1
|
Kim S, Park S, Kim YJ, Hyun J, Choi J. miRNA-199b-5p suppresses of oral squamous cell carcinoma by targeting apical-basolateral polarity via Scribble/Lgl. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102363. [PMID: 39558906 PMCID: PMC11570515 DOI: 10.1016/j.omtn.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
In epithelial cells, Scribble forms cell-cell junctions and contributes to cell morphology and homeostasis by regulating apical-basolateral polarity in mammals and functions as a tumor suppressor in many carcinomas. The initial diagnosis of oral squamous cell carcinoma is important, and its prognosis is poor when accompanied by metastasis. However, research on the mechanisms of oral squamous cell carcinoma metastasis is insufficient. Herein, we showed that Scribble regulates the apical-basolateral polarity of oral squamous cell carcinoma by regulating lethal giant larvae 1, Scribble module and E-cadherin, the adhesion junction. The expression of lethal giant larvae 1 and E-cadherin decreased when the expression of Scribble was knocked down and their localization was completely disrupted in both the oral squamous cell carcinoma cell line and in vivo model. In particular, the Scribble was involved in oral squamous cell carcinoma metastasis via hsa-miR-199b-5p, which is a microenvironmental factor of hypoxia. The disruption of Scribble localization under hypoxic conditions, but its localization was maintained in miR-199b-5p oral squamous cell carcinoma cell lines and in vivo. These results suggest that Scribble functions as a tumor suppressor marker mediated by miR-199b-5p in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Yong-Jae Kim
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystem, College of Bio-convergence, Dankook University, Cheonan 311166, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
2
|
Fan L, Lin Y, Fu Y, Wang J. Small cell lung cancer with liver metastases: from underlying mechanisms to treatment strategies. Cancer Metastasis Rev 2024; 44:5. [PMID: 39585433 DOI: 10.1007/s10555-024-10220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Small cell lung cancer (SCLC) represents an aggressive neuroendocrine (NE) tumor within the pulmonary region, characterized by very poor prognoses. Druggable targets for SCLC remain limited, thereby constraining treatment options available to patients. Immuno-chemotherapy has emerged as a pivotal therapeutic strategy for extensive-stage SCLC (ES-SCLC), yet it fails to confer significant efficacy in cases involving liver metastases (LMs) originating from SCLC. Therefore, our attention is directed towards the challenging subset of SCLC patients with LMs. Disease progression of LM-SCLC patients is affected by various factors in the tumor microenvironment (TME), including immune cells, blood vessels, inflammatory mediators, metabolites, and NE substances. Beyond standard immuno-chemotherapy, ongoing efforts to manage LMs in SCLC encompass anti-angiogenic therapy, radiotherapy, microwave ablation (MWA) / radiofrequency ablation (RFA), trans-arterial chemoembolization (TACE), and systemic therapies in conjunction with local interventions. Prospective experimental and clinical investigations into SCLC should prioritize precise and individualized approaches to enhance the prognosis across distinct patient cohorts.
Collapse
Affiliation(s)
- Linjie Fan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiwen Lin
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunjie Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Wang Y, Hu Q, Cao Y, Yao L, Liu H, Wen Y, Bao Y, Zhang S, Lv C, Zhao GS. FOSL1 promotes stem cell‑like characteristics and anoikis resistance to facilitate tumorigenesis and metastasis in osteosarcoma by targeting SOX2. Int J Mol Med 2024; 54:94. [PMID: 39219279 PMCID: PMC11374145 DOI: 10.3892/ijmm.2024.5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Metastasis is the leading cause of cancer‑related death in osteosarcoma (OS). OS stem cells (OSCs) and anoikis resistance are considered to be essential for tumor metastasis formation. However, the underlying mechanisms involved in the maintenance of a stem‑cell phenotype and anoikis resistance in OS are mostly unknown. Fos‑like antigen 1 (FOSL1) is important in maintaining a stem‑like phenotype in various cancers; however, its role in OSCs and anoikis resistance remains unclear. In the present study, the dynamic expression patterns of FOSL1 were investigated during the acquisition of cancer stem‑like properties using RNA sequencing, PCR, western blotting and immunofluorescence. Flow cytometry, tumor‑sphere formation, clone formation assays, anoikis assays, western blotting and in vivo xenograft and metastasis models were used to further investigate the responses of the stem‑cell phenotype and anoikis resistance to FOSL1 overexpression or silencing in OS cell lines. The underlying molecular mechanisms were evaluated, focusing on whether SOX2 is crucially involved in FOSL1‑mediated stemness and anoikis in OS. FOSL1 expression was observed to be upregulated in OSCs and promoted tumor‑sphere formation, clone formation and tumorigenesis in OS cells. FOSL1 expression correlated positively with the expression of stemness‑related factors (SOX2, NANOG, CD117 and Stro1). Moreover, FOSL1 facilitated OS cell anoikis resistance and promoted metastases by regulating the expression of apoptosis related proteins BCL2 and BAX. Mechanistically, FOSL1 upregulated SOX2 expression by interacting with the SOX2 promoter and activating its transcription. The results also showed that SOX2 is critical for FOSL1‑mediated stem‑like properties and anoikis resistance. The current findings indicated that FOSL1 is an important regulator that promotes a stem cell‑like phenotype and anoikis resistance to facilitate tumorigenesis and metastasis in OS by regulating the transcription of SOX2. Thus, FOSL1 might represent an attractive target for therapeutic interventions in OS.
Collapse
Affiliation(s)
- Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Qin Hu
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Li Yao
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Haoran Liu
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Yafeng Wen
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shun Zhang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Chuanzhu Lv
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610064, P.R. China
| | - Guo-Sheng Zhao
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
4
|
Schmid KF, Zeinali S, Moser SK, Dubey C, Schneider S, Deng H, Haefliger S, Marti TM, Guenat OT. Assessing the metastatic potential of circulating tumor cells using an organ-on-chip model. Front Bioeng Biotechnol 2024; 12:1457884. [PMID: 39439549 PMCID: PMC11493642 DOI: 10.3389/fbioe.2024.1457884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Metastatic lung cancer remains a leading cause of death worldwide, with its intricate metastatic cascade posing significant challenges to researchers and clinicians. Despite substantial progress in understanding this cascade, many aspects remain elusive. Microfluidic-based vasculature-on-chip models have emerged as powerful tools in cancer research, enabling the simulation of specific stages of tumor progression. In this study, we investigate the extravasation behaviors of A549 lung cancer cell subpopulations, revealing distinct differences based on their phenotypes. Our results show that holoclones, which exhibit an epithelial phenotype, do not undergo extravasation. In contrast, paraclones, characterized by a mesenchymal phenotype, demonstrate a notable capacity for extravasation. Furthermore, we observed that paraclones migrate significantly faster than holoclones within the microfluidic model. Importantly, we found that the depletion of vascular endothelial growth factor (VEGF) effectively inhibits the extravasation of paraclones. These findings highlight the utility of microfluidic-based models in replicating key aspects of the metastatic cascade. The insights gained from this study underscore the potential of these models to advance precision medicine by facilitating the assessment of patient-specific cancer cell dynamics and drug responses. This approach could lead to improved strategies for predicting metastatic risk and tailoring personalized cancer therapies, potentially involving the sampling of cancer cells from patients during tumor resection or biopsies.
Collapse
Affiliation(s)
- Karin F. Schmid
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Susanne K. Moser
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Christelle Dubey
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabine Schneider
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Sivanand S, Gultekin Y, Winter PS, Vermeulen SY, Tchourine KM, Abbott KL, Danai LV, Gourgue F, Do BT, Crowder K, Kunchok T, Lau AN, Darnell AM, Jefferson A, Morita S, Duda DG, Aguirre AJ, Wolpin BM, Henning N, Spanoudaki V, Maiorino L, Irvine DJ, Yilmaz OH, Lewis CA, Vitkup D, Shalek AK, Vander Heiden MG. Cancer tissue of origin constrains the growth and metabolism of metastases. Nat Metab 2024; 6:1668-1681. [PMID: 39160333 PMCID: PMC11450831 DOI: 10.1038/s42255-024-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Metastases arise from subsets of cancer cells that disseminate from the primary tumour1,2. The ability of cancer cells to thrive in a new tissue site is influenced by genetic and epigenetic changes that are important for disease initiation and progression, but these factors alone do not predict if and where cancers metastasize3,4. Specific cancer types metastasize to consistent subsets of tissues, suggesting that primary tumour-associated factors influence where cancers can grow. We find primary and metastatic pancreatic tumours have metabolic similarities and that the tumour-initiating capacity and proliferation of both primary-derived and metastasis-derived cells is favoured in the primary site relative to the metastatic site. Moreover, propagating cells as tumours in the lung or the liver does not enhance their relative ability to form large tumours in those sites, change their preference to grow in the primary site, nor stably alter aspects of their metabolism relative to primary tumours. Primary liver and lung cancer cells also exhibit a preference to grow in their primary site relative to metastatic sites. These data suggest cancer tissue of origin influences both primary and metastatic tumour metabolism and may impact where cancer cells can metastasize.
