1
|
Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res 2024; 204:107170. [PMID: 38614374 DOI: 10.1016/j.phrs.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.
Collapse
Affiliation(s)
- Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jeffrey A Haltom
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yentli E Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lie
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnold Z Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sujata S Ranshing
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Deborah Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Boovarahan SR, Kurian GA. Ischemic preconditioning modulates the DNA methylation process of the rat heart to provide tolerance to withstand ischemia reperfusion injury and its associated mitochondrial dysfunction. 3 Biotech 2024; 14:121. [PMID: 38550905 PMCID: PMC10965879 DOI: 10.1007/s13205-024-03965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
DNA methylation plays a crucial role in the pathogenesis of myocardial ischemia reperfusion injury(I/R) and the I/R injury can be combated effectively by ischemia preconditioning (IPC), but the role is DNA methylation in this process is unknown. In this study, we uncovered the role of ischemic preconditioning (IPC)- mediated cardioprotection of rat myocardium by using a Langendorff rat heart model with 30 min of ischemia followed by 60 min of reperfusion. Heart conditioned with short cycles of ischemia and reperfusion (IPC procedure) prior to I/R protocol significantly reduced the I/R-induced global DNA hypermethylation level by 32% and the DNMT activity by 33% while rendering cardioprotection. Blocking the PI3K pathway via wortmannin not only negates the cardio-protection by IPC, but also increases the methylation of DNA by 75%. Besides, the correlation analysis showed a negative relationship between PI3K gene expression and the global DNA methylation level (r = - 0.8690, p = 0.0419) in IPC-treated rat hearts. Moreover, the global level DNA hypomethylation induced by IPC exhibited a regulatory effect on the genes involved in I/R pathology mediators like apoptosis (Caspase3), mitochondrial function (PGC 1α, TFAM, ND1) and oxidative stress (CuZnSOD, SOD2), and their corresponding function. The present study results provide novel evidence for the involvement of DNA methylation in the IPC procedure, and suggest DNA methylation as one of the potential therapeutic targets regulated by ischemic preconditioning in rat hearts subjected to ischemia reperfusion. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03965-0.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401 India
| | - Gino A. Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu 613401 India
| |
Collapse
|
3
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
4
|
Bantle CM, French CT, Cummings JE, Sadasivan S, Tran K, Slayden RA, Smeyne RJ, Tjalkens RB. Manganese exposure in juvenile C57BL/6 mice increases glial inflammatory responses in the substantia nigra following infection with H1N1 influenza virus. PLoS One 2021; 16:e0245171. [PMID: 33493177 PMCID: PMC7833173 DOI: 10.1371/journal.pone.0245171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023] Open
Abstract
Infection with Influenza A virus can lead to the development of encephalitis and subsequent neurological deficits ranging from headaches to neurodegeneration. Post-encephalitic parkinsonism has been reported in surviving patients of H1N1 infections, but not all cases of encephalitic H1N1 infection present with these neurological symptoms, suggesting that interactions with an environmental neurotoxin could promote more severe neurological damage. The heavy metal, manganese (Mn), is a potential interacting factor with H1N1 because excessive exposure early in life can induce long-lasting effects on neurological function through inflammatory activation of glial cells. In the current study, we used a two-hit model of neurotoxin-pathogen exposure to examine whether exposure to Mn during juvenile development would induce a more severe neuropathological response following infection with H1N1 in adulthood. To test this hypothesis, C57BL/6 mice were exposed to MnCl2 in drinking water (50 mg/kg/day) for 30 days from days 21–51 postnatal, then infected intranasally with H1N1 three weeks later. Analyses of dopaminergic neurons, microglia and astrocytes in basal ganglia indicated that although there was no significant loss of dopaminergic neurons within the substantia nigra pars compacta, there was more pronounced activation of microglia and astrocytes in animals sequentially exposed to Mn and H1N1, as well as altered patterns of histone acetylation. Whole transcriptome Next Generation Sequencing (RNASeq) analysis was performed on the substantia nigra and revealed unique patterns of gene expression in the dual-exposed group, including genes involved in antioxidant activation, mitophagy and neurodegeneration. Taken together, these results suggest that exposure to elevated levels of Mn during juvenile development could sensitize glial cells to more severe neuro-immune responses to influenza infection later in life through persistent epigenetic changes.
Collapse
Affiliation(s)
- Collin M. Bantle
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - C. Tenley French
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jason E. Cummings
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shankar Sadasivan
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Kevin Tran
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard J. Smeyne
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
5
|
Medar MLJ, Marinkovic DZ, Kojic Z, Becin AP, Starovlah IM, Kravic-Stevovic T, Andric SA, Kostic TS. Dependence of Leydig Cell's Mitochondrial Physiology on Luteinizing Hormone Signaling. Life (Basel) 2020; 11:life11010019. [PMID: 33396202 PMCID: PMC7824612 DOI: 10.3390/life11010019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the relationship between steroidogenesis and the regulation of the mitochondrial bioenergetics and dynamics, in steroidogenic cells, is not completely elucidated. Here we employed in vivo and ex vivo experimental models to analyze mitochondrial physiology in Leydig cells depending on the different LH-cAMP environments. Activation of LH-receptor in rat Leydig cells ex and in vivo triggered cAMP, increased oxygen consumption, mitoenergetic and steroidogenic activities. Increased mitoenergetic activity i.e., ATP production is achieved through augmented glycolytic ATP production and a small part of oxidative phosphorylation (OXPHOS). Transcription of major genes responsible for mitochondrial dynamics was upregulated for Ppargc1a (regulator of mitogenesis and function) and downregulated for Drp1 (main fission marker), Prkn, Pink1 and Tfeb (mitophagy markers). Leydig cells from gonadotropin-treated rats show increased mitogenesis confirmed by increased mitochondrial mass, increased mtDNA, more frequent mitochondria observed by a transmission electron microscope and increased expression of subunits of respiratory proteins Cytc/CYTC and COX4. Opposite, Leydig cells from hypogonadotropic-hypogonadal rats characterized by low LH-cAMP, testosterone, and ATP production, reduced markers of mitogenesis and mitofusion (Mfn1/2, Opa1) associated with reduced mtDNA content. Altogether results underline LH-cAMP signaling as an important regulator of mitochondrial physiology arranging mitochondrial dynamics, bioenergetic and steroidogenic function in Leydig cells.
