDAC genes. Detailed characterization of the HDAC3-knockout phenotype in vitro and in vivo using a tamoxifen-inducible CRISPR targeting strategy demonstrated that HDAC3 deacetylase activity and the formation of a functional complex with nuclear receptor corepressors (NCORs) were critical in restricting differentiation in RMS. The NCOR/HDAC3 complex specifically functions by blocking myoblast determination protein 1 (MYOD1)-mediated activation of myogenic differentiation. Interestingly, there was also a transient up-regulation of growth-promoting genes upon initial HDAC3 targeting, revealing a unique cancer-specific response to the forced transition from a neoplastic state to terminal differentiation. Our study applied modifications of CRISPR/CRISPR-associated endonuclease 9 (Cas9) technology to interrogate the function of essential cancer genes and pathways and has provided insights into cancer cell adaptation in response to altered differentiation status. Because current pan-HDAC inhibitors have shown disappointing results in clinical trials of solid tumors, therapeutic targets specific to HDAC3 function represent a promising option for differentiation therapy in malignant tumors with dysregulated HDAC3 activity.
Collapse
|
37
|
Megiorni F, Camero S, Ceccarelli S, McDowell HP, Mannarino O, Marampon F, Pizer B, Shukla R, Pizzuti A, Marchese C, Clerico A, Dominici C. DNMT3B in vitro knocking-down is able to reverse embryonal rhabdomyosarcoma cell phenotype through inhibition of proliferation and induction of myogenic differentiation. Oncotarget 2016; 7:79342-79356. [PMID: 27764816 PMCID: PMC5346718 DOI: 10.18632/oncotarget.12688] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Aberrant DNA methylation has been frequently observed in many human cancers, including rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children. To date, the expression and function of the de novo DNA methyltransferase (DNMT) 3B in RMS have not yet been investigated. Our study show for the first time a significant up-regulation of DNMT3B levels in 14 RMS tumour samples and 4 RMS cell lines in comparison to normal skeletal muscle. Transfection of RD and TE671 cells, two in vitro models of embryonal RMS (ERMS), with a synthetic DNMT3B siRNA decreased cell proliferation by arresting cell cycle at G1 phase, as demonstrated by the reduced expression of Cyclin B1, Cyclin D1 and Cyclin E2, and by the concomitant up-regulation of the checkpoint regulators p21 and p27. DNMT3B depletion also impaired RB phosphorylation status and decreased migratory capacity and clonogenic potential. Interestingly, DNMT3B knock-down was able to commit ERMS cells towards myogenic terminal differentiation, as confirmed by the acquisition of a myogenic-like phenotype and by the increased expression of the myogenic markers MYOD1, Myogenin and MyHC. Finally, inhibition of MEK/ERK signalling by U0126 resulted in a reduction of DNMT3B protein, giving evidence that DNMT3B is a down-stream molecule of this oncogenic pathway.Taken together, our data indicate that altered expression of DNMT3B plays a key role in ERMS development since its silencing is able to reverse cell cancer phenotype by rescuing myogenic program. Epigenetic therapy, by targeting the DNA methylation machinery, may represent a novel therapeutic strategy against RMS.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Simona Camero
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Heather P. McDowell
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Olga Mannarino
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Barry Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Clerico
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
38
|
Kikani CK, Wu X, Paul L, Sabic H, Shen Z, Shakya A, Keefe A, Villanueva C, Kardon G, Graves B, Tantin D, Rutter J. Pask integrates hormonal signaling with histone modification via Wdr5 phosphorylation to drive myogenesis. eLife 2016; 5. [PMID: 27661449 PMCID: PMC5035144 DOI: 10.7554/elife.17985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
