1
|
Chauhan W, Sudharshan SJ, Kafle S, Zennadi R. SnoRNAs: Exploring Their Implication in Human Diseases. Int J Mol Sci 2024; 25:7202. [PMID: 39000310 PMCID: PMC11240930 DOI: 10.3390/ijms25137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2'-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies.
Collapse
Affiliation(s)
| | | | | | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas St., Memphis, TN 38103, USA; (W.C.); (S.S.); (S.K.)
| |
Collapse
|
2
|
Analysis of Expression Pattern of snoRNAs in Human Cells A549 Infected by Influenza A Virus. Int J Mol Sci 2022; 23:ijms232213666. [PMID: 36430145 PMCID: PMC9696202 DOI: 10.3390/ijms232213666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a highly expressed class of non-coding RNAs known for their role in guiding post-transcriptional modifications of ribosomal RNAs and small nuclear RNAs. Emerging studies suggest that snoRNAs are also implicated in regulating other vital cellular processes, such as pre-mRNA splicing and 3'-processing of mRNAs, and in the development of cancer and viral infections. There is an emerging body of evidence for specific snoRNA's involvement in the optimal replication of RNA viruses. In order to investigate the expression pattern of snoRNAs during influenza A viral infection, we performed RNA sequencing analysis of the A549 human cell line infected by influenza virus A/Puerto Rico/8/1934 (H1N1). We identified 66 that were upregulated and 55 that were downregulated in response to influenza A virus infection. The increased expression of most C/D-box snoRNAs was associated with elevated levels of 5'- and 3'-short RNAs derived from this snoRNA. Analysis of the poly(A)+ RNA sequencing data indicated that most of the differentially expressed snoRNAs synthesis was not correlated with the corresponding host genes expression. Furthermore, influenza A viral infection led to an imbalance in the expression of genes responsible for C/D small nucleolar ribonucleoprotein particles' biogenesis. In summary, our results indicate that the expression pattern of snoRNAs in A549 cells is significantly altered during influenza A viral infection.
Collapse
|
3
|
Šimonová A, Romanská V, Benoni B, Škubník K, Šmerdová L, Prochazkova M, Spustová K, Moravčík O, Gahurova L, Pačes J, Plevka P, Cahova H. Honeybee iflaviruses pack specific tRNA fragments from host cells in their virions. Chembiochem 2022; 23:e202200281. [PMID: 35771148 PMCID: PMC9544947 DOI: 10.1002/cbic.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Indexed: 11/15/2022]
Abstract
The Picornavirales include viruses that infect vertebrates, insects, and plants. It was believed that they pack only their genomic mRNA in the particles; thus, we envisaged these viruses as excellent model systems for studies of mRNA modifications. We used LC–MS to analyze digested RNA isolated from particles of the sacbrood and deformed wing iflaviruses as well as of the echovirus 18 and rhinovirus 2 picornaviruses. Whereas in the picornavirus RNAs we detected only N6‐methyladenosine and 2’‐O‐methylated nucleosides, the iflavirus RNAs contained a wide range of methylated nucleosides, such as 1‐methyladenosine (m1A) and 5‐methylcytidine (m5C). Mapping of m1A and m5C through RNA sequencing of the SBV and DWV RNAs revealed the presence of tRNA molecules. Both modifications were detected only in tRNA. Further analysis revealed that tRNAs are present in form of 3’ and 5’ fragments and they are packed selectively. Moreover, these tRNAs are typically packed by other viruses.
Collapse
Affiliation(s)
- Anna Šimonová
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Veronika Romanská
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Barbora Benoni
- Charles University: Univerzita Karlova, First Faculty of Medicine, CZECH REPUBLIC
| | - Karel Škubník
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | - Lenka Šmerdová
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | | | - Kristina Spustová
- IOCB CAS: Ustav organicke chemie a biochemie Akademie ved Ceske republiky, Chemical Biology of Nucleic Acids, CZECH REPUBLIC
| | - Ondřej Moravčík
- Institute of Molecular Genetics Czech Academy of Sciences: Ustav molekularni genetiky Akademie Ved Ceske Republiky, Bioinformatic, CZECH REPUBLIC
| | - Lenka Gahurova
- University of South Bohemia Faculty of Science: Jihoceska Univerzita v Ceskych Budejovicich Prirodovedecka Fakulta, Departement of Molecular Biology, CZECH REPUBLIC
| | - Jan Pačes
- Institute of Molecular Genetics Czech Academy of Sciences: Ustav molekularni genetiky Akademie Ved Ceske Republiky, Bioinformatic, CZECH REPUBLIC
| | - Pavel Plevka
- Masaryk University: Masarykova Univerzita, CEITEC, CZECH REPUBLIC
| | - Hana Cahova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic, CZECH REPUBLIC
| |
Collapse
|
4
|
Peña N, Zhang W, Watkins C, Halucha M, Alshammary H, Hernandez MM, Liu WC, Albrecht RA, Garcia-Sastre A, Simon V, Katanski C, Pan T. Profiling Selective Packaging of Host RNA and Viral RNA Modification in SARS-CoV-2 Viral Preparations. Front Cell Dev Biol 2022; 10:768356. [PMID: 35186917 PMCID: PMC8851031 DOI: 10.3389/fcell.2022.768356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses package host RNAs in their virions which are associated with a range of functions in the viral life cycle. Previous transcriptomic profiling of host RNA packaging mostly focused on retroviruses. Which host RNAs are packaged in other viruses at the transcriptome level has not been thoroughly examined. Here we perform proof-of-concept studies using both small RNA and large RNA sequencing of six different SARS-CoV-2 viral isolates grown on VeroE6 cells to profile host RNAs present in cell free viral preparations and to explore SARS-CoV-2 genomic RNA modifications. We find selective enrichment of specific host transfer RNAs (tRNAs), tRNA fragments and signal recognition particle (SRP) RNA in SARS-CoV-2 viral preparations. Different viral preparations contain the same set of host RNAs, suggesting a common mechanism of packaging. We estimate that a single SARS-CoV-2 particle likely contains up to one SRP RNA and four tRNA molecules. We identify tRNA modification differences between the tRNAs present in viral preparations and those in the uninfected VeroE6 host cells. Furthermore, we find uncharacterized candidate modifications in the SARS-CoV-2 genomic RNA. Our results reveal an under-studied aspect of viral-host interactions that may be explored for viral therapeutics.