Collapse
Affiliation(s)
- Marija L. J. Medar
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Dijana Z. Marinkovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Zvezdana Kojic
- Institute of Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Alisa P. Becin
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Isidora M. Starovlah
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embriology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Silvana A. Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Tatjana S. Kostic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
- Correspondence: ; Tel.: +381-63-514-716
| |
Collapse
|
6
|
Painter DT, van der Wouden F, Laubichler MD, Youn H. Quantifying simultaneous innovations in evolutionary medicine. Theory Biosci 2020; 139:319-335. [PMID: 33241494 PMCID: PMC7719117 DOI: 10.1007/s12064-020-00333-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023]
Abstract
To what extent do simultaneous innovations occur and are independently from each other? In this paper we use a novel persistent keyword framework to systematically identify innovations in a large corpus containing academic papers in evolutionary medicine between 2007 and 2011. We examine whether innovative papers occurring simultaneously are independent from each other by evaluating the citation and co-authorship information gathered from the corpus metadata. We find that 19 out of 22 simultaneous innovative papers do, in fact, occur independently from each other. In particular, co-authors of simultaneous innovative papers are no more geographically concentrated than the co-authors of similar non-innovative papers in the field. Our result suggests producing innovative work draws from a collective knowledge pool, rather than from knowledge circulating in distinct localized collaboration networks. Therefore, new ideas can appear at multiple locations and with geographically dispersed co-authorship networks. Our findings support the perspective that simultaneous innovations are the outcome of collective behavior.
Collapse
Affiliation(s)
- Deryc T. Painter
- School of Complex Adaptive System, Arizona State University, Tempe, AZ 85281 USA
| | | | - Manfred D. Laubichler
- School of Complex Adaptive System, Arizona State University, Tempe, AZ 85281 USA
- Santa Fe Institute, Santa Fe, NM 87501 USA
| | - Hyejin Youn
- Kellogg School of Management, Northwestern University, Evanston, IL 60208 USA
- Northwestern Institute on Complex Systems, Evanston, IL 60208 USA
- London Mathematical Lab, London, WC2N 6DF UK
| |
Collapse
|
7
|
Humphries BA, Cutter AC, Buschhaus JM, Chen YC, Qyli T, Palagama DSW, Eckley S, Robison TH, Bevoor A, Chiang B, Haley HR, Sahoo S, Spinosa PC, Neale DB, Boppisetti J, Sahoo D, Ghosh P, Lahann J, Ross BD, Yoon E, Luker KE, Luker GD. Enhanced mitochondrial fission suppresses signaling and metastasis in triple-negative breast cancer. Breast Cancer Res 2020; 22:60. [PMID: 32503622 PMCID: PMC7275541 DOI: 10.1186/s13058-020-01301-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mitochondrial dynamics underlies malignant transformation, cancer progression, and response to treatment. Current research presents conflicting evidence for functions of mitochondrial fission and fusion in tumor progression. Here, we investigated how mitochondrial fission and fusion states regulate underlying processes of cancer progression and metastasis in triple-negative breast cancer (TNBC). METHODS We enforced mitochondrial fission and fusion states through chemical or genetic approaches and measured migration and invasion of TNBC cells in 2D and 3D in vitro models. We also utilized kinase translocation reporters (KTRs) to identify single cell effects of mitochondrial state on signaling cascades, PI3K/Akt/mTOR and Ras/Raf/MEK/ERK, commonly activated in TNBC. Furthermore, we determined effects of fission and fusion states on metastasis, bone destruction, and signaling in mouse models of breast cancer. RESULTS Enforcing mitochondrial fission through chemical or genetic approaches inhibited migration, invasion, and metastasis in TNBC. Breast cancer cells with predominantly fissioned mitochondria exhibited reduced activation of Akt and ERK both in vitro and in mouse models of breast cancer. Treatment with leflunomide, a potent activator of mitochondrial fusion proteins, overcame inhibitory effects of fission on migration, signaling, and metastasis. Mining existing datasets for breast cancer revealed that increased expression of genes associated with mitochondrial fission correlated with improved survival in human breast cancer. CONCLUSIONS In TNBC, mitochondrial fission inhibits cellular processes and signaling pathways associated with cancer progression and metastasis. These data suggest that therapies driving mitochondrial fission may benefit patients with breast cancer.