PAS domain containing protein kinase (Pask) is an evolutionarily conserved protein kinase implicated in energy homeostasis and metabolic regulation across eukaryotic species. We now describe an unexpected role of Pask in promoting the differentiation of myogenic progenitor cells, embryonic stem cells and adipogenic progenitor cells. This function of Pask is dependent upon its ability to phosphorylate Wdr5, a member of several protein complexes including those that catalyze histone H3 Lysine 4 trimethylation (H3K4me3) during transcriptional activation. Our findings suggest that, during myoblast differentiation, Pask stimulates the conversion of repressive H3K4me1 to activating H3K4me3 marks on the promoter of the differentiation gene myogenin (Myog) via Wdr5 phosphorylation. This enhances accessibility of the MyoD transcription factor and enables transcriptional activation of the Myog promoter to initiate muscle differentiation. Thus, as an upstream kinase of Wdr5, Pask integrates signaling cues with the transcriptional network to regulate the differentiation of progenitor cells. DOI:http://dx.doi.org/10.7554/eLife.17985.001
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Xiaoying Wu
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Litty Paul
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Hana Sabic
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Alexandra Keefe
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Claudio Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, United States
| | - Barbara Graves
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, United States.,Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States.,Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
39
|
Santolini M, Sakakibara I, Gauthier M, Ribas-Aulinas F, Takahashi H, Sawasaki T, Mouly V, Concordet JP, Defossez PA, Hakim V, Maire P. MyoD reprogramming requires Six1 and Six4 homeoproteins: genome-wide cis-regulatory module analysis. Nucleic Acids Res 2016; 44:8621-8640. [PMID: 27302134 PMCID: PMC5062961 DOI: 10.1093/nar/gkw512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 11/12/2022] Open
Abstract
Myogenic regulatory factors of the MyoD family have the ability to reprogram differentiated cells toward a myogenic fate. In this study, we demonstrate that Six1 or Six4 are required for the reprogramming by MyoD of mouse embryonic fibroblasts (MEFs). Using microarray experiments, we found 761 genes under the control of both Six and MyoD. Using MyoD ChIPseq data and a genome-wide search for Six1/4 MEF3 binding sites, we found significant co-localization of binding sites for MyoD and Six proteins on over a thousand mouse genomic DNA regions. The combination of both datasets yielded 82 genes which are synergistically activated by Six and MyoD, with 96 associated MyoD+MEF3 putative cis-regulatory modules (CRMs). Fourteen out of 19 of the CRMs that we tested demonstrated in Luciferase assays a synergistic action also observed for their cognate gene. We searched putative binding sites on these CRMs using available databases and de novo search of conserved motifs and demonstrated that the Six/MyoD synergistic activation takes place in a feedforward way. It involves the recruitment of these two families of transcription factors to their targets, together with partner transcription factors, encoded by genes that are themselves activated by Six and MyoD, including Mef2, Pbx-Meis and EBF.
Collapse
Affiliation(s)
- Marc Santolini
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France Ecole Normale Supérieure, CNRS, Laboratoire de Physique Statistique, PSL Research University, Université Pierre-et-Marie Curie, Paris, France
| | - Iori Sakakibara
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Morgane Gauthier
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Francesc Ribas-Aulinas
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | | | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Jean-Paul Concordet
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | - Vincent Hakim
- Ecole Normale Supérieure, CNRS, Laboratoire de Physique Statistique, PSL Research University, Université Pierre-et-Marie Curie, Paris, France
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| |
Collapse
|
40
|
Vleeshouwer-Neumann T, Phelps M, Bammler TK, MacDonald JW, Jenkins I, Chen EY. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma. PLoS One 2015; 10:e0144320. [PMID: 26636678 PMCID: PMC4670218 DOI: 10.1371/journal.pone.0144320] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/15/2015] [Indexed: 02/01/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs) in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat) in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP) studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients.