Collapse
Affiliation(s)
- Noah Peña
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Christopher Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Mateusz Halucha
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew M. Hernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Wen-Chun Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Randy A. Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christopher Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
- Committee on Microbiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Iarovaia OV, Ioudinkova ES, Velichko AK, Razin SV. Manipulation of Cellular Processes via Nucleolus Hijaking in the Course of Viral Infection in Mammals. Cells 2021; 10:cells10071597. [PMID: 34202380 PMCID: PMC8303250 DOI: 10.3390/cells10071597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Due to their exceptional simplicity of organization, viruses rely on the resources, molecular mechanisms, macromolecular complexes, regulatory pathways, and functional compartments of the host cell for an effective infection process. The nucleolus plays an important role in the process of interaction between the virus and the infected cell. The interactions of viral proteins and nucleic acids with the nucleolus during the infection process are universal phenomena and have been described for almost all taxonomic groups. During infection, proteins of the nucleolus in association with viral components can be directly used for the processes of replication and transcription of viral nucleic acids and the assembly and transport of viral particles. In the course of a viral infection, the usurpation of the nucleolus functions occurs and the usurpation is accompanied by profound changes in ribosome biogenesis. Recent studies have demonstrated that the nucleolus is a multifunctional and dynamic compartment. In addition to the biogenesis of ribosomes, it is involved in regulating the cell cycle and apoptosis, responding to cellular stress, repairing DNA, and transcribing RNA polymerase II-dependent genes. A viral infection can be accompanied by targeted transport of viral proteins to the nucleolus, massive release of resident proteins of the nucleolus into the nucleoplasm and cytoplasm, the movement of non-nucleolar proteins into the nucleolar compartment, and the temporary localization of viral nucleic acids in the nucleolus. The interaction of viral and nucleolar proteins interferes with canonical and non-canonical functions of the nucleolus and results in a change in the physiology of the host cell: cell cycle arrest, intensification or arrest of ribosome biogenesis, induction or inhibition of apoptosis, and the modification of signaling cascades involved in the stress response. The nucleolus is, therefore, an important target during viral infection. In this review, we discuss the functional impact of viral proteins and nucleic acid interaction with the nucleolus during infection.
Collapse
|
6
|
Thoner TW, Ye X, Karijolich J, Ogden KM. Reovirus Low-Density Particles Package Cellular RNA. Viruses 2021; 13:v13061096. [PMID: 34201386 PMCID: PMC8228547 DOI: 10.3390/v13061096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 12/02/2022] Open
Abstract
Packaging of segmented, double-stranded RNA viral genomes requires coordination of viral proteins and RNA segments. For mammalian orthoreovirus (reovirus), evidence suggests either all ten or zero viral RNA segments are simultaneously packaged in a highly coordinated process hypothesized to exclude host RNA. Accordingly, reovirus generates genome-containing virions and “genomeless” top component particles. Whether reovirus virions or top component particles package host RNA is unknown. To gain insight into reovirus packaging potential and mechanisms, we employed next-generation RNA-sequencing to define the RNA content of enriched reovirus particles. Reovirus virions exclusively packaged viral double-stranded RNA. In contrast, reovirus top component particles contained similar proportions but reduced amounts of viral double-stranded RNA and were selectively enriched for numerous host RNA species, especially short, non-polyadenylated transcripts. Host RNA selection was not dependent on RNA abundance in the cell, and specifically enriched host RNAs varied for two reovirus strains and were not selected solely by the viral RNA polymerase. Collectively, these findings indicate that genome packaging into reovirus virions is exquisitely selective, while incorporation of host RNAs into top component particles is differentially selective and may contribute to or result from inefficient viral RNA packaging.
Collapse
Affiliation(s)
- Timothy W. Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
| | - Kristen M. Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (T.W.T.J.); (X.Y.); (J.K.)
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
7
|
Abstract
Viral infection can dramatically change the gene expression landscape of the host cell, yet little is known regarding changes in noncoding gene transcription by RNA polymerase III (RNAPIII). Among these are transfer RNAs (tRNAs), which are fundamental in protein translation, yet whose gene regulatory features remain largely undefined in mammalian cells. Transfer RNAs (tRNAs) are transcribed by RNA polymerase III (RNAPIII) and play a central role in decoding our genome, yet their expression and noncanonical function remain understudied. Many DNA tumor viruses enhance the activity of RNAPIII, yet whether infection alters tRNA expression is largely unknown. Here, we present the first genome-wide analysis of how viral infection alters the tRNAome. Using a tRNA-specific sequencing method (DM-tRNA-seq), we find that the murine gammaherpesvirus MHV68 induces global changes in premature tRNA (pre-tRNA) expression, with 14% of tRNA genes upregulated more than 3-fold, indicating that differential tRNA gene induction is a characteristic of DNA virus infection. Elevated pre-tRNA expression corresponds to increased RNAPIII occupancy for the subset of tRNA genes tested; additionally, posttranscriptional mechanisms contribute to the accumulation of pre-tRNA species. We find increased abundance of tRNA fragments derived from pre-tRNAs upregulated by viral infection, suggesting that noncanonical tRNA cleavage is also affected. Furthermore, pre-tRNA accumulation, but not RNAPIII recruitment, requires gammaherpesvirus-induced degradation of host mRNAs by the virally encoded mRNA endonuclease muSOX. We hypothesize that depletion of pre-tRNA maturation or turnover machinery contributes to robust accumulation of full-length pre-tRNAs in infected cells. Collectively, these findings reveal pervasive changes to tRNA expression during DNA virus infection and highlight the potential of using viruses to explore tRNA biology.
Collapse
|
8
|
Roithová A, Feketová Z, Vaňáčová Š, Staněk D. DIS3L2 and LSm proteins are involved in the surveillance of Sm ring-deficient snRNAs. Nucleic Acids Res 2020; 48:6184-6197. [PMID: 32374871 PMCID: PMC7293007 DOI: 10.1093/nar/gkaa301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 01/31/2023] Open
Abstract
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo a complex maturation pathway containing multiple steps in the nucleus and in the cytoplasm. snRNP biogenesis is strictly proofread and several quality control checkpoints are placed along the pathway. Here, we analyzed the fate of small nuclear RNAs (snRNAs) that are unable to acquire a ring of Sm proteins. We showed that snRNAs lacking the Sm ring are unstable and accumulate in P-bodies in an LSm1-dependent manner. We further provide evidence that defective snRNAs without the Sm binding site are uridylated at the 3′ end and associate with DIS3L2 3′→5′ exoribonuclease and LSm proteins. Finally, inhibition of 5′→3′ exoribonuclease XRN1 increases association of ΔSm snRNAs with DIS3L2, which indicates competition and compensation between these two degradation enzymes. Together, we provide evidence that defective snRNAs without the Sm ring are uridylated and degraded by alternative pathways involving either DIS3L2 or LSm proteins and XRN1.