Collapse
Affiliation(s)
- Brock A Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Alyssa C Cutter
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Johanna M Buschhaus
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Forbes Institute for Cancer Discovery, University of Michigan, Ann Arbor, MI, USA
| | - Tonela Qyli
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Dilrukshika S W Palagama
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Samantha Eckley
- Unit for Laboratory Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tanner H Robison
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Avinash Bevoor
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Benjamin Chiang
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Henry R Haley
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Saswat Sahoo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Phillip C Spinosa
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dylan B Neale
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jagadish Boppisetti
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Debashis Sahoo
- Department of Pediatrics, Department of Computer Science and Engineering, Jacob's School of Engineering, Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pradipta Ghosh
- Department of Medicine, Department of Cellular and Molecular Medicine, Rebecca and John Moore Comprehensive Cancer Center, Veterans Affairs Medical Center, University of California San Diego, La Jolla, CA, USA
| | - Joerg Lahann
- Biointerfaces Institute, Departments of Chemical Engineering, Materials Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian D Ross
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Eusik Yoon
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Bonner J, Fisher R, Wilch E, Schutte D, Schutte B. Mitochondrial haplogroups and lifespan in a population isolate. Mitochondrion 2020; 51:62-67. [PMID: 31887371 PMCID: PMC10010630 DOI: 10.1016/j.mito.2019.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 01/16/2023]
Abstract
Physiochemical differences between mitochondrial DNA (mtDNA) haplogroups that favor oxidative phosphorylation efficiency during periods of caloric limitation can lead to lifespan lengthening when food calories are less abundant. For example, prior work demonstrated that older female haplogroup H carriers had modestly lengthened lifespans beyond 60 years during the Great Depression, a time of caloric limitation in North America. The objective of the current study is to replicate the prior findings in an independent cohort that includes both sexes and younger ages. By determining and cross-referencing the mtDNA genotypes of a culturally homogeneous population isolate to the lifespans of their ancestors, we found that between 1930 and 1939, haplogroup H compared to haplogroup U carriers had a modestly lengthened lifespan (3 years) past 60 years (hazard ratio 2.35; CI95 1.41-3.90; p-value: 0.0029). The lifespan-lengthening association was apparent in both sexes but only after the age of 60. Our results provide further support for the role of mitochondrial genetics in lengthening human lifespan.
Collapse
Affiliation(s)
- Joseph Bonner
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States.
| | - Rachel Fisher
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States
| | - Ellen Wilch
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States
| | - Debra Schutte
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States
| | - Brian Schutte
- City of Hope National Medical Center, Center for Precision Medicine, 1500 E. Duarte Road, Duarte, CA 91010-3000, United States; Michigan State University, College of Human Medicine, United States; Wayne State University, College of Nursing, United States; Michigan State University, College of Natural Science, United States
| |
Collapse
|
9
|
Li G, Qin Y. Mitochondrial translation factor EF4 regulates oxidative phosphorylation complexes and the production of ROS. Free Radic Res 2019; 52:1250-1255. [PMID: 30693836 DOI: 10.1080/10715762.2018.1479063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondrial translation system executes the biosynthesis of mitochondrial DNA encoded polypeptides that are the core subunits of oxidative phosphorylation complexes. Recently, we reported that elongation factor 4 (EF4) is a key quality control factor in bacterial and mitochondrial translation regulating tRNA translocation and modulating cellular responses via a direct cross-talk with cytoplasmic translation machinery. Here, we made a brief review on mtEF4-regulated mitochondrial translation, respiratory chain biogenesis and the production of reactive oxygen species (ROS). We will discuss the influence of mtEF4 on the electron transport chain, especially at respiratory chain complex IV, which could result in cytochrome c peroxidase formation, electron leakage from electron transport chain and ROS increase.
Collapse
Affiliation(s)
- Guichen Li
- a Key Laboratory of RNA Biology , Institute of Biophysics, Chinese Academy of Sciences , Chaoyang District , Beijing , China
| | - Yan Qin
- a Key Laboratory of RNA Biology , Institute of Biophysics, Chinese Academy of Sciences , Chaoyang District , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
10
|
Xie K, Sheppard A. Dietary Micronutrients Promote Neuronal Differentiation by Modulating the Mitochondrial‐Nuclear Dialogue. Bioessays 2018; 40:e1800051. [DOI: 10.1002/bies.201800051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Kui Xie
- Liggins InstituteUniversity of AucklandGraftonAuckland 1023New Zealand
| | - Allan Sheppard
- Liggins InstituteUniversity of AucklandGraftonAuckland 1023New Zealand
| |
Collapse
|
11
|
Cuperfain AB, Zhang ZL, Kennedy JL, Gonçalves VF. The Complex Interaction of Mitochondrial Genetics and Mitochondrial Pathways in Psychiatric Disease. MOLECULAR NEUROPSYCHIATRY 2018; 4:52-69. [PMID: 29998118 DOI: 10.1159/000488031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022]
Abstract
While accounting for only 2% of the body's weight, the brain utilizes up to 20% of the body's total energy. Not surprisingly, metabolic dysfunction and energy supply-and-demand mismatch have been implicated in a variety of neurological and psychiatric disorders. Mitochondria are responsible for providing the brain with most of its energetic demands, and the brain uses glucose as its exclusive energy source. Exploring the role of mitochondrial dysfunction in the etiology of psychiatric disease is a promising avenue to investigate further. Genetic analysis of mitochondrial activity is a cornerstone in understanding disease pathogenesis related to metabolic dysfunction. In concert with neuroimaging and pathological study, genetics provides an important bridge between biochemical findings and clinical correlates in psychiatric disease. Mitochondrial genetics has several unique aspects to its analysis, and corresponding special considerations. Here, we review the components of mitochondrial genetic analysis - nuclear DNA, mitochon-drial DNA, mitochondrial pathways, pseudogenes, nuclear-mitochondrial mismatch, and microRNAs - that could contribute to an observable clinical phenotype. Throughout, we highlight psychiatric diseases that can arise due to dysfunction in these processes, with a focus on schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Ari B Cuperfain
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Zhi Lun Zhang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - James L Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vanessa F Gonçalves
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Neuroscience Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Houston BA, Judge DP, Brown E, Halushka M, Barouch LA. Giant Ring Mitochondria in a Patient With Heart Failure and Cerebral White Matter Disease Resulting From an MT-TL1 Mitochondrial Gene Mutation. J Card Fail 2017. [PMID: 28624653 DOI: 10.1016/j.cardfail.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The presence of giant ring mitochondria on endomyocardial biopsy is rarely reported and does not have a well-defined differential diagnosis. METHODS We report the case of a 54-year-old man with heart failure and preserved ejection fraction and left ventricular hypertrophy, initially thought to have an infiltrative cardiomyopathy. RESULTS The patient was found to have extensive vacuolization caused by giant ring mitochondria on endomyocardial biopsy. Mitochondrial genetic testing revealed an A3243G mutation in the MT-TL1 gene, which is a mitochondrial encoded transfer RNA-leucine molecule. CONCLUSIONS Mitochondrial disease should be considered in patients presenting with unexplained cardiomyopathy and skeletal muscle, cerebral, or metabolic abnormalities. In this case, the presence of unexpected extensive cardiomyocyte vacuolization and giant, ring-shaped mitochondria on endomyocardial biopsy prompted mitochondrial genetic testing, which ultimately resulted in the correct diagnosis and treatment.