Collapse
Affiliation(s)
- Sharanya Sivanand
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yetis Gultekin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter S Winter
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sidney Y Vermeulen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura V Danai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Florian Gourgue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kayla Crowder
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Allison N Lau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandria Jefferson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Satoru Morita
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dan G Duda
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole Henning
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Preclinical Imaging and Testing Facility, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Virginia Spanoudaki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Preclinical Imaging and Testing Facility, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Ragon Institute of MGH, MITnd Harvard, Cambridge, MA, USA
| | - Omer H Yilmaz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Alex K Shalek
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MITnd Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Wong CN, Zhang Y, Ru B, Wang S, Zhou H, Lin J, Lyu Y, Qin Y, Jiang P, Lee VH, Guan X. Identification and Characterization of Metastasis-Initiating Cells in ESCC in a Multi-Timepoint Pulmonary Metastasis Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401590. [PMID: 38864342 PMCID: PMC11321633 DOI: 10.1002/advs.202401590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Metastasis is the biggest obstacle to esophageal squamous cell carcinoma (ESCC) treatment. Single-cell RNA sequencing analyses are applied to investigate lung metastatic ESCC cells isolated from pulmonary metastasis mouse model at multiple timepoints to characterize early metastatic microenvironment. A small population of parental KYSE30 cell line (Cluster S) resembling metastasis-initiating cells (MICs) is identified because they survive and colonize at lung metastatic sites. Differential expression profile comparisons between Cluster S and other subpopulations identified a panel of 7 metastasis-initiating signature genes (MIS), including CD44 and TACSTD2, to represent MICs in ESCC. Functional studies demonstrated MICs (CD44high) exhibited significantly enhanced cell survival (resistances to oxidative stress and apoptosis), migration, invasion, stemness, and in vivo lung metastasis capabilities, while bioinformatics analyses revealed enhanced organ development, stress responses, and neuron development, potentially remodel early metastasis microenvironment. Meanwhile, early metastasizing cells demonstrate quasi-epithelial-mesenchymal phenotype to support both invasion and anchorage. Multiplex immunohistochemistry (mIHC) staining of 4 MISs (CD44, S100A14, RHOD, and TACSTD2) in ESCC clinical samples demonstrated differential MIS expression scores (dMISs) predict lymph node metastasis, overall survival, and risk of carcinothrombosis.
Collapse
Affiliation(s)
- Ching Ngar Wong
- Department of Clinical OncologyCentre for Cancer MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSAR999077China
| | - Yu Zhang
- Department of Pediatric OncologySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Beibei Ru
- Cancer Data Science LabCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20814USA
| | - Songna Wang
- Department of Clinical OncologyCentre for Cancer MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSAR999077China
| | - Hongyu Zhou
- Department of Clinical OncologyCentre for Cancer MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSAR999077China
| | - Jiarun Lin
- Department of Clinical OncologyCentre for Cancer MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSAR999077China
| | - Yingchen Lyu
- Department of Clinical OncologyCentre for Cancer MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSAR999077China
| | - Yanru Qin
- Department of Clinical Oncologythe First Affiliated HospitalZhengzhou UniversityZhengzhou450052China
| | - Peng Jiang
- Cancer Data Science LabCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMD20814USA
| | - Victor Ho‐Fun Lee
- Department of Clinical OncologyCentre for Cancer MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSAR999077China
| | - Xin‐Yuan Guan
- Department of Clinical OncologyCentre for Cancer MedicineLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongSAR999077China
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhou510060China
- Department of Clinical OncologyThe University of Hong Kong ‐ Shenzhen HospitalShenzhen518053China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapyThe University of Hong Kong‐Shenzhen HospitalShenzhen518053China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou516029China
- MOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangzhou510610China
| |
Collapse
|
7
|
Woess K, Alonso-Curbelo D. Cancer spread in the liver is unlocked from within. Nature 2024; 632:262-264. [PMID: 39048866 DOI: 10.1038/d41586-024-02235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
|
8
|
Borrelli C, Roberts M, Eletto D, Hussherr MD, Fazilaty H, Valenta T, Lafzi A, Kretz JA, Guido Vinzoni E, Karakatsani A, Adivarahan S, Mannhart A, Kimura S, Meijs A, Baccouche Mhamedi F, Acar IE, Handler K, Ficht X, Platt RJ, Piscuoglio S, Moor AE. In vivo interaction screening reveals liver-derived constraints to metastasis. Nature 2024; 632:411-418. [PMID: 39048831 PMCID: PMC11306111 DOI: 10.1038/s41586-024-07715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
It is estimated that only 0.02% of disseminated tumour cells are able to seed overt metastases1. While this suggests the presence of environmental constraints to metastatic seeding, the landscape of host factors controlling this process remains largely unclear. Here, combining transposon technology2 and fluorescence niche labelling3, we developed an in vivo CRISPR activation screen to systematically investigate the interactions between hepatocytes and metastatic cells. We identify plexin B2 as a critical host-derived regulator of liver colonization in colorectal and pancreatic cancer and melanoma syngeneic mouse models. We dissect a mechanism through which plexin B2 interacts with class IV semaphorins on tumour cells, leading to KLF4 upregulation and thereby promoting the acquisition of epithelial traits. Our results highlight the essential role of signals from the liver parenchyma for the seeding of disseminated tumour cells before the establishment of a growth-promoting niche. Our findings further suggest that epithelialization is required for the adaptation of CRC metastases to their new tissue environment. Blocking the plexin-B2-semaphorin axis abolishes metastatic colonization of the liver and therefore represents a therapeutic strategy for the prevention of hepatic metastases. Finally, our screening approach, which evaluates host-derived extrinsic signals rather than tumour-intrinsic factors for their ability to promote metastatic seeding, is broadly applicable and lays a framework for the screening of environmental constraints to metastasis in other organs and cancer types.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Morgan Roberts
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Davide Eletto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Atefeh Lafzi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elena Guido Vinzoni
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Ardian Mannhart
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shoichiro Kimura
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ab Meijs
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Ilhan E Acar
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kristina Handler
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Salvatore Piscuoglio
- IRCCS Humanitas Research Hospital, Milan, Italy
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
9
|
Subbalakshmi AR, Ramisetty S, Mohanty A, Pareek S, Do D, Shrestha S, Khan A, Talwar N, Tan T, Vishnubhotla P, Singhal SS, Salgia R, Kulkarni P. Phenotypic Plasticity and Cancer: A System Biology Perspective. J Clin Med 2024; 13:4302. [PMID: 39124569 PMCID: PMC11313222 DOI: 10.3390/jcm13154302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a major axis of phenotypic plasticity not only in diseased conditions such as cancer metastasis and fibrosis but also during normal development and wound healing. Yet-another important axis of plasticity with metastatic implications includes the cancer stem cell (CSCs) and non-CSC transitions. However, in both processes, epithelial (E) and mesenchymal (M) phenotypes are not merely binary states. Cancer cells acquire a spectrum of phenotypes with traits, properties, and markers of both E and M phenotypes, giving rise to intermediary hybrid (E/M) phenotypes. E/M cells play an important role in tumor initiation, metastasis, and disease progression in multiple cancers. Furthermore, the hybrid phenotypes also play a major role in causing therapeutic resistance in cancer. Here, we discuss how a systems biology perspective on the problem, which is implicit in the 'Team Medicine' approach outlined in the theme of this Special Issue of The Journal of Clinical Medicine and includes an interdisciplinary team of experts, is more likely to shed new light on EMT in cancer and help us to identify novel therapeutics and strategies to target phenotypic plasticity in cancer.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Dana Do
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Sagun Shrestha
- Department of Medical Oncology and Therapeutics Research, City of Hope Phoenix, Goodyear, AZ 85338, USA
| | - Ajaz Khan
- Department of Medical Oncology and Therapeutics Research, City of Hope Chicago, Zion, IL 60099, USA
| | - Neel Talwar
- Department of Medical Oncology and Therapeutics Research, City of Hope San Bernardino Road, Upland, CA 91786, USA
| | - Tingting Tan
- Department of Medical Oncology and Therapeutics Research, City of Hope Avocado Avenue, Newport Beach, CA 92660, USA
| | - Priya Vishnubhotla
- Department of Medical Oncology and Therapeutics Research, City of Hope Atlanta, Newnan, GA 30265, USA
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.R.S.)
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Papp O, Jordán V, Hetey S, Balázs R, Kaszás V, Bartha Á, Ordasi NN, Kamp S, Farkas B, Mettetal J, Dry JR, Young D, Sidders B, Bulusu KC, Veres DV. Network-driven cancer cell avatars for combination discovery and biomarker identification for DNA damage response inhibitors. NPJ Syst Biol Appl 2024; 10:68. [PMID: 38906870 PMCID: PMC11192759 DOI: 10.1038/s41540-024-00394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Combination therapy is well established as a key intervention strategy for cancer treatment, with the potential to overcome monotherapy resistance and deliver a more durable efficacy. However, given the scale of unexplored potential target space and the resulting combinatorial explosion, identifying efficacious drug combinations is a critical unmet need that is still evolving. In this paper, we demonstrate a network biology-driven, simulation-based solution, the Simulated Cell™. Integration of omics data with a curated signaling network enables the accurate and interpretable prediction of 66,348 combination-cell line pairs obtained from a large-scale combinatorial drug sensitivity screen of 684 combinations across 97 cancer cell lines (BAC = 0.62, AUC = 0.7). We highlight drug combination pairs that interact with DNA Damage Response pathways and are predicted to be synergistic, and deep network insight to identify biomarkers driving combination synergy. We demonstrate that the cancer cell 'avatars' capture the biological complexity of their in vitro counterparts, enabling the identification of pathway-level mechanisms of combination benefit to guide clinical translatability.
