1
|
Bryan E, Valsakumar D, Idigo NJ, Warburton M, Webb KM, McLaughlin KA, Spanos C, Lenci S, Major V, Ambrosi C, Andrews S, Baubec T, Rappsilber J, Voigt P. Nucleosomal asymmetry shapes histone mark binding and promotes poising at bivalent domains. Mol Cell 2025; 85:471-489.e12. [PMID: 39731917 DOI: 10.1016/j.molcel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state. Strikingly, the bivalent mark combination further promotes recruitment of specific chromatin proteins that are not recruited by each mark individually, including the lysine acetyltransferase (KAT) complex KAT6B. Knockout of KAT6B blocks neuronal differentiation, demonstrating that KAT6B is critical for proper bivalent gene expression during ESC differentiation. These findings reveal how readout of the bivalent histone marks directly promotes a poised state at developmental genes while highlighting how nucleosomal asymmetry is critical for histone mark readout and function.
Collapse
Affiliation(s)
- Elana Bryan
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Nwamaka J Idigo
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Marie Warburton
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Katy A McLaughlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Simone Lenci
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christina Ambrosi
- Department of Molecular Mechanism of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Tuncay Baubec
- Department of Molecular Mechanism of Disease, University of Zurich, 8057 Zurich, Switzerland; Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
2
|
de Groot AP, de Haan G. How CBX proteins regulate normal and leukemic blood cells. FEBS Lett 2024; 598:2788-2806. [PMID: 38426219 PMCID: PMC11586599 DOI: 10.1002/1873-3468.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Hematopoietic stem cell (HSC) fate decisions are dictated by epigenetic landscapes. The Polycomb Repressive Complex 1 (PRC1) represses genes that induce differentiation, thereby maintaining HSC self-renewal. Depending on which chromobox (CBX) protein (CBX2, CBX4, CBX6, CBX7, or CBX8) is part of the PRC1 complex, HSC fate decisions differ. Here, we review how this occurs. We describe how CBX proteins dictate age-related changes in HSCs and stimulate oncogenic HSC fate decisions, either as canonical PRC1 members or by alternative interactions, including non-epigenetic regulation. CBX2, CBX7, and CBX8 enhance leukemia progression. To target, reprogram, and kill leukemic cells, we suggest and describe multiple therapeutic strategies to interfere with the epigenetic functions of oncogenic CBX proteins. Future studies should clarify to what extent the non-epigenetic function of cytoplasmic CBX proteins is important for normal, aged, and leukemic blood cells.
Collapse
Affiliation(s)
- Anne P. de Groot
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
| | - Gerald de Haan
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
- Department of Hematology, Amsterdam UMCUniversity of AmsterdamThe Netherlands
| |
Collapse
|
3
|
Brown JL, Zhang L, Rocha PP, Kassis JA, Sun MA. Polycomb protein binding and looping in the ON transcriptional state. SCIENCE ADVANCES 2024; 10:eadn1837. [PMID: 38657072 PMCID: PMC11042752 DOI: 10.1126/sciadv.adn1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.
Collapse
Affiliation(s)
- J. Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pedro P. Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith A. Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
5
|
Barrasa JI, Kahn TG, Lundkvist MJ, Schwartz YB. DNA elements tether canonical Polycomb Repressive Complex 1 to human genes. Nucleic Acids Res 2023; 51:11613-11633. [PMID: 37855680 PMCID: PMC10681801 DOI: 10.1093/nar/gkad889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Development of multicellular animals requires epigenetic repression by Polycomb group proteins. The latter assemble in multi-subunit complexes, of which two kinds, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), act together to repress key developmental genes. How PRC1 and PRC2 recognize specific genes remains an open question. Here we report the identification of several hundreds of DNA elements that tether canonical PRC1 to human developmental genes. We use the term tether to describe a process leading to a prominent presence of canonical PRC1 at certain genomic sites, although the complex is unlikely to interact with DNA directly. Detailed analysis indicates that sequence features associated with PRC1 tethering differ from those that favour PRC2 binding. Throughout the genome, the two kinds of sequence features mix in different proportions to yield a gamut of DNA elements that range from those tethering predominantly PRC1 or PRC2 to ones capable of tethering both complexes. The emerging picture is similar to the paradigmatic targeting of Polycomb complexes by Polycomb Response Elements (PREs) of Drosophila but providing for greater plasticity.
Collapse
Affiliation(s)
- Juan I Barrasa
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Tatyana G Kahn
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Moa J Lundkvist
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
6
|
Brown JL, Zhang L, Rocha PP, Kassis JA, Sun MA. Polycomb protein binding and looping mediated by Polycomb Response Elements in the ON transcriptional state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565256. [PMID: 38076900 PMCID: PMC10705551 DOI: 10.1101/2023.11.02.565256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Polycomb group proteins (PcG) mediate epigenetic silencing of important developmental genes and other targets. In Drosophila, canonical PcG-target genes contain Polycomb Response Elements (PREs) that recruit PcG protein complexes including PRC2 that trimethylates H3K27 forming large H3K27me3 domains. In the OFF transcriptional state, PREs loop with each other and this looping strengthens silencing. Here we address the question of what PcG proteins bind to PREs when canonical PcG target genes are expressed, and whether PREs loop when these genes are ON. Our data show that the answer to this question is PRE-specific but general conclusions can be made. First, within a PcG-target gene, some regulatory DNA can remain covered with H3K27me3 and PcG proteins remain bound to PREs in these regions. Second, when PREs are within H3K27ac domains, PcG-binding decreases, however, this depends on the protein and PRE. The DNA binding protein GAF, and the PcG protein Ph remain at PREs even when other PcG proteins are greatly depleted. In the ON state, PREs can still loop with each other, but also form loops with presumptive enhancers. These data support the model that, in addition to their role in PcG silencing, PREs can act as "promoter-tethering elements" mediating interactions between promoter proximal PREs and distant enhancers.
Collapse
Affiliation(s)
- J. Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Judith A. Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Capelson M. You are who your friends are-nuclear pore proteins as components of chromatin-binding complexes. FEBS Lett 2023; 597:2769-2781. [PMID: 37652464 PMCID: PMC11081553 DOI: 10.1002/1873-3468.14728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Nuclear pore complexes are large multicomponent protein complexes that are embedded in the nuclear envelope, where they mediate nucleocytoplasmic transport. In addition to supporting transport, nuclear pore components, termed nucleoporins (Nups), can interact with chromatin and influence genome function. A subset of Nups can also localize to the nuclear interior and bind chromatin intranuclearly, providing an opportunity to investigate chromatin-associated functions of Nups outside of the transport context. This review focuses on the gene regulatory functions of such intranuclear Nups, with a particular emphasis on their identity as components of several chromatin regulatory complexes. Recent proteomic screens have identified Nups as interacting partners of active and repressive epigenetic machinery, architectural proteins, and DNA replication complexes, providing insight into molecular mechanisms via which Nups regulate gene expression programs. This review summarizes these interactions and discusses their potential functions in the broader framework of nuclear genome organization.