Collapse
Affiliation(s)
- Brian A Houston
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.
| | - Daniel P Judge
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emily Brown
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marc Halushka
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland
| | - Lili A Barouch
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Fyn kinase regulates translation in mammalian mitochondria. Biochim Biophys Acta Gen Subj 2016; 1861:533-540. [PMID: 27940153 DOI: 10.1016/j.bbagen.2016.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitochondrial translation machinery solely exists for the synthesis of 13 mitochondrially-encoded subunits of the oxidative phosphorylation (OXPHOS) complexes in mammals. Therefore, it plays a critical role in mitochondrial energy production. However, regulation of the mitochondrial translation machinery is still poorly understood. In comprehensive proteomics studies with normal and diseased tissues and cell lines, we and others have found the majority of mitochondrial ribosomal proteins (MRPs) to be phosphorylated. Neither the kinases for these phosphorylation events nor their specific roles in mitochondrial translation are known. METHODS Mitochondrial kinases are responsible for phosphorylation of MRPs enriched from bovine mitoplasts by strong cation-exchange chromatography and identified by mass spectrometry-based proteomics analyses of kinase rich fractions. Phosphorylation of recombinant MRPs and 55S ribosomes was assessed by in vitro phosphorylation assays using the kinase-rich fractions. The effect of identified kinase on OXPHOS and mitochondrial translation was assessed by various cell biological and immunoblotting approaches. RESULTS Here, we provide the first evidence for the association of Fyn kinase, a Src family kinase, with mitochondrial translation components and its involvement in phosphorylation of 55S ribosomal proteins in vitro. Modulation of Fyn expression in human cell lines has provided a link between mitochondrial translation and energy metabolism, which was evident by the changes in 13 mitochondrially encoded subunits of OXPHOS complexes. CONCLUSIONS AND GENERAL SIGNIFICANCE Our findings suggest that Fyn kinase is part of a complex mechanism that regulates protein synthesis and OXPHOS possibly by tyrosine phosphorylation of translation components in mammalian mitochondria.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This article provides an overview, highlighting recent findings, of a major mechanism of gene regulation and its relevance to the pathophysiology of heart failure. RECENT FINDINGS The syndrome of heart failure is a complex and highly prevalent condition, one in which the heart undergoes substantial structural remodeling. Triggered by a wide range of disease-related cues, heart failure pathophysiology is governed by both genetic and epigenetic events. Epigenetic mechanisms, such as chromatin/DNA modifications and noncoding RNAs, have emerged as molecular transducers of environmental stimuli to control gene expression. Here, we emphasize metabolic milieu, aging, and hemodynamic stress as they impact the epigenetic landscape of the myocardium. SUMMARY Recent studies in multiple fields, including cancer, stem cells, development, and cardiovascular biology, have uncovered biochemical ties linking epigenetic machinery and cellular energetics and mitochondrial function. Elucidation of these connections will afford molecular insights into long-established epidemiological observations. With time, exploitation of the epigenetic machinery therapeutically may emerge with clinical relevance.
Collapse
Affiliation(s)
- Soo Young Kim
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi Morales
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas G. Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Lee S, Lee KS, Huh S, Liu S, Lee DY, Hong SH, Yu K, Lu B. Polo Kinase Phosphorylates Miro to Control ER-Mitochondria Contact Sites and Mitochondrial Ca(2+) Homeostasis in Neural Stem Cell Development. Dev Cell 2016; 37:174-189. [PMID: 27093086 PMCID: PMC4839004 DOI: 10.1016/j.devcel.2016.03.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 02/08/2023]
Abstract
Mitochondria play central roles in buffering intracellular Ca²⁺ transients. While basal mitochondrial Ca²⁺ (Ca²⁺ mito) is needed to maintain organellar physiology, Ca²⁺ mito overload can lead to cell death. How Ca²⁺ mito homeostasis is regulated is not well understood. Here we show that Miro, a known component of the mitochondrial transport machinery, regulates Drosophila neural stem cell (NSC) development through Ca²⁺ mito homeostasis control, independent of its role in mitochondrial transport. Miro interacts with Ca²⁺ transporters at the ER-mitochondria contact site (ERMCS). Its inactivation causes Ca²⁺ mito depletion and metabolic impairment, whereas its overexpression results in Ca²⁺ mito overload, mitochondrial morphology change, and apoptotic response. Both conditions impaired NSC lineage progression. Ca²⁺ mito homeostasis is influenced by Polo-mediated phosphorylation of a conserved residue in Miro, which positively regulates Miro localization to, and the integrity of, ERMCS. Our results elucidate a regulatory mechanism underlying Ca²⁺ mito homeostasis and how its dysregulation may affect NSC metabolism/development and contribute to disease.