Collapse
Affiliation(s)
- Orsolya Papp
- Turbine Simulated Cell Technologies, Budapest, Hungary
| | | | | | - Róbert Balázs
- Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Valér Kaszás
- Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Árpád Bartha
- Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Nóra N Ordasi
- Turbine Simulated Cell Technologies, Budapest, Hungary
| | | | - Bálint Farkas
- Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Jerome Mettetal
- Oncology Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Jonathan R Dry
- Early Data Science, Oncology Data Science, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Duncan Young
- Search and Evaluation, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Ben Sidders
- Early Data Science, Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Krishna C Bulusu
- Early Data Science, Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
11
|
Ramisetty S, Subbalakshmi AR, Pareek S, Mirzapoiazova T, Do D, Prabhakar D, Pisick E, Shrestha S, Achuthan S, Bhattacharya S, Malhotra J, Mohanty A, Singhal SS, Salgia R, Kulkarni P. Leveraging Cancer Phenotypic Plasticity for Novel Treatment Strategies. J Clin Med 2024; 13:3337. [PMID: 38893049 PMCID: PMC11172618 DOI: 10.3390/jcm13113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer cells, like all other organisms, are adept at switching their phenotype to adjust to the changes in their environment. Thus, phenotypic plasticity is a quantitative trait that confers a fitness advantage to the cancer cell by altering its phenotype to suit environmental circumstances. Until recently, new traits, especially in cancer, were thought to arise due to genetic factors; however, it is now amply evident that such traits could also emerge non-genetically due to phenotypic plasticity. Furthermore, phenotypic plasticity of cancer cells contributes to phenotypic heterogeneity in the population, which is a major impediment in treating the disease. Finally, plasticity also impacts the group behavior of cancer cells, since competition and cooperation among multiple clonal groups within the population and the interactions they have with the tumor microenvironment also contribute to the evolution of drug resistance. Thus, understanding the mechanisms that cancer cells exploit to tailor their phenotypes at a systems level can aid the development of novel cancer therapeutics and treatment strategies. Here, we present our perspective on a team medicine-based approach to gain a deeper understanding of the phenomenon to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Ayalur Raghu Subbalakshmi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Dana Do
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Dhivya Prabhakar
- City of Hope Atlanta, 600 Celebrate Life Parkway, Newnan, GA 30265, USA;
| | - Evan Pisick
- City of Hope Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA;
| | - Sagun Shrestha
- City of Hope Phoenix, 14200 West Celebrate Life Way, Goodyear, AZ 85338, USA;
| | - Srisairam Achuthan
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Jyoti Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
13
|
Ferrer CM, Cho HM, Boon R, Bernasocchi T, Wong LP, Cetinbas M, Haggerty ER, Mitsiades I, Wojtkiewicz GR, McLoughlin DE, Aboushousha R, Abdelhamid H, Kugel S, Rheinbay E, Sadreyev R, Juric D, Janssen-Heininger YMW, Mostoslavsky R. The glutathione S-transferase Gstt1 drives survival and dissemination in metastases. Nat Cell Biol 2024; 26:975-990. [PMID: 38862786 DOI: 10.1038/s41556-024-01426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
Identifying the adaptive mechanisms of metastatic cancer cells remains an elusive question in the treatment of metastatic disease, particularly in pancreatic cancer (pancreatic adenocarcinoma, PDA). A loss-of-function shRNA targeted screen in metastatic-derived cells identified Gstt1, a member of the glutathione S-transferase superfamily, as uniquely required for dissemination and metastasis, but dispensable for primary tumour growth. Gstt1 is expressed in latent disseminated tumour cells (DTCs), is retained within a subpopulation of slow-cycling cells within existing metastases, and its inhibition leads to complete regression of macrometastatic tumours. This distinct Gstt1high population is highly metastatic and retains slow-cycling phenotypes, epithelial-mesenchymal transition features and DTC characteristics compared to the Gstt1low population. Mechanistic studies indicate that in this subset of cancer cells, Gstt1 maintains metastases by binding and glutathione-modifying intracellular fibronectin, in turn promoting its secretion and deposition into the metastatic microenvironment. We identified Gstt1 as a mediator of metastasis, highlighting the importance of heterogeneity and its influence on the metastatic tumour microenvironment.
Collapse
Affiliation(s)
- Christina M Ferrer
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- University of Maryland School of Medicine and the Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| | - Hyo Min Cho
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ruben Boon
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Galapagos NV, 2800 Mechelen, Belgium
| | - Tiziano Bernasocchi
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth R Haggerty
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Irene Mitsiades
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Daniel E McLoughlin
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | - Reem Aboushousha
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Hend Abdelhamid
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Sita Kugel
- Fred Hutchison Cancer Research Center, Seattle, WA, USA
| | - Esther Rheinbay
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Dejan Juric
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Termeer Center for Targeted Therapies, Massachusetts General Hospital, Boston, MA, USA
| | | | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
14
|
Peng Z, Wang S, Wen D, Mei Z, Zhang H, Liao S, Lv L, Li C. FEN1 upregulation mediated by SUMO2 via antagonizing proteasomal degradation promotes hepatocellular carcinoma stemness. Transl Oncol 2024; 44:101916. [PMID: 38513457 PMCID: PMC10966306 DOI: 10.1016/j.tranon.2024.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE Metastasis of hepatocellular carcinoma (HCC) critically impacts the survival prognosis of patients, with the pivotal role of hepatocellular carcinoma stem cells in initiating invasive metastatic behaviors. The Flap Endonuclease 1 (FEN1) is delineated as a metallonuclease, quintessential for myriad cellular processes including DNA replication, DNA synthesis, DNA damage rectification, Okazaki fragment maturation, baseexcision repair, and the preservation of genomic stability. Furthermore, it has been recognized as an oncogene in a diverse range of malignancies. Our antecedent research has highlighted a pronounced overexpression of protein FEN1 in hepatocellular carcinoma, where it amplifies the invasiveness and metastatic potential of liver cancer cells. However, its precise role in liver cancer stem cells (LCSCs) remains an enigma and requires further investigation. METHODS To rigorously evaluate the stemness attributes of LCSCs, we employed sphere formation assays and flow cytometric evaluations. Both CD133+ and CD133- cell populations were discerningly isolated utilizing immunomagnetic bead separation techniques. The expression levels of pertinent genes were assayed via real-time quantitative PCR (RT-qPCR) and western blot analyses, while the expression profiles in hepatocellular carcinoma tissues were gauged using immunohistochemistry. Subsequent immunoprecipitation, in conjunction with mass spectrometry, ascertained the concurrent binding of proteins FEN1 and Small ubiquitin-related modifier 2 (SUMO2) in HCC cells. Lastly, the impact of SUMO2 on proteasomal degradation pathway of FEN1 was validated by supplementing MG132. RESULTS Our empirical findings substantiate that protein FEN1 is profusely expressed in spheroids and CD133+ cells. In vitro investigations demonstrate that the upregulation of protein FEN1 unequivocally augments the stemness of LCSCs. In a congruent in vivo context, elevation of FEN1 noticeably enhances the tumorigenic potential of LCSCs. Conversely, inhibiting protein FEN1 resulted in a marked reduction in LCSC stemness. From a mechanistic perspective, there exists a salient positive correlation between the protein expression of FEN1 and SUMO2 in liver cancer tissues. Furthermore, the level of SUMO2-mediated modification of FEN1 is pronouncedly elevated in LCSCs. Interestingly, SUMO2 has the ability to bind to FEN1, leading to a inhibition in the proteasomal degradation pathway of FEN1 and an enhancement in its protein expression. However, it is noteworthy that this interaction does not affect the mRNA level of FEN1. CONCLUSION In summation, our research elucidates that protein FEN1 is an effector in augmenting the stemness of LCSCs. Consequently, strategic attenuation of protein FEN1 might proffer a pioneering approach for the efficacious elimination of LCSCs.
Collapse
Affiliation(s)
- Zhenxiang Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Shuling Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Diguang Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| | - Hao Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road, Yuzhong District, Chongqing 400010, PR China.
| |
Collapse
|
15
|
Berrino C, Omar A. Unravelling the Mysteries of the Sonic Hedgehog Pathway in Cancer Stem Cells: Activity, Crosstalk and Regulation. Curr Issues Mol Biol 2024; 46:5397-5419. [PMID: 38920995 PMCID: PMC11202538 DOI: 10.3390/cimb46060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
The Sonic Hedgehog (Shh) signalling pathway plays a critical role in normal development and tissue homeostasis, guiding cell differentiation, proliferation, and survival. Aberrant activation of this pathway, however, has been implicated in the pathogenesis of various cancers, largely due to its role in regulating cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells with the ability to self-renew, differentiate, and initiate tumour growth, contributing significantly to tumorigenesis, recurrence, and resistance to therapy. This review focuses on the intricate activity of the Shh pathway within the context of CSCs, detailing the molecular mechanisms through which Shh signalling influences CSC properties, including self-renewal, differentiation, and survival. It further explores the regulatory crosstalk between the Shh pathway and other signalling pathways in CSCs, highlighting the complexity of this regulatory network. Here, we delve into the upstream regulators and downstream effectors that modulate Shh pathway activity in CSCs. This review aims to cast a specific focus on the role of the Shh pathway in CSCs, provide a detailed exploration of molecular mechanisms and regulatory crosstalk, and discuss current and developing inhibitors. By summarising key findings and insights gained, we wish to emphasise the importance of further elucidating the interplay between the Shh pathway and CSCs to develop more effective cancer therapies.
