1
|
de Groot AP, de Haan G. How CBX proteins regulate normal and leukemic blood cells. FEBS Lett 2024; 598:2788-2806. [PMID: 38426219 PMCID: PMC11586599 DOI: 10.1002/1873-3468.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Hematopoietic stem cell (HSC) fate decisions are dictated by epigenetic landscapes. The Polycomb Repressive Complex 1 (PRC1) represses genes that induce differentiation, thereby maintaining HSC self-renewal. Depending on which chromobox (CBX) protein (CBX2, CBX4, CBX6, CBX7, or CBX8) is part of the PRC1 complex, HSC fate decisions differ. Here, we review how this occurs. We describe how CBX proteins dictate age-related changes in HSCs and stimulate oncogenic HSC fate decisions, either as canonical PRC1 members or by alternative interactions, including non-epigenetic regulation. CBX2, CBX7, and CBX8 enhance leukemia progression. To target, reprogram, and kill leukemic cells, we suggest and describe multiple therapeutic strategies to interfere with the epigenetic functions of oncogenic CBX proteins. Future studies should clarify to what extent the non-epigenetic function of cytoplasmic CBX proteins is important for normal, aged, and leukemic blood cells.
Collapse
Affiliation(s)
- Anne P. de Groot
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
| | - Gerald de Haan
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
- Department of Hematology, Amsterdam UMCUniversity of AmsterdamThe Netherlands
| |
Collapse
|
2
|
Park PMC, Park J, Brown J, Hunkeler M, Roy Burman SS, Donovan KA, Yoon H, Nowak RP, Słabicki M, Ebert BL, Fischer ES. Polymerization of ZBTB transcription factors regulates chromatin occupancy. Mol Cell 2024; 84:2511-2524.e8. [PMID: 38996460 PMCID: PMC11305084 DOI: 10.1016/j.molcel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
BCL6, an oncogenic transcription factor (TF), forms polymers in the presence of a small-molecule molecular glue that stabilizes a complementary interface between homodimers of BCL6's broad-complex, tramtrack, and bric-à-brac (BTB) domain. The BTB domains of other proteins, including a large class of TFs, have similar architectures and symmetries, raising the possibility that additional BTB proteins self-assemble into higher-order structures. Here, we surveyed 189 human BTB proteins with a cellular fluorescent reporter assay and identified 18 ZBTB TFs that show evidence of polymerization. Through biochemical and cryoelectron microscopy (cryo-EM) studies, we demonstrate that these ZBTB TFs polymerize into filaments. We found that BTB-domain-mediated polymerization of ZBTB TFs enhances chromatin occupancy within regions containing homotypic clusters of TF binding sites, leading to repression of target genes. Our results reveal a role of higher-order structures in regulating ZBTB TFs and suggest an underappreciated role for TF polymerization in modulating gene expression.
Collapse
Affiliation(s)
- Paul M C Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiho Park
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jared Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Shourya S Roy Burman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hojong Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mikołaj Słabicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Brown JL, Zhang L, Rocha PP, Kassis JA, Sun MA. Polycomb protein binding and looping in the ON transcriptional state. SCIENCE ADVANCES 2024; 10:eadn1837. [PMID: 38657072 PMCID: PMC11042752 DOI: 10.1126/sciadv.adn1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.
Collapse
Affiliation(s)
- J. Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pedro P. Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith A. Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Brown JL, Zhang L, Rocha PP, Kassis JA, Sun MA. Polycomb protein binding and looping mediated by Polycomb Response Elements in the ON transcriptional state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565256. [PMID: 38076900 PMCID: PMC10705551 DOI: 10.1101/2023.11.02.565256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Polycomb group proteins (PcG) mediate epigenetic silencing of important developmental genes and other targets. In Drosophila, canonical PcG-target genes contain Polycomb Response Elements (PREs) that recruit PcG protein complexes including PRC2 that trimethylates H3K27 forming large H3K27me3 domains. In the OFF transcriptional state, PREs loop with each other and this looping strengthens silencing. Here we address the question of what PcG proteins bind to PREs when canonical PcG target genes are expressed, and whether PREs loop when these genes are ON. Our data show that the answer to this question is PRE-specific but general conclusions can be made. First, within a PcG-target gene, some regulatory DNA can remain covered with H3K27me3 and PcG proteins remain bound to PREs in these regions. Second, when PREs are within H3K27ac domains, PcG-binding decreases, however, this depends on the protein and PRE. The DNA binding protein GAF, and the PcG protein Ph remain at PREs even when other PcG proteins are greatly depleted. In the ON state, PREs can still loop with each other, but also form loops with presumptive enhancers. These data support the model that, in addition to their role in PcG silencing, PREs can act as "promoter-tethering elements" mediating interactions between promoter proximal PREs and distant enhancers.
Collapse
Affiliation(s)
- J. Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Judith A. Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Brown JL, Price JD, Erokhin M, Kassis JA. Context-dependent role of Pho binding sites in Polycomb complex recruitment in Drosophila. Genetics 2023; 224:iyad096. [PMID: 37216193 PMCID: PMC10411561 DOI: 10.1093/genetics/iyad096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Polycomb group (PcG) proteins maintain the silenced state of key developmental genes, but how these proteins are recruited to specific regions of the genome is still not completely understood. In Drosophila, PcG proteins are recruited to Polycomb response elements (PREs) comprised of a flexible array of sites for sequence-specific DNA binding proteins, "PcG recruiters," including Pho, Spps, Cg, and GAF. Pho is thought to play a central role in PcG recruitment. Early data showed that mutation of Pho binding sites in PREs in transgenes abrogated the ability of those PREs to repress gene expression. In contrast, genome-wide experiments in pho mutants or by Pho knockdown showed that PcG proteins can bind to PREs in the absence of Pho. Here, we directly addressed the importance of Pho binding sites in 2 engrailed (en) PREs at the endogenous locus and in transgenes. Our results show that Pho binding sites are required for PRE activity in transgenes with a single PRE. In a transgene, 2 PREs together lead to stronger, more stable repression and confer some resistance to the loss of Pho binding sites. Making the same mutation in Pho binding sites has little effect on PcG-protein binding at the endogenous en gene. Overall, our data support the model that Pho is important for PcG binding but emphasize how multiple PREs and chromatin environment increase the ability of PREs to function in the absence of Pho. This supports the view that multiple mechanisms contribute to PcG recruitment in Drosophila.
Collapse
Affiliation(s)
- Janet Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Price
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Ray S, Hewitt K. Sticky, Adaptable, and Many-sided: SAM protein versatility in normal and pathological hematopoietic states. Bioessays 2023; 45:e2300022. [PMID: 37318311 PMCID: PMC10527593 DOI: 10.1002/bies.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
With decades of research seeking to generalize sterile alpha motif (SAM) biology, many outstanding questions remain regarding this multi-tool protein module. Recent data from structural and molecular/cell biology has begun to reveal new SAM modes of action in cell signaling cascades and biomolecular condensation. SAM-dependent mechanisms underlie blood-related (hematologic) diseases, including myelodysplastic syndromes and leukemias, prompting our focus on hematopoiesis for this review. With the increasing coverage of SAM-dependent interactomes, a hypothesis emerges that SAM interaction partners and binding affinities work to fine tune cell signaling cascades in developmental and disease contexts, including hematopoiesis and hematologic disease. This review discusses what is known and remains unknown about the standard mechanisms and neoplastic properties of SAM domains and what the future might hold for developing SAM-targeted therapies.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Kyle Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
7
|
Erokhin M, Mogila V, Lomaev D, Chetverina D. Polycomb Recruiters Inside and Outside of the Repressed Domains. Int J Mol Sci 2023; 24:11394. [PMID: 37511153 PMCID: PMC10379775 DOI: 10.3390/ijms241411394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The establishment and stable inheritance of individual patterns of gene expression in different cell types are required for the development of multicellular organisms. The important epigenetic regulators are the Polycomb group (PcG) and Trithorax group (TrxG) proteins, which control the silenced and active states of genes, respectively. In Drosophila, the PcG/TrxG group proteins are recruited to the DNA regulatory sequences termed the Polycomb response elements (PREs). The PREs are composed of the binding sites for different DNA-binding proteins, the so-called PcG recruiters. Currently, the role of the PcG recruiters in the targeting of the PcG proteins to PREs is well documented. However, there are examples where the PcG recruiters are also implicated in the active transcription and in the TrxG function. In addition, there is increasing evidence that the genome-wide PcG recruiters interact with the chromatin outside of the PREs and overlap with the proteins of differing regulatory classes. Recent studies of the interactomes of the PcG recruiters significantly expanded our understanding that they have numerous interactors besides the PcG proteins and that their functions extend beyond the regulation of the PRE repressive activity. Here, we summarize current data about the functions of the PcG recruiters.