Collapse
Affiliation(s)
- Seongsoo Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- BioNanotechnology Research Center, Korea Research Institute of Biotechnology and Bioscience, Daejeon, 305-806, Korea
| | - Kyu-Sun Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- BioNanotechnology Research Center, Korea Research Institute of Biotechnology and Bioscience, Daejeon, 305-806, Korea
| | - Sungun Huh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Song Liu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Do-Yeon Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung Hyun Hong
- BioNanotechnology Research Center, Korea Research Institute of Biotechnology and Bioscience, Daejeon, 305-806, Korea
| | - Kweon Yu
- BioNanotechnology Research Center, Korea Research Institute of Biotechnology and Bioscience, Daejeon, 305-806, Korea
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Kim YS, Kim EK, Hwang JW, Seo IB, Jang JH, Son S, Jeong JH, Moon SH, Jeon BT, Park PJ. Characterization of the antioxidant fraction of Trapa japonica pericarp and its hepatic protective effects in vitro and in vivo. Food Funct 2016; 7:1689-99. [PMID: 26956465 DOI: 10.1039/c5fo01405k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ethanolic extract of Trapa japonica pericarp (TJP) and its various fractions were evaluated for their antioxidant potential. The ethyl acetate fraction (EF) from TJP exhibited significant antioxidant and protective effects against tert-butylhydroperoxide (t-BHP)-induced oxidative damage in vitro and in vivo. In vitro experimental results showed that the EF suppressed t-BHP-induced damage in Chang cells by inhibiting reactive oxygen species generation and regulating the mitochondrial membrane potential. Furthermore, western blot analysis showed that the EF effectively inhibited t-BHP-induced apoptosis by suppressing caspase-3, caspase-7, caspase-8, and caspase-9. In the in vivo study, the EF significantly prevented serum increases in glutamate oxaloacetate transaminase and glutamate pyruvate transaminase and hepatic malondialdehyde levels caused by t-BHP. Furthermore, the EF markedly increased hepatic superoxide dismutase, catalase, and glutathione levels. Histopathological examinations further confirmed that the EF could protect the liver from t-BHP-induced oxidative injury. These findings indicate that the EF could be developed as a therapy or to prevent hepatic injury.
Collapse
Affiliation(s)
- Yon-Suk Kim
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Korea.
| | - Eun-Kyung Kim
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Korea. and Nokyong Research Center, Konkuk University, Chungju, 380-701, Korea
| | - Jin-Woo Hwang
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Korea.
| | - Il-Bok Seo
- Department of Anatomy, College of Oriental Medicine, Semyung University, Jecheon, 390-711, Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, 363-883, Korea
| | - Sangkeun Son
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, 363-883, Korea
| | - Jae-Hyun Jeong
- Department of Food Science and Technology, Korea National University of Transportation, Chungju, 380-702, Korea
| | - Sang-Ho Moon
- Nokyong Research Center, Konkuk University, Chungju, 380-701, Korea
| | - Byong-Tae Jeon
- Nokyong Research Center, Konkuk University, Chungju, 380-701, Korea
| | - Pyo-Jam Park
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Korea. and Nokyong Research Center, Konkuk University, Chungju, 380-701, Korea
| |
Collapse
|
17
|
Min-Wen JC, Jun-Hao ET, Shyh-Chang N. Stem cell mitochondria during aging. Semin Cell Dev Biol 2016; 52:110-8. [PMID: 26851627 DOI: 10.1016/j.semcdb.2016.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/06/2023]
Abstract
Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.
Collapse
Affiliation(s)
- Jason Chua Min-Wen
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore
| | - Elwin Tan Jun-Hao
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore
| | - Ng Shyh-Chang
- Stem Cell & Regenerative Biology, Genome Institute of Singapore, 60 Biopolis St, S138672, Singapore.
| |
Collapse
|
18
|
González-Recio O, Toro MA, Bach A. Past, present, and future of epigenetics applied to livestock breeding. Front Genet 2015; 6:305. [PMID: 26442117 PMCID: PMC4585102 DOI: 10.3389/fgene.2015.00305] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/12/2015] [Indexed: 11/27/2022] Open
Abstract
This article reviews the concept of Lamarckian inheritance and the use of the term epigenetics in the field of animal genetics. Epigenetics was first coined by Conrad Hal Waddington (1905–1975), who derived the term from the Aristotelian word epigenesis. There exists some controversy around the word epigenetics and its broad definition. It includes any modification of the expression of genes due to factors other than mutation in the DNA sequence. This involves DNA methylation, post-translational modification of histones, but also linked to regulation of gene expression by non-coding RNAs, genome instabilities or any other force that could modify a phenotype. There is little evidence of the existence of transgenerational epigenetic inheritance in mammals, which may commonly be confounded with environmental forces acting simultaneously on an individual, her developing fetus and the germ cell lines of the latter, although it could have an important role in the cellular energetic status of cells. Finally, we review some of the scarce literature on the use of epigenetics in animal breeding programs.