Collapse
|
16
|
Xin Y, Hu B, Li K, Hu G, Zhang C, Chen X, Tang K, Du P, Tan Y. Circulating tumor cells with metastasis-initiating competence survive fluid shear stress during hematogenous dissemination through CXCR4-PI3K/AKT signaling. Cancer Lett 2024; 590:216870. [PMID: 38614386 DOI: 10.1016/j.canlet.2024.216870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
To seed lethal secondary lesions, circulating tumor cells (CTCs) must survive all rate-limiting factors during hematogenous dissemination, including fluid shear stress (FSS) that poses a grand challenge to their survival. We thus hypothesized that CTCs with the ability to survive FSS in vasculature might hold metastasis-initiating competence. This study reported that FSS of physiologic magnitude selected a small subpopulation of suspended tumor cells in vitro with the traits of metastasis-initiating cells, including stemness, migration/invasion potential, cellular plasticity, and biophysical properties. These shear-selected cells generated local and metastatic tumors at the primary and distal sites efficiently, implicating their metastasis competence. Mechanistically, FSS activated the mechanosensitive protein CXCR4 and the downstream PI3K/AKT signaling, which were essential in shear-mediated selection of metastasis-competent CTCs. In summary, these findings conclude that CTCs with metastasis-initiating competence survive FSS during hematogenous dissemination through CXCR4-PI3K/AKT signaling, which may provide new therapeutic targets for the early prevention of tumor metastasis.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bing Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Cunyu Zhang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Kai Tang
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Pengyu Du
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
| |
Collapse
|
17
|
Lambert AW, Zhang Y, Weinberg RA. Cell-intrinsic and microenvironmental determinants of metastatic colonization. Nat Cell Biol 2024; 26:687-697. [PMID: 38714854 DOI: 10.1038/s41556-024-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Cancer metastasis is a biologically complex process that remains a major challenge in the oncology clinic, accounting for nearly all of the mortality associated with malignant neoplasms. To establish metastatic growths, carcinoma cells must disseminate from the primary tumour, survive in unfamiliar tissue microenvironments, re-activate programs of proliferation, and escape innate and adaptive immunosurveillance. The entire process is extremely inefficient and can occur over protracted timescales, yielding only a vanishingly small number of carcinoma cells that are able to complete all of the required steps. Here we review both the cancer-cell-intrinsic mechanisms and microenvironmental interactions that enable metastatic colonization. In particular, we highlight recent work on the behaviour of already-disseminated tumour cells, since meaningful progress in treating metastatic disease will clearly require a better understanding of the cells that spawn metastases, which generally have disseminated by the time of initial diagnosis.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center, Cambridge, MA, USA.
| |
Collapse
|
18
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
19
|
Xu Z, Wang J, Wang G. Weighted gene co-expression network analysis for hub genes in colorectal cancer. Pharmacol Rep 2024; 76:140-153. [PMID: 38150140 DOI: 10.1007/s43440-023-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND This study is designed to explore hub genes participating in colorectal cancer (CRC) development through weighted gene co-expression network analysis (WGCNA). METHODS Expression profiles of CRC and normal samples were retrieved from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA), and were subjected to WGCNA to filter differentially expressed genes with significant association with CRC. Functional enrichment analysis and protein-protein interaction (PPI) analysis were carried out to filter the candidate genes, further and survival analysis was performed for the candidate genes to obtain potential regulatory hub genes in CRC. Expression analysis was conducted for the candidate genes and a multifactor model was established. RESULTS After differential analysis and WGCNA, 289 candidate genes were filtered from the GEO and TCGA. Further functional enrichment analysis demonstrated possible regulatory pathways and functions. PPI analysis filtered 15 hub genes and survival analysis indicated a significant correlation of CLCA1, CLCA4, and CPT1A with prognosis of patients with CRC. The multifactor Cox risk model established based on the three genes revealed that if the three genes were a gene set, they had well predictive capacity for the prognosis of patients with CRC. CONCLUSIONS CLCA1, CLCA4, and CPT1A express at low levels in CRC and function as core anti-tumor genes. As a gene set, they can predict prognosis well.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Oncology Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088, Heilongjiang, People's Republic of China
| | - Jianing Wang
- Department of Gastrointestinal Surgery, Beidahuang Industry Group General Hospital, Harbin, 150088, Heilongjiang, People's Republic of China
| | - Guosheng Wang
- Department of Pancreaticobiliary Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150007, Heilongjiang, People's Republic of China.
| |
Collapse
|
20
|
Premachandran S, Dhinakaran AK, Das S, Venkatakrishnan K, Tan B, Sharma M. Detection of lung cancer metastasis from blood using L-MISC nanosensor: Targeting circulating metastatic cues for improved diagnosis. Biosens Bioelectron 2024; 243:115782. [PMID: 37890388 DOI: 10.1016/j.bios.2023.115782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Metastatic lung cancers are considered one of the most clinically significant malignancies, comprising about 40% of deaths caused by cancers. Detection of lung cancer metastasis prior to symptomatic relapse is critical for timely diagnosis and clinical management. The onset of cancer metastasis is indicated by the manifestation of tumor-shed signatures from the primary tumor in peripheral circulation. A subset of this population, characterized as the metastasis-initiating stem cells, are capable of invasion, tumor initiation, and propagation of metastasis at distant sites. In this study, we have developed a SERS-functionalised L-MISC (Lung-Metastasis Initiating Stem Cells) nanosensor to accurately capture the trace levels of metastatic signatures directly from patient blood. We investigated the signatures of cancer stem cell enriched heterogenous population of primary and metastatic lung cancer cells to establish a metastatic profile unique to lung cancer. Multivariate statistical analyses revealed statistically significant differences in the molecular profiles of healthy, primary, and metastatic cell populations. The single-cell sensitivity of L-MISC nanosensor enabled a label-free detection of MISCs with high sensitivity and specificity. By employing a robust machine learning model, our diagnostic methodology can accurately detect metastatic lung cancer from not more than 5 μl of blood. A pilot validation of our study was carried out using clinical samples for the prediction of metastatic lung cancers resulting in 100% diagnostic sensitivity. The L-MISC nanosensor is a potential tool for highly rapid, non-invasive, and accurate diagnosis of lung cancer metastasis.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ashok Kumar Dhinakaran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Nano Characterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; Nano-Bio Interface Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Mansi Sharma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
21
|
Li ZX, Sun MC, Fang K, Zhao ZY, Leng ZY, Zhang ZH, Xu AP, Chu Y, Zhang L, Lian J, Chen T, Xu MD. Transcription factor 3 promotes migration and invasion potential and maintains cancer stemness by activating ID1 expression in esophageal squamous cell carcinoma. Cancer Biol Ther 2023; 24:2246206. [PMID: 37607071 PMCID: PMC10443991 DOI: 10.1080/15384047.2023.2246206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/09/2022] [Accepted: 06/06/2023] [Indexed: 08/24/2023] Open
Abstract
Transcription factor 3 (TCF3) is a member of the basic Helix - Loop - Helix (bHLH) transcription factor (TF) family and is encoded by the TCF3 gene (also known as E2A). It has been shown that TCF3 functions as a key transcription factor in the pathogenesis of several human cancers and plays an important role in stem cell maintenance and carcinogenesis. However, the effect of TCF3 in the progression of esophageal squamous cell carcinoma (ESCC) is poorly known. In our study, TCF3 was found to express highly and correlated with cancer stage and prognosis. TCF3 was shown to promote ESCC invasion, migration, and drug resistance both from the results of in vivo and in vitro assays. Moreover, further studies suggested that TCF3 played these roles through transcriptionally regulating Inhibitor of DNA binding 1(ID1). Notably, we also found that TCF3 or ID1 was associated with ESCC stemness. Furthermore, TCF3 was correlated with the expression of cancer stemness markers CD44 and CD133. Therefore, maintaining cancer stemness might be the underlying mechanism that TCF3 transcriptionally regulated ID1 and further promoted ESCC progression and drug resistance.
Collapse
Affiliation(s)
- Zhao-Xing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming-Chuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zi-Ying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhu-Yun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ze-Hua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ai-Ping Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Chu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Zhang
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingjing Lian
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mei-Dong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Kuburich NA, den Hollander P, Castaneda M, Pietilä M, Tang X, Batra H, Martínez-Peña F, Visal TH, Zhou T, Demestichas BR, Dontula RV, Liu JY, Maddela JJ, Padmanabhan RS, Phi LTH, Rosolen MJ, Sabapathy T, Kumar D, Giancotti FG, Lairson LL, Raso MG, Soundararajan R, Mani SA. Stabilizing vimentin phosphorylation inhibits stem-like cell properties and metastasis of hybrid epithelial/mesenchymal carcinomas. Cell Rep 2023; 42:113470. [PMID: 37979166 PMCID: PMC11062250 DOI: 10.1016/j.celrep.2023.113470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Maria Castaneda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mika Pietilä
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Janssen Pharmaceutical Companies of Johnson & Johnson, Espoo, Uusimaa, Finland
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Tanvi H Visal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tieling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Breanna R Demestichas
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Ritesh V Dontula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jojo Y Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joanna Joyce Maddela
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Reethi S Padmanabhan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan Thi Hanh Phi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew J Rosolen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thiru Sabapathy
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
23
|
Cheng S, Wan X, Yang L, Qin Y, Chen S, Liu Y, Sun Y, Qiu Y, Huang L, Qin Q, Cui X, Wu M, Liu M. RGCC-mediated PLK1 activity drives breast cancer lung metastasis by phosphorylating AMPKα2 to activate oxidative phosphorylation and fatty acid oxidation. J Exp Clin Cancer Res 2023; 42:342. [PMID: 38102722 PMCID: PMC10722681 DOI: 10.1186/s13046-023-02928-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND More than 90% of the mortality of triple-negative breast cancer (TNBC) patients is attributed to cancer metastasis with organotropism. The lung is a frequent site of TNBC metastasis. However, the precise molecular mechanism for lung-specific metastasis of TNBC is not well understood. METHODS RNA sequencing was performed to identify patterns of gene expression associated with lung metastatic behavior using 4T1-LM3, MBA-MB-231-LM3, and their parental cells (4T1-P, MBA-MB-231-P). Expressions of RGCC, called regulator of cell cycle or response gene to complement 32 protein, were detected in TNBC cells and tissues by qRT-PCR, western blotting, and immunohistochemistry. Kinase activity assay was performed to evaluate PLK1 kinase activity. The amount of phosphorylated AMP-activated protein kinase α2 (AMPKα2) was detected by immunoblotting. RGCC-mediated metabolism was determined by UHPLC system. Oxidative phosphorylation was evaluated by JC-1 staining and oxygen consumption rate (OCR) assay. Fatty acid oxidation assay was conducted to measure the status of RGCC-mediated fatty acid oxidation. NADPH and ROS levels were detected by well-established assays. The chemical sensitivity of cells was evaluated by CCK8 assay. RESULTS RGCC is aberrantly upregulated in pulmonary metastatic cells. High level of RGCC is significantly related with lung metastasis in comparison with other organ metastases. RGCC can effectively promote kinase activity of PLK1, and the activated PLK1 phosphorylates AMPKα2 to facilitate TNBC lung metastasis. Mechanistically, the RGCC/PLK1/AMPKα2 signal axis increases oxidative phosphorylation of mitochondria to generate more energy, and promotes fatty acid oxidation to produce abundant NADPH. These metabolic changes contribute to sustaining redox homeostasis and preventing excessive accumulation of potentially detrimental ROS in metastatic tumor cells, thereby supporting TNBC cell survival and colonization during metastases. Importantly, targeting RGCC in combination with paclitaxel/carboplatin effectively suppresses pulmonary TNBC lung metastasis in a mouse model. CONCLUSIONS RGCC overexpression is significantly associated with lung-specific metastasis of TNBC. RGCC activates AMPKα2 and downstream signaling through RGCC-driven PLK1 activity to facilitate TNBC lung metastasis. The study provides implications for RGCC-driven OXPHOS and fatty acid oxidation as important therapeutic targets for TNBC treatment.