Collapse
Affiliation(s)
- Maya Capelson
- Cell and Molecular Biology Program, Department of Biology, San Diego State University, CA, USA
| |
Collapse
|
8
|
Hodkinson LJ, Smith C, Comstra HS, Ajani BA, Albanese EH, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo N, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals hox and chromatin remodeling factors at the Drosophila histone locus. BMC Genom Data 2023; 24:54. [PMID: 37735352 PMCID: PMC10515271 DOI: 10.1186/s12863-023-01147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. RESULTS To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets of 27 unique factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax (Ubx), Abdominal-A (Abd-A), and Abdominal-B (Abd-B), suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other factors that target the histone gene array: JIL-1, hormone-like receptor 78 (Hr78), the long isoform of female sterile homeotic (1) (fs(1)h) as well as the general transcription factors TBP associated factor 1 (TAF-1), Transcription Factor IIB (TFIIB), and Transcription Factor IIF (TFIIF). CONCLUSIONS Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA, 30322, USA
| | - Connor Smith
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - H Skye Comstra
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Bukola A Ajani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Eric H Albanese
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Kawsar Arsalan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Alvaro Perez Daisson
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katherine B Forrest
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Elijah H Fox
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Matthew R Guerette
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Samia Khan
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Madeleine P Koenig
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Shivani Lam
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Ava S Lewandowski
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Lauren J Mahoney
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nasserallah Manai
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - JonCarlo Miglay
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Blake A Miller
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Olivia Milloway
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nhi Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Vu D Ngo
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Nicole F Oey
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Tanya A Punjani
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - HaoMin SiMa
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Hollis Zeng
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Casey A Schmidt
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Leila E Rieder
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Lizana L, Nahali N, Schwartz YB. Polycomb proteins translate histone methylation to chromatin folding. J Biol Chem 2023; 299:105080. [PMID: 37499944 PMCID: PMC10470199 DOI: 10.1016/j.jbc.2023.105080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Epigenetic repression often involves covalent histone modifications. Yet, how the presence of a histone mark translates into changes in chromatin structure that ultimately benefits the repression is largely unclear. Polycomb group proteins comprise a family of evolutionarily conserved epigenetic repressors. They act as multi-subunit complexes one of which tri-methylates histone H3 at Lysine 27 (H3K27). Here we describe a novel Monte Carlo-Molecular Dynamics simulation framework, which we employed to discover that stochastic interaction of Polycomb Repressive Complex 1 (PRC1) with tri-methylated H3K27 is sufficient to fold the methylated chromatin. Unexpectedly, such chromatin folding leads to spatial clustering of the DNA elements bound by PRC1. Our results provide further insight into mechanisms of epigenetic repression and the process of chromatin folding in response to histone methylation.
Collapse
Affiliation(s)
- Ludvig Lizana
- Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden.
| | - Negar Nahali
- Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden; Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
10
|
Brown JL, Price JD, Erokhin M, Kassis JA. Context-dependent role of Pho binding sites in Polycomb complex recruitment in Drosophila. Genetics 2023; 224:iyad096. [PMID: 37216193 PMCID: PMC10411561 DOI: 10.1093/genetics/iyad096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Polycomb group (PcG) proteins maintain the silenced state of key developmental genes, but how these proteins are recruited to specific regions of the genome is still not completely understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) comprised of a flexible array of sites for sequence-specific DNA binding proteins, "PcG recruiters," including Pho, Spps, Cg, and GAF. Pho is thought to play a central role in PcG recruitment. Early data showed that mutation of Pho binding sites in PREs in transgenes abrogated the ability of those PREs to repress gene expression. In contrast, genome-wide experiments in pho mutants or by Pho knockdown showed that PcG proteins can bind to PREs in the absence of Pho. Here, we directly addressed the importance of Pho binding sites in 2 engrailed (en) PREs at the endogenous locus and in transgenes. Our results show that Pho binding sites are required for PRE activity in transgenes with a single PRE. In a transgene, 2 PREs together lead to stronger, more stable repression and confer some resistance to the loss of Pho binding sites. Making the same mutation in Pho binding sites has little effect on PcG-protein binding at the endogenous en gene. Overall, our data support the model that Pho is important for PcG binding but emphasize how multiple PREs and chromatin environment increase the ability of PREs to function in the absence of Pho. This supports the view that multiple mechanisms contribute to PcG recruitment in Drosophila.
Collapse
Affiliation(s)
- Janet Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Price
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
12
|
Cabrita B, Martinho RG. Genetic and Epigenetic Regulation of Drosophila Oocyte Determination. J Dev Biol 2023; 11:21. [PMID: 37367475 DOI: 10.3390/jdb11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression.
Collapse
Affiliation(s)
- Brigite Cabrita
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Rui Gonçalo Martinho
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Bu S, Lau SSY, Yong WL, Zhang H, Thiagarajan S, Bashirullah A, Yu F. Polycomb group genes are required for neuronal pruning in Drosophila. BMC Biol 2023; 21:33. [PMID: 36793038 PMCID: PMC9933400 DOI: 10.1186/s12915-023-01534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Pruning that selectively eliminates unnecessary or incorrect neurites is required for proper wiring of the mature nervous system. During Drosophila metamorphosis, dendritic arbourization sensory neurons (ddaCs) and mushroom body (MB) γ neurons can selectively prune their larval dendrites and/or axons in response to the steroid hormone ecdysone. An ecdysone-induced transcriptional cascade plays a key role in initiating neuronal pruning. However, how downstream components of ecdysone signalling are induced remains not entirely understood. RESULTS Here, we identify that Scm, a component of Polycomb group (PcG) complexes, is required for dendrite pruning of ddaC neurons. We show that two PcG complexes, PRC1 and PRC2, are important for dendrite pruning. Interestingly, depletion of PRC1 strongly enhances ectopic expression of Abdominal B (Abd-B) and Sex combs reduced, whereas loss of PRC2 causes mild upregulation of Ultrabithorax and Abdominal A in ddaC neurons. Among these Hox genes, overexpression of Abd-B causes the most severe pruning defects, suggesting its dominant effect. Knockdown of the core PRC1 component Polyhomeotic (Ph) or Abd-B overexpression selectively downregulates Mical expression, thereby inhibiting ecdysone signalling. Finally, Ph is also required for axon pruning and Abd-B silencing in MB γ neurons, indicating a conserved function of PRC1 in two types of pruning. CONCLUSIONS This study demonstrates important roles of PcG and Hox genes in regulating ecdysone signalling and neuronal pruning in Drosophila. Moreover, our findings suggest a non-canonical and PRC2-independent role of PRC1 in Hox gene silencing during neuronal pruning.