Collapse
Affiliation(s)
- Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid Spain
| | - Miguel A Toro
- Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid Madrid, Spain
| | - Alex Bach
- Department of Ruminant Production, Institució Catalana de Recerca i Estudis Avançats - Institut de Recerca i Tecnologia Agroalimentàries, Caldes de Montbui Spain
| |
Collapse
|
19
|
Castegna A, Iacobazzi V, Infantino V. The mitochondrial side of epigenetics. Physiol Genomics 2015; 47:299-307. [PMID: 26038395 DOI: 10.1152/physiolgenomics.00096.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
The bidirectional cross talk between nuclear and mitochondrial DNA is essential for cellular homeostasis and proper functioning. Mitochondria depend on nuclear contribution for much of their functionality, but their activities have been recently recognized to control nuclear gene expression as well as cell function in many different ways. Epigenetic mechanisms, which tune gene expression in response to environmental stimuli, are key regulatory events at the interplay between mitochondrial and nuclear interactions. Emerging findings indicate that epigenetic factors can be targets or instruments of mitochondrial-nuclear cross talk. Additionally, the growing interest into mtDNA epigenetic modifications opens new avenues into the interaction mechanisms between mitochondria and nucleus. In this review we summarize the points of mitochondrial and nuclear reciprocal control involving epigenetic factors, focusing on the role of mitochondrial genome and metabolism in shaping epigenetic modulation of gene expression. The relevance of the new findings on the methylation of mtDNA is also highlighted as a new frontier in the complex scenario of mitochondrial-nuclear communication.
Collapse
Affiliation(s)
- Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," Bari, Italy;
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy; Center of Excellence in Comparative Genomics, University of Bari "Aldo Moro," Bari, Italy; CNR Institute of Biomembranes and Bioenergetics, Bari, Italy; and
| | | |
Collapse
|
20
|
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7:33. [PMID: 25861393 PMCID: PMC4389409 DOI: 10.1186/s13148-015-0068-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Wim Vanden Berghe
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
21
|
Szumiel I. From radioresistance to radiosensitivity: In vitro evolution of L5178Y lymphoma. Int J Radiat Biol 2015; 91:465-71. [PMID: 25651039 DOI: 10.3109/09553002.2014.996263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To discuss the possible reasons for the loss of tumourigenicity and the acquisition of new phenotypic features (among them, sensitivity to X and UVC radiations) as a result of in vitro cultivation of L5178Y lymphoma cells. RESULTS Ten years ago the phenotypic differences between LY-R (original L5178Y maintained in vivo and examined in vitro) and LY-S lines were reviewed in detail by the author. The loss of tumourigenicity of LY-R cells upon in vitro cultivation accompanying the acquirement of the LY-S phenotype had been described earlier by Beer et al. (1983). In spite of their common origin, the sublines were shown to differ in their relative sensitivity to a number of DNA damaging agents and in numerous other features. Here, selected differences between LY-R and LY-S lines are briefly reviewed. It is proposed that Wallace's concept (2010a) that mitochondria are the interface between environmental conditions and the genome may explain the LY-R-LY-S conversion under prolonged in vitro cultivation. CONCLUSION The differences between the LY lines were probably of epigenetic rather than genetic character. The properties of LY-R cells changed as a result of exposure to an oxic in vitro milieu. The changes could be preconditioned by heteroplasmy and the selection of cells endowed with mitochondria best fitted to a high oxygen-low carbon dioxide environment.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
22
|
|
23
|
Mitochondria-derived reactive oxygen species mediate caspase-dependent and -independent neuronal deaths. Mol Cell Neurosci 2014; 63:13-23. [PMID: 25239010 DOI: 10.1016/j.mcn.2014.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress are implicated in many neurodegenerative diseases. Mitochondria-targeted drugs that effectively decrease oxidative stress, protect mitochondrial energetics, and prevent neuronal loss may therefore lend therapeutic benefit to these currently incurable diseases. To investigate the efficacy of such drugs, we examined the effects of mitochondria-targeted antioxidants MitoQ10 and MitoE2 on neuronal death induced by neurotrophin deficiency. Our results indicate that MitoQ10 blocked apoptosis by preventing increased mitochondria-derived reactive oxygen species (ROS) and subsequent cytochrome c release, caspase activation, and mitochondrial damage in nerve growth factor (NGF)-deprived sympathetic neurons, while MitoE2 was largely ineffective. In this paradigm, the most proximal point of divergence was the ability of MitoQ10 to scavenge mitochondrial superoxide (O2(-)). MitoQ10 also prevented caspase-independent neuronal death in these cells demonstrating that the mitochondrial redox state significantly influences both apoptotic and nonapoptotic pathways leading to neuronal death. We suggest that mitochondria-targeted antioxidants may provide tools for delineating the role and significance of mitochondrial ROS in neuronal death and provide a new therapeutic approach for neurodegenerative conditions involving trophic factor deficits and multiple modes of cell death.