Collapse
Affiliation(s)
- Adriana Roithová
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.,Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Feketová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00 Brno, Czech Republic
| | - Štěpánka Vaňáčová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00 Brno, Czech Republic
| | - David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
9
|
5-Methylcytosine RNA Modifications Promote Retrovirus Replication in an ALYREF Reader Protein-Dependent Manner. J Virol 2020; 94:JVI.00544-20. [PMID: 32321818 DOI: 10.1128/jvi.00544-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022] Open
Abstract
RNA modifications play diverse roles in regulating RNA function, and viruses co-opt these pathways for their own benefit. While recent studies have highlighted the importance of N 6-methyladenosine (m6A)-the most abundant mRNA modification-in regulating retrovirus replication, the identification and function of other RNA modifications in viral biology have been largely unexplored. Here, we characterized the RNA modifications present in a model retrovirus, murine leukemia virus (MLV), using mass spectrometry and sequencing. We found that 5-methylcytosine (m5C) is highly enriched in viral genomic RNA relative to uninfected cellular mRNAs, and we mapped at single-nucleotide resolution the m5C sites, which are located in multiple clusters throughout the MLV genome. Further, we showed that the m5C reader protein ALYREF plays an important role in regulating MLV replication. Together, our results provide a complete m5C profile in a virus and its function in a eukaryotic mRNA.IMPORTANCE Over 130 modifications have been identified in cellular RNAs, which play critical roles in many cellular processes, from modulating RNA stability to altering translation efficiency. One such modification, 5-methylcytosine, is relatively abundant in mammalian mRNAs, but its precise location and function are not well understood. In this study, we identified unexpectedly high levels of m5C in the murine leukemia virus RNA, precisely mapped its location, and showed that ALYREF, a reader protein that specifically recognizes m5C, regulates viral production. Together, our findings provide a high-resolution atlas of m5C in murine leukemia virus and reveal a functional role of m5C in viral replication.
Collapse
|
10
|
Yang A, Shao TJ, Bofill-De Ros X, Lian C, Villanueva P, Dai L, Gu S. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat Commun 2020; 11:2765. [PMID: 32488030 PMCID: PMC7265490 DOI: 10.1038/s41467-020-16533-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) associated with Argonaute proteins (AGOs) regulate gene expression in mammals. miRNA 3' ends are subject to frequent sequence modifications, which have been proposed to affect miRNA stability. However, the underlying mechanism is not well understood. Here, by genetic and biochemical studies as well as deep sequencing analyses, we find that AGO mutations disrupting miRNA 3' binding are sufficient to trigger extensive miRNA 3' modifications in HEK293T cells and in cancer patients. Comparing these modifications in TUT4, TUT7 and DIS3L2 knockout cells, we find that TUT7 is more robust than TUT4 in oligouridylating mature miRNAs, which in turn leads to their degradation by the DIS3L2 exonuclease. Our findings indicate a decay machinery removing AGO-associated miRNAs with an exposed 3' end. A set of endogenous miRNAs including miR-7, miR-222 and miR-769 are targeted by this machinery presumably due to target-directed miRNA degradation.
Collapse
Affiliation(s)
- Acong Yang
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Chuanjiang Lian
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- State Key Laboratory of Veterinary Biotechnology and Heilongjiang Province Key Laboratory for Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Patricia Villanueva
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lisheng Dai
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section; RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
11
|
The Perlman syndrome DIS3L2 exoribonuclease safeguards endoplasmic reticulum-targeted mRNA translation and calcium ion homeostasis. Nat Commun 2020; 11:2619. [PMID: 32457326 PMCID: PMC7250864 DOI: 10.1038/s41467-020-16418-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
DIS3L2-mediated decay (DMD) is a surveillance pathway for certain non-coding RNAs (ncRNAs) including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and RMRP. While mutations in DIS3L2 are associated with Perlman syndrome, the biological significance of impaired DMD is obscure and pathological RNAs have not been identified. Here, by ribosome profiling (Ribo-seq) we find specific dysregulation of endoplasmic reticulum (ER)-targeted mRNA translation in DIS3L2-deficient cells. Mechanistically, DMD functions in the quality control of the 7SL ncRNA component of the signal recognition particle (SRP) required for ER-targeted translation. Upon DIS3L2 loss, sustained 3’-end uridylation of aberrant 7SL RNA impacts ER-targeted translation and causes ER calcium leakage. Consequently, elevated intracellular calcium in DIS3L2-deficient cells activates calcium signaling response genes and perturbs ESC differentiation. Thus, DMD is required to safeguard ER-targeted mRNA translation, intracellular calcium homeostasis, and stem cell differentiation. The DIS3L2 exonuclease degrades aberrant 7SL RNAs tagged by an oligouridine 3′-tail. Here the authors analyze DIS3L2 knockout mouse embryonic stem cells and suggest that DIS3L2-mediated quality control of 7SL RNA is important for ER-mediated translation and calcium ion homeostasis.
Collapse
|
12
|
Valkov N, Das S. Y RNAs: Biogenesis, Function and Implications for the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:327-342. [PMID: 32285422 DOI: 10.1007/978-981-15-1671-9_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, progress in the field of high-throughput sequencing technology and its application to a wide variety of biological specimens has greatly advanced the discovery and cataloging of a diverse set of non-coding RNAs (ncRNAs) that have been found to have unexpected biological functions. Y RNAs are an emerging class of highly conserved, small ncRNAs. There is a growing number of reports in the literature demonstrating that Y RNAs and their fragments are not just random degradation products but are themselves bioactive molecules. This review will outline what is currently known about Y RNA including biogenesis, structure and functional roles. In addition, we will provide an overview of studies reporting the presence and functions attributed to Y RNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Nedyalka Valkov
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saumya Das
- Cardiovascular Research Center of Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Abstract
The numerous quality control pathways that target defective ribonucleic acids (RNAs) for degradation play key roles in shaping mammalian transcriptomes and preventing disease. These pathways monitor most steps in the biogenesis of both noncoding RNAs (ncRNAs) and protein-coding messenger RNAs (mRNAs), degrading ncRNAs that fail to form functional complexes with one or more proteins and eliminating mRNAs that encode abnormal, potentially toxic proteins. Mutations in components of diverse RNA surveillance pathways manifest as disease. Some mutations are characterized by increased interferon production, suggesting that a major role of these pathways is to prevent aberrant cellular RNAs from being recognized as "non-self." Other mutations are common in cancer, or result in developmental defects, revealing the importance of RNA surveillance to cell and organismal function.