Collapse
Affiliation(s)
| | - Michael Phelps
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Isaac Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eleanor Y. Chen
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
41
|
Blum R. Activation of muscle enhancers by MyoD and epigenetic modifiers. J Cell Biochem 2015; 115:1855-67. [PMID: 24905980 DOI: 10.1002/jcb.24854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 05/30/2014] [Indexed: 12/11/2022]
Abstract
The early 1980s revelation of cis-acting genomic elements, known as transcriptional enhancers, is still regarded as one of the fundamental discoveries in the genomic field. However, only with the emergence of genome-wide techniques has the genuine biological scope of enhancers begun to be fully uncovered. Massive scientific efforts of multiple laboratories rapidly advanced the overall perception that enhancers are typified by common epigenetic characteristics that distinguish their activating potential. Broadly, chromatin modifiers and transcriptional regulators lay down the essential foundations necessary for constituting enhancers in their activated form. Basing on genome-wide ChIP-sequencing of enhancer-related marks we identified myogenic enhancers before and after muscle differentiation and discovered that MyoD was bound to nearly a third of condition-specific enhancers. Experimental studies that tested the deposition patterns of enhancer-related epigenetic marks in MyoD-null myoblasts revealed the high dependency that a specific set of muscle enhancers have towards this transcriptional regulator. Re-expression of MyoD restored the deposition of enhancer-related marks at myotube-specific enhancers and partially at myoblasts-specific enhancers. Our proposed mechanistic model suggests that MyoD is involved in recruitment of methyltransferase Set7, acetyltransferase p300 and deposition of H3K4me1 and H3K27ac at myogenic enhancers. In addition, MyoD binding at enhancers is associated with PolII occupancy and with local noncoding transcription. Modulation of muscle enhancers is suggested to be coordinated via transcription factors docking, including c-Jun and Jdp2 that bind to muscle enhancers in a MyoD-dependent manner. We hypothesize that distinct transcription factors may act as placeholders and mediate the assembly of newly formed myogenic enhancers.
Collapse
Affiliation(s)
- Roy Blum
- Laura and Isaac Perlmutter Cancer Center, Department of Pathology, New York University School of Medicine, 522 1st Avenue, New York, New York, 10016
| |
Collapse
|
42
|
Ahmad I, Rehman A, Khan JA, Rafi M, Khurshid A, Nisar H, Zaidi S, Ikram M. Effects of varying local temperature on the optical properties of cells in-vitro. Photodiagnosis Photodyn Ther 2015; 12:459-65. [DOI: 10.1016/j.pdpdt.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022]
|
43
|
Sun M, Huang F, Yu D, Zhang Y, Xu H, Zhang L, Li L, Dong L, Guo L, Wang S. Autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK pathway in rhabdomyosarcoma modulates proliferation and differentiation. Cell Death Dis 2015; 6:e1859. [PMID: 26291313 PMCID: PMC4558514 DOI: 10.1038/cddis.2015.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/13/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022]
Abstract
The origin of rhabdomyosarcoma (RMS) remains controversial. However, specific microRNAs (miRNAs) are downregulated in RMS and it is possible that re-expression of these miRNAs may lead to differentiation. Transforming growth factor-β1 (TGF-β1) is known to block differentiation of RMS. We therefore analyzed miRNA microarrays of RMS cell lines with or without TGF-β1 knockdown and identified a novel anti-oncogene miR-411-5p. Re-expression of miR-411-5p inhibited RMS cell proliferation in vitro and tumorigenicity in vivo. Using a luciferase reporting system and sequence analysis, the potential target of miR-411-5p was identified as sprouty homolog 4 (SPRY4), which inhibits protein kinase Cα-mediated activation of mitogen-activated protein kinases (MAPKs), especially p38MAPK phosphorylation. These results revealed an inverse correlation between TGF-β1/SPRY4 and miR-411-5p levels. SPRY4 small interfering RNA and miR-411-5p both activated p38MAPK phosphorylation and also promoted apoptosis and myogenic differentiation, indicated by increased caspase-3, myosin heavy chain, and myosin expression. SPRY4 and miR-411 mRNA levels correlated with TGF-β1 expression levels in RMS tissues, which was confirmed by immunohistochemical staining for TGF-β1, SPRY4, and phosphorylated p38MAPK proteins. Overall, these results indicate that miR-411-5p acts as an RMS differentiation-inducing miRNA prompting p38MAPK activation via directly downregulating SPRY4. These results establish an autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK in RMS, which governs the switch between proliferation and differentiation.