Collapse
Affiliation(s)
- Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Vladic Mogila
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Dmitry Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
8
|
Erokhin M, Brown JL, Lomaev D, Vorobyeva NE, Zhang L, Fab L, Mazina M, Kulakovskiy I, Ziganshin R, Schedl P, Georgiev P, Sun MA, Kassis J, Chetverina D. Crol contributes to PRE-mediated repression and Polycomb group proteins recruitment in Drosophila. Nucleic Acids Res 2023; 51:6087-6100. [PMID: 37140047 PMCID: PMC10325914 DOI: 10.1093/nar/gkad336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
The Polycomb group (PcG) proteins are fundamental epigenetic regulators that control the repressive state of target genes in multicellular organisms. One of the open questions is defining the mechanisms of PcG recruitment to chromatin. In Drosophila, the crucial role in PcG recruitment is thought to belong to DNA-binding proteins associated with Polycomb response elements (PREs). However, current data suggests that not all PRE-binding factors have been identified. Here, we report the identification of the transcription factor Crooked legs (Crol) as a novel PcG recruiter. Crol is a C2H2-type Zinc Finger protein that directly binds to poly(G)-rich DNA sequences. Mutation of Crol binding sites as well as crol CRISPR/Cas9 knockout diminish the repressive activity of PREs in transgenes. Like other PRE-DNA binding proteins, Crol co-localizes with PcG proteins inside and outside of H3K27me3 domains. Crol knockout impairs the recruitment of the PRC1 subunit Polyhomeotic and the PRE-binding protein Combgap at a subset of sites. The decreased binding of PcG proteins is accompanied by dysregulated transcription of target genes. Overall, our study identified Crol as a new important player in PcG recruitment and epigenetic regulation.
Collapse
Affiliation(s)
- Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - J Lesley Brown
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of transcriptional complexes dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Liangliang Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Marina Yu Mazina
- Group of hormone-dependent transcription regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow119991, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Paul Schedl
- Department of Molecular Biology Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
9
|
Cabrita B, Martinho RG. Genetic and Epigenetic Regulation of Drosophila Oocyte Determination. J Dev Biol 2023; 11:21. [PMID: 37367475 DOI: 10.3390/jdb11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023] Open
Abstract
Primary oocyte determination occurs in many organisms within a germ line cyst, a multicellular structure composed of interconnected germ cells. However, the structure of the cyst is itself highly diverse, which raises intriguing questions about the benefits of this stereotypical multicellular environment for female gametogenesis. Drosophila melanogaster is a well-studied model for female gametogenesis, and numerous genes and pathways critical for the determination and differentiation of a viable female gamete have been identified. This review provides an up-to-date overview of Drosophila oocyte determination, with a particular emphasis on the mechanisms that regulate germ line gene expression.
Collapse
Affiliation(s)
- Brigite Cabrita
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Rui Gonçalo Martinho
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Zhang Y, Ma M, Liu M, Sun A, Zheng X, Liu K, Yin C, Li C, Jiang C, Tu X, Fang Y. Histone H2A monoubiquitination marks are targeted to specific sites by cohesin subunits in Arabidopsis. Nat Commun 2023; 14:1209. [PMID: 36869051 PMCID: PMC9984397 DOI: 10.1038/s41467-023-36788-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Histone H2A monoubiquitination (H2Aub1) functions as a conserved posttranslational modification in eukaryotes to maintain gene expression and guarantee cellular identity. Arabidopsis H2Aub1 is catalyzed by the core components AtRING1s and AtBMI1s of polycomb repressive complex 1 (PRC1). Because PRC1 components lack known DNA binding domains, it is unclear how H2Aub1 is established at specific genomic locations. Here, we show that the Arabidopsis cohesin subunits AtSYN4 and AtSCC3 interact with each other, and AtSCC3 binds to AtBMI1s. H2Aub1 levels are reduced in atsyn4 mutant or AtSCC3 artificial microRNA knockdown plants. ChIP-seq assays indicate that most binding events of AtSYN4 and AtSCC3 are associated with H2Aub1 along the genome where transcription is activated independently of H3K27me3. Finally, we show that AtSYN4 binds directly to the G-box motif and directs H2Aub1 to these sites. Our study thus reveals a mechanism for cohesin-mediated recruitment of AtBMI1s to specific genomic loci to mediate H2Aub1.
Collapse
Affiliation(s)
- Yu Zhang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Meng Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200065, Shanghai, China
| | - Aiqing Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoyun Zheng
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kunpeng Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chunmei Yin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chuanshun Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200065, Shanghai, China.
| | - Xiaoyu Tu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
11
|
Cheng K, Lei C, Zhang S, Zheng Q, Wei C, Huang W, Xing M, Zhang J, Zhang X, Zhang X. Genome-wide identification and characterization of polycomb repressive complex 2 core components in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2023; 23:66. [PMID: 36721081 PMCID: PMC9890721 DOI: 10.1186/s12870-023-04075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The evolutionarily conserved Polycomb Repressive Complex 2 (PRC2) plays a vital role in epigenetic gene repression by depositing tri-methylation on lysine residue K27 of histone H3 (H3K27me3) at the target loci, thus participating in diverse biological processes. However, few reports about PRC2 are available in plant species with large and complicated genomes, like cotton. RESULTS Here, we performed a genome-wide identification and comprehensive analysis of cotton PRC2 core components, especially in upland cotton (Gossypium hirsutum). Firstly, a total of 8 and 16 PRC2 core components were identified in diploid and tetraploid cotton species, respectively. These components were classified into four groups, E(z), Su(z)12, ESC and p55, and the members in the same group displayed good collinearity, similar gene structure and domain organization. Next, we cloned G. hirsutum PRC2 (GhPRC2) core components, and found that most of GhPRC2 proteins were localized in the nucleus, and interacted with each other to form multi-subunit complexes. Moreover, we analyzed the expression profile of GhPRC2 genes. The transcriptome data and quantitative real-time PCR (qRT-PCR) assays indicated that GhPRC2 genes were ubiquitously but differentially expressed in various tissues, with high expression levels in reproductive organs like petals, stamens and pistils. And the expressions of several GhPRC2 genes, especially E(z) group genes, were responsive to various abiotic and biotic stresses, including drought, salinity, extreme temperature, and Verticillium dahliae (Vd) infection. CONCLUSION We identified PRC2 core components in upland cotton, and systematically investigated their classifications, phylogenetic and synteny relationships, gene structures, domain organizations, subcellular localizations, protein interactions, tissue-specific and stresses-responsive expression patterns. Our results will provide insights into the evolution and composition of cotton PRC2, and lay the foundation for further investigation of their biological functions and regulatory mechanisms.
Collapse
Affiliation(s)
- Kai Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Cangbao Lei
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Siyuan Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Qiao Zheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Chunyan Wei
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Weiyi Huang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Minghui Xing
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Junli Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Xiangyu Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China.
| |
Collapse
|
12
|
Fu Y, Yang K, Wu K, Wang H, Li Q, Zhang F, Yang K, Yao Q, Ma X, Deng Y, Zhang J, Liu C, Qu K. Identification of hepatocellular carcinoma subtypes based on PcG-related genes and biological relevance with cancer cells. Clin Epigenetics 2022; 14:184. [PMID: 36566204 PMCID: PMC9790136 DOI: 10.1186/s13148-022-01393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an extensive heterogeneous disease where epigenetic factors contribute to its pathogenesis. Polycomb group (PcG) proteins are a group of subunits constituting various macro-molecular machines to regulate the epigenetic landscape, which contributes to cancer phenotype and has the potential to develop a molecular classification of HCC. RESULTS Here, based on multi-omics data analysis of DNA methylation, mRNA expression, and copy number of PcG-related genes, we established an epigenetic classification system of HCC, which divides the HCC patients into two subgroups with significantly different outcomes. Comparing these two epigenetic subgroups, we identified different metabolic features, which were related to epigenetic regulation of polycomb-repressive complex 1/2 (PRC1/2). Furthermore, we experimentally proved that inhibition of PcG complexes enhanced the lipid metabolism and reduced the capacity of HCC cells against glucose shortage. In addition, we validated the low chemotherapy sensitivity of HCC in Group A and found inhibition of PRC1/2 promoted HCC cells' sensitivity to oxaliplatin in vitro and in vivo. Finally, we found that aberrant upregulation of CBX2 in Group A and upregulation of CBX2 were associated with poor prognosis in HCC patients. Furthermore, we found that manipulation of CBX2 affected the levels of H3K27me3 and H2AK119ub. CONTRIBUTIONS Our study provided a novel molecular classification system based on PcG-related genes data and experimentally validated the biological features of HCC in two subgroups. Our founding supported the polycomb complex targeting strategy to inhibit HCC progression where CBX2 could be a feasible therapeutic target.