Collapse
Affiliation(s)
- Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
14
|
LC/MS analysis and deep sequencing reveal the accurate RNA composition in the HIV-1 virion. Sci Rep 2019; 9:8697. [PMID: 31213632 PMCID: PMC6581912 DOI: 10.1038/s41598-019-45079-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 01/23/2023] Open
Abstract
The mechanism of action of various viruses has been the primary focus of many studies. Yet, the data on RNA modifications in any type of virus are scarce. Methods for the sensitive analysis of RNA modifications have been developed only recently and they have not been applied to viruses. In particular, the RNA composition of HIV-1 virions has never been determined with sufficiently exact methods. Here, we reveal that the RNA of HIV-1 virions contains surprisingly high amount of the 1-methyladenosine. We are the first to use a liquid chromatography-mass spectrometry analysis (LC/MS) of virion RNA, which we combined with m1A profiling and deep sequencing. We found that m1A was present in the tRNA, but not in the genomic HIV-1 RNA and the abundant 7SL RNA. We were able to calculate that an HIV-1 virion contains per 2 copies of genomic RNA and 14 copies of 7SL RNA also 770 copies of tRNA, which is approximately 10 times more than thus far expected. These new insights into the composition of the HIV-1 virion can help in future studies to identify the role of nonprimer tRNAs in retroviruses. Moreover, we present a promising new tool for studying the compositions of virions.
Collapse
|
15
|
Pirouz M, Munafò M, Ebrahimi AG, Choe J, Gregory RI. Exonuclease requirements for mammalian ribosomal RNA biogenesis and surveillance. Nat Struct Mol Biol 2019; 26:490-500. [PMID: 31160785 PMCID: PMC6554070 DOI: 10.1038/s41594-019-0234-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
Ribosomal RNA (rRNA) biogenesis is a multistep process requiring several nuclear and cytoplasmic exonucleases. The exact processing steps for mammalian 5.8S rRNA remain obscure. Here, using loss-of-function approaches in mouse embryonic stem cells and deep sequencing of rRNA intermediates, we investigate at nucleotide resolution the requirements of exonucleases known to be involved in 5.8S maturation, and explore the role of the Perlman syndrome-associated 3’-5’ exonuclease Dis3l2 in rRNA processing. We uncover a novel cytoplasmic intermediate that we name ‘7SB’ rRNA that is generated through sequential processing by distinct exosome complexes. 7SB rRNA can be oligoadenylated by an unknown enzyme and/or oligouridylated by TUT4/7 and subsequently processed by Dis3l2 and Eri1. Moreover, exosome depletion triggers Dis3l2-mediated decay (DMD) as a surveillance pathway for rRNAs. Our data identify previously unknown 5.8S rRNA processing steps and provide nucleotide level insight into the exonuclease requirements for mammalian rRNA processing.
Collapse
Affiliation(s)
- Mehdi Pirouz
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marzia Munafò
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Aref G Ebrahimi
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Junho Choe
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.,Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, USA. .,Harvard Initiative for RNA Medicine, Boston, MA, USA. .,Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
16
|
Pirouz M, Ebrahimi AG, Gregory RI. Unraveling 3'-end RNA uridylation at nucleotide resolution. Methods 2019; 155:10-19. [PMID: 30395968 PMCID: PMC6387850 DOI: 10.1016/j.ymeth.2018.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022] Open
Abstract
Post-transcriptional modification of RNA, the so-called 'Epitranscriptome', can regulate RNA structure, stability, localization, and function. Numerous modifications have been identified in virtually all classes of RNAs, including messenger RNAs (mRNAs), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), microRNAs (miRNAs), and other noncoding RNAs (ncRNAs). These modifications may occur internally (by base or sugar modifications) and include RNA methylation at different nucleotide positions, or by the addition of various nucleotides at the 3'-end of certain transcripts by a family of terminal nucleotidylyl transferases. Developing methods to specifically and accurately detect and map these modifications is essential for understanding the molecular function(s) of individual RNA modifications and also for identifying and characterizing the proteins that may read, write, or erase them. Here, we focus on the characterization of RNA species targeted by 3' terminal uridylyl transferases (TUTases) (TUT4/7, also known as Zcchc11/6) and a 3'-5' exoribonuclease, Dis3l2, in the recently identified Dis3l2-mediated decay (DMD) pathway - a dedicated quality control pathway for a subset of ncRNAs. We describe the detailed methods used to precisely identify 3'-end modifications at nucleotide level resolution with a particular focus on the U1 and U2 small nuclear RNA (snRNA) components of the Spliceosome. These tools can be applied to investigate any RNA of interest and should facilitate studies aimed at elucidating the functional relevance of 3'-end modifications.
Collapse
Affiliation(s)
- Mehdi Pirouz
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Aref G Ebrahimi
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Stamm S, Lodmell JS. C/D box snoRNAs in viral infections: RNA viruses use old dogs for new tricks. Noncoding RNA Res 2019; 4:46-53. [PMID: 31193534 PMCID: PMC6533054 DOI: 10.1016/j.ncrna.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022] Open
Abstract
C/D box snoRNAs (SNORDs) are a highly expressed class of non-coding RNAs. Besides their well-established role in rRNA modification, C/D box snoRNAs form protein complexes devoid of fibrillarin and regulate pre-mRNA splicing and polyadenylation of numerous genes. There is an emerging body of evidence for functional interactions between RNA viruses and C/D box snoRNAs. The infectivity of some RNA viruses depends on enzymatically active fibrillarin, and many RNA viral proteins associate with nucleolin or nucleophosmin, suggesting that viruses benefit from their cytosolic accumulation. These interactions are likely reflected by morphological changes in the nucleolus, often leading to relocalization of nucleolar proteins and ncRNAs to the cytosol that are a characteristic feature of viral infections. Knock-down studies have also shown that RNA viruses need specific C/D box snoRNAs for optimal replication, suggesting that RNA viruses benefit from gene expression programs regulated by SNORDs, or that viruses have evolved “new” uses for these humble ncRNAs to advance their prospects during infection.