Collapse
Affiliation(s)
- M Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - F Huang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - D Yu
- Department of Plastic Surgery, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Y Zhang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - H Xu
- Department of Oncology, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - L Zhang
- Department of Surgery, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - L Li
- Department of Osteology, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - L Dong
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - L Guo
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - S Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
44
|
Faggi F, Codenotti S, Poliani PL, Cominelli M, Chiarelli N, Colombi M, Vezzoli M, Monti E, Bono F, Tulipano G, Fiorentini C, Zanola A, Lo HP, Parton RG, Keller C, Fanzani A. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS One 2015; 10:e0130287. [PMID: 26086601 PMCID: PMC4472524 DOI: 10.1371/journal.pone.0130287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/19/2015] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Nicola Chiarelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Tulipano
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alessandra Zanola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Harriet P. Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Keller
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States of America
- Children’s Cancer Therapy Development Institute, Fort Collins, CO, United States of America
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
- * E-mail:
| |
Collapse
|
45
|
p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ 2014; 22:560-73. [PMID: 25501595 DOI: 10.1038/cdd.2014.189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022] Open
Abstract
Acute muscle injury and physiological stress from chronic muscle diseases and aging lead to impairment of skeletal muscle function. This raises the question of whether p53, a cellular stress sensor, regulates muscle tissue repair under stress conditions. By investigating muscle differentiation in the presence of genotoxic stress, we discovered that p53 binds directly to the myogenin promoter and represses transcription of myogenin, a member of the MyoD family of transcription factors that plays a critical role in driving terminal muscle differentiation. This reduction of myogenin protein is observed in G1-arrested cells and leads to decreased expression of late but not early differentiation markers. In response to acute genotoxic stress, p53-mediated repression of myogenin reduces post-mitotic nuclear abnormalities in terminally differentiated cells. This study reveals a mechanistic link previously unknown between p53 and muscle differentiation, and suggests new avenues for managing p53-mediated stress responses in chronic muscle diseases or during muscle aging.
Collapse
|
46
|
Tremblay AM, Missiaglia E, Galli GG, Hettmer S, Urcia R, Carrara M, Judson RN, Thway K, Nadal G, Selfe JL, Murray G, Calogero RA, De Bari C, Zammit PS, Delorenzi M, Wagers AJ, Shipley J, Wackerhage H, Camargo FD. The Hippo transducer YAP1 transforms activated satellite cells and is a potent effector of embryonal rhabdomyosarcoma formation. Cancer Cell 2014; 26:273-87. [PMID: 25087979 DOI: 10.1016/j.ccr.2014.05.029] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 04/08/2014] [Accepted: 05/29/2014] [Indexed: 01/02/2023]
Abstract
The role of the Hippo pathway effector YAP1 in soft tissue sarcomas is poorly defined. Here we report that YAP1 activity is elevated in human embryonal rhabdomyosarcoma (ERMS). In mice, sustained YAP1 hyperactivity in activated, but not quiescent, satellite cells induces ERMS with high penetrance and short latency. Via its transcriptional program with TEAD1, YAP1 directly regulates several major hallmarks of ERMS. YAP1-TEAD1 upregulate pro-proliferative and oncogenic genes and maintain the ERMS differentiation block by interfering with MYOD1 and MEF2 pro-differentiation activities. Normalization of YAP1 expression reduces tumor burden in human ERMS xenografts and allows YAP1-driven ERMS to differentiate in situ. Collectively, our results identify YAP1 as a potent ERMS oncogenic driver and a promising target for differentiation therapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Differentiation/genetics