Collapse
Affiliation(s)
- Yunong Fu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Kaibo Yang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Kunjin Wu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Hai Wang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qinglin Li
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Fengping Zhang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Kun Yang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qing Yao
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xiaohua Ma
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yujie Deng
- grid.417295.c0000 0004 1799 374XDepartment of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Jingyao Zhang
- grid.452438.c0000 0004 1760 8119Department of Surgical Intensive Care Units, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Chang Liu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.452438.c0000 0004 1760 8119Department of Surgical Intensive Care Units, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Kai Qu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
13
|
Roles of Polycomb Complexes in the Reconstruction of 3D Genome Architecture during Preimplantation Embryonic Development. Genes (Basel) 2022; 13:genes13122382. [PMID: 36553649 PMCID: PMC9778514 DOI: 10.3390/genes13122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The appropriate deployment of developmental programs depends on complex genetic information encoded by genomic DNA sequences and their positioning and contacts in the three-dimensional (3D) space within the nucleus. Current studies using novel techniques including, but not limited to, Hi-C, ChIA-PET, and Hi-ChIP reveal that regulatory elements (Res), such as enhancers and promoters, may participate in the precise regulation of expression of tissue-specific genes important for both embryogenesis and organogenesis by recruiting Polycomb Group (PcG) complexes. PcG complexes usually poise the transcription of developmental genes by forming Polycomb bodies to compact poised enhancers and promoters marked by H3K27me3 in the 3D space. Additionally, recent studies have also uncovered their roles in transcriptional activation. To better understand the full complexities in the mechanisms of how PcG complexes regulate transcription and long-range 3D contacts of enhancers and promoters during developmental programs, we outline novel insights regarding PcG-associated dramatic changes in the 3D chromatin conformation in developmental programs of early embryos and naïve-ground-state transitions of pluripotent embryonic stem cells (ESCs), and highlight the distinct roles of unique and common subunits of canonical and non-canonical PcG complexes in shaping genome architectures and transcriptional programs.
Collapse
|
14
|
Fiedler M, Franco-Echevarría E, Schulten A, Nielsen M, Rutherford TJ, Yeates A, Ahsan B, Dean C, Bienz M. Head-to-tail polymerization by VEL proteins underpins cold-induced Polycomb silencing in flowering control. Cell Rep 2022; 41:111607. [PMID: 36351412 PMCID: PMC7614096 DOI: 10.1016/j.celrep.2022.111607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Transcriptional silencing through the Polycomb silencing machinery utilizes a "read-write" mechanism involving histone tail modifications. However, nucleation of silencing and long-term stable transmission of the silenced state also requires P-olycomb Repressive Complex 2 (PRC2) accessory proteins, whose molecular role is poorly understood. The Arabidopsis VEL proteins are accessory proteins that interact with PRC2 to nucleate and propagate silencing at the FLOWERING LOCUS C (FLC) locus, enabling early flowering in spring. Here, we report that VEL proteins contain a domain related to an atypical four-helix bundle that engages in spontaneous concentration-dependent head-to-tail polymerization to assemble dynamic biomolecular condensates. Mutations blocking polymerization of this VEL domain prevent Polycomb silencing at FLC. Plant VEL proteins thus facilitate assembly of dynamic multivalent Polycomb complexes required for inheritance of the silenced state.
Collapse
Affiliation(s)
- Marc Fiedler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Anna Schulten
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mathias Nielsen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anna Yeates
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Bilal Ahsan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Caroline Dean
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
15
|
Regulation of Polyhomeotic Condensates by Intrinsically Disordered Sequences That Affect Chromatin Binding. EPIGENOMES 2022; 6:epigenomes6040040. [PMID: 36412795 PMCID: PMC9680516 DOI: 10.3390/epigenomes6040040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The Polycomb group (PcG) complex PRC1 localizes in the nucleus in condensed structures called Polycomb bodies. The PRC1 subunit Polyhomeotic (Ph) contains an oligomerizing sterile alpha motif (SAM) that is implicated in both PcG body formation and chromatin organization in Drosophila and mammalian cells. A truncated version of Ph containing the SAM (mini-Ph) forms phase-separated condensates with DNA or chromatin in vitro, suggesting that PcG bodies may form through SAM-driven phase separation. In cells, Ph forms multiple small condensates, while mini-Ph typically forms a single large nuclear condensate. We therefore hypothesized that sequences outside of mini-Ph, which are predicted to be intrinsically disordered, are required for proper condensate formation. We identified three distinct low-complexity regions in Ph based on sequence composition. We systematically tested the role of each of these sequences in Ph condensates using live imaging of transfected Drosophila S2 cells. Each sequence uniquely affected Ph SAM-dependent condensate size, number, and morphology, but the most dramatic effects occurred when the central, glutamine-rich intrinsically disordered region (IDR) was removed, which resulted in large Ph condensates. Like mini-Ph condensates, condensates lacking the glutamine-rich IDR excluded chromatin. Chromatin fractionation experiments indicated that the removal of the glutamine-rich IDR reduced chromatin binding and that the removal of either of the other IDRs increased chromatin binding. Our data suggest that all three IDRs, and functional interactions among them, regulate Ph condensate size and number. Our results can be explained by a model in which tight chromatin binding by Ph IDRs antagonizes Ph SAM-driven phase separation. Our observations highlight the complexity of regulation of biological condensates housed in single proteins.
Collapse
|
16
|
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Feijão T, Marques B, Silva RD, Carvalho C, Sobral D, Matos R, Tan T, Pereira A, Morais-de-Sá E, Maiato H, DeLuca SZ, Martinho RG. Polycomb group (PcG) proteins prevent the assembly of abnormal synaptonemal complex structures during meiosis. Proc Natl Acad Sci U S A 2022; 119:e2204701119. [PMID: 36215502 PMCID: PMC9586294 DOI: 10.1073/pnas.2204701119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous scaffold that is assembled between paired homologous chromosomes during the onset of meiosis. Timely expression of SC coding genes is essential for SC assembly and successful meiosis. However, SC components have an intrinsic tendency to self-organize into abnormal repetitive structures, which are not assembled between the paired homologs and whose formation is potentially deleterious for meiosis and gametogenesis. This creates an interesting conundrum, where SC genes need to be robustly expressed during meiosis, but their expression must be carefully regulated to prevent the formation of anomalous SC structures. In this manuscript, we show that the Polycomb group protein Sfmbt, the Drosophila ortholog of human MBTD1 and L3MBTL2, is required to avoid excessive expression of SC genes during prophase I. Although SC assembly is normal after Sfmbt depletion, SC disassembly is abnormal with the formation of multiple synaptonemal complexes (polycomplexes) within the oocyte. Overexpression of the SC gene corona and depletion of other Polycomb group proteins are similarly associated with polycomplex formation during SC disassembly. These polycomplexes are highly dynamic and have a well-defined periodic structure. Further confirming the importance of Sfmbt, germ line depletion of this protein is associated with significant metaphase I defects and a reduction in female fertility. Since transcription of SC genes mostly occurs during early prophase I, our results suggest a role of Sfmbt and other Polycomb group proteins in downregulating the expression of these and other early prophase I genes during later stages of meiosis.
Collapse
Affiliation(s)
- Tália Feijão
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Marques
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rui D. Silva
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Daniel Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Applied Molecular Biosciences Unit (UCIBIO), Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, Caparica, 2819-516 Portugal
| | - Ricardo Matos
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Tian Tan
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - António Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Eurico Morais-de-Sá
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | - Hélder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135 Portugal
| | | | - Rui Gonçalo Martinho
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Department of Medical Sciences and Institute for Biomedicine, Universidade de Aveiro, 3810-193 Aveiro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
18
|
Mikulski P, Wolff P, Lu T, Nielsen M, Echevarria EF, Zhu D, Questa JI, Saalbach G, Martins C, Dean C. VAL1 acts as an assembly platform co-ordinating co-transcriptional repression and chromatin regulation at Arabidopsis FLC. Nat Commun 2022; 13:5542. [PMID: 36130923 PMCID: PMC9492735 DOI: 10.1038/s41467-022-32897-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Polycomb (PcG) silencing is crucial for development, but how targets are specified remains incompletely understood. The cold-induced Polycomb Repressive Complex 2 (PRC2) silencing of Arabidopsis thaliana FLOWERING LOCUS C (FLC) provides an excellent system to elucidate PcG regulation. Association of the DNA binding protein VAL1 to FLC PcG nucleation regionis an important step. VAL1 co-immunoprecipitates APOPTOSIS AND SPLICING ASSOCIATED PROTEIN (ASAP) complex and PRC1. Here, we show that ASAP and PRC1 are necessary for co-transcriptional repression and chromatin regulation at FLC. ASAP mutants affect FLC transcription in warm conditions, but the rate of FLC silencing in the cold is unaffected. PRC1-mediated H2Aub accumulation increases at the FLC nucleation region during cold, but unlike the PRC2-delivered H3K27me3, does not spread across the locus. H2Aub thus involved in the transition to epigenetic silencing at FLC, facilitating H3K27me3 accumulation and long-term epigenetic memory. Overall, our work highlights the importance of VAL1 as an assembly platform co-ordinating activities necessary for epigenetic silencing at FLC.