Collapse
Affiliation(s)
- Shufeng Bu
- grid.4280.e0000 0001 2180 6431Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, 117543 Singapore
| | - Samuel Song Yuan Lau
- grid.4280.e0000 0001 2180 6431Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Wei Lin Yong
- grid.4280.e0000 0001 2180 6431Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Heng Zhang
- grid.4280.e0000 0001 2180 6431Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Sasinthiran Thiagarajan
- grid.4280.e0000 0001 2180 6431Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, Singapore, 117543 Singapore
| | - Arash Bashirullah
- grid.14003.360000 0001 2167 3675Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222 USA
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
14
|
Hodkinson LJ, Smith C, Comstra HS, Albanese EH, Ajani BA, Arsalan K, Daisson AP, Forrest KB, Fox EH, Guerette MR, Khan S, Koenig MP, Lam S, Lewandowski AS, Mahoney LJ, Manai N, Miglay J, Miller BA, Milloway O, Ngo VD, Oey NF, Punjani TA, SiMa H, Zeng H, Schmidt CA, Rieder LE. A bioinformatics screen reveals Hox and chromatin remodeling factors at the Drosophila histone locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523008. [PMID: 36711759 PMCID: PMC9881919 DOI: 10.1101/2023.01.06.523008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells orchestrate histone biogenesis with strict temporal and quantitative control. To efficiently regulate histone biogenesis, the repetitive Drosophila melanogaster replication-dependent histone genes are arrayed and clustered at a single locus. Regulatory factors concentrate in a nuclear body known as the histone locus body (HLB), which forms around the locus. Historically, HLB factors are largely discovered by chance, and few are known to interact directly with DNA. It is therefore unclear how the histone genes are specifically targeted for unique and coordinated regulation. To expand the list of known HLB factors, we performed a candidate-based screen by mapping 30 publicly available ChIP datasets and 27 factors to the Drosophila histone gene array. We identified novel transcription factor candidates, including the Drosophila Hox proteins Ultrabithorax, Abdominal-A and Abdominal-B, suggesting a new pathway for these factors in influencing body plan morphogenesis. Additionally, we identified six other transcription factors that target the histone gene array: JIL-1, Hr78, the long isoform of fs(1)h as well as the generalized transcription factors TAF-1, TFIIB, and TFIIF. Our foundational screen provides several candidates for future studies into factors that may influence histone biogenesis. Further, our study emphasizes the powerful reservoir of publicly available datasets, which can be mined as a primary screening technique.
Collapse
Affiliation(s)
- Lauren J Hodkinson
- Genetics and Molecular Biology graduate program, Emory University, Atlanta, GA 30322, USA
| | - Connor Smith
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - H Skye Comstra
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Eric H Albanese
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Bukola A Ajani
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Kawsar Arsalan
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | | | - Katherine B Forrest
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Elijah H Fox
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Matthew R Guerette
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Samia Khan
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Madeleine P Koenig
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Shivani Lam
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Ava S Lewandowski
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Lauren J Mahoney
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Nasserallah Manai
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - JonCarlo Miglay
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Blake A Miller
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Olivia Milloway
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Vu D Ngo
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Nicole F Oey
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Tanya A Punjani
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - HaoMin SiMa
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Hollis Zeng
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Casey A Schmidt
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| | - Leila E Rieder
- Department of Biology 1510 Clifton Road Atlanta, Emory University GA 30322, USA
| |
Collapse
|
15
|
Lama J, Srivastav S, Tasnim S, Hubbard D, Hadjipanteli S, Smith BR, Macdonald SJ, Green L, Kelleher ES. Genetic variation in P-element dysgenic sterility is associated with double-strand break repair and alternative splicing of TE transcripts. PLoS Genet 2022; 18:e1010080. [PMID: 36477699 PMCID: PMC9762592 DOI: 10.1371/journal.pgen.1010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/19/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
The germline mobilization of transposable elements (TEs) by small RNA mediated silencing pathways is conserved across eukaryotes and critical for ensuring the integrity of gamete genomes. However, genomes are recurrently invaded by novel TEs through horizontal transfer. These invading TEs are not targeted by host small RNAs, and their unregulated activity can cause DNA damage in germline cells and ultimately lead to sterility. Here we use hybrid dysgenesis-a sterility syndrome of Drosophila caused by transposition of invading P-element DNA transposons-to uncover host genetic variants that modulate dysgenic sterility. Using a panel of highly recombinant inbred lines of Drosophila melanogaster, we identified two linked quantitative trait loci (QTL) that determine the severity of dysgenic sterility in young and old females, respectively. We show that ovaries of fertile genotypes exhibit increased expression of splicing factors that suppress the production of transposase encoding transcripts, which likely reduces the transposition rate and associated DNA damage. We also show that fertile alleles are associated with decreased sensitivity to double-stranded breaks and enhanced DNA repair, explaining their ability to withstand high germline transposition rates. Together, our work reveals a diversity of mechanisms whereby host genotype modulates the cost of an invading TE, and points to genetic variants that were likely beneficial during the P-element invasion.
Collapse
Affiliation(s)
- Jyoti Lama
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Satyam Srivastav
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sadia Tasnim
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Donald Hubbard
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Savana Hadjipanteli
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Brittny R. Smith
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Stuart J. Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Llewellyn Green
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
16
|
Fiedler M, Franco-Echevarría E, Schulten A, Nielsen M, Rutherford TJ, Yeates A, Ahsan B, Dean C, Bienz M. Head-to-tail polymerization by VEL proteins underpins cold-induced Polycomb silencing in flowering control. Cell Rep 2022; 41:111607. [PMID: 36351412 PMCID: PMC7614096 DOI: 10.1016/j.celrep.2022.111607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Transcriptional silencing through the Polycomb silencing machinery utilizes a "read-write" mechanism involving histone tail modifications. However, nucleation of silencing and long-term stable transmission of the silenced state also requires P-olycomb Repressive Complex 2 (PRC2) accessory proteins, whose molecular role is poorly understood. The Arabidopsis VEL proteins are accessory proteins that interact with PRC2 to nucleate and propagate silencing at the FLOWERING LOCUS C (FLC) locus, enabling early flowering in spring. Here, we report that VEL proteins contain a domain related to an atypical four-helix bundle that engages in spontaneous concentration-dependent head-to-tail polymerization to assemble dynamic biomolecular condensates. Mutations blocking polymerization of this VEL domain prevent Polycomb silencing at FLC. Plant VEL proteins thus facilitate assembly of dynamic multivalent Polycomb complexes required for inheritance of the silenced state.
Collapse
Affiliation(s)
- Marc Fiedler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Anna Schulten
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mathias Nielsen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anna Yeates
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Bilal Ahsan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Caroline Dean
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
17
|
Regulation of Polyhomeotic Condensates by Intrinsically Disordered Sequences That Affect Chromatin Binding. EPIGENOMES 2022; 6:epigenomes6040040. [PMID: 36412795 PMCID: PMC9680516 DOI: 10.3390/epigenomes6040040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The Polycomb group (PcG) complex PRC1 localizes in the nucleus in condensed structures called Polycomb bodies. The PRC1 subunit Polyhomeotic (Ph) contains an oligomerizing sterile alpha motif (SAM) that is implicated in both PcG body formation and chromatin organization in Drosophila and mammalian cells. A truncated version of Ph containing the SAM (mini-Ph) forms phase-separated condensates with DNA or chromatin in vitro, suggesting that PcG bodies may form through SAM-driven phase separation. In cells, Ph forms multiple small condensates, while mini-Ph typically forms a single large nuclear condensate. We therefore hypothesized that sequences outside of mini-Ph, which are predicted to be intrinsically disordered, are required for proper condensate formation. We identified three distinct low-complexity regions in Ph based on sequence composition. We systematically tested the role of each of these sequences in Ph condensates using live imaging of transfected Drosophila S2 cells. Each sequence uniquely affected Ph SAM-dependent condensate size, number, and morphology, but the most dramatic effects occurred when the central, glutamine-rich intrinsically disordered region (IDR) was removed, which resulted in large Ph condensates. Like mini-Ph condensates, condensates lacking the glutamine-rich IDR excluded chromatin. Chromatin fractionation experiments indicated that the removal of the glutamine-rich IDR reduced chromatin binding and that the removal of either of the other IDRs increased chromatin binding. Our data suggest that all three IDRs, and functional interactions among them, regulate Ph condensate size and number. Our results can be explained by a model in which tight chromatin binding by Ph IDRs antagonizes Ph SAM-driven phase separation. Our observations highlight the complexity of regulation of biological condensates housed in single proteins.