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- DNA-Binding Proteins/metabolism
- Gene Dosage
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Muscle Neoplasms/metabolism
- Muscle Neoplasms/mortality
- Muscle Neoplasms/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- MyoD Protein
- Neoplasm Transplantation
- Nuclear Proteins/metabolism
- Oncogenes
- Phosphoproteins/physiology
- Rhabdomyosarcoma, Embryonal/metabolism
- Rhabdomyosarcoma, Embryonal/mortality
- Rhabdomyosarcoma, Embryonal/pathology
- Satellite Cells, Skeletal Muscle/pathology
- TEA Domain Transcription Factors
- Transcription Factors/metabolism
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Annie M Tremblay
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Edoardo Missiaglia
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Giorgio G Galli
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Simone Hettmer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Joslin Diabetes Center, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA; Division of Pediatric Hematology/Oncology, Children's Hospital, Boston, MA 02115, USA
| | - Roby Urcia
- School of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD Scotland, UK
| | - Matteo Carrara
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Robert N Judson
- School of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD Scotland, UK; Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Khin Thway
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK; Department of Histopathology, Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Gema Nadal
- School of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD Scotland, UK
| | - Joanna L Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Graeme Murray
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| | - Raffaele A Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Cosimo De Bari
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Mauro Delorenzi
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Ludwig Center for Cancer Research and Oncology Department, University of Lausanne, 1015 Lausanne, Switzerland
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Joslin Diabetes Center, Boston, MA 02115, USA
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - Henning Wackerhage
- School of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD Scotland, UK
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
47
|
Glycogen synthase kinase 3β represses MYOGENIN function in alveolar rhabdomyosarcoma. Cell Death Dis 2014; 5:e1094. [PMID: 24577092 PMCID: PMC3944270 DOI: 10.1038/cddis.2014.58] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/17/2022]
Abstract
MYOGENIN is a member of the muscle regulatory factor family that orchestrates an obligatory step in myogenesis, the terminal differentiation of skeletal muscle cells. A paradoxical feature of alveolar rhabdomyosarcoma (ARMS), a prevalent soft tissue sarcoma in children arising from cells with a myogenic phenotype, is the inability of these cells to undergo terminal differentiation despite the expression of MYOGENIN. The chimeric PAX3-FOXO1 fusion protein which results from a chromosomal translocation in ARMS has been implicated in blocking cell cycle arrest, preventing myogenesis from occurring. We report here that PAX3-FOXO1 enhances glycogen synthase kinase 3β (GSK3β) activity which in turn represses MYOGENIN activity. MYOGENIN is a GSK3β substrate in vitro on the basis of in vitro kinase assays and MYOGENIN is phosphorylated in ARMS-derived RH30 cells. Constitutively active GSK3β(S9A) increased the level of a phosphorylated form of MYOGENIN on the basis of western blot analysis and this effect was reversed by neutralization of the single consensus GSK3β phosphoacceptor site by mutation (S160/164A). Congruently, GSK3β inhibited the trans-activation of an E-box reporter gene by wild-type MYOGENIN, but not MYOGENIN with the S160/164A mutations. Functionally, GSK3β repressed muscle creatine kinase (MCK) promoter activity, an effect which was reversed by the S160/164A mutated MYOGENIN. Importantly, GSK3β inhibition or exogenous expression of the S160/164A mutated MYOGENIN in ARMS reduced the anchorage independent growth of RH30 cells in colony-formation assays. Thus, sustained GSK3β activity represses a critical regulatory step in the myogenic cascade, contributing to the undifferentiated, proliferative phenotype in alveolar rhabdomyosarcoma (ARMS).