Collapse
Affiliation(s)
- Pawel Mikulski
- Cell and Developmental Biology, John Innes Centre, Norwich, UK. .,Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Philip Wolff
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Tiancong Lu
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mathias Nielsen
- Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | | | - Danling Zhu
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Julia I Questa
- Cell and Developmental Biology, John Innes Centre, Norwich, UK.,Centre for Research in Agricultural Genomics, Barcelona, Spain
| | | | - Carlo Martins
- Biological Chemistry, John Innes Centre, Norwich, UK
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich, UK. .,MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
19
|
Kang H, Cabrera JR, Zee BM, Kang HA, Jobe JM, Hegarty MB, Barry AE, Glotov A, Schwartz YB, Kuroda MI. Variant Polycomb complexes in Drosophila consistent with ancient functional diversity. SCIENCE ADVANCES 2022; 8:eadd0103. [PMID: 36070387 PMCID: PMC9451159 DOI: 10.1126/sciadv.add0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Polycomb group (PcG) mutants were first identified in Drosophila on the basis of their failure to maintain proper Hox gene repression during development. The proteins encoded by the corresponding fly genes mainly assemble into one of two discrete Polycomb repressive complexes: PRC1 or PRC2. However, biochemical analyses in mammals have revealed alternative forms of PRC2 and multiple distinct types of noncanonical or variant PRC1. Through a series of proteomic analyses, we identify analogous PRC2 and variant PRC1 complexes in Drosophila, as well as a broader repertoire of interactions implicated in early development. Our data provide strong support for the ancient diversity of PcG complexes and a framework for future analysis in a longstanding and versatile genetic system.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Janel R. Cabrera
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Emmanuel College, Boston, MA 02115, USA
| | - Barry M. Zee
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heather A. Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Alexander Glotov
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Yuri B. Schwartz
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Mitzi I. Kuroda
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Koliopoulos MG, Muhammad R, Roumeliotis TI, Beuron F, Choudhary JS, Alfieri C. Structure of a nucleosome-bound MuvB transcription factor complex reveals DNA remodelling. Nat Commun 2022; 13:5075. [PMID: 36038598 PMCID: PMC9424243 DOI: 10.1038/s41467-022-32798-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/15/2022] [Indexed: 01/25/2023] Open
Abstract
Genes encoding the core cell cycle machinery are transcriptionally regulated by the MuvB family of protein complexes in a cell cycle-specific manner. Complexes of MuvB with the transcription factors B-MYB and FOXM1 activate mitotic genes during cell proliferation. The mechanisms of transcriptional regulation by these complexes are still poorly characterised. Here, we combine biochemical analysis and in vitro reconstitution, with structural analysis by cryo-electron microscopy and cross-linking mass spectrometry, to functionally examine these complexes. We find that the MuvB:B-MYB complex binds and remodels nucleosomes, thereby exposing nucleosomal DNA. This remodelling activity is supported by B-MYB which directly binds the remodelled DNA. Given the remodelling activity on the nucleosome, we propose that the MuvB:B-MYB complex functions as a pioneer transcription factor complex. In this work, we rationalise prior biochemical and cellular studies and provide a molecular framework of interactions on a protein complex that is key for cell cycle regulation.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Reyhan Muhammad
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Fabienne Beuron
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Jyoti S Choudhary
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK.
| |
Collapse
|
21
|
Chetverina D, Vorobyeva NE, Mazina MY, Fab LV, Lomaev D, Golovnina A, Mogila V, Georgiev P, Ziganshin RH, Erokhin M. Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cell Mol Life Sci 2022; 79:353. [PMID: 35676368 PMCID: PMC11072172 DOI: 10.1007/s00018-022-04383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) proteins are key epigenetic regulators controlling the silenced and active states of genes in multicellular organisms, respectively. In Drosophila, PcG/TrxG proteins are recruited to the chromatin via binding to specific DNA sequences termed polycomb response elements (PREs). While precise mechanisms of the PcG/TrxG protein recruitment remain unknown, the important role is suggested to belong to sequence-specific DNA-binding factors. At the same time, it was demonstrated that the PRE DNA-binding proteins are not exclusively localized to PREs but can bind other DNA regulatory elements, including enhancers, promoters, and boundaries. To gain an insight into the PRE DNA-binding protein regulatory network, here, using ChIP-seq and immuno-affinity purification coupled to the high-throughput mass spectrometry, we searched for differences in abundance of the Combgap, Zeste, Psq, and Adf1 PRE DNA-binding proteins. While there were no conspicuous differences in co-localization of these proteins with other functional transcription factors, we show that Combgap and Zeste are more tightly associated with the Polycomb repressive complex 1 (PRC1), while Psq interacts strongly with the TrxG proteins, including the BAP SWI/SNF complex. The Adf1 interactome contained Mediator subunits as the top interactors. In addition, Combgap efficiently interacted with AGO2, NELF, and TFIID. Combgap, Psq, and Adf1 have architectural proteins in their networks. We further investigated the existence of direct interactions between different PRE DNA-binding proteins and demonstrated that Combgap-Adf1, Psq-Dsp1, and Pho-Spps can interact in the yeast two-hybrid assay. Overall, our data suggest that Combgap, Psq, Zeste, and Adf1 are associated with the protein complexes implicated in different regulatory activities and indicate their potential multifunctional role in the regulation of transcription.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Mazina
- Group of Hormone-Dependent Transcriptional Regulation, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lika V Fab
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Dmitry Lomaev
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Alexandra Golovnina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Vladic Mogila
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Pavel Georgiev
- Department of Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
22
|
Owen BM, Davidovich C. DNA binding by polycomb-group proteins: searching for the link to CpG islands. Nucleic Acids Res 2022; 50:4813-4839. [PMID: 35489059 PMCID: PMC9122586 DOI: 10.1093/nar/gkac290] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polycomb group proteins predominantly exist in polycomb repressive complexes (PRCs) that cooperate to maintain the repressed state of thousands of cell-type-specific genes. Targeting PRCs to the correct sites in chromatin is essential for their function. However, the mechanisms by which PRCs are recruited to their target genes in mammals are multifactorial and complex. Here we review DNA binding by polycomb group proteins. There is strong evidence that the DNA-binding subunits of PRCs and their DNA-binding activities are required for chromatin binding and CpG targeting in cells. In vitro, CpG-specific binding was observed for truncated proteins externally to the context of their PRCs. Yet, the mere DNA sequence cannot fully explain the subset of CpG islands that are targeted by PRCs in any given cell type. At this time we find very little structural and biophysical evidence to support a model where sequence-specific DNA-binding activity is required or sufficient for the targeting of CpG-dinucleotide sequences by polycomb group proteins while they are within the context of their respective PRCs, either PRC1 or PRC2. We discuss the current knowledge and open questions on how the DNA-binding activities of polycomb group proteins facilitate the targeting of PRCs to chromatin.
Collapse
Affiliation(s)
- Brady M Owen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,EMBL-Australia, Clayton, VIC, Australia
| |
Collapse
|
23
|
Liaw GJ. Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194786. [PMID: 35032681 DOI: 10.1016/j.bbagrm.2022.194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Maternally-deposited morphogens specify the fates of embryonic cells via hierarchically regulating the expression of zygotic genes that encode various classes of developmental regulators. Once the cell fates are determined, Polycomb-group proteins frequently maintain the repressed state of the genes. This study investigates how Polycomb-group proteins repress the expression of tailless, which encodes a developmental regulator in Drosophila embryo. Previous studies have shown that maternal Tramtrack69 facilitates maternal GAGA-binding factor and Heat shock factor binding to the torso response element (tor-RE) to initiate tailless repression in the stage-4 embryo. Chromatin-immunoprecipitation and genetic-interaction studies exhibit that maternally-deposited Polycomb repressive complex 1 (PRC1) recruited by the tor-RE-associated Tramtrack69 represses tailless expression in the stage-4 embryo. A noncanonical Polycomb-group response element (PRE) is mapped to the tailless proximal region. High levels of Bric-a-brac, Tramtrack, and Broad (BTB)-domain proteins are fundamental for maintaining tailless repression in the stage-8 to -10 embryos. Trmtrack69 sporadically distributes in the linear BTB-domain oligomer, which recruits and retains a high level of PRC1 near the GCCAT cluster for repressing tll expression in the stage-14 embryos. Disrupting the retention of PRC1 decreases the levels of PRC1 and Pleiohomeotic protein substantially on the PRE and causes tailless derepression in the stage-14 embryo. Furthermore, the retained PRC1 potentially serves as a second foundation for assembling the well-characterized polymer of the Sterile alpha motif domain in Polyhomeotic protein, which compacts chromatin to maintain the repressed state of tailless in the embryos after stage 14.