Collapse
|
24
|
Shenderov BA, Midtvedt T. Epigenomic programing: a future way to health? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2014; 25:24145. [PMID: 24829553 PMCID: PMC4016746 DOI: 10.3402/mehd.v25.24145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/29/2022]
Abstract
It is now generally accepted that the ‘central genome dogma’ (i.e. a causal chain going from DNA to RNA to proteins and downstream to biological functions) should be replaced by the ‘fluid genome dogma’, that is, complex feed-forward and feed-back cycles that interconnect organism and environment by epigenomic programing – and reprograming – throughout life and at all levels, sometimes also down the generations. The epigenomic programing is the net sum of interactions derived from own metabolism and microbiota as well as external factors such as diet, pharmaceuticals, environmental compounds, and so on. It is a growing body of results indicating that many chronic metabolic and degenerative disorders and diseases – often called ‘civilization diseases’ – are initiated and/or influenced upon by non-optimal epigenomic programing, often taking place early in life. In this context, the first 1,000 days of life – from conception into early infancy – is often called the most important period of life. The following sections present some major mechanisms for epigenomic programing as well as some factors assumed to be of importance. The need for more information about own genome and metagenome, as well as a substantial lack of adequate information regarding dietary and environmental databases are also commented upon. However, the mere fact that we can influence epigenomic health programing opens up the way for prophylactic and therapeutic interventions. The authors underline the importance of creating a ‘Human Gut Microbiota and Epigenomic Platform’ in order to facilitate interdisciplinary collaborations among scientists and clinicians engaged in host microbial ecology, nutrition, metagenomics, epigenomics and metabolomics as well as in disease epidemiology, prevention and treatment.
Collapse
Affiliation(s)
- Boris A Shenderov
- Laboratory of Biology of Bifidobacteria, Moscow Research Institute of Epidemiology and Microbiology after G.N. Gabrichevsky, Moscow, Russia
| | - Tore Midtvedt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
25
|
Yadava N, Schneider SS, Jerry DJ, Kim C. Impaired mitochondrial metabolism and mammary carcinogenesis. J Mammary Gland Biol Neoplasia 2013; 18:75-87. [PMID: 23269521 PMCID: PMC3581737 DOI: 10.1007/s10911-012-9271-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial oxidative metabolism plays a key role in meeting energetic demands of cells by oxidative phosphorylation (OxPhos). Here, we have briefly discussed (a) the dynamic relationship that exists among glycolysis, the tricarboxylic acid (TCA) cycle, and OxPhos; (b) the evidence of impaired OxPhos (i.e. mitochondrial dysfunction) in breast cancer; (c) the mechanisms by which mitochondrial dysfunction can predispose to cancer; and (d) the effects of host and environmental factors that can negatively affect mitochondrial function. We propose that impaired OxPhos could increase susceptibility to breast cancer via suppression of the p53 pathway, which plays a critical role in preventing tumorigenesis. OxPhos is sensitive to a large number of factors intrinsic to the host (e.g. inflammation) as well as environmental exposures (e.g. pesticides, herbicides and other compounds). Polymorphisms in over 143 genes can also influence the OxPhos system. Therefore, declining mitochondrial oxidative metabolism with age due to host and environmental exposures could be a common mechanism predisposing to cancer.
Collapse
Affiliation(s)
- Nagendra Yadava
- Pioneer Valley Life Sciences Institute, Springfield, MA 01107, USA.
| | | | | | | |
Collapse
|
26
|
Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J 2013; 40:385-394. [PMID: 24082366 PMCID: PMC3783139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specific to the cardiovascular system. Mitochondrial cardiomyopathy can be described as a myocardial condition characterized by abnormal heart-muscle structure, function, or both, secondary to genetic defects involving the mitochondrial respiratory chain, in the absence of concomitant coronary artery disease, hypertension, valvular disease, or congenital heart disease. The typical cardiac manifestations of mitochondrial disease--hypertrophic and dilated cardiomyopathy, arrhythmias, left ventricular myocardial noncompaction, and heart failure--can worsen acutely during a metabolic crisis. The optimal management of mitochondrial disease necessitates the involvement of a multidisciplinary team, careful evaluations of patients, and the anticipation of iatrogenic and noniatrogenic complications. In this review, we describe the complex pathophysiology of mitochondrial disease and its clinical features. We focus on current practice in the diagnosis and treatment of patients with mitochondrial cardiomyopathy, including optimal therapeutic management and long-term monitoring. We hope that this information will serve as a guide for practicing cardiologists who treat patients thus affected.
Collapse
Affiliation(s)
- Deborah E Meyers
- Advanced Heart Failure Program (Dr. Meyers), Texas Heart Institute, Houston, Texas 77030; Department of Internal Medicine (Dr. Basha), Hurley Medical Center, Michigan State University, Flint, Michigan 48503; and Mitochondrial Disease Center (Dr. Koenig), Department of Pediatrics, Division of Child & Adolescent Neurology, The University of Texas Medical School at Houston, Houston, Texas 77030
| | | | | |
Collapse
|
27
|
Abstract
Contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Although mutations in mitochondrial genes are common in cancer cells, they do not inactivate mitochondrial energy metabolism but rather alter the mitochondrial bioenergetic and biosynthetic state. These states communicate with the nucleus through mitochondrial 'retrograde signalling' to modulate signal transduction pathways, transcriptional circuits and chromatin structure to meet the perceived mitochondrial and nuclear requirements of the cancer cell. Cancer cells then reprogramme adjacent stromal cells to optimize the cancer cell environment. These alterations activate out-of-context programmes that are important in development, stress response, wound healing and nutritional status.