Collapse
|
48
|
Szuhai K, de Jong D, Leung WY, Fletcher CDM, Hogendoorn PCW. Transactivating mutation of the MYOD1
gene is a frequent event in adult spindle cell rhabdomyosarcoma. J Pathol 2014; 232:300-7. [DOI: 10.1002/path.4307] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Karoly Szuhai
- Department of Molecular Cell Biology; Leiden University Medical Center; The Netherlands
| | - Daniëlle de Jong
- Department of Molecular Cell Biology; Leiden University Medical Center; The Netherlands
| | - Wai Yi Leung
- Sequencing Analysis Support Core (SASC); Leiden University Medical Center; The Netherlands
| | - Christopher DM Fletcher
- Department of Pathology; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
| | | |
Collapse
|
49
|
Grubišić V, Gottipati MK, Stout RF, Grammer JR, Parpura V. Heterogeneity of myotubes generated by the MyoD and E12 basic helix-loop-helix transcription factors in otherwise non-differentiation growth conditions. Biomaterials 2013; 35:2188-98. [PMID: 24360578 DOI: 10.1016/j.biomaterials.2013.11.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/21/2013] [Indexed: 01/06/2023]
Abstract
We used a synthetic biology approach to produce myotubes from mammalian C2C12 myoblasts in non-differentiation growth conditions using the expression of basic helix-loop-helix transcription factors, MyoD and E12, in various combinations and configurations. Our approach not only recapitulated the basics of muscle development and physiology, as the obtained myotubes showed qualities similar to those seen in striated muscle fibers in vivo, but also allowed for the synthesis of populations of myotubes which assumed distinct morphology, myofibrillar development and Ca(2+) dynamics. This fashioned class of biomaterials is suitable for the building blocks of soft actuators in micro-scale biomimetic robotics. This production line strategy can be embraced in reparative medicine as synthetic human myotubes with predetermined morphological/functional properties could be obtained using this very approach. This methodology can be adopted beyond striated muscle for the engineering of other tissue components/cells whose differentiation is governed by the principles of basic helix-loop-helix transcription factors, as in the case, for example, of neural or immune cell types.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Manoj K Gottipati
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Randy F Stout
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - J Robert Grammer
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA; Department of Biotechnology, University or Rijeka, Rijeka 51000, Croatia.
| |
Collapse
|
50
|
Zhang M, Truscott J, Davie J. Loss of MEF2D expression inhibits differentiation and contributes to oncogenesis in rhabdomyosarcoma cells. Mol Cancer 2013; 12:150. [PMID: 24279793 PMCID: PMC3879063 DOI: 10.1186/1476-4598-12-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a highly malignant pediatric cancer that is the most common form of soft tissue tumors in children. RMS cells have many features of skeletal muscle cells, yet do not differentiate. Thus, our studies have focused on the defects present in these cells that block myogenesis. Methods Protein and RNA analysis identified the loss of MEF2D in RMS cells. MEF2D was expressed in RD and RH30 cells by transient transfection and selection of stable cell lines, respectively, to demonstrate the rescue of muscle differentiation observed. A combination of techniques such as proliferation assays, scratch assays and soft agar assays were used with RH30 cells expressing MEF2D to demonstrate the loss of oncogenic growth in vitro and xenograft assays were used to confirm the loss of tumor growth in vivo. Results Here, we show that one member of the MEF2 family of proteins required for normal myogenesis, MEF2D, is largely absent in RMS cell lines representing both major subtypes of RMS as well as primary cells derived from an embryonal RMS model. We show that the down regulation of MEF2D is a major cause for the failure of RMS cells to differentiate. We find that MyoD and myogenin are bound with their dimerization partner, the E proteins, to the promoters of muscle specific genes in RMS cells. However, we cannot detect MEF2D binding at any promoter tested. We find that exogenous MEF2D expression can activate muscle specific luciferase constructs, up regulate p21 expression and increase muscle specific gene expression including the expression of myosin heavy chain, a marker for skeletal muscle differentiation. Restoring expression of MEF2D also inhibits proliferation, cell motility and anchorage independent growth in vitro. We have confirmed the inhibition of tumorigenicity by MEF2D in a tumor xenograft model, with a complete regression of tumor growth. Conclusions Our data indicate that the oncogenic properties of RMS cells can be partially attributed to the loss of MEF2D expression and that restoration of MEF2D may represent a useful therapeutic strategy to decrease tumorigenicity.
Collapse
Affiliation(s)
| | | | - Judith Davie
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, 229 Neckers Building, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| |
Collapse
|