Collapse
Affiliation(s)
- Gwo-Jen Liaw
- Department of Life Sciences and Institute of Genomic Sciences, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong St., Taipei 112, Taiwan.
| |
Collapse
|
24
|
Lövkvist C, Mikulski P, Reeck S, Hartley M, Dean C, Howard M. Hybrid protein assembly-histone modification mechanism for PRC2-based epigenetic switching and memory. eLife 2021; 10:66454. [PMID: 34473050 PMCID: PMC8412945 DOI: 10.7554/elife.66454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
The histone modification H3K27me3 plays a central role in Polycomb-mediated epigenetic silencing. H3K27me3 recruits and allosterically activates Polycomb Repressive Complex 2 (PRC2), which adds this modification to nearby histones, providing a read/write mechanism for inheritance through DNA replication. However, for some PRC2 targets, a purely histone-based system for epigenetic inheritance may be insufficient. We address this issue at the Polycomb target FLOWERING LOCUS C (FLC) in Arabidopsis thaliana, as a narrow nucleation region of only ~three nucleosomes within FLC mediates epigenetic state switching and subsequent memory over many cell cycles. To explain the memory's unexpected persistence, we introduce a mathematical model incorporating extra protein memory storage elements with positive feedback that persist at the locus through DNA replication, in addition to histone modifications. Our hybrid model explains many features of epigenetic switching/memory at FLC and encapsulates generic mechanisms that may be widely applicable.
Collapse
Affiliation(s)
- Cecilia Lövkvist
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Pawel Mikulski
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Svenja Reeck
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom.,Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Matthew Hartley
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, United Kingdom
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, United Kingdom
| |
Collapse
|
25
|
Erokhin MM, Shidlovskii YV, Lomaev DV, Georgiev PG, Chetverina DA. Sfmbt Co-purifies with Hangover and SWI/SNF-Remodelers in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2021; 500:304-307. [PMID: 34697732 DOI: 10.1134/s1607672921050069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Polycomb group (PcG) proteins are chromatin-associated factors involved in the repression of gene transcription. In the present study, we characterized the interactome of the Sfmbt factor at the embryonic stage of development. For this, the Sfmbt protein complex was affinity purified from the nuclear extract, followed by highly specific peptide sequencing (IP/LC-MS). As a result, a number of previously uncharacterized Sfmbt interactions were discovered. In particular, Sfmbt top-interacting proteins include the DNA-binding protein Hangover and components of the SWI/SNF family of chromatin remodelers.
Collapse
Affiliation(s)
- M M Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Y V Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - D V Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - D A Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
26
|
Elizarev P, Finkl K, Müller J. Distinct requirements for Pho, Sfmbt, and Ino80 for cell survival in Drosophila. Genetics 2021; 219:iyab096. [PMID: 34849913 PMCID: PMC8633127 DOI: 10.1093/genetics/iyab096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
The Drosophila proteins Pleiohomeotic (Pho) and its paralog Pho-like (Phol) are the homologs of the mammalian transcription factor YY1. Pho and Phol are subunits of the Polycomb group protein complex PhoRC and they are also stably associated with the INO80 nucleosome remodeling complex. Drosophila lacking both Pho and Phol arrest development as larvae with small misshaped imaginal discs. The basis of this phenotype is poorly understood. We find that in pho phol mutant animals cells retain the capacity to proliferate but show a high incidence of apoptotic cell death that results in tissue hypoplasia. Clonal analyses establish that cells stringently require Pho and Phol to survive. In contrast, the PhoRC subunit Sfmbt and the ATP-dependent nucleosome remodeling factor Ino80 are not essential for cell viability. Pho and Phol, therefore, execute their critical role for cell survival through mechanisms that do not involve Sfmbt function or INO80 nucleosome remodeling.
Collapse
Affiliation(s)
- Pavel Elizarev
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Katja Finkl
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Jürg Müller
- Laboratory of Chromatin Biology, Max-Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
27
|
Stielow B, Zhou Y, Cao Y, Simon C, Pogoda HM, Jiang J, Ren Y, Phanor SK, Rohner I, Nist A, Stiewe T, Hammerschmidt M, Shi Y, Bulyk ML, Wang Z, Liefke R. The SAM domain-containing protein 1 (SAMD1) acts as a repressive chromatin regulator at unmethylated CpG islands. SCIENCE ADVANCES 2021; 7:7/20/eabf2229. [PMID: 33980486 PMCID: PMC8115922 DOI: 10.1126/sciadv.abf2229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/25/2021] [Indexed: 05/06/2023]
Abstract
CpG islands (CGIs) are key regulatory DNA elements at most promoters, but how they influence the chromatin status and transcription remains elusive. Here, we identify and characterize SAMD1 (SAM domain-containing protein 1) as an unmethylated CGI-binding protein. SAMD1 has an atypical winged-helix domain that directly recognizes unmethylated CpG-containing DNA via simultaneous interactions with both the major and the minor groove. The SAM domain interacts with L3MBTL3, but it can also homopolymerize into a closed pentameric ring. At a genome-wide level, SAMD1 localizes to H3K4me3-decorated CGIs, where it acts as a repressor. SAMD1 tethers L3MBTL3 to chromatin and interacts with the KDM1A histone demethylase complex to modulate H3K4me2 and H3K4me3 levels at CGIs, thereby providing a mechanism for SAMD1-mediated transcriptional repression. The absence of SAMD1 impairs ES cell differentiation processes, leading to misregulation of key biological pathways. Together, our work establishes SAMD1 as a newly identified chromatin regulator acting at unmethylated CGIs.
Collapse
Affiliation(s)
- Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Yuqiao Zhou
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Hans-Martin Pogoda
- Institute of Zoology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Junyi Jiang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Sabrina Keita Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Iris Rohner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, 35043 Marburg, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Pediatrics, Boston Children's Hospital, Boston, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Institute for Cancer Research, Oxford University, Oxford, UK
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China.
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043 Marburg, Germany.
- Department of Hematology, Oncology and Immunology, University Hospital Giessen and Marburg, 35043 Marburg, Germany
| |
Collapse
|
28
|
Tycko J, DelRosso N, Hess GT, Aradhana, Banerjee A, Mukund A, Van MV, Ego BK, Yao D, Spees K, Suzuki P, Marinov GK, Kundaje A, Bassik MC, Bintu L. High-Throughput Discovery and Characterization of Human Transcriptional Effectors. Cell 2020; 183:2020-2035.e16. [PMID: 33326746 PMCID: PMC8178797 DOI: 10.1016/j.cell.2020.11.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.
Collapse
Affiliation(s)
- Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nicole DelRosso
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Gaelen T Hess
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Aditya Mukund
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Mike V Van
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Braeden K Ego
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Peter Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
29
|
Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020; 11:5947. [PMID: 33230107 PMCID: PMC7683540 DOI: 10.1038/s41467-020-19722-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed. Histone H2A monoubiquitination on lysine 119 in vertebrate and lysine 118 in Drosophila (H2Aub) is an epigenomic mark usually associated with gene repression by Polycomb group factors. Here the authors review the current knowledge on the deposition and removal of H2Aub, its function in transcription and other DNA-associated processes as well as its relevance to human disease.
Collapse
|
30
|
De S, Gehred ND, Fujioka M, Chan FW, Jaynes JB, Kassis JA. Defining the Boundaries of Polycomb Domains in Drosophila. Genetics 2020; 216:689-700. [PMID: 32948625 PMCID: PMC7648573 DOI: 10.1534/genetics.120.303642] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 02/05/2023] Open
Abstract
Polycomb group (PcG) proteins are an important group of transcriptional repressors that act by modifying chromatin. PcG target genes are covered by the repressive chromatin mark H3K27me3. Polycomb repressive complex 2 (PRC2) is a multiprotein complex that is responsible for generating H3K27me3. In Drosophila, PRC2 is recruited by Polycomb Response Elements (PREs) and then trimethylates flanking nucleosomes, spreading the H3K27me3 mark over large regions of the genome, the "Polycomb domains." What defines the boundary of a Polycomb domain? There is experimental evidence that insulators, PolII, and active transcription can all form the boundaries of Polycomb domains. Here we divide the boundaries of larval Polycomb domains into six different categories. In one category, genes are transcribed toward the Polycomb domain, where active transcription is thought to stop the spreading of H3K27me3. In agreement with this, we show that introducing a transcriptional terminator into such a transcription unit causes an extension of the Polycomb domain. Additional data suggest that active transcription of a boundary gene may restrict the range of enhancer activity of a Polycomb-regulated gene.