Collapse
Affiliation(s)
- Stefan Stamm
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40536, USA
| | - J Stephen Lodmell
- Division of Biological Sciences and Center for Biomolecular Structure and Dynamics, The University of Montana, Missoula, MT, USA
| |
Collapse
|
18
|
Jin D, Musier-Forsyth K. Role of host tRNAs and aminoacyl-tRNA synthetases in retroviral replication. J Biol Chem 2019; 294:5352-5364. [PMID: 30700559 DOI: 10.1074/jbc.rev118.002957] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The lifecycle of retroviruses and retrotransposons includes a reverse transcription step, wherein dsDNA is synthesized from genomic RNA for subsequent insertion into the host genome. Retroviruses and retrotransposons commonly appropriate major components of the host cell translational machinery, including cellular tRNAs, which are exploited as reverse transcription primers. Nonpriming functions of tRNAs have also been proposed, such as in HIV-1 virion assembly, and tRNA-derived fragments may also be involved in retrovirus and retrotransposon replication. Moreover, host cellular proteins regulate retroviral replication by binding to tRNAs and thereby affecting various steps in the viral lifecycle. For example, in some cases, tRNA primer selection is facilitated by cognate aminoacyl-tRNA synthetases (ARSs), which bind tRNAs and ligate them to their corresponding amino acids, but also have many known nontranslational functions. Multi-omic studies have revealed that ARSs interact with both viral proteins and RNAs and potentially regulate retroviral replication. Here, we review the currently known roles of tRNAs and their derivatives in retroviral and retrotransposon replication and shed light on the roles of tRNA-binding proteins such as ARSs in this process.
Collapse
Affiliation(s)
- Danni Jin
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | - Karin Musier-Forsyth
- From the Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
19
|
Driedonks TAP, Nolte-'t Hoen ENM. Circulating Y-RNAs in Extracellular Vesicles and Ribonucleoprotein Complexes; Implications for the Immune System. Front Immunol 2019; 9:3164. [PMID: 30697216 PMCID: PMC6340977 DOI: 10.3389/fimmu.2018.03164] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
The exchange of extracellular vesicles (EV) between immune cells plays a role in various immune regulatory processes. EV are nano-sized lipid bilayer-enclosed structures that contain a multitude of proteins and small non-coding RNA molecules. Of the various RNA classes present in EV, miRNAs have been most intensively studied because of their known gene-regulatory functions. These miRNAs constitute only a minor part of all EV-enclosed RNA, whereas other 20–200 nt sized non-coding RNAs were shown to be abundantly present in EV. Several of these mid-sized RNAs perform basic functions in cells, but their function in EV remains elusive. One prominent class of mid-sized extracellular RNAs associated with EV are the Y-RNAs. This family of highly conserved non-coding RNAs was initially discovered as RNA component of circulating ribonucleoprotein autoantigens in serum from Systemic Lupus Erythematosus and Sjögren's Syndrome patients. Y-RNA has been implicated in cellular processes such as DNA replication and RNA quality control. In recent years, Y-RNA has been abundantly detected in EV from multiple different cell lines and biofluids, and also in murine and human retroviruses. Accumulating evidence suggests that EV-associated Y-RNA may be involved in a range of immune-related processes, including inflammation, immune suppression, and establishment of the tumor microenvironment. Moreover, changes in plasma levels of extracellular Y-RNA have been associated with various diseases. Recent studies have aimed to address the mechanisms underlying their release and function. We for example showed that the levels of EV-associated Y-RNA released by immune cells can be regulated by Toll-like receptor (TLR) signaling. Combined, these data have triggered increased interest in extracellular Y-RNAs. In this review, we provide an overview of studies reporting the occurrence of extracellular Y-RNAs, as well as signaling properties and immune-related functions attributed to these RNAs. We list RNA-binding proteins currently known to interact with Y-RNAs and evaluate their occurrence in EV. In parallel, we discuss technical challenges in assessing whether extracellular Y-RNAs are contained in ribonucleoprotein complexes or EV. By integrating the current knowledge on extracellular Y-RNA we further reflect on the biomarker potential of Y-RNA and their role in immune cell communication and immunopathology.
Collapse
Affiliation(s)
- Tom A P Driedonks
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Luan S, Luo J, Liu H, Li Z. Regulation of RNA decay and cellular function by 3'-5' exoribonuclease DIS3L2. RNA Biol 2019; 16:160-165. [PMID: 30638126 DOI: 10.1080/15476286.2018.1564466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DIS3L2, in which mutations have been linked to Perlman syndrome, is an RNA-binding protein with 3'-5' exoribonuclease activity. It contains two CSD domains and one S1 domain, all of which are RNA-binding domains, and one RNB domain that is responsible for the exoribonuclease activity. The 3' polyuridine of RNA substrates can serve as a degradation signal for DIS3L2. Because DIS3L2 is predominantly localized in the cytoplasm, it can recognize, bind, and mediate the degradation of cytoplasmic uridylated RNA, including pre-microRNA, mature microRNA, mRNA, and some other non-coding RNAs. Therefore, DIS3L2 plays an important role in cytoplasmic RNA surveillance and decay. DIS3L2 is involved in multiple biological and physiological processes such as cell division, proliferation, differentiation, and apoptosis. Nonetheless, the function of DIS3L2, especially its association with cancer, remains largely unknown. We summarize here the RNA substrates degraded by DIS3L2 with its exonucleolytic activity, together with the corresponding biological functions it is implicated in. Furthermore, we discuss whether DIS3L2 can function independently of its 3'-5' exoribonuclease activity, as well as its potential tumor-suppressive or oncogenic roles during cancer progression.