Collapse
Affiliation(s)
- Shaojie Cheng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Liping Yang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yilu Qin
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Shanchun Chen
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxiang Qiu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China
| | - Luyi Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Qizhong Qin
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 91006, USA
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No.1, Yi-Xue-Yuan Road, Yu-Zhong District, Chongqing, 400016, China.
| |
Collapse
|
24
|
Guo Z, Han S. Targeting cancer stem cell plasticity in triple-negative breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1165-1181. [PMID: 38213533 PMCID: PMC10776602 DOI: 10.37349/etat.2023.00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/15/2023] [Indexed: 01/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with limited treatment options. Cancer stem cells (CSCs) are thought to play a crucial role in TNBC progression and resistance to therapy. CSCs are a small subpopulation of cells within tumors that possess self-renewal and differentiation capabilities and are responsible for tumor initiation, maintenance, and metastasis. CSCs exhibit plasticity, allowing them to switch between states and adapt to changing microenvironments. Targeting CSC plasticity has emerged as a promising strategy for TNBC treatment. This review summarizes recent advances in understanding the molecular mechanisms underlying CSC plasticity in TNBC and discusses potential therapeutic approaches targeting CSC plasticity.
Collapse
Affiliation(s)
- Zhengwang Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shuyan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
25
|
Doxtater K, Tripathi MK, Sekhri R, Hafeez BB, Khan S, Zafar N, Behrman SW, Yallapu MM, Jaggi M, Chauhan SC. MUC13 drives cancer aggressiveness and metastasis through the YAP1-dependent pathway. Life Sci Alliance 2023; 6:e202301975. [PMID: 37793774 PMCID: PMC10551643 DOI: 10.26508/lsa.202301975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
Anchorage-independent survival after intravasation of cancer cells from the primary tumor site represents a critical step in metastasis. Here, we reveal new insights into how MUC13-mediated anoikis resistance, coupled with survival of colorectal tumor cells, leads to distant metastasis. We found that MUC13 targets a potent transcriptional coactivator, YAP1, and drives its nuclear translocation via forming a novel survival complex, which in turn augments the levels of pro-survival and metastasis-associated genes. High expression of MUC13 is correlated well with extensive macrometastasis of colon cancer cells with elevated nuclear YAP1 in physiologically relevant whole animal model systems. Interestingly, a positive correlation of MUC13 and YAP1 expression was observed in human colorectal cancer tissues. In brief, the results presented here broaden the significance of MCU13 in cancer metastasis via targeting YAP1 for the first time and provide new avenues for developing novel strategies for targeting cancer metastasis.
Collapse
Affiliation(s)
- Kyle Doxtater
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Manish K Tripathi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Radhika Sekhri
- Department of Pathology, Montefiore Medical Center College of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bilal B Hafeez
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Nadeem Zafar
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| |
Collapse
|
26
|
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, Nayak D, Kaushik S, Das T, Sa G. Tumor-associated macrophages: an effective player of the tumor microenvironment. Front Immunol 2023; 14:1295257. [PMID: 38035101 PMCID: PMC10687432 DOI: 10.3389/fimmu.2023.1295257] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer progression is primarily caused by interactions between transformed cells and the components of the tumor microenvironment (TME). TAMs (tumor-associated macrophages) make up the majority of the invading immune components, which are further categorized as anti-tumor M1 and pro-tumor M2 subtypes. While M1 is known to have anti-cancer properties, M2 is recognized to extend a protective role to the tumor. As a result, the tumor manipulates the TME in such a way that it induces macrophage infiltration and M1 to M2 switching bias to secure its survival. This M2-TAM bias in the TME promotes cancer cell proliferation, neoangiogenesis, lymphangiogenesis, epithelial-to-mesenchymal transition, matrix remodeling for metastatic support, and TME manipulation to an immunosuppressive state. TAMs additionally promote the emergence of cancer stem cells (CSCs), which are known for their ability to originate, metastasize, and relapse into tumors. CSCs also help M2-TAM by revealing immune escape and survival strategies during the initiation and relapse phases. This review describes the reasons for immunotherapy failure and, thereby, devises better strategies to impair the tumor-TAM crosstalk. This study will shed light on the understudied TAM-mediated tumor progression and address the much-needed holistic approach to anti-cancer therapy, which encompasses targeting cancer cells, CSCs, and TAMs all at the same time.
Collapse
Affiliation(s)
- Udit Basak
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Debadatta Nayak
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Subhash Kaushik
- Central Council for Research in Homeopathy (CCRH), New Delhi, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
27
|
Zubareva EY, Senchukova MA, Karmakova TA, Zaitsev NV. The features of PD-L1 expression in tumor stromal cells, peritumoral microvessels and isolated clusters of tumor cells in breast cancer tissue and their correlation with clinical and morphological characteristics of breast cancer. SIBERIAN JOURNAL OF ONCOLOGY 2023; 22:71-83. [DOI: 10.21294/1814-4861-2023-22-5-71-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Objective: to study the features of PD-L1 expression in tumor stromal cells, peritumoral microvessels, and isolated clusters of tumor cells in breast cancer (Bc) tissue and their correlation with the clinical and morphological characteristics of Bc.Material and Methods. The study included 158 patients with newly diagnosed invasive BC. PD-L1 expression was studied by immunohistochemistry. statistical analysis was performed using statistica 12.0 software.Results. PD-L1 expression in peritumoral microvessels occurred in 41.4 and 61.7 % of cases with t1–2 and T3–4 (p=0.020), and in 39.8 and 51.7 % of cases with N0–1 and N2–3 (p=0.008), respectively. In isolated clusters of tumor cells, the marker expression was observed in 28.0 and 52.5 % of cases in nodular and diffuse forms of BC (p=0.005); in 25.9, 39.3 and 66.7 % of cases at stages I–IIb, IIIa–IIIc and IV (p=0.011); in 30.3, 26.2, 40.0 and 52.5 % of cases in T1, T2, T3 and T4 (p=0.040); and in 28.2 and 45.5 % of cases in N0–1 and N2–3 (p=0.030), respectively. Nuclear expression of PD-L1 was also detected in stromal cells, and was observed in 28.8 and 55.0 % of cases with nodular and diffuse forms of BC (p=0.003), in 17.6, 52.5 and 75.0 % of cases in early, locally advanced and metastatic BC (p<0.001), in 21.2, 28.7, 80.0 and 55.0 % of cases in T1, T2, T3 and T4 (p=0.002), in 21.7, 35.3, 51.4 and 55.0 % of cases with N0, N1, N2 and N3 (p=0.005), in 49.0 and 29.0 % of cases with negative and positive status of PR (p=0.014), in 30.3 and 52.8 % of cases with HER2-negative and HER2-positive BC status (p=0.014), respectively.Conclusion. The data indicate the relationship between PD-L1 expression and BC progression. The determination of PD-L1 expression in peritumoral microvessels and isolated tumor cell clusters, as well as nuclear expression of the marker, can be used to clarify the prognosis of the disease.
Collapse
Affiliation(s)
| | - M. A. Senchukova
- Orenburg Regional Clinical Oncology Center; Orenburg state medical university of the Ministry of Health of the Russia
| | - T. A. Karmakova
- P.A. Hertsen Moscow Oncology Research Institute – Branch of the National Medical Research Radiological Centre of the Ministryof Health of the Russia
| | | |
Collapse
|
28
|
Shyam S, Ramu S, Sehgal M, Jolly MK. A systems-level analysis of the mutually antagonistic roles of RKIP and BACH1 in dynamics of cancer cell plasticity. J R Soc Interface 2023; 20:20230389. [PMID: 37963558 PMCID: PMC10645512 DOI: 10.1098/rsif.2023.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity-a hallmark of cancer metastasis. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two antagonistic 'teams' of players-while BACH1 belonged to the one driving pro-EMT, stem-like and therapy-resistant cell states, RKIP belonged to the one enabling pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network enable the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, and with patient survival data.