Collapse
Affiliation(s)
- Douglas C Wallace
- Children's Hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
28
|
Valero T, Moschopoulou G, Mayor-Lopez L, Kintzios S. Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells. Neurochem Int 2012; 61:1333-43. [PMID: 23022608 DOI: 10.1016/j.neuint.2012.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 01/25/2023]
Abstract
Reactive oxygen species (ROS) have been widely considered as harmful for cell development and as promoters of cell aging by increasing oxidative stress. However, ROS have an important role in cell signaling and they have been demonstrated to be beneficial by triggering hormetic signals, which could protect the organism from later insults. In the present study, N2a murine neuroblastoma cells were used as a paradigm of cell-specific (neural) differentiation partly mediated by ROS. Differentiation was triggered by the established treatments of serum starvation, forskolin or dibutyryl cyclic AMP. A marked differentiation, expressed as the development of neurites, was detected by fixation and staining with coomassie brilliant blue after 48 h treatment. This was accompanied by an increase in mitochondrial mass detected by mitotracker green staining, an increased expression of the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1-alpha (PGC-1α) and succinate dehydrogenase activity as detected by MTT. In line with these results, an increase in free radicals, specifically superoxide anion, was detected in differentiating cells by flow cytometry. Superoxide scavenging by MnTBAP and MAPK inhibition by PD98059 partially reversed differentiation and mitochondrial biogenesis. In this way, we demonstrated that mitochondrial biogenesis and differentiation are mediated by superoxide and MAPK cues. Our data suggest that differentiation and mitochondrial biogenesis in N2a cells are part of a hormetic response which is triggered by a modest increase of superoxide anion concentration within the mitochondria.
Collapse
Affiliation(s)
- T Valero
- Department of Physiology and Morphology, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | | | | | | |
Collapse
|
29
|
Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacol Res 2012; 65:565-76. [DOI: 10.1016/j.phrs.2012.03.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 02/07/2023]
|
30
|
Ou XH, Li S, Wang ZB, Li M, Quan S, Xing F, Guo L, Chao SB, Chen Z, Liang XW, Hou Y, Schatten H, Sun QY. Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod 2012; 27:2130-45. [DOI: 10.1093/humrep/des137] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Mitochondrial Respiration Is Decreased in Rat Kidney Following Fetal Exposure to a MaternalLow-ProteinDiet. J Nutr Metab 2012; 2012:989037. [PMID: 22536494 PMCID: PMC3321454 DOI: 10.1155/2012/989037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/04/2012] [Indexed: 01/20/2023] Open
Abstract
Maternal protein restriction in rat pregnancy is associated with impaired renal development and age-related loss of renal function in the resulting offspring. Pregnant rats were fed either control or low-protein (LP) diets, and kidneys from their male offspring were collected at 4, 13, or 16 weeks of age. Mitochondrial state 3 and state 4 respiratory rates were decreased by a third in the LP exposed adults. The reduction in mitochondrial function was not explained by complex IV deficiency or altered expression of the complex I subunits that are typically associated with mitochondrial dysfunction. Similarly, there was no evidence that LP-exposure resulted in greater oxidative damage to the kidney, differential expression of ATP synthetase β-subunit, and ATP-ADP translocase 1. mRNA expression of uncoupling protein 2 was increased in adult rats exposed to LP in utero, but there was no evidence of differential expression at the protein level. Exposure to maternal undernutrition is associated with a decrease in mitochondrial respiration in kidneys of adult rats. In the absence of gross disturbances in respiratory chain protein expression, programming of coupling efficiency may explain the long-term impact of the maternal diet.
Collapse
|
32
|
Alinsug MV, Chen FF, Luo M, Tai R, Jiang L, Wu K. Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light. PLoS One 2012; 7:e30846. [PMID: 22363501 PMCID: PMC3281883 DOI: 10.1371/journal.pone.0030846] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
Class II histone deacetylases in humans and other model organisms undergo nucleocytoplasmic shuttling. This unique functional regulatory mechanism has been well elucidated in eukaryotic organisms except in plant systems. In this study, we have paved the baseline evidence for the cytoplasmic and nuclear localization of Class II HDAs as well as their mRNA expression patterns. RT-PCR analysis on the different vegetative parts and developmental stages reveal that Class II HDAs are ubiquitously expressed in all tissues with minimal developmental specificity. Moreover, stable and transient expression assays using HDA-YFP/GFP fusion constructs indicate cytoplasmic localization of HDA5, HDA8, and HDA14 further suggesting their potential for nuclear transport and deacetylating organellar and cytoplasmic proteins. Organelle markers and stains confirm HDA14 to abound in the mitochondria and chloroplasts while HDA5 localizes in the ER. HDA15, on the other hand, shuttles in and out of the nucleus upon light exposure. In the absence of light, it is exported out of the nucleus where further re-exposition to light treatments signals its nuclear import. Unlike HDA5 which binds with 14-3-3 proteins, HDA15 fails to interact with these chaperones. Instead, HDA15 relies on its own nuclear localization and export signals to navigate its subcellular compartmentalization classifying it as a Class IIb HDA. Our study indicates that nucleocytoplasmic shuttling is indeed a hallmark for all eukaryotic Class II histone deacetylases.
Collapse
Affiliation(s)
- Malona V. Alinsug
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Fang Fang Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming Luo
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ready Tai
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med 2011; 32:279-304. [PMID: 22020114 DOI: 10.1016/j.mam.2011.10.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/11/2011] [Indexed: 12/14/2022]
Abstract
Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by co-ordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as carnosine, carnitines or polyphenols, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. In this review we discuss the most current and up to date understanding of the possible signaling mechanisms by which caloric restriction, as well hormetic caloric restriction-mimetics compounds by activating vitagenes can enhance defensive systems involved in bioenergetic and stress resistance homeostasis with consequent impact on longevity processes.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, University of Catania, Viale Andrea Doria, 95100 Catania, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Cellular Stress Responses, Mitostress and Carnitine Insufficiencies as Critical Determinants in Aging and Neurodegenerative Disorders: Role of Hormesis and Vitagenes. Neurochem Res 2010; 35:1880-915. [DOI: 10.1007/s11064-010-0307-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 02/07/2023]
|