Collapse
Affiliation(s)
- Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Natalie D Gehred
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Fountane W Chan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
Chetverina DA, Lomaev DV, Erokhin MM. Polycomb and Trithorax Group Proteins: The Long Road from Mutations in Drosophila to Use in Medicine. Acta Naturae 2020; 12:66-85. [PMID: 33456979 PMCID: PMC7800605 DOI: 10.32607/actanaturae.11090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.
Collapse
Affiliation(s)
- D. A. Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - D. V. Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. M. Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
32
|
Liu J, Shively CA, Mitra RD. Quantitative analysis of transcription factor binding and expression using calling cards reporter arrays. Nucleic Acids Res 2020; 48:e50. [PMID: 32133534 PMCID: PMC7229839 DOI: 10.1093/nar/gkaa141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
We report a tool, Calling Cards Reporter Arrays (CCRA), that measures transcription factor (TF) binding and the consequences on gene expression for hundreds of synthetic promoters in yeast. Using Cbf1p and MAX, we demonstrate that the CCRA method is able to detect small changes in binding free energy with a sensitivity comparable to in vitro methods, enabling the measurement of energy landscapes in vivo. We then demonstrate the quantitative analysis of cooperative interactions by measuring Cbf1p binding at synthetic promoters with multiple sites. We find that the cooperativity between Cbf1p dimers varies sinusoidally with a period of 10.65 bp and energetic cost of 1.37 KBT for sites that are positioned ‘out of phase’. Finally, we characterize the binding and expression of a group of TFs, Tye7p, Gcr1p and Gcr2p, that act together as a ‘TF collective’, an important but poorly characterized model of TF cooperativity. We demonstrate that Tye7p often binds promoters without its recognition site because it is recruited by other collective members, whereas these other members require their recognition sites, suggesting a hierarchy where these factors recruit Tye7p but not vice versa. Our experiments establish CCRA as a useful tool for quantitative investigations into TF binding and function.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Christian A Shively
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
33
|
Bienz M. Head-to-Tail Polymerization in the Assembly of Biomolecular Condensates. Cell 2020; 182:799-811. [PMID: 32822572 DOI: 10.1016/j.cell.2020.07.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Clustering of macromolecules is a fundamental cellular device underlying diverse biological processes that require high-avidity binding to effectors and substrates. Often, this involves a transition between diffuse and locally concentrated molecules akin to biophysical phase separation observable in vitro. One simple mechanistic paradigm underlying physiologically relevant phase transitions in cells is the reversible head-to-tail polymerization of hub proteins into filaments that are cross-linked by dimerization into dynamic three-dimensional molecular condensates. While many diverse folds and motifs can mediate dimerization, only two structurally distinct domains have been discovered so far to undergo head-to-tail polymerization, though these are widespread among all living kingdoms.
Collapse
Affiliation(s)
- Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
34
|
DeLuca SZ, Ghildiyal M, Pang LY, Spradling AC. Differentiating Drosophila female germ cells initiate Polycomb silencing by regulating PRC2-interacting proteins. eLife 2020; 9:e56922. [PMID: 32773039 PMCID: PMC7438113 DOI: 10.7554/elife.56922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/06/2020] [Indexed: 01/18/2023] Open
Abstract
Polycomb silencing represses gene expression and provides a molecular memory of chromatin state that is essential for animal development. We show that Drosophila female germline stem cells (GSCs) provide a powerful system for studying Polycomb silencing. GSCs have a non-canonical distribution of PRC2 activity and lack silenced chromatin like embryonic progenitors. As GSC daughters differentiate into nurse cells and oocytes, nurse cells, like embryonic somatic cells, silence genes in traditional Polycomb domains and in generally inactive chromatin. Developmentally controlled expression of two Polycomb repressive complex 2 (PRC2)-interacting proteins, Pcl and Scm, initiate silencing during differentiation. In GSCs, abundant Pcl inhibits PRC2-dependent silencing globally, while in nurse cells Pcl declines and newly induced Scm concentrates PRC2 activity on traditional Polycomb domains. Our results suggest that PRC2-dependent silencing is developmentally regulated by accessory proteins that either increase the concentration of PRC2 at target sites or inhibit the rate that PRC2 samples chromatin.
Collapse
Affiliation(s)
- Steven Z DeLuca
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Megha Ghildiyal
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Liang-Yu Pang
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| |
Collapse
|
35
|
Abstract
Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.
Collapse
Affiliation(s)
- Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
36
|
Ghotbi E, Lackey K, Wong V, Thompson KT, Caston EG, Haddadi M, Benes J, Jones RS. Differential Contributions of DNA-Binding Proteins to Polycomb Response Element Activity at the Drosophila giant Gene. Genetics 2020; 214:623-634. [PMID: 31919108 PMCID: PMC7054010 DOI: 10.1534/genetics.119.302981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 11/18/2022] Open
Abstract
Polycomb-group (PcG) proteins are evolutionarily conserved epigenetic regulators whose primary function is to maintain the transcriptional repression of target genes. Recruitment of Drosophila melanogaster PcG proteins to target genes requires the presence of one or more Polycomb Response Elements (PREs). The functions or necessity for more than one PRE at a gene are not clear and individual PREs at some loci may have distinct regulatory roles. Various combinations of sequence-specific DNA-binding proteins are present at a given PRE, but only Pleiohomeotic (Pho) is present at all strong PREs. The giant (gt) locus has two PREs, a proximal PRE1 and a distal PRE2. During early embryonic development, Pho binds to PRE1 ∼30-min prior to stable binding to PRE2. This observation indicated a possible dependence of PRE2 on PRE1 for PcG recruitment; however, we find here that PRE2 recruits PcG proteins and maintains transcriptional repression independently of Pho binding to PRE1. Pho-like (Phol) is partially redundant with Pho during larval development and binds to the same DNA sequences in vitro Although binding of Pho to PRE1 is dependent on the presence of consensus Pho-Phol-binding sites, Phol binding is less so and appears to play a minimal role in recruiting other PcG proteins to gt Another PRE-binding protein, Sp1/Kruppel-like factor, is dependent on the presence of Pho for PRE1 binding. Further, we show that, in addition to silencing gene expression, PcG proteins dampen transcription of an active gene.
Collapse
Affiliation(s)
- Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Kristina Lackey
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Vicki Wong
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Katie T Thompson
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Evan G Caston
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Minna Haddadi
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| |
Collapse
|
37
|
Bonnet J, Lindeboom RGH, Pokrovsky D, Stricker G, Çelik MH, Rupp RAW, Gagneur J, Vermeulen M, Imhof A, Müller J. Quantification of Proteins and Histone Marks in Drosophila Embryos Reveals Stoichiometric Relationships Impacting Chromatin Regulation. Dev Cell 2019; 51:632-644.e6. [PMID: 31630981 DOI: 10.1016/j.devcel.2019.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/09/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
Gene transcription in eukaryotes is regulated through dynamic interactions of a variety of different proteins with DNA in the context of chromatin. Here, we used mass spectrometry for absolute quantification of the nuclear proteome and methyl marks on selected lysine residues in histone H3 during two stages of Drosophila embryogenesis. These analyses provide comprehensive information about the absolute copy number of several thousand proteins and reveal unexpected relationships between the abundance of histone-modifying and -binding proteins and the chromatin landscape that they generate and interact with. For some histone modifications, the levels in Drosophila embryos are substantially different from those previously reported in tissue culture cells. Genome-wide profiling of H3K27 methylation during developmental progression and in animals with reduced PRC2 levels illustrates how mass spectrometry can be used for quantitatively describing and comparing chromatin states. Together, these data provide a foundation toward a quantitative understanding of gene regulation in Drosophila.
Collapse
Affiliation(s)
- Jacques Bonnet
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Rik G H Lindeboom
- Radboud Institute for Molecular Life Sciences, Oncode Institute, Department of Molecular Biology, Radboud University, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Daniil Pokrovsky
- Institute for Molecular Biology, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany; Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Georg Stricker
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Muhammed Hasan Çelik
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Ralph A W Rupp
- Institute for Molecular Biology, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Michiel Vermeulen
- Radboud Institute for Molecular Life Sciences, Oncode Institute, Department of Molecular Biology, Radboud University, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands.