Collapse
Affiliation(s)
- Sai Shyam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
29
|
Ni Y, Liang Y, Li M, Lin Y, Zou X, Han F, Cao J, Li L. The updates on metastatic mechanism and treatment of colorectal cancer. Pathol Res Pract 2023; 251:154837. [PMID: 37806170 DOI: 10.1016/j.prp.2023.154837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is a main cause of cancer death worldwide. Metastasis is a major cause of cancer-related death in CRC. The treatment of metastatic CRC has progressed minimally. However, the potential molecular mechanisms involved in CRC metastasis have remained to be comprehensively clarified. An improved understanding of the CRC mechanistic determinants is needed to better prevent and treat metastatic cancer. In this review, based on evidence from a growing body of research in metastatic cancers, we discuss the cellular and molecular mechanisms involved in CRC metastasis. This review reveals both the molecular mechanisms of metastases and identifies new opportunities for developing more effective strategies to target metastatic relapse and improve CRC patient outcomes.
Collapse
Affiliation(s)
- Yunfei Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - You Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin Zou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Fangyi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jianing Cao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Liang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Olmedo I, Martínez D, Carrasco-Rojas J, Jara JA. Mitochondria in oral cancer stem cells: Unraveling the potential drug targets for new and old drugs. Life Sci 2023; 331:122065. [PMID: 37659591 DOI: 10.1016/j.lfs.2023.122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Head and neck cancer is a major health problem worldwide, with most cases arising in the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, accounting for over 90% of all cases. Compared to other types of cancer, OSCC, has the worse prognosis, with a 5-year survival rate of 50%. Additionally, OSCC is characterized by a high rate of resistance to chemotherapy treatment, which may be partly explained by the presence of cancer stem cells (CSC) subpopulation. CSC can adapt to harmful environmental condition and are highly resistant to both chemotherapy and radiotherapy treatments, thus contributing to tumor relapse. The aim of this review is to highlight the role of mitochondria in oral CSC as a potential target for oral cancer treatment. For this purpose, we reviewed some fundamental aspects of the most validated protein markers of stemness, autophagy, the mitochondrial function and energy metabolism in oral CSC. Moreover, a discussion will be made on why energy metabolism, especially oxidative phosphorylation in CSC, may offer such a diverse source of original pharmacological target for new drugs. Finally, we will describe some drugs able to disturb mitochondrial function, with emphasis on those aimed to interrupt the electron transport chain function, as novel therapeutic strategies in multidrug-resistant oral CSC. The reutilization of old drugs approved for clinical use as new antineoplastics, in cancer treatment, is also matter of revision.
Collapse
Affiliation(s)
- Ivonne Olmedo
- Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela Martínez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Javiera Carrasco-Rojas
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - José A Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Toxicological and Pharmacological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
31
|
Zhou L, Wu J, Ruan M, Xiao Y, Lan H, Wu Q, Yu CW, Zhang Q. The loss of B7-H4 expression in breast cancer cells escaping from T cell cytotoxicity contributes to epithelial-to-mesenchymal transition. Breast Cancer Res 2023; 25:115. [PMID: 37794509 PMCID: PMC10548745 DOI: 10.1186/s13058-023-01721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND B7 homology 4 (B7-H4), a potential target for cancer therapy, has been demonstrated to inhibit T cell cytotoxicity in the early stages of breast cancer. However, B7-H4 manipulating breast tumor immune microenvironment (TIME) in the tumor progression remains unknown. METHODS We engineered T cells with B7-H4-specific chimeric antigen receptors (CARs) and performed a T cell co-culture assay to characterize B7-H4 expression level in breast cancer cells escaping from T cell cytotoxicity. We generated B7-H4 knockout (KO) and overexpression (OE) breast cancer cells to determine the epithelial-to-mesenchymal transition (EMT) and stemness characteristics in vitro and in vivo, including tumor proliferation, migration, metastasis and chemoresistance. The Cancer Genome Atlas breast cancer database was accessed to investigate the correlation between B7-H4 expression levels and EMT characteristics in patients with breast cancer. RESULTS Our result found that B7-H4 expression level was significantly reduced in a subset of breast cancer cells that escaped from the cytotoxicity of B7-H4 CAR-T cells. Compared with wild type cells, B7-H4 KO cells prompt EMT and stemness characteristics, including migration, invasion and metastasis, and OE cells vice versa. The increase in H3K27me3 in KO cells confirmed the epigenetic reprogramming of cancer stem cells. The IC50 of doxorubicin or oxaliplatin significantly increased in KO cells, which was in agreement with a decrease in OE cells. Moreover, a trend of downregulated B7-H4 from stage I to stage II breast cancer patients indicates that the low-expressing B7-H4 breast cancer cells escaping from TIME have spread to nearby breast lymph nodes in the cancer progression. CONCLUSIONS Our study illuminates the novel role of renouncing B7-H4 in breast cancer cells through immune escape, which contributes to EMT processes and provides new insights for breast cancer treatments.
Collapse
Affiliation(s)
- Linlin Zhou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jichun Wu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mei Ruan
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Yonglei Xiao
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Hailin Lan
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiongwen Wu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China
| | - Chen-Wei Yu
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
32
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
33
|
Munoz-Arcos LS, Nicolò E, Serafini MS, Gerratana L, Reduzzi C, Cristofanilli M. Latest advances in clinical studies of circulating tumor cells in early and metastatic breast cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:1-21. [PMID: 37739480 DOI: 10.1016/bs.ircmb.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Circulating tumor cells (CTCs) have emerged as a promising biomarker in breast cancer, offering insights into disease progression and treatment response. While CTCs have demonstrated prognostic relevance in early breast cancer, more validation is required to establish optimal cut-off points. In metastatic breast cancer, the detection of CTCs using the Food and Drug Administration-approved CellSearch® system is a strong independent prognostic factor. However, mesenchymal CTCs and the Parsortix® PC1 system show promise as alternative detection methods. This chapter offers a comprehensive review of clinical studies on CTCs in breast cancer, emphasizing their prognostic and predictive value in different stages of the disease and provides insights into potential future directions in CTC research.
Collapse
Affiliation(s)
- Laura S Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Mara S Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
34
|
Chakraborty S, Mukherjee S, Basak U, Pati S, Dutta A, Dutta S, Dhar S, Sarkar T, Guin A, Sa G, Das T. Immune evasion by cancer stem cells ensures tumor initiation and failure of immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:384-405. [DOI: 10.37349/ei.2023.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 01/04/2025]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells that drive the formation and progression of tumors. However, during tumor initiation, how CSCs communicate with neighbouring immune cells to overcome the powerful immune surveillance barrier in order to form, spread, and maintain the tumor, remains poorly understood. It is, therefore, absolutely necessary to understand how a small number of tumor-initiating cells (TICs) survive immune attack during (a) the “elimination phase” of “tumor immune-editing”, (b) the establishment of regional or distant tumor after metastasis, and (c) recurrence after therapy. Mounting evidence suggests that CSCs suppress the immune system through a variety of distinct mechanisms that ensure the survival of not only CSCs but also non-stem cancer cells (NSCCs), which eventually form the tumor mass. In this review article, the mechanisms via which CSCs change the immune landscape of the tissue of origin, which contains macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes, in favour of tumorigenesis were discussed. The failure of cancer immunotherapy might also be explained by such interaction between CSCs and immune cells. This review will shed light on the critical role of CSCs in tumor immune evasion and emphasize the importance of CSC-targeted immunotherapy as a cutting-edge technique for battling cancer by restricting communication between immune cells and CSCs.
Collapse
Affiliation(s)
- Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhanki Dhar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Aharna Guin
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| |
Collapse
|
35
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
36
|
Shaik MR, Sagar PR, Shaik NA, Randhawa N. Liquid Biopsy in Hepatocellular Carcinoma: The Significance of Circulating Tumor Cells in Diagnosis, Prognosis, and Treatment Monitoring. Int J Mol Sci 2023; 24:10644. [PMID: 37445822 DOI: 10.3390/ijms241310644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor outcomes when diagnosed at an advanced stage. Current curative treatments are most effective in early-stage HCC, highlighting the importance of early diagnosis and intervention. However, existing diagnostic methods, such as radiological imaging, alpha-fetoprotein (AFP) testing, and biopsy, have limitations that hinder early diagnosis. AFP elevation is absent in a significant portion of tumors, and imaging may have low sensitivity for smaller tumors or in the presence of cirrhosis. Additionally, as our understanding of the molecular pathogenesis of HCC grows, there is an increasing need for molecular information about the tumors. Biopsy, although informative, is invasive and may not always be feasible depending on tumor location. In this context, liquid biopsy technology has emerged as a promising approach for early diagnosis, enabling molecular characterization and genetic profiling of tumors. This technique involves analyzing circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-derived exosomes. CTCs are cancer cells shed from the primary tumor or metastatic sites and circulate in the bloodstream. Their presence not only allows for early detection but also provides insights into tumor metastasis and recurrence. By detecting CTCs in peripheral blood, real-time tumor-related information at the DNA, RNA, and protein levels can be obtained. This article provides an overview of CTCs and explores their clinical significance for early detection, prognosis, treatment selection, and monitoring treatment response in HCC, citing relevant literature.