Collapse
|
18
|
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Feijão T, Marques B, Silva RD, Carvalho C, Sobral D, Matos R, Tan T, Pereira A, Morais-de-Sá E, Maiato H, DeLuca SZ, Martinho RG. Polycomb group (PcG) proteins prevent the assembly of abnormal synaptonemal complex structures during meiosis. Proc Natl Acad Sci U S A 2022; 119:e2204701119. [PMID: 36215502 PMCID: PMC9586294 DOI: 10.1073/pnas.2204701119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous scaffold that is assembled between paired homologous chromosomes during the onset of meiosis. Timely expression of SC coding genes is essential for SC assembly and successful meiosis. However, SC components have an intrinsic tendency to self-organize into abnormal repetitive structures, which are not assembled between the paired homologs and whose formation is potentially deleterious for meiosis and gametogenesis. This creates an interesting conundrum, where SC genes need to be robustly expressed during meiosis, but their expression must be carefully regulated to prevent the formation of anomalous SC structures. In this manuscript, we show that the Polycomb group protein Sfmbt, the Drosophila ortholog of human MBTD1 and L3MBTL2, is required to avoid excessive expression of SC genes during prophase I. Although SC assembly is normal after Sfmbt depletion, SC disassembly is abnormal with the formation of multiple synaptonemal complexes (polycomplexes) within the oocyte. Overexpression of the SC gene corona and depletion of other Polycomb group proteins are similarly associated with polycomplex formation during SC disassembly. These polycomplexes are highly dynamic and have a well-defined periodic structure. Further confirming the importance of Sfmbt, germ line depletion of this protein is associated with significant metaphase I defects and a reduction in female fertility. Since transcription of SC genes mostly occurs during early prophase I, our results suggest a role of Sfmbt and other Polycomb group proteins in downregulating the expression of these and other early prophase I genes during later stages of meiosis.
Collapse
Affiliation(s)
- Tália Feijão
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Marques
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rui D. Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Applied Molecular Biosciences Unit (UCIBIO), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, Caparica, 2819-516 Portugal
| | - Ricardo Matos
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Tian Tan
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - António Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Eurico Morais-de-Sá
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Hélder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | | | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
20
|
Kang H, Cabrera JR, Zee BM, Kang HA, Jobe JM, Hegarty MB, Barry AE, Glotov A, Schwartz YB, Kuroda MI. Variant Polycomb complexes in Drosophila consistent with ancient functional diversity. SCIENCE ADVANCES 2022; 8:eadd0103. [PMID: 36070387 PMCID: PMC9451159 DOI: 10.1126/sciadv.add0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Polycomb group (PcG) mutants were first identified in Drosophila on the basis of their failure to maintain proper Hox gene repression during development. The proteins encoded by the corresponding fly genes mainly assemble into one of two discrete Polycomb repressive complexes: PRC1 or PRC2. However, biochemical analyses in mammals have revealed alternative forms of PRC2 and multiple distinct types of noncanonical or variant PRC1. Through a series of proteomic analyses, we identify analogous PRC2 and variant PRC1 complexes in Drosophila, as well as a broader repertoire of interactions implicated in early development. Our data provide strong support for the ancient diversity of PcG complexes and a framework for future analysis in a longstanding and versatile genetic system.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Janel R. Cabrera
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Emmanuel College, Boston, MA 02115, USA
| | - Barry M. Zee
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heather A. Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Alexander Glotov
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Yuri B. Schwartz
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Mitzi I. Kuroda
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Chetverina D, Vorobyeva NE, Mazina MY, Fab LV, Lomaev D, Golovnina A, Mogila V, Georgiev P, Ziganshin RH, Erokhin M. Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cell Mol Life Sci 2022; 79:353. [PMID: 35676368 PMCID: PMC11072172 DOI: 10.1007/s00018-022-04383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) proteins are key epigenetic regulators controlling the silenced and active states of genes in multicellular organisms, respectively. In Drosophila, PcG/TrxG proteins are recruited to the chromatin via binding to specific DNA sequences termed polycomb response elements (PREs). While precise mechanisms of the PcG/TrxG protein recruitment remain unknown, the important role is suggested to belong to sequence-specific DNA-binding factors. At the same time, it was demonstrated that the PRE DNA-binding proteins are not exclusively localized to PREs but can bind other DNA regulatory elements, including enhancers, promoters, and boundaries. To gain an insight into the PRE DNA-binding protein regulatory network, here, using ChIP-seq and immuno-affinity purification coupled to the high-throughput mass spectrometry, we searched for differences in abundance of the Combgap, Zeste, Psq, and Adf1 PRE DNA-binding proteins. While there were no conspicuous differences in co-localization of these proteins with other functional transcription factors, we show that Combgap and Zeste are more tightly associated with the Polycomb repressive complex 1 (PRC1), while Psq interacts strongly with the TrxG proteins, including the BAP SWI/SNF complex. The Adf1 interactome contained Mediator subunits as the top interactors. In addition, Combgap efficiently interacted with AGO2, NELF, and TFIID. Combgap, Psq, and Adf1 have architectural proteins in their networks. We further investigated the existence of direct interactions between different PRE DNA-binding proteins and demonstrated that Combgap-Adf1, Psq-Dsp1, and Pho-Spps can interact in the yeast two-hybrid assay. Overall, our data suggest that Combgap, Psq, Zeste, and Adf1 are associated with the protein complexes implicated in different regulatory activities and indicate their potential multifunctional role in the regulation of transcription.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Mazina
- Group of Hormone-Dependent Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Alexandra Golovnina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Vladic Mogila
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
22
|
Liaw GJ. Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194786. [PMID: 35032681 DOI: 10.1016/j.bbagrm.2022.194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo. Previous studies have shown that maternal Tramtrack69 facilitates maternal GAGA-binding factor and Heat shock factor binding to the torso response element (tor-RE) to initiate tailless repression in the stage-4 embryo. Chromatin-immunoprecipitation and genetic-interaction studies exhibit that maternally-deposited Polycomb repressive complex 1 (PRC1) recruited by the tor-RE-associated Tramtrack69 represses tailless expression in the stage-4 embryo. A noncanonical Polycomb-group response element (PRE) is mapped to the tailless proximal region. High levels of Bric-a-brac, Tramtrack, and Broad (BTB)-domain proteins are fundamental for maintaining tailless repression in the stage-8 to -10 embryos. Trmtrack69 sporadically distributes in the linear BTB-domain oligomer, which recruits and retains a high level of PRC1 near the GCCAT cluster for repressing tll expression in the stage-14 embryos. Disrupting the retention of PRC1 decreases the levels of PRC1 and Pleiohomeotic protein substantially on the PRE and causes tailless derepression in the stage-14 embryo. Furthermore, the retained PRC1 potentially serves as a second foundation for assembling the well-characterized polymer of the Sterile alpha motif domain in Polyhomeotic protein, which compacts chromatin to maintain the repressed state of tailless in the embryos after stage 14.