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstr. 9, 82152 Martinsried, Germany.
| | - Jürg Müller
- Max-Planck Institute of Biochemistry, Laboratory of Chromatin Biology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
38
|
Cheutin T, Cavalli G. The multiscale effects of polycomb mechanisms on 3D chromatin folding. Crit Rev Biochem Mol Biol 2019; 54:399-417. [PMID: 31698957 DOI: 10.1080/10409238.2019.1679082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Polycomb group (PcG) proteins silence master regulatory genes required to properly confer cell identity during the development of both Drosophila and mammals. They may act through chromatin compaction and higher-order folding of chromatin inside the cell nucleus. During the last decade, analysis on interphase chromosome architecture discovered self-interacting regions named topologically associated domains (TADs). TADs result from the 3D chromatin folding of a succession of transcribed and repressed epigenomic domains and from loop extrusion mediated by cohesin/CTCF in mammals. Polycomb silenced chromatin constitutes one type of repressed epigenomic domains which form compacted nano-compartments inside cell nuclei. Recruitment of canonical PcG proteins on chromatin relies on initial binding to discrete elements and further spreading into large chromatin domains covered with H3K27me3. Some of these discrete elements have a bivalent nature both in mammals and Drosophila and are dynamically regulated during development. Loops can occur between them, suggesting that their interaction plays both functional and structural roles. Formation of large chromatin domains covered by H3K27me3 seems crucial for PcG silencing and PcG proteins might exert their function through compaction of these domains in both mammals and flies, rather than by directly controlling the nucleosomal accessibility of discrete regulatory elements. In addition, PcG chromatin domains interact over long genomic distances, shaping a higher-order chromatin network. Therefore, PcG silencing might rely on multiscale chromatin folding to maintain cell identity during differentiation.
Collapse
Affiliation(s)
- Thierry Cheutin
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and the University of Montpellier, Montpellier, France
| |
Collapse
|
39
|
Abstract
Though genetic data suggest that Polycomb group proteins (PcGs) are central chromatin modifiers and repressors that have been implicated in control of embryonic stem cell (ESC) pluripotency, the precise mechanism of PcG complex recruitment remains elusive, especially in mammals. We now report that the first and second MBT repeats of L3mbtl2 are important structural and functional features that are necessary and sufficient for L3mbtl2-mediated recruitment of PRC1.6 complex to target promoters. Interestingly, this region of L3mbtl2 harbors the evolutionarily conserved Pho-binding pocket also present in Drosophila Sfmbt, and mutation of the critical residues within this pocket completely abolishes its interaction with target promoters. Additionally, decreased PRC1.6 chromatin occupancy was observed following loss of individual components (L3mbtl2, Pcgf6, and Max) of the complex. Our findings suggest that the recruitment of noncanonical PRC1.6 complex in ESCs might be the result of L3mbtl2's interaction with multiple components of the complex.
Collapse
|
40
|
Homotypic cooperativity and collective binding are determinants of bHLH specificity and function. Proc Natl Acad Sci U S A 2019; 116:16143-16152. [PMID: 31341088 DOI: 10.1073/pnas.1818015116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Eukaryotic cells express transcription factor (TF) paralogues that bind to nearly identical DNA sequences in vitro but bind at different genomic loci and perform different functions in vivo. Predicting how 2 paralogous TFs bind in vivo using DNA sequence alone is an important open problem. Here, we analyzed 2 yeast bHLH TFs, Cbf1p and Tye7p, which have highly similar binding preferences in vitro, yet bind at almost completely nonoverlapping target loci in vivo. We dissected the determinants of specificity for these 2 proteins by making a number of chimeric TFs in which we swapped different domains of Cbf1p and Tye7p and determined the effects on in vivo binding and cellular function. From these experiments, we learned that the Cbf1p dimer achieves its specificity by binding cooperatively with other Cbf1p dimers bound nearby. In contrast, we found that Tye7p achieves its specificity by binding cooperatively with 3 other DNA-binding proteins, Gcr1p, Gcr2p, and Rap1p. Remarkably, most promoters (63%) that are bound by Tye7p do not contain a consensus Tye7p binding site. Using this information, we were able to build simple models to accurately discriminate bound and unbound genomic loci for both Cbf1p and Tye7p. We then successfully reprogrammed the human bHLH NPAS2 to bind Cbf1p in vivo targets and a Tye7p target intergenic region to be bound by Cbf1p. These results demonstrate that the genome-wide binding targets of paralogous TFs can be discriminated using sequence information, and provide lessons about TF specificity that can be applied across the phylogenetic tree.
Collapse
|
41
|
Vidal M. Polycomb Assemblies Multitask to Regulate Transcription. EPIGENOMES 2019; 3:12. [PMID: 34968234 PMCID: PMC8594731 DOI: 10.3390/epigenomes3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Polycomb system is made of an evolutionary ancient group of proteins, present throughout plants and animals. Known initially from developmental studies with the fly Drosophila melanogaster, they were associated with stable sustainment of gene repression and maintenance of cell identity. Acting as multiprotein assemblies with an ability to modify chromatin, through chemical additions to histones and organization of topological domains, they have been involved subsequently in control of developmental transitions and in cell homeostasis. Recent work has unveiled an association of Polycomb components with transcriptionally active loci and the promotion of gene expression, in clear contrast with conventional recognition as repressors. Focusing on mammalian models, I review here advances concerning roles in transcriptional control. Among new findings highlighted is the regulation of their catalytic properties, recruiting to targets, and activities in chromatin organization and compartmentalization. The need for a more integrated approach to the study of the Polycomb system, given its fundamental complexity and its adaptation to cell context, is discussed.
Collapse
Affiliation(s)
- Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
42
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
43
|
Domsch K, Carnesecchi J, Disela V, Friedrich J, Trost N, Ermakova O, Polychronidou M, Lohmann I. The Hox transcription factor Ubx stabilizes lineage commitment by suppressing cellular plasticity in Drosophila. eLife 2019; 8:42675. [PMID: 31050646 PMCID: PMC6513553 DOI: 10.7554/elife.42675] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
During development cells become restricted in their differentiation potential by repressing alternative cell fates, and the Polycomb complex plays a crucial role in this process. However, how alternative fate genes are lineage-specifically silenced is unclear. We studied Ultrabithorax (Ubx), a multi-lineage transcription factor of the Hox class, in two tissue lineages using sorted nuclei and interfered with Ubx in mesodermal cells. We find that depletion of Ubx leads to the de-repression of genes normally expressed in other lineages. Ubx silences expression of alternative fate genes by retaining the Polycomb Group protein Pleiohomeotic at Ubx targeted genomic regions, thereby stabilizing repressive chromatin marks in a lineage-dependent manner. Our study demonstrates that Ubx stabilizes lineage choice by suppressing the multipotency encoded in the genome via its interaction with Pho. This mechanism may explain why the Hox code is maintained throughout the lifecycle, since it could set a block to transdifferentiation in adult cells.
Collapse
Affiliation(s)
- Katrin Domsch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Vanessa Disela
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Jana Friedrich
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Nils Trost
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | - Olga Ermakova
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| | | | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Loubiere V, Martinez AM, Cavalli G. Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. Bioessays 2019; 41:e1800222. [PMID: 30793782 DOI: 10.1002/bies.201800222] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue-specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context- and tissue-specific assembly of the different types of Polycomb Group (PcG) complexes, which regulates their targeting and/or activities on chromatin. Here, an overview is provided of how PcG complexes function at multiple scales to regulate transcription, local chromatin environment, and higher order structures that support normal differentiation and are perturbed in tumorigenesis.
Collapse
Affiliation(s)
- Vincent Loubiere
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| |
Collapse
|
45
|
Alhaj Abed J, Ghotbi E, Ye P, Frolov A, Benes J, Jones RS. De novo recruitment of Polycomb-group proteins in Drosophila embryos. Development 2018; 145:dev.165027. [PMID: 30389849 DOI: 10.1242/dev.165027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022]
Abstract
Polycomb-group (PcG)-mediated transcriptional repression of target genes can be delineated into two phases. First, following initial repression of target genes by gene-specific transcription factors, PcG proteins recognize the repressed state and assume control of the genes' repression. Second, once the silenced state is established, PcG proteins may maintain repression through an indefinite number of cell cycles. Little is understood about how PcG proteins initially recognize the repressed state of target genes and the steps leading to de novo establishment of PcG-mediated repression. We describe a genetic system in which a Drosophila PcG target gene, giant (gt), is ubiquitously repressed during early embryogenesis by a maternally expressed transcription factor, and show the temporal recruitment of components of three PcG protein complexes: PhoRC, PRC1 and PRC2. We show that de novo PcG recruitment follows a temporal hierarchy in which PhoRC stably localizes at the target gene at least 1 h before stable recruitment of PRC2 and concurrent trimethylation of histone H3 at lysine 27 (H3K27me3). The presence of PRC2 and increased levels of H3K27me3 are found to precede stable binding by PRC1.