Collapse
Affiliation(s)
- Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Prem Raj Sagar
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Nishat Anjum Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | | |
Collapse
|
37
|
Ganguly D, Schmidt MO, Coleman M, Ngo TVC, Sorrelle N, Dominguez AT, Murimwa GZ, Toombs JE, Lewis C, Fang YV, Valdes-Mora F, Gallego-Ortega D, Wellstein A, Brekken RA. Pleiotrophin drives a prometastatic immune niche in breast cancer. J Exp Med 2023; 220:e20220610. [PMID: 36828390 PMCID: PMC9998964 DOI: 10.1084/jem.20220610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 11/04/2022] Open
Abstract
Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers. Moreover, elevated PTN in plasma correlated significantly with metastasis and reduced survival of breast cancer patients. Mechanistically, we find that PTN activates NF-κB in cancer cells leading to altered cytokine production, subsequent neutrophil recruitment, and an immune suppressive microenvironment. Consequently, inhibition of PTN, pharmacologically or genetically, reduces the accumulation of tumor-associated neutrophils and reverts local immune suppression, resulting in increased T cell activation and attenuated metastasis. Furthermore, inhibition of PTN significantly enhanced the efficacy of immune checkpoint blockade and chemotherapy in reducing metastatic burden in mice. These findings establish PTN as a previously unrecognized driver of a prometastatic immune niche and thus represents a promising therapeutic target for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Debolina Ganguly
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Morgan Coleman
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tuong-Vi Cindy Ngo
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noah Sorrelle
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adrian T.A. Dominguez
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gilbert Z. Murimwa
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason E. Toombs
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yisheng V. Fang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics group, Precision Medicine Theme, Children’s Cancer Institute, Sydney, Australia
- School of Clinical Medicine, University of NSW Sydney, Sydney, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Rolf A. Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Faggioli F, Velarde MC, Wiley CD. Cellular Senescence, a Novel Area of Investigation for Metastatic Diseases. Cells 2023; 12:cells12060860. [PMID: 36980201 PMCID: PMC10047218 DOI: 10.3390/cells12060860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Metastasis is a systemic condition and the major challenge among cancer types, as it can lead to multiorgan vulnerability. Recently, attention has been drawn to cellular senescence, a complex stress response condition, as a factor implicated in metastatic dissemination and outgrowth. Here, we examine the current knowledge of the features required for cells to invade and colonize secondary organs and how senescent cells can contribute to this process. First, we describe the role of senescence in placentation, itself an invasive process which has been linked to higher rates of invasive cancers. Second, we describe how senescent cells can contribute to metastatic dissemination and colonization. Third, we discuss several metabolic adaptations by which senescent cells could promote cancer survival along the metastatic journey. In conclusion, we posit that targeting cellular senescence may have a potential therapeutic efficacy to limit metastasis formation.
Collapse
Affiliation(s)
- Francesca Faggioli
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB-CNR) uos Milan, Via Fantoli 15/16, 20090 Milan, Italy
- Correspondence: ; Tel.: +39-02-82245211
| | - Michael C. Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City PH 1101, Philippines
| | - Christopher D. Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, MA 02111, USA
- School of Medicine, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
39
|
Nir U, Grinshtain E, Breitbart H. Fer and FerT: A New Regulatory Link between Sperm and Cancer Cells. Int J Mol Sci 2023; 24:ijms24065256. [PMID: 36982326 PMCID: PMC10049441 DOI: 10.3390/ijms24065256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Fer and its sperm and cancer specific variant, FerT, are non-receptor tyrosine kinases which play roles in cancer progression and metastasis. Recent studies have shed light on the regulatory role of these kinases in ensuring proper sperm function. Comparison of the regulatory cascades in which Fer and FerT are engaged in sperm and cancer cells presents an interesting picture, in which similar regulatory interactions of these enzymes are integrated in a similar or different regulatory context in the two cell types. These diverse compositions extend from the involvement of Fer in modulation of actin cytoskeleton integrity and function, to the unique regulatory interactions of Fer with PARP-1 and the PP1 phosphatase. Furthermore, recent findings link the metabolic regulatory roles of Fer and FerT in sperm and cancer cells. In the current review, we discuss the above detailed aspects, which portray Fer and FerT as new regulatory links between sperm and malignant cells. This perspective view can endow us with new analytical and research tools that will deepen our understanding of the regulatory trajectories and networks that govern these two multi-layered systems.
Collapse
|
40
|
Robado de Lope L, Sánchez‐Herrero E, Serna‐Blasco R, Provencio M, Romero A. Cancer as an infective disease: the role of EVs in tumorigenesis. Mol Oncol 2023; 17:390-406. [PMID: 36168102 PMCID: PMC9980310 DOI: 10.1002/1878-0261.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer is conventionally considered an evolutionary disease where tumor cells adapt to the environment and evolve eventually leading to the formation of metastasis through the seeding and growth of metastasis-initiating cells in distant organs. Tumor cell and tumor-stroma communication via soluble factors and extracellular vesicles (EVs) are essential for the success of the metastatic process. As the field of EVs advances, growing data support the role of tumor-derived EVs not only in modifying the microenvironment to facilitate tumor progression but also in inducing changes in cells outside the primary tumor that may lead to a malignant transformation. Thus, an alternative hypothesis has emerged suggesting the conceptualization of cancer as an 'infective' disease. Still, tackling EVs as a possible cancer treatment has not been widely explored. A major understanding is needed to unveil possible additional contributions of EVs in progression and metastasis, which may be essential for the development of novel approaches to treat cancer patients. Here, we review the contribution of EVs to cancer progression and the possible implication of these factors in the oncogenic transformation of indolent cells.
Collapse
Affiliation(s)
- Lucia Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Estela Sánchez‐Herrero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Atrys HealthBarcelonaSpain
| | - Roberto Serna‐Blasco
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Mariano Provencio
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| |
Collapse
|
41
|
Bassey-Archibong BI, Rajendra Chokshi C, Aghaei N, Kieliszek AM, Tatari N, McKenna D, Singh M, Kalpana Subapanditha M, Parmar A, Mobilio D, Savage N, Lam F, Tokar T, Provias J, Lu Y, Chafe SC, Swanton C, Hynds RE, Venugopal C, Singh SK. An HLA-G/SPAG9/STAT3 axis promotes brain metastases. Proc Natl Acad Sci U S A 2023; 120:e2205247120. [PMID: 36780531 PMCID: PMC9974476 DOI: 10.1073/pnas.2205247120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/18/2022] [Indexed: 02/15/2023] Open
Abstract
Brain metastases (BM) are the most common brain neoplasm in adults. Current BM therapies still offer limited efficacy and reduced survival outcomes, emphasizing the need for a better understanding of the disease. Herein, we analyzed the transcriptional profile of brain metastasis initiating cells (BMICs) at two distinct stages of the brain metastatic cascade-the "premetastatic" or early stage when they first colonize the brain and the established macrometastatic stage. RNA sequencing was used to obtain the transcriptional profiles of premetastatic and macrometastatic (non-premetastatic) lung, breast, and melanoma BMICs. We identified that lung, breast, and melanoma premetastatic BMICs share a common transcriptomic signature that is distinct from their non-premetastatic counterparts. Importantly, we show that premetastatic BMICs exhibit increased expression of HLA-G, which we further demonstrate functions in an HLA-G/SPAG9/STAT3 axis to promote the establishment of brain metastatic lesions. Our findings suggest that unraveling the molecular landscape of premetastatic BMICs allows for the identification of clinically relevant targets that can possibly inform the development of preventive and/or more efficacious BM therapies.
Collapse
Affiliation(s)
| | - Chirayu Rajendra Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nikoo Aghaei
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Agata Monika Kieliszek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Dillon McKenna
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mohini Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Arun Parmar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Fred Lam
- Department of Surgery, Division of Neurosurgery, McMaster University Faculty of Health Sciences, Hamilton General Hospital, Hamilton, ON, L8S 4K1, Canada
| | - Tomas Tokar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - John Provias
- Department of Anatomical Pathology (Neuropathology), Hamilton General Hospital, Hamilton, ON, L8L 2X2, Canada
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Yu Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Charles Swanton
- The Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Robert Edward Hynds
- The Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Sheila Kumari Singh
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
42
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
43
|
The Impact of Molecular Biology in the Seeding, Treatment Choices and Follow-Up of Colorectal Cancer Liver Metastases-A Narrative Review. Int J Mol Sci 2023; 24:ijms24021127. [PMID: 36674640 PMCID: PMC9863977 DOI: 10.3390/ijms24021127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
There is a clear association between the molecular profile of colorectal cancer liver metastases (CRCLM) and the degree to which aggressive progression of the disease impacts patient survival. However, much of our knowledge of the molecular behaviour of colorectal cancer cells comes from experimental studies with, as yet, limited application in clinical practice. In this article, we review the current advances in the understanding of the molecular behaviour of CRCLM and present possible future therapeutic applications. This review focuses on three important steps in CRCLM development, progression and treatment: (1) the dissemination of malignant cells from primary tumours and the seeding to metastatic sites; (2) the response to modern regimens of chemotherapy; and (3) the possibility of predicting early progression and recurrence patterns by molecular analysis in liquid biopsy.
Collapse
|
44
|
Mao BH, Nguyen Thi KM, Tang MJ, Kamm RD, Tu TY. The interface stiffness and topographic feature dictate interfacial invasiveness of cancer spheroids. Biofabrication 2023; 15. [PMID: 36594698 DOI: 10.1088/1758-5090/acaa00] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
During cancer metastasis, tumor cells likely navigate, in a collective manner, discrete tissue spaces comprising inherently heterogeneous extracellular matrix microstructures where interfaces may be frequently encountered. Studies have shown that cell migration modes can be determined by adaptation to mechanical/topographic cues from interfacial microenvironments. However, less attention has been paid to exploring the impact of interfacial mechnochemical attributes on invasive and metastatic behaviors of tumor aggregates. Here, we excogitated a collagen matrix-solid substrate interface platform to investigate the afore-stated interesting issue. Our data revealed that stiffer interfaces stimulated spheroid outgrowth by motivating detachment of single cells and boosting their motility and velocity. However, stronger interfacial adhesive strength between matrix and substrate led to the opposite outcomes. Besides, this interfacial parameter also affected the morphological switch between migration modes of the detached cells and their directionality. Mechanistically, myosin II-mediated cell contraction, compared to matrix metalloproteinases-driven collagen degradation, was shown to play a more crucial role in the invasive outgrowth of tumor spheroids in interfacial microenvironments. Thus, our findings highlight the importance of heterogeneous interfaces in addressing and combating cancer metastasis.