Collapse
Affiliation(s)
- Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genomic Sciences, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan.
| |
Collapse
|
23
|
Du L, Wang L, Yang H, Duan J, Lai J, Wu W, Fan S, Zhi X. Sex Comb on Midleg Like-2 Accelerates Hepatocellular Carcinoma Cell Proliferation and Metastasis by Activating Wnt/β-Catenin/EMT Signaling. Yonsei Med J 2021; 62:1073-1082. [PMID: 34816637 PMCID: PMC8612862 DOI: 10.3349/ymj.2021.62.12.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the influences of sex comb on midleg like-2 (SCML2) on hepatocellular carcinoma (HCC) and potentially related mechanisms. MATERIALS AND METHODS SCML2 expression in tumor tissues and cells was analyzed using the TCGA database and/or qRT-PCR. The proliferation of HCC cells was detected by CCK-8, colony formation, and EdU assays. The migration and invasion of HCC cells were detected by transwell and wound healing assays. Apoptosis of HCC cells was determined by flow cytometry. Additionally, qRT-PCR and Western blot were used to detect the expression of SCML2 and Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling. A xenograft model in mice was established to verify the in vitro findings. RESULTS We found that SCML2 was highly expressed in HCC tissues and cells and that high expression of SCML2 was correlated with poor prognosis in HCC patients. SCML2 overexpression promoted proliferation, invasion, and migration and repressed apoptosis of HCC cells. The reverse results were obtained in SCML2-silenced cells. Further, we found that SCML2 activated the Wnt/β-catenin/EMT pathway. SCML2 silencing reduced the protein levels of Wnt3a, β-catenin, N-cadherin, Vimentin, and Snail and enhanced E-cadherin protein expression both in vivo and in vitro. CONCLUSION SCML2 silencing inhibits the proliferation, migration, and invasion of HCC cells by regulating the Wnt/β-catenin/EMT pathway.
Collapse
Affiliation(s)
- Lei Du
- No.8 District of Liver Diseases, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Lina Wang
- Clinical Laboratory, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Hong Yang
- Department of Physical Therapy, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Jianping Duan
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Jianming Lai
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Wei Wu
- No.8 District of Liver Diseases, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China
| | - Shaohua Fan
- Blood Purification Centre, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China.
| | - Xiaoli Zhi
- Department of Infectious Disease, Qingdao No. 6 People's Hospital, Qingdao, Shandong, China.
| |
Collapse
|
24
|
Lövkvist C, Mikulski P, Reeck S, Hartley M, Dean C, Howard M. Hybrid protein assembly-histone modification mechanism for PRC2-based epigenetic switching and memory. eLife 2021; 10:66454. [PMID: 34473050 PMCID: PMC8412945 DOI: 10.7554/elife.66454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
The histone modification H3K27me3 plays a central role in Polycomb-mediated epigenetic silencing. H3K27me3 recruits and allosterically activates Polycomb Repressive Complex 2 (PRC2), which adds this modification to nearby histones, providing a read/write mechanism for inheritance through DNA replication. However, for some PRC2 targets, a purely histone-based system for epigenetic inheritance may be insufficient. We address this issue at the Polycomb target FLOWERING LOCUS C (FLC) in Arabidopsis thaliana, as a narrow nucleation region of only ~three nucleosomes within FLC mediates epigenetic state switching and subsequent memory over many cell cycles. To explain the memory's unexpected persistence, we introduce a mathematical model incorporating extra protein memory storage elements with positive feedback that persist at the locus through DNA replication, in addition to histone modifications. Our hybrid model explains many features of epigenetic switching/memory at FLC and encapsulates generic mechanisms that may be widely applicable.
Collapse
Affiliation(s)
- Cecilia Lövkvist
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Pawel Mikulski
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Svenja Reeck
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom.,Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Matthew Hartley
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| |
Collapse
|
25
|
Khan MHF, Akhtar J, Umer Z, Shaheen N, Shaukat A, Munir MS, Mithani A, Anwar S, Tariq M. Kinome-Wide RNAi Screen Uncovers Role of Ballchen in Maintenance of Gene Activation by Trithorax Group in Drosophila. Front Cell Dev Biol 2021; 9:637873. [PMID: 33748127 PMCID: PMC7973098 DOI: 10.3389/fcell.2021.637873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are evolutionary conserved factors that contribute to cell fate determination and maintenance of cellular identities during development of multicellular organisms. The PcG maintains heritable patterns of gene silencing while trxG acts as anti-silencing factors by conserving activation of cell type specific genes. Genetic and molecular analysis has revealed extensive details about how different PcG and trxG complexes antagonize each other to maintain cell fates, however, the cellular signaling components that contribute to the preservation of gene expression by PcG/trxG remain elusive. Here, we report an ex vivo kinome-wide RNAi screen in Drosophila aimed at identifying cell signaling genes that facilitate trxG in counteracting PcG mediated repression. From the list of trxG candidates, Ballchen (BALL), a histone kinase known to phosphorylate histone H2A at threonine 119 (H2AT119p), was characterized as a trxG regulator. The ball mutant exhibits strong genetic interactions with Polycomb (Pc) and trithorax (trx) mutants and loss of BALL affects expression of trxG target genes. BALL co-localizes with Trithorax on chromatin and depletion of BALL results in increased H2AK118 ubiquitination, a histone mark central to PcG mediated gene silencing. Moreover, BALL was found to substantially associate with known TRX binding sites across the genome. Genome wide distribution of BALL also overlaps with H3K4me3 and H3K27ac at actively transcribed genes. We propose that BALL mediated signaling positively contributes to the maintenance of gene activation by trxG in counteracting the repressive effect of PcG.