Collapse
Affiliation(s)
- Siyu Luan
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Junyun Luo
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Hui Liu
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Zhaoyong Li
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| |
Collapse
|
21
|
Salter JD, Polevoda B, Bennett RP, Smith HC. Regulation of Antiviral Innate Immunity Through APOBEC Ribonucleoprotein Complexes. Subcell Biochem 2019; 93:193-219. [PMID: 31939152 DOI: 10.1007/978-3-030-28151-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process. Once inside infected cells, A3G must bind to nascent ssDNA reverse transcripts for dC to dU base modification gene editing. In this chapter we will discuss data indicating that ssDNA deaminase activity of A3G is regulated by RNA binding to A3G and ribonucleoprotein complex formation along with evidence suggesting that RNA-selective interactions with A3G are temporally and mechanistically important in this process.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Bogdan Polevoda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Ryan P Bennett
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Harold C Smith
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA. .,Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
22
|
Zigáčková D, Vaňáčová Š. The role of 3' end uridylation in RNA metabolism and cellular physiology. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0171. [PMID: 30397107 DOI: 10.1098/rstb.2018.0171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
Most eukaryotic RNAs are posttranscriptionally modified. The majority of modifications promote RNA maturation, others may regulate function and stability. The 3' terminal non-templated oligouridylation is a widespread modification affecting many cellular RNAs at some stage of their life cycle. It has diverse roles in RNA metabolism. The most prevalent is the regulation of stability and quality control. On the cellular and organismal level, it plays a critical role in a number of pathways, such as cell cycle regulation, cell death, development or viral infection. Defects in uridylation have been linked to several diseases. This review summarizes the current knowledge about the role of the 3' terminal oligo(U)-tailing in biology of various RNAs in eukaryotes and describes key factors involved in these pathways.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dagmar Zigáčková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5/A35, Brno 625 00, Czech Republic
| |
Collapse
|
23
|
Zhang X, Ma X, Jing S, Zhang H, Zhang Y. Non-coding RNAs and retroviruses. Retrovirology 2018; 15:20. [PMID: 29426337 PMCID: PMC5807749 DOI: 10.1186/s12977-018-0403-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Retroviruses can cause severe diseases such as cancer and acquired immunodeficiency syndrome. A unique feature in the life cycle of retroviruses is that their RNA genome is reverse transcribed into double-stranded DNA, which then integrates into the host genome to exploit the host machinery for their benefits. The metazoan genome encodes numerous non-coding RNAs (ncRNA), which act as key regulators in essential cellular processes such as antiviral response. The development of next-generation sequencing technology has greatly accelerated the detection of ncRNAs from viruses and their hosts. ncRNAs have been shown to play important roles in the retroviral life cycle and virus–host interactions. Here, we review recent advances in ncRNA studies with special focus on those have changed our understanding of retroviruses or provided novel strategies to treat retrovirus-related diseases. Many ncRNAs such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are involved in the late phase of the retroviral life cycle. However, their roles in the early phase of viral replication merit further investigations.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuliang Jing
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yijun Zhang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
24
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
25
|
Single-Particle Discrimination of Retroviruses from Extracellular Vesicles by Nanoscale Flow Cytometry. Sci Rep 2017; 7:17769. [PMID: 29259315 PMCID: PMC5736735 DOI: 10.1038/s41598-017-18227-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022] Open
Abstract
Retroviruses and small EVs overlap in size, buoyant densities, refractive indices and share many cell-derived surface markers making them virtually indistinguishable by standard biochemical methods. This poses a significant challenge when purifying retroviruses for downstream analyses or for phenotypic characterization studies of markers on individual virions given that EVs are a major contaminant of retroviral preparations. Nanoscale flow cytometry (NFC), also called flow virometry, is an adaptation of flow cytometry technology for the analysis of individual nanoparticles such as extracellular vesicles (EVs) and retroviruses. In this study we systematically optimized NFC parameters for the detection of retroviral particles in the range of 115–130 nm, including viral production, sample labeling, laser power and voltage settings. By using the retroviral envelope glycoprotein as a selection marker, and evaluating a number of fluorescent dyes and labeling methods, we demonstrate that it is possible to confidently distinguish retroviruses from small EVs by NFC. Our findings make it now possible to individually phenotype genetically modified retroviral particles that express a fluorescent envelope glycoprotein without removing EV contaminants from the sample.
Collapse
|
26
|
Itano MS, Arnion H, Wolin SL, Simon SM. Recruitment of 7SL RNA to assembling HIV-1 virus-like particles. Traffic 2017; 19:36-43. [PMID: 29044909 DOI: 10.1111/tra.12536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/28/2022]
Abstract
Retroviruses incorporate specific host cell RNAs into virions. In particular, the host noncoding 7SL RNA is highly abundant in all examined retroviruses compared with its cellular levels or relative to common mRNAs such as actin. Using live cell imaging techniques, we have determined that the 7SL RNA does not arrive with the HIV-1 RNA genome. Instead, it is recruited contemporaneously with assembly of the protein HIV-1 Gag at the plasma membrane. Further, we demonstrate that complexes of 7SL RNA and Gag can be immunoprecipitated from both cytosolic and plasma membrane fractions. This indicates that 7SL RNAs likely interact with Gag prior to high-order Gag multimerization at the plasma membrane. Thus, the interactions between Gag and the host RNA 7SL occur independent of the interactions between Gag and the host endosomal sorting complex required for transport (ESCRT) proteins, which are recruited temporarily at late stages of assembly. The interactions of 7SL and Gag are also independent of interactions of Gag and the HIV-1 genome which are seen on the plasma membrane prior to assembly of Gag.
Collapse
Affiliation(s)
- Michelle S Itano
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| | - Helene Arnion
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York
| |
Collapse
|
27
|
Abstract
Numerous surveillance pathways sculpt eukaryotic transcriptomes by degrading unneeded, defective, and potentially harmful noncoding RNAs (ncRNAs). Because aberrant and excess ncRNAs are largely degraded by exoribonucleases, a key characteristic of these RNAs is an accessible, protein-free 5' or 3' end. Most exoribonucleases function with cofactors that recognize ncRNAs with accessible 5' or 3' ends and/or increase the availability of these ends. Noncoding RNA surveillance pathways were first described in budding yeast, and there are now high-resolution structures of many components of the yeast pathways and significant mechanistic understanding as to how they function. Studies in human cells are revealing the ways in which these pathways both resemble and differ from their yeast counterparts, and are also uncovering numerous pathways that lack equivalents in budding yeast. In this review, we describe both the well-studied pathways uncovered in yeast and the new concepts that are emerging from studies in mammalian cells. We also discuss the ways in which surveillance pathways compete with chaperone proteins that transiently protect nascent ncRNA ends from exoribonucleases, with partner proteins that sequester these ends within RNPs, and with end modification pathways that protect the ends of some ncRNAs from nucleases.