Collapse
Affiliation(s)
- Jumana Alhaj Abed
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Elnaz Ghotbi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Piao Ye
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Alexander Frolov
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Judith Benes
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| |
Collapse
|
46
|
Kyrchanova O, Kurbidaeva A, Sabirov M, Postika N, Wolle D, Aoki T, Maksimenko O, Mogila V, Schedl P, Georgiev P. The bithorax complex iab-7 Polycomb response element has a novel role in the functioning of the Fab-7 chromatin boundary. PLoS Genet 2018; 14:e1007442. [PMID: 30110328 PMCID: PMC6110506 DOI: 10.1371/journal.pgen.1007442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/27/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Expression of the three bithorax complex homeotic genes is orchestrated by nine parasegment-specific regulatory domains. Autonomy of each domain is conferred by boundary elements (insulators). Here, we have used an in situ replacement strategy to reanalyze the sequences required for the functioning of one of the best-characterized fly boundaries, Fab-7. It was initially identified by a deletion, Fab-71, that transformed parasegment (PS) 11 into a duplicate copy of PS12. Fab-71 deleted four nuclease hypersensitive sites, HS*, HS1, HS2, and HS3, located between the iab-6 and iab-7 regulatory domains. Transgenic and P-element excision experiments mapped the boundary to HS*+HS1+HS2, while HS3 was shown to be the iab-7 Polycomb response element (PRE). Recent replacement experiments showed that HS1 is both necessary and sufficient for boundary activity when HS3 is also present in the replacement construct. Surprisingly, while HS1+HS3 combination has full boundary activity, we discovered that HS1 alone has only minimal function. Moreover, when combined with HS3, only the distal half of HS1, dHS1, is needed. A ~1,000 kD multiprotein complex containing the GAF protein, called the LBC, binds to the dHS1 sequence and we show that mutations in dHS1, that disrupt LBC binding in nuclear extracts, eliminate boundary activity and GAF binding in vivo. HS3 has binding sites for GAF and Pho proteins that are required for PRE silencing. In contrast, HS3 boundary activity only requires the GAF binding sites. LBC binding with HS3 in nuclear extracts, and GAF association in vivo, depend upon the HS3 GAF sites, but not the Pho sites. Consistent with a role for the LBC in HS3 boundary activity, the boundary function of the dHS1+HS3mPho combination is lost when the flies are heterozygous for a mutation in the GAF gene. Taken together, these results reveal a novel function for the iab-7 PREs in chromosome architecture. Polycomb group proteins (PcG) are important epigenetic regulators of developmental genes in all higher eukaryotes. In Drosophila, these proteins are bound to specific regulatory DNA elements called Polycomb group Response Elements (PREs). Drosophila PREs are made up of binding sites for a complex array of DNA binding proteins, including GAF and Pho. In the regulatory region of the bithorax complex (BX-C), the boundary/insulator elements organize the autonomous regulatory domains, and their active or repressed states are regulated by PREs. Here, we studied functional properties of sequences that constitute the Fab-7 boundary and the adjacent iab-7 PRE. It was previously thought that the sole function of the iab-7 PRE is to recruit PcG proteins in parasegments anterior to PS12 and silence the iab-7 domain. However, we found that the iab-7 PRE also functions as a component of the Fab-7 boundary. The boundary activity of the iab-7 PRE sequence depends upon a large complex called the LBC. We show that it is possible to reconstitute a fully functional boundary by combining the LBC binding sequences in HS1 with the iab-7 PRE. Moreover, its boundary function is independent of its PcG silencing activity.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Amina Kurbidaeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Marat Sabirov
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Acsademy of Sciences, Moscow, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Oksana Maksimenko
- Group of Molecular Organization of Genome, Institute of Gene Biology, Russian Acsademy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
- * E-mail: (PS); (PG)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PS); (PG)
| |
Collapse
|
47
|
Ly T, Endo A, Brenes A, Gierlinski M, Afzal V, Pawellek A, Lamond AI. Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells. Wellcome Open Res 2018; 3:51. [PMID: 29904729 PMCID: PMC5989152 DOI: 10.12688/wellcomeopenres.14392.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Background: Viral oncogenes and mutated proto-oncogenes are potent drivers of cancer malignancy. Downstream of the oncogenic trigger are alterations in protein properties that give rise to cellular transformation and the acquisition of malignant cellular phenotypes. Developments in mass spectrometry enable large-scale, multidimensional characterisation of proteomes. Such techniques could provide an unprecedented, unbiased view of how oncogene activation remodels a human cell proteome. Methods: Using quantitative MS-based proteomics and cellular assays, we analysed how transformation induced by activating v-Src kinase remodels the proteome and cellular phenotypes of breast epithelial (MCF10A) cells. SILAC MS was used to comprehensively characterise the MCF10A proteome and to measure v-Src-induced changes in protein abundance across seven time-points (1-72 hrs). We used pulse-SILAC MS ( Boisvert et al., 2012), to compare protein synthesis and turnover in control and transformed cells. Follow-on experiments employed a combination of cellular and functional assays to characterise the roles of selected Src-responsive proteins. Results: Src-induced transformation changed the expression and/or turnover levels of ~3% of proteins, affecting ~1.5% of the total protein molecules in the cell. Transformation increased the average rate of proteome turnover and disrupted protein homeostasis. We identify distinct classes of protein kinetics in response to Src activation. We demonstrate that members of the polycomb repressive complex 1 (PRC1) are important regulators of invasion and migration in MCF10A cells. Many Src-regulated proteins are present in low abundance and some are regulated post-transcriptionally. The signature of Src-responsive proteins is highly predictive of poor patient survival across multiple cancer types. Open access to search and interactively explore all these proteomic data is provided via the EPD database ( www.peptracker.com/epd). Conclusions: We present the first comprehensive analysis measuring how protein expression and protein turnover is affected by cell transformation, providing a detailed picture at the protein level of the consequences of activation of an oncogene.
Collapse
Affiliation(s)
- Tony Ly
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aki Endo
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Alejandro Brenes
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| | - Marek Gierlinski
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| | - Vackar Afzal
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| | - Angus I. Lamond
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
- Laboratory for Quantitative Proteomics, University of Dundee, Dundee, UK
| |
Collapse
|
48
|
Zhu J, Ordway AJ, Weber L, Buddika K, Kumar JP. Polycomb group (PcG) proteins and Pax6 cooperate to inhibit in vivo reprogramming of the developing Drosophila eye. Development 2018; 145:dev160754. [PMID: 29530880 PMCID: PMC5963869 DOI: 10.1242/dev.160754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/01/2018] [Indexed: 01/01/2023]
Abstract
How different cells and tissues commit to and determine their fates has been a central question in developmental biology since the seminal embryological experiments conducted by Wilhelm Roux and Hans Driesch in sea urchins and frogs. Here, we demonstrate that Polycomb group (PcG) proteins maintain Drosophila eye specification by suppressing the activation of alternative fate choices. The loss of PcG in the developing eye results in a cellular reprogramming event in which the eye is redirected to a wing fate. This fate transformation occurs with either the individual loss of Polycomb proteins or the simultaneous reduction of the Pleiohomeotic repressive complex and Pax6. Interestingly, the requirement for retinal selector genes is limited to Pax6, as the removal of more downstream members does not lead to the eye-wing transformation. We also show that distinct PcG complexes are required during different developmental windows throughout eye formation. These findings build on earlier observations that the eye can be reprogrammed to initiate head epidermis, antennal and leg development.
Collapse
Affiliation(s)
- Jinjin Zhu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Alison J Ordway
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Lena Weber
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
49
|
Abstract
Polycomb Group (PcG) proteins assemble a chromatin state that maintains developmental gene repression. A new study combining structure and in vivo analysis details a molecular network from DNA recognition to PcG recruitment, highlighting the essential role of Sterile Alpha Motifs.
Collapse
Affiliation(s)
- Chongwoo A Kim
- Department of Biochemistry, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA
| | - Nicole J Francis
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada; Département de biochimie et medécine moléculaire, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
50
|
Rothé B, Leettola CN, Leal-Esteban L, Cascio D, Fortier S, Isenschmid M, Bowie JU, Constam DB. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6. Structure 2018; 26:209-224.e6. [PMID: 29290488 PMCID: PMC6258031 DOI: 10.1016/j.str.2017.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/31/2017] [Accepted: 12/01/2017] [Indexed: 01/25/2023]
Abstract
Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Catherine N Leettola
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Lucia Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Duilio Cascio
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Manuela Isenschmid
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, Molecular Biology Institute, University of California, Los Angeles, Boyer Hall, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, USA
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, SV ISREC, Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|