Collapse
Affiliation(s)
- Bin-Hsu Mao
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Kim Mai Nguyen Thi
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts institute of Technology, Cambridge, MA 02139, United States of America.,Department of Mechanical Engineering, Massachusetts institute of Technology, Cambridge, MA 02139, United States of America
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
45
|
Lambert AW, Fiore C, Chutake Y, Verhaar ER, Strasser PC, Chen MW, Farouq D, Das S, Li X, Eaton EN, Zhang Y, Liu Donaher J, Engstrom I, Reinhardt F, Yuan B, Gupta S, Wollison B, Eaton M, Bierie B, Carulli J, Olson ER, Guenther MG, Weinberg RA. ΔNp63/p73 drive metastatic colonization by controlling a regenerative epithelial stem cell program in quasi-mesenchymal cancer stem cells. Dev Cell 2022; 57:2714-2730.e8. [PMID: 36538894 PMCID: PMC10002472 DOI: 10.1016/j.devcel.2022.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) may serve as the cellular seeds of tumor recurrence and metastasis, and they can be generated via epithelial-mesenchymal transitions (EMTs). Isolating pure populations of CSCs is difficult because EMT programs generate multiple alternative cell states, and phenotypic plasticity permits frequent interconversions between these states. Here, we used cell-surface expression of integrin β4 (ITGB4) to isolate highly enriched populations of human breast CSCs, and we identified the gene regulatory network operating in ITGB4+ CSCs. Specifically, we identified ΔNp63 and p73, the latter of which transactivates ΔNp63, as centrally important transcriptional regulators of quasi-mesenchymal CSCs that reside in an intermediate EMT state. We found that the transcriptional program controlled by ΔNp63 in CSCs is largely distinct from the one that it orchestrates in normal basal mammary stem cells and, instead, it more closely resembles a regenerative epithelial stem cell response to wounding. Moreover, quasi-mesenchymal CSCs repurpose this program to drive metastatic colonization via autocrine EGFR signaling.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Elisha R Verhaar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | - Sunny Das
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Elinor Ng Eaton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Joana Liu Donaher
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ian Engstrom
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sumeet Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Brian Bierie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Ludwig Center for Molecular Oncology, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Vegliante R, Pastushenko I, Blanpain C. Deciphering functional tumor states at single-cell resolution. EMBO J 2022; 41:e109221. [PMID: 34918370 PMCID: PMC8762559 DOI: 10.15252/embj.2021109221] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023] Open
Abstract
Within a tumor, cancer cells exist in different states that are associated with distinct tumor functions, including proliferation, differentiation, invasion, metastasis, and resistance to anti-cancer therapy. The identification of the gene regulatory networks underpinning each state is essential for better understanding functional tumor heterogeneity and revealing tumor vulnerabilities. Here, we review the different studies identifying tumor states by single-cell sequencing approaches and the mechanisms that promote and sustain these functional states and regulate their transitions. We also describe how different tumor states are spatially distributed and interact with the specific stromal cells that compose the tumor microenvironment. Finally, we discuss how the understanding of tumor plasticity and transition states can be used to develop new strategies to improve cancer therapy.
Collapse
Affiliation(s)
- Rolando Vegliante
- Laboratory of Stem Cells and CancerUniversité Libre de BruxellesBrusselsBelgium
| | | | - Cédric Blanpain
- Laboratory of Stem Cells and CancerUniversité Libre de BruxellesBrusselsBelgium
- WELBIOUniversité Libre de BruxellesBrusselsBelgium
| |
Collapse
|
47
|
TRPV4 Promotes Metastasis in Melanoma by Regulating Cell Motility through Cytoskeletal Rearrangement. Int J Mol Sci 2022; 23:ijms232315155. [PMID: 36499486 PMCID: PMC9737014 DOI: 10.3390/ijms232315155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The abnormal expression of Transient Receptor Potential cation channel subfamily V member 4 (TRPV4) is closely related to the progression of multiple tumors. In addition, TRPV4 is increasingly being considered a potential target for cancer therapy, especially in tumor metastasis prevention. However, the biological correlation between TRPV4 and tumor metastasis, as well as the specific role of TRPV4 in malignant melanoma metastasis, is poorly understood. In this study, we aimed to examine the role of TRPV4 in melanoma metastasis through experiments and clinical data analysis, and the underlying anticancer mechanism of Baicalin, a natural compound, and its inhibitory effect on TRPV4 with in vivo and in vitro experiments. Our findings suggested that TRPV4 promotes metastasis in melanoma by regulating cell motility via rearranging the cytoskeletal, and Baicalin can inhibit cancer metastasis, whose mechanisms reverse the recruitment of activated cofilin to leading-edge protrusion and the increasing phosphorylation level of cortactin, which is provoked by TRPV4 activation.
Collapse
|
48
|
Zhang L, Qian Y. An epithelial-mesenchymal transition-related prognostic model for colorectal cancer based on weighted gene co-expression network analysis. J Int Med Res 2022; 50:3000605221140683. [PMID: 36510452 DOI: 10.1177/03000605221140683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To identify susceptibility modules and genes for colorectal cancer (CRC) using weighted gene co-expression network analysis (WGCNA). METHODS Four microarray datasets were downloaded from the Gene Expression Omnibus database. We divided the tumor samples into three subgroups based on consensus clustering of gene expression, and analyzed the correlations between the subgroups and clinical features. The genetic features of the subgroups were investigated by gene set enrichment analysis (GSEA). A gene expression network was constructed using WGCNA, and a protein-protein interaction (PPI) network was used to identify the key genes. Gene modules were annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. RESULTS We divided the cancer cases into three subgroups based on consensus clustering (subgroups I, II, III). The green module identified by WGCNA was correlated with clinical characteristics. Ten key genes were identified according to their degree of connectivity in the protein-protein interaction network: FYN, SEMA3A, AP2M1, L1CAM, NRP1, TLN1, VWF, ITGB3, ILK, and ACTN1. CONCLUSION We identified 10 hub genes as candidate biomarkers for CRC. These key genes may provide a theoretical basis for targeted therapy against CRC.
Collapse
Affiliation(s)
- Lina Zhang
- Department of General Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
49
|
Guo Y, Jiang Y, Rose JB, Nagaraju GP, Jaskula-Sztul R, Hjelmeland AB, Beck AW, Chen H, Ren B. Protein Kinase D1 Signaling in Cancer Stem Cells with Epithelial-Mesenchymal Plasticity. Cells 2022; 11:3885. [PMID: 36497140 PMCID: PMC9739736 DOI: 10.3390/cells11233885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are extremely diverse and highly vascularized neoplasms that arise from endocrine cells in the pancreas. The pNETs harbor a subpopulation of stem cell-like malignant cells, known as cancer stem cells (CSCs), which contribute to intratumoral heterogeneity and promote tumor maintenance and recurrence. In this study, we demonstrate that CSCs in human pNETs co-express protein kinase PKD1 and CD44. We further identify PKD1 signaling as a critical pathway in the control of CSC maintenance in pNET cells. PKD1 signaling regulates the expression of a CSC- and EMT-related gene signature and promotes CSC self-renewal, likely leading to the preservation of a subpopulation of CSCs at an intermediate EMT state. This suggests that the PKD1 signaling pathway may be required for the development of a unique CSC phenotype with plasticity and partial EMT. Given that the signaling networks connected with CSC maintenance and EMT are complex, and extend through multiple levels of regulation, this study provides insight into signaling regulation of CSC plasticity and partial EMT in determining the fate of CSCs. Inhibition of the PKD1 pathway may facilitate the elimination of specific CSC subsets, thereby curbing tumor progression and metastasis.
Collapse
Affiliation(s)
- Yichen Guo
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yinan Jiang
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Bart Rose
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganji Purnachandra Nagaraju
- Department of Medicine, Division of Hematology and Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam W. Beck
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Herbert Chen
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bin Ren
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- GBS Biomedical Engineering Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
50
|
Fridrichova I, Kalinkova L, Ciernikova S. Clinical Relevancy of Circulating Tumor Cells in Breast Cancer: Epithelial or Mesenchymal Characteristics, Single Cells or Clusters? Int J Mol Sci 2022; 23:12141. [PMID: 36292996 PMCID: PMC9603393 DOI: 10.3390/ijms232012141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Metastatic breast cancer (MBC) is typically an incurable disease with high mortality rates; thus, early identification of metastatic features and disease recurrence through precise biomarkers is crucial. Circulating tumor cells (CTCs) consisting of heterogeneous subpopulations with different morphology and genetic, epigenetic, and gene expression profiles represent promising candidate biomarkers for metastatic potential. The experimentally verified role of epithelial-to-mesenchymal transition in cancer dissemination has not been clearly described in BC patients, but the stemness features of CTCs strongly contributes to metastatic potency. Single CTCs have been shown to be protected in the bloodstream against recognition by the immune system through impaired interactions with T lymphocytes and NK cells, while associations of heterotypic CTC clusters with platelets, leucocytes, neutrophils, tumor-associated macrophages, and fibroblasts improve their tumorigenic behavior. In addition to single CTC and CTC cluster characteristics, we reviewed CTC evaluation methods and clinical studies in early and metastatic BCs. The variable CTC tests were developed based on specific principles and strategies. However, CTC count and the presence of CTC clusters were shown to be most clinically relevant in existing clinical trials. Despite the known progress in CTC research and sampling of BC patients, implementation of CTCs and CTC clusters in routine diagnostic and treatment strategies still requires improvement in detection sensitivity and precise molecular characterizations, focused predominantly on the role of CTC clusters for their higher metastatic potency.
Collapse
|