Collapse
Affiliation(s)
- Cedric Belair
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Soyeong Sim
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Frederick , Maryland 21702 , United States
| |
Collapse
|
28
|
Abstract
Cells release vesicles containing selectively packaged cargo, including RNA, into the extracellular environment. Prior studies have identified RNA inside extracellular vesicles (EVs), but due to limitations of conventional sequencing methods, highly structured and posttranscriptionally modified RNA species were not effectively captured. Using an alternative sequencing approach (thermostable group II intron reverse transcriptase sequencing, TGIRT-seq), we found that EVs contain abundant small noncoding RNA species, including full-length transfer RNAs and Y RNAs. Using a knockout cell line, we obtained evidence that the RNA-binding protein YBX1 plays a role in sorting small noncoding RNAs into a subpopulation of EVs termed exosomes. These experiments expand our understanding of EV–RNA composition and provide insights into how RNA is sorted into EVs for cellular export. RNA is secreted from cells enclosed within extracellular vesicles (EVs). Defining the RNA composition of EVs is challenging due to their coisolation with contaminants, lack of knowledge of the mechanisms of RNA sorting into EVs, and limitations of conventional RNA-sequencing methods. Here we present our observations using thermostable group II intron reverse transcriptase sequencing (TGIRT-seq) to characterize the RNA extracted from HEK293T cell EVs isolated by flotation gradient ultracentrifugation and from exosomes containing the tetraspanin CD63 further purified from the gradient fractions by immunoisolation. We found that EV-associated transcripts are dominated by full-length, mature transfer RNAs (tRNAs) and other small noncoding RNAs (ncRNAs) encapsulated within vesicles. A substantial proportion of the reads mapping to protein-coding genes, long ncRNAs, and antisense RNAs were due to DNA contamination on the surface of vesicles. Nevertheless, sequences mapping to spliced mRNAs were identified within HEK293T cell EVs and exosomes, among the most abundant being transcripts containing a 5′ terminal oligopyrimidine (5′ TOP) motif. Our results indicate that the RNA-binding protein YBX1, which is required for the sorting of selected miRNAs into exosomes, plays a role in the sorting of highly abundant small ncRNA species, including tRNAs, Y RNAs, and Vault RNAs. Finally, we obtained evidence for an EV-specific tRNA modification, perhaps indicating a role for posttranscriptional modification in the sorting of some RNA species into EVs. Our results suggest that EVs and exosomes could play a role in the purging and intercellular transfer of excess free RNAs, including full-length tRNAs and other small ncRNAs.
Collapse
|
29
|
Molleston JM, Sabin LR, Moy RH, Menghani SV, Rausch K, Gordesky-Gold B, Hopkins KC, Zhou R, Jensen TH, Wilusz JE, Cherry S. A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes Dev 2017; 30:1658-70. [PMID: 27474443 PMCID: PMC4973295 DOI: 10.1101/gad.284604.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
Abstract
Here, Molleston et al. find that signals from viral infections repurpose TRAMP complex components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses. RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3′-to-5′ RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5–Air1/2–Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3′ untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses.
Collapse
Affiliation(s)
- Jerome M Molleston
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Leah R Sabin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ryan H Moy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Sanjay V Menghani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Keiko Rausch
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Beth Gordesky-Gold
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kaycie C Hopkins
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Rui Zhou
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
30
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
31
|
Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors. Viruses 2016; 8:v8090257. [PMID: 27657110 PMCID: PMC5035971 DOI: 10.3390/v8090257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag-Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison.
Collapse
|
32
|
Ustianenko D, Pasulka J, Feketova Z, Bednarik L, Zigackova D, Fortova A, Zavolan M, Vanacova S. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J 2016; 35:2179-2191. [PMID: 27647875 PMCID: PMC5069555 DOI: 10.15252/embj.201694857] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/19/2016] [Indexed: 11/19/2022] Open
Abstract
Uridylation of various cellular RNA species at the 3′ end has been generally linked to RNA degradation. In mammals, uridylated pre‐let‐7 miRNAs and mRNAs are targeted by the 3′ to 5′ exoribonuclease DIS3L2. Mutations in DIS3L2 have been associated with Perlman syndrome and with Wilms tumor susceptibility. Using in vivo cross‐linking and immunoprecipitation (CLIP) method, we discovered the DIS3L2‐dependent cytoplasmic uridylome of human cells. We found a broad spectrum of uridylated RNAs including rRNAs, snRNAs, snoRNAs, tRNAs, vault, 7SL, Y RNAs, mRNAs, lncRNAs, and transcripts from pseudogenes. The unifying features of most of these identified RNAs are aberrant processing and the presence of stable secondary structures. Most importantly, we demonstrate that uridylation mediates DIS3L2 degradation of short RNA polymerase II‐derived RNAs. Our findings establish the role of DIS3L2 and oligouridylation as the cytoplasmic quality control for highly structured ncRNAs.
Collapse
Affiliation(s)
- Dmytro Ustianenko
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Josef Pasulka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Feketova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lukas Bednarik
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dagmar Zigackova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Andrea Fortova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mihaela Zavolan
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Stepanka Vanacova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
33
|
Ferrer M, Henriet S, Chamontin C, Lainé S, Mougel M. From Cells to Virus Particles: Quantitative Methods to Monitor RNA Packaging. Viruses 2016; 8:v8080239. [PMID: 27556480 PMCID: PMC4997601 DOI: 10.3390/v8080239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
In cells, positive strand RNA viruses, such as Retroviridae, must selectively recognize their full-length RNA genome among abundant cellular RNAs to assemble and release particles. How viruses coordinate the intracellular trafficking of both RNA and protein components to the assembly sites of infectious particles at the cell surface remains a long-standing question. The mechanisms ensuring packaging of genomic RNA are essential for viral infectivity. Since RNA packaging impacts on several essential functions of retroviral replication such as RNA dimerization, translation and recombination events, there are many studies that require the determination of RNA packaging efficiency and/or RNA packaging ability. Studies of RNA encapsidation rely upon techniques for the identification and quantification of RNA species packaged by the virus. This review focuses on the different approaches available to monitor RNA packaging: Northern blot analysis, ribonuclease protection assay and quantitative reverse transcriptase-coupled polymerase chain reaction as well as the most recent RNA imaging and sequencing technologies. Advantages, disadvantages and limitations of these approaches will be discussed in order to help the investigator to choose the most appropriate technique. Although the review was written with the prototypic simple murine leukemia virus (MLV) and complex human immunodeficiency virus type 1 (HIV-1) in mind, the techniques were described in order to benefit to a larger community.