Collapse
Affiliation(s)
- Muhammad Haider Farooq Khan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jawad Akhtar
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zain Umer
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Najma Shaheen
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ammad Shaukat
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shahbaz Munir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Saima Anwar
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
26
|
Moutaoufik MT, Tanguay RM. Analysis of insect nuclear small heat shock proteins and interacting proteins. Cell Stress Chaperones 2021; 26:265-274. [PMID: 32888179 PMCID: PMC7736433 DOI: 10.1007/s12192-020-01156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress proteins found in all domains of life. Drosophila melanogaster Hsp27 (DmHsp27) is the only known nuclear sHsp in insect. Here analyzing sequences from HMMER, we identified 56 additional insect sHsps with conserved arginine-rich nuclear localization signal (NLS) in the N-terminal region. At this time, the exact role of nuclear sHsps remains unknown. DmHsp27 protein-protein interaction analysis from iRefIndex database suggests that this protein, in addition to a putative role of molecular chaperone, is likely involved in other nuclear processes (i.e., chromatin remodeling and transcription). Identification of DmHsp27 interactors should provide key insights on the cellular and molecular functions of this nuclear chaperone.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Robert M Tanguay
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada.
| |
Collapse
|
27
|
De S, Gehred ND, Fujioka M, Chan FW, Jaynes JB, Kassis JA. Defining the Boundaries of Polycomb Domains in Drosophila. Genetics 2020; 216:689-700. [PMID: 32948625 PMCID: PMC7648573 DOI: 10.1534/genetics.120.303642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 02/05/2023] Open
Abstract
Polycomb group (PcG) proteins are an important group of transcriptional repressors that act by modifying chromatin. PcG target genes are covered by the repressive chromatin mark H3K27me3. Polycomb repressive complex 2 (PRC2) is a multiprotein complex that is responsible for generating H3K27me3. In Drosophila, PRC2 is recruited by Polycomb Response Elements (PREs) and then trimethylates flanking nucleosomes, spreading the H3K27me3 mark over large regions of the genome, the "Polycomb domains." What defines the boundary of a Polycomb domain? There is experimental evidence that insulators, PolII, and active transcription can all form the boundaries of Polycomb domains. Here we divide the boundaries of larval Polycomb domains into six different categories. In one category, genes are transcribed toward the Polycomb domain, where active transcription is thought to stop the spreading of H3K27me3. In agreement with this, we show that introducing a transcriptional terminator into such a transcription unit causes an extension of the Polycomb domain. Additional data suggest that active transcription of a boundary gene may restrict the range of enhancer activity of a Polycomb-regulated gene.
Collapse
Affiliation(s)
- Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Natalie D Gehred
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Fountane W Chan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
28
|
Chetverina DA, Lomaev DV, Erokhin MM. Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae 2020; 12:66-85. [PMID: 33456979 PMCID: PMC7800605 DOI: 10.32607/actanaturae.11090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.
Collapse
Affiliation(s)
- D. A. Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - D. V. Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. M. Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
29
|
DeLuca SZ, Ghildiyal M, Pang LY, Spradling AC. Differentiating Drosophila female germ cells initiate Polycomb silencing by regulating PRC2-interacting proteins. eLife 2020; 9:e56922. [PMID: 32773039 PMCID: PMC7438113 DOI: 10.7554/elife.56922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023] Open
Abstract
Polycomb silencing represses gene expression and provides a molecular memory of chromatin state that is essential for animal development. We show that Drosophila female germline stem cells (GSCs) provide a powerful system for studying Polycomb silencing. GSCs have a non-canonical distribution of PRC2 activity and lack silenced chromatin like embryonic progenitors. As GSC daughters differentiate into nurse cells and oocytes, nurse cells, like embryonic somatic cells, silence genes in traditional Polycomb domains and in generally inactive chromatin. Developmentally controlled expression of two Polycomb repressive complex 2 (PRC2)-interacting proteins, Pcl and Scm, initiate silencing during differentiation. In GSCs, abundant Pcl inhibits PRC2-dependent silencing globally, while in nurse cells Pcl declines and newly induced Scm concentrates PRC2 activity on traditional Polycomb domains. Our results suggest that PRC2-dependent silencing is developmentally regulated by accessory proteins that either increase the concentration of PRC2 at target sites or inhibit the rate that PRC2 samples chromatin.
Collapse
Affiliation(s)
- Steven Z DeLuca
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Megha Ghildiyal
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Liang-Yu Pang
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
30
|
Abstract
Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.
Collapse
Affiliation(s)
- Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
31
|
Identification of a PRC2 Accessory Subunit Required for Subtelomeric H3K27 Methylation in Neurospora crassa. Mol Cell Biol 2020; 40:MCB.00003-20. [PMID: 32179551 DOI: 10.1128/mcb.00003-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) catalyzes methylation of histone H3 at lysine 27 (H3K27) in genomic regions of most eukaryotes and is critical for maintenance of the associated transcriptional repression. However, the mechanisms that shape the distribution of H3K27 methylation, such as recruitment of PRC2 to chromatin and/or stimulation of PRC2 activity, are unclear. Here, using a forward genetic approach in the model organism Neurospora crassa, we identified two alleles of a gene, NCU04278, encoding an unknown PRC2 accessory subunit (PAS). Loss of PAS resulted in losses of H3K27 methylation concentrated near the chromosome ends and derepression of a subset of associated subtelomeric genes. Immunoprecipitation followed by mass spectrometry confirmed reciprocal interactions between PAS and known PRC2 subunits, and sequence similarity searches demonstrated that PAS is not unique to N. crassa PAS homologs likely influence the distribution of H3K27 methylation and underlying gene repression in a variety of fungal lineages.
Collapse
|
32
|
Alecki C, Chiwara V, Sanz LA, Grau D, Arias Pérez O, Boulier EL, Armache KJ, Chédin F, Francis NJ. RNA-DNA strand exchange by the Drosophila Polycomb complex PRC2. Nat Commun 2020; 11:1781. [PMID: 32286294 PMCID: PMC7156742 DOI: 10.1038/s41467-020-15609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Polycomb Group (PcG) proteins form memory of transient transcriptional repression that is necessary for development. In Drosophila, DNA elements termed Polycomb Response Elements (PREs) recruit PcG proteins. How PcG activities are targeted to PREs to maintain repressed states only in appropriate developmental contexts has been difficult to elucidate. PcG complexes modify chromatin, but also interact with both RNA and DNA, and RNA is implicated in PcG targeting and function. Here we show that R-loops form at many PREs in Drosophila embryos, and correlate with repressive states. In vitro, both PRC1 and PRC2 can recognize R-loops and open DNA bubbles. Unexpectedly, we find that PRC2 drives formation of RNA-DNA hybrids, the key component of R-loops, from RNA and dsDNA. Our results identify R-loop formation as a feature of Drosophila PREs that can be recognized by PcG complexes, and RNA-DNA strand exchange as a PRC2 activity that could contribute to R-loop formation.
Collapse
Affiliation(s)
- Célia Alecki
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Département de biochimie et médecine moléculaire Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Victoria Chiwara
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA, 95616, USA
| | - Daniel Grau
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Osvaldo Arias Pérez
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Natural Sciences and Engineering Postgraduate, Universidad Autonoma Metropolitana, Cuajimalpa, Mexico City, Mexico
| | - Elodie L Boulier
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA, 95616, USA
| | - Nicole J Francis
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Département de biochimie et médecine moléculaire Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
33
|
Ghotbi E, Lackey K, Wong V, Thompson KT, Caston EG, Haddadi M, Benes J, Jones RS. Differential Contributions of DNA-Binding Proteins to Polycomb Response Element Activity at the Drosophila giant Gene. Genetics 2020; 214:623-634. [PMID: 31919108 PMCID: PMC7054010 DOI: 10.1534/genetics.119.302981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 11/18/2022] Open
Abstract
Polycomb-group (PcG) proteins are evolutionarily conserved epigenetic regulators whose primary function is to maintain the transcriptional repression of target genes. Recruitment of Drosophila melanogaster PcG proteins to target genes requires the presence of one or more Polycomb Response Elements (PREs). The functions or necessity for more than one PRE at a gene are not clear and individual PREs at some loci may have distinct regulatory roles. Various combinations of sequence-specific DNA-binding proteins are present at a given PRE, but only Pleiohomeotic (Pho) is present at all strong PREs. The giant (gt) locus has two PREs, a proximal PRE1 and a distal PRE2. During early embryonic development, Pho binds to PRE1 ∼30-min prior to stable binding to PRE2. This observation indicated a possible dependence of PRE2 on PRE1 for PcG recruitment; however, we find here that PRE2 recruits PcG proteins and maintains transcriptional repression independently of Pho binding to PRE1. Pho-like (Phol) is partially redundant with Pho during larval development and binds to the same DNA sequences in vitro Although binding of Pho to PRE1 is dependent on the presence of consensus Pho-Phol-binding sites, Phol binding is less so and appears to play a minimal role in recruiting other PcG proteins to gt Another PRE-binding protein, Sp1/Kruppel-like factor, is dependent on the presence of Pho for PRE1 binding. Further, we show that, in addition to silencing gene expression, PcG proteins dampen transcription of an active gene.
Collapse
Affiliation(s)
- Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Kristina Lackey
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Vicki Wong
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Katie T Thompson
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Evan G Caston
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Minna Haddadi
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| |
Collapse
|
34
|
Abstract
In eukaryotes, DNA is highly compacted within the nucleus into a structure known as chromatin. Modulation of chromatin structure allows for precise regulation of gene expression, and thereby controls cell fate decisions. Specific chromatin organization is established and preserved by numerous factors to generate desired cellular outcomes. In embryonic stem (ES) cells, chromatin is precisely regulated to preserve their two defining characteristics: self-renewal and pluripotent state. This action is accomplished by a litany of nucleosome remodelers, histone variants, epigenetic marks, and other chromatin regulatory factors. These highly dynamic regulatory factors come together to precisely define a chromatin state that is conducive to ES cell maintenance and development, where dysregulation threatens the survival and fitness of the developing organism.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
35
|
Healy E, Mucha M, Glancy E, Fitzpatrick DJ, Conway E, Neikes HK, Monger C, Van Mierlo G, Baltissen MP, Koseki Y, Vermeulen M, Koseki H, Bracken AP. PRC2.1 and PRC2.2 Synergize to Coordinate H3K27 Trimethylation. Mol Cell 2019; 76:437-452.e6. [PMID: 31521505 DOI: 10.1016/j.molcel.2019.08.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/28/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is composed of EED, SUZ12, and EZH1/2 and mediates mono-, di-, and trimethylation of histone H3 at lysine 27. At least two independent subcomplexes exist, defined by their specific accessory proteins: PRC2.1 (PCL1-3, EPOP, and PALI1/2) and PRC2.2 (AEBP2 and JARID2). We show that PRC2.1 and PRC2.2 share the majority of target genes in mouse embryonic stem cells. The loss of PCL1-3 is sufficient to evict PRC2.1 from Polycomb target genes but only leads to a partial reduction of PRC2.2 and H3K27me3. Conversely, disruption of PRC2.2 function through the loss of either JARID2 or RING1A/B is insufficient to completely disrupt targeting of SUZ12 by PCLs. Instead, the combined loss of both PRC2.1 and PRC2.2 is required, leading to the global mislocalization of SUZ12. This supports a model in which the specific accessory proteins within PRC2.1 and PRC2.2 cooperate to direct H3K27me3 via both synergistic and independent mechanisms.
Collapse
Affiliation(s)
- Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Marlena Mucha
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eleanor Glancy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Eric Conway
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Hannah K Neikes
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Craig Monger
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Guido Van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
36
|
Vidal M. Polycomb Assemblies Multitask to Regulate Transcription. EPIGENOMES 2019; 3:12. [PMID: 34968234 PMCID: PMC8594731 DOI: 10.3390/epigenomes3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Polycomb system is made of an evolutionary ancient group of proteins, present throughout plants and animals. Known initially from developmental studies with the fly Drosophila melanogaster, they were associated with stable sustainment of gene repression and maintenance of cell identity. Acting as multiprotein assemblies with an ability to modify chromatin, through chemical additions to histones and organization of topological domains, they have been involved subsequently in control of developmental transitions and in cell homeostasis. Recent work has unveiled an association of Polycomb components with transcriptionally active loci and the promotion of gene expression, in clear contrast with conventional recognition as repressors. Focusing on mammalian models, I review here advances concerning roles in transcriptional control. Among new findings highlighted is the regulation of their catalytic properties, recruiting to targets, and activities in chromatin organization and compartmentalization. The need for a more integrated approach to the study of the Polycomb system, given its fundamental complexity and its adaptation to cell context, is discussed.
Collapse
Affiliation(s)
- Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
37
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
38
|
Alhaj Abed J, Ghotbi E, Ye P, Frolov A, Benes J, Jones RS. De novo recruitment of Polycomb-group proteins in Drosophila embryos. Development 2018; 145:dev.165027. [PMID: 30389849 DOI: 10.1242/dev.165027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
Polycomb-group (PcG)-mediated transcriptional repression of target genes can be delineated into two phases. First, following initial repression of target genes by gene-specific transcription factors, PcG proteins recognize the repressed state and assume control of the genes' repression. Second, once the silenced state is established, PcG proteins may maintain repression through an indefinite number of cell cycles. Little is understood about how PcG proteins initially recognize the repressed state of target genes and the steps leading to de novo establishment of PcG-mediated repression. We describe a genetic system in which a Drosophila PcG target gene, giant (gt), is ubiquitously repressed during early embryogenesis by a maternally expressed transcription factor, and show the temporal recruitment of components of three PcG protein complexes: PhoRC, PRC1 and PRC2. We show that de novo PcG recruitment follows a temporal hierarchy in which PhoRC stably localizes at the target gene at least 1 h before stable recruitment of PRC2 and concurrent trimethylation of histone H3 at lysine 27 (H3K27me3). The presence of PRC2 and increased levels of H3K27me3 are found to precede stable binding by PRC1.
Collapse
Affiliation(s)
- Jumana Alhaj Abed
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Piao Ye
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Alexander Frolov
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| |
Collapse
|
39
|
Polycomb protein SCML2 facilitates H3K27me3 to establish bivalent domains in the male germline. Proc Natl Acad Sci U S A 2018; 115:4957-4962. [PMID: 29686098 DOI: 10.1073/pnas.1804512115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Repressive H3K27me3 and active H3K4me2/3 together form bivalent chromatin domains, molecular hallmarks of developmental potential. In the male germline, these domains are thought to persist into sperm to establish totipotency in the next generation. However, it remains unknown how H3K27me3 is established on specific targets in the male germline. Here, we demonstrate that a germline-specific Polycomb protein, SCML2, binds to H3K4me2/3-rich hypomethylated promoters in undifferentiated spermatogonia to facilitate H3K27me3. Thus, SCML2 establishes bivalent domains in the male germline of mice. SCML2 regulates two major classes of bivalent domains: Class I domains are established on developmental regulator genes that are silent throughout spermatogenesis, while class II domains are established on somatic genes silenced during late spermatogenesis. We propose that SCML2-dependent H3K27me3 in the male germline prepares the expression of developmental regulator and somatic genes in embryonic development.