Collapse
Affiliation(s)
- Mireia Ferrer
- CPBS, CNRS, Université de Montpellier, 1919 Route de Mende, Montpellier 34293, France.
| | - Simon Henriet
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5018, Norway.
| | - Célia Chamontin
- CPBS, CNRS, Université de Montpellier, 1919 Route de Mende, Montpellier 34293, France.
| | - Sébastien Lainé
- CPBS, CNRS, Université de Montpellier, 1919 Route de Mende, Montpellier 34293, France.
| | - Marylène Mougel
- CPBS, CNRS, Université de Montpellier, 1919 Route de Mende, Montpellier 34293, France.
| |
Collapse
|
34
|
Telesnitsky A, Wolin SL. The Host RNAs in Retroviral Particles. Viruses 2016; 8:v8080235. [PMID: 27548206 PMCID: PMC4997597 DOI: 10.3390/v8080235] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA) are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA), some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs' packaging determinants differ from the viral genome's, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA) species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1) reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs-if any-have remained elusive.
Collapse
Affiliation(s)
- Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
35
|
Eckwahl MJ, Arnion H, Kharytonchyk S, Zang T, Bieniasz PD, Telesnitsky A, Wolin SL. Analysis of the human immunodeficiency virus-1 RNA packageome. RNA (NEW YORK, N.Y.) 2016; 22:1228-38. [PMID: 27247436 PMCID: PMC4931115 DOI: 10.1261/rna.057299.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/15/2016] [Indexed: 05/16/2023]
Abstract
All retroviruses package cellular RNAs into virions. Studies of murine leukemia virus (MLV) revealed that the major host cell RNAs encapsidated by this simple retrovirus were LTR retrotransposons and noncoding RNAs (ncRNAs). Several classes of ncRNAs appeared to be packaged by MLV shortly after synthesis, as precursors to tRNAs, small nuclear RNAs, and small nucleolar RNAs were all enriched in virions. To determine the extent to which the human immunodeficiency virus (HIV-1) packages similar RNAs, we used high-throughput sequencing to characterize the RNAs within infectious HIV-1 virions produced in CEM-SS T lymphoblastoid cells. We report that the most abundant cellular RNAs in HIV-1 virions are 7SL RNA and transcripts from numerous divergent and truncated members of the long interspersed element (LINE) and short interspersed element (SINE) families of retrotransposons. We also detected precursors to several tRNAs and small nuclear RNAs as well as transcripts derived from the ribosomal DNA (rDNA) intergenic spacers. We show that packaging of a pre-tRNA requires the nuclear export receptor Exportin 5, indicating that HIV-1 recruits at least some newly made ncRNAs in the cytoplasm. Together, our work identifies the set of RNAs packaged by HIV-1 and reveals that early steps in HIV-1 assembly intersect with host cell ncRNA biogenesis pathways.
Collapse
Affiliation(s)
- Matthew J Eckwahl
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06536, USA
| | - Helene Arnion
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06536, USA
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Trinity Zang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA Laboratory of Retrovirology, The Rockefeller University, New York, New York 10016, USA Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10016, USA
| | - Paul D Bieniasz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA Laboratory of Retrovirology, The Rockefeller University, New York, New York 10016, USA Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10016, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06536, USA Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06536, USA Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
36
|
Wei M, Zhao X, Liu M, Niu M, Seif E, Kleiman L. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells. PLoS One 2016; 11:e0154044. [PMID: 27101286 PMCID: PMC4839721 DOI: 10.1371/journal.pone.0154044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5’ leader and 3’ trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5’ leader and long 3’ trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus.
Collapse
Affiliation(s)
- Min Wei
- School of Medicine, Nankai University, Tianjin, China
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
- * E-mail:
| | - Xia Zhao
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
| | - Mi Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meijuan Niu
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
| | - Elias Seif
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
| | - Lawrence Kleiman
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
| |
Collapse
|
37
|
Abstract
A fascinating aspect of retroviruses is their tendency to nonrandomly incorporate host cell RNAs into virions. In addition to the specific tRNAs that prime reverse transcription, all examined retroviruses selectively package multiple host cell noncoding RNAs (ncRNAs). Many of these ncRNAs appear to be encapsidated shortly after synthesis, before assembling with their normal protein partners. Remarkably, although some packaged ncRNAs, such as pre-tRNAs and the spliceosomal U6 small nuclear RNA (snRNA), were believed to reside exclusively within mammalian nuclei, it was demonstrated recently that the model retrovirus murine leukemia virus (MLV) packages these ncRNAs from a novel pathway in which unneeded nascent ncRNAs are exported to the cytoplasm for degradation. The finding that retroviruses package forms of ncRNAs that are rare in cells suggests several hypotheses for how these RNAs could assist retrovirus assembly and infectivity. Moreover, recent experiments in several laboratories have identified additional ways in which cellular ncRNAs may contribute to the retrovirus life cycle. This review focuses on the ncRNAs that are packaged by retroviruses and the ways in which both encapsidated ncRNAs and other cellular ncRNAs may contribute to retrovirus replication.
Collapse
|
38
|
Tao H, Yang JJ, Zhou X, Deng ZY, Shi KH, Li J. Emerging role of long noncoding RNAs in lung cancer: Current status and future prospects. Respir Med 2015; 110:12-9. [PMID: 26603340 DOI: 10.1016/j.rmed.2015.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide with a 5-year survival rate of less than 15%, despite significant advances in both diagnostic and therapeutic approaches. Combined genomic and transcriptomic sequencing studies have identified numerous genetic driver mutations that are responsible for the development of lung cancer. Importantly, these approaches have also uncovered the widespread expression of "noncoding RNAs" including long noncoding RNAs (LncRNAs), which impact biologic responses through the regulation of mRNA transcription or translation. To date, most studies of the role of noncoding RNAs have focused on LncRNAs, which regulate mRNA translation via the RNA interference pathway. Although many of their attributes, such as patterns of expression, remain largely unknown, LncRNAs have key functions in transcriptional, post-transcriptional, and epigenetic gene regulation. Recent research showed that LncRNAs regulate flowering time in the lung cancer. In this review, we discuss these investigations into long noncoding RNAs were performed almost exclusively in lung cancer. Future work will need to extend these into lung cancer and to analyze how LncRNAs interact to regulate mRNA expression. From a clinical perspective, the targeting of LncRNAs as a novel therapeutic approach will require a deeper understanding of their function and mechanism of action.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiao Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|