Collapse
|
40
|
Abstract
Polycomb Group (PcG) proteins assemble a chromatin state that maintains developmental gene repression. A new study combining structure and in vivo analysis details a molecular network from DNA recognition to PcG recruitment, highlighting the essential role of Sterile Alpha Motifs.
Collapse
Affiliation(s)
- Chongwoo A Kim
- Department of Biochemistry, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Nicole J Francis
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada; Département de biochimie et medécine moléculaire, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
41
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
42
|
|
43
|
Kang H, Jung YL, McElroy KA, Zee BM, Wallace HA, Woolnough JL, Park PJ, Kuroda MI. Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in Drosophila. Genes Dev 2017; 31:1988-2002. [PMID: 29070704 PMCID: PMC5710143 DOI: 10.1101/gad.305987.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/28/2017] [Indexed: 02/05/2023]
Abstract
Kang et al. confirm PRC1–Br140 and PRC1–Fs(1)h interactions and identify their genomic binding sites. PRC1–Br140 bind developmental genes in fly embryos, with analogous co-occupancy of PRC1 and BRD1 at bivalent loci in human ES cells. Regulatory decisions in Drosophila require Polycomb group (PcG) proteins to maintain the silent state and Trithorax group (TrxG) proteins to oppose silencing. Since PcG and TrxG are ubiquitous and lack apparent sequence specificity, a long-standing model is that targeting occurs via protein interactions; for instance, between repressors and PcG proteins. Instead, we found that Pc-repressive complex 1 (PRC1) purifies with coactivators Fs(1)h [female sterile (1) homeotic] and Enok/Br140 during embryogenesis. Fs(1)h is a TrxG member and the ortholog of BRD4, a bromodomain protein that binds to acetylated histones and is a key transcriptional coactivator in mammals. Enok and Br140, another bromodomain protein, are orthologous to subunits of a mammalian MOZ/MORF acetyltransferase complex. Here we confirm PRC1–Br140 and PRC1–Fs(1)h interactions and identify their genomic binding sites. PRC1–Br140 bind developmental genes in fly embryos, with analogous co-occupancy of PRC1 and a Br140 ortholog, BRD1, at bivalent loci in human embryonic stem (ES) cells. We propose that identification of PRC1–Br140 “bivalent complexes” in fly embryos supports and extends the bivalency model posited in mammalian cells, in which the coexistence of H3K4me3 and H3K27me3 at developmental promoters represents a poised transcriptional state. We further speculate that local competition between acetylation and deacetylation may play a critical role in the resolution of bivalent protein complexes during development.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Youngsook L Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kyle A McElroy
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Barry M Zee
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Heather A Wallace
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jessica L Woolnough
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
44
|
Abstract
Polycomb Group (PcG) proteins epigenetically repress key developmental genes and thereby control alternative cell fates. PcG proteins act as complexes that can modify histones and these histone modifications play a role in transmitting the “memory” of the repressed state as cells divide. Here we consider mainstream models that link histone modifications to hierarchical recruitment of PcG complexes and compare them to results of a direct test of interdependence between PcG complexes for recruitment to Drosophila genes. The direct test indicates that PcG complexes do not rely on histone modifications to recognize their target genes but use them to stabilize the interactions within large chromatin domains. It also shows that multiple strategies are used to coordinate the targeting of PcG complexes to different genes, which may make the repression of these genes more or less robust.
Collapse
Affiliation(s)
- Eshagh Dorafshan
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Tatyana G Kahn
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yuri B Schwartz
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| |
Collapse
|
45
|
Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome Regulation by Polycomb and Trithorax: 70 Years and Counting. Cell 2017; 171:34-57. [DOI: 10.1016/j.cell.2017.08.002] [Citation(s) in RCA: 611] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
|
46
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
47
|
Du J, Zhang J, He T, Li Y, Su Y, Tie F, Liu M, Harte PJ, Zhu AJ. Stuxnet Facilitates the Degradation of Polycomb Protein during Development. Dev Cell 2017; 37:507-19. [PMID: 27326929 DOI: 10.1016/j.devcel.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. Here, we report a Drosophila gene, stuxnet (stx), that controls Pc protein stability. We find that heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Our biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; Stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. Our results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junzheng Zhang
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tao He
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yajuan Li
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Su
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feng Tie
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Min Liu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peter J Harte
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Jian Zhu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Molecular basis of PRC1 targeting to Polycomb response elements by PhoRC. Genes Dev 2017; 30:1116-27. [PMID: 27151979 PMCID: PMC4863741 DOI: 10.1101/gad.279141.116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
Abstract
Here, Frey et al. report the structural basis by which the Drosophila Pho-repressive complex (PhoRC), the only Polycomb group protein complex with sequence-specific DNA-binding activity, binds to Polycomb-repressive complex 1 (PRC1) and thereby recruits it to Polycomb response elements in target genes. Polycomb group (PcG) protein complexes repress transcription by modifying target gene chromatin. In Drosophila, this repression requires association of PcG protein complexes with cis-regulatory Polycomb response elements (PREs), but the interactions permitting formation of these assemblies are poorly understood. We show that the Sfmbt subunit of the DNA-binding Pho-repressive complex (PhoRC) and the Scm subunit of the canonical Polycomb-repressive complex 1 (PRC1) directly bind each other through their SAM domains. The 1.9 Å crystal structure of the Scm-SAM:Sfmbt-SAM complex reveals the recognition mechanism and shows that Sfmbt-SAM lacks the polymerization capacity of the SAM domains of Scm and its PRC1 partner subunit, Ph. Functional analyses in Drosophila demonstrate that Sfmbt-SAM and Scm-SAM are essential for repression and that PhoRC DNA binding is critical to initiate PRC1 association with PREs. Together, this suggests that PRE-tethered Sfmbt-SAM nucleates PRC1 recruitment and that Scm-SAM/Ph-SAM-mediated polymerization then results in the formation of PRC1-compacted chromatin.
Collapse
|
49
|
Monribot-Villanueva J, Zurita M, Vázquez M. Developmental transcriptional regulation by SUMOylation, an evolving field. Genesis 2017; 55. [PMID: 27935206 DOI: 10.1002/dvg.23009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 02/05/2023]
Abstract
SUMOylation is a reversible post-translational protein modification that affects the intracellular localization, stability, activity, and interactions of its protein targets. The SUMOylation pathway influences several nuclear and cytoplasmic processes. The expression of many genes, in particular those involved in development is finely tuned in space and time by several groups of proteins. There is growing evidence that transcriptional regulation mechanisms involve direct SUMOylation of transcriptional-related proteins such as initiation and elongation factors, and subunits of chromatin modifier and remodeling complexes originally described as members of the trithorax and Polycomb groups in Drosophila. Therefore, it is being unveiled that SUMOylation has a role in both, gene silencing and gene activation mechanisms. The goal of this review is to discuss the information on how SUMO modification in components of these multi-subunit complexes may have an effect in genome architecture and function and, therefore, in the regulation of gene expression in time and space.
Collapse
Affiliation(s)
- Juan Monribot-Villanueva
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mario Zurita
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha Vázquez
- Departamento de Fisiología Molecular y Genética del Desarrollo, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
50
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|