1
|
Zhang S, Huang Q, Ji T, Li Q, Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Biomark Res 2024; 12:130. [PMID: 39482784 DOI: 10.1186/s40364-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Copper is an important trace element for maintaining key biological functions such as cellular respiration, nerve conduction, and antioxidant defense. Maintaining copper homeostasis is critical for human health, and its imbalance has been linked to various diseases, especially cancer. Cuproptosis, a novel mechanism of copper-induced cell death, provides new therapeutic opportunities for metal ion regulation to interact with cell fate. This review provides insights into the complex mechanisms of copper metabolism, the molecular basis of cuproptosis, and its association with cancer development. We assess the role of cuproptosis-related genes (CRGs) associated with tumorigenesis, their importance as prognostic indicators and therapeutic targets, and the impact of copper homeostasis on the tumor microenvironment (TME) and immune response. Ultimately, this review highlights the complex interplay between copper, cuproptosis, and cancer immunotherapy.
Collapse
Affiliation(s)
- Suhang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tuo Ji
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| |
Collapse
|
2
|
Zakaria S, Ibrahim N, Abdo W, E El-Sisi A. JNK inhibitor and ferroptosis modulator as possible therapeutic modalities in Alzheimer disease (AD). Sci Rep 2024; 14:23293. [PMID: 39375359 PMCID: PMC11458622 DOI: 10.1038/s41598-024-73596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Alzheimer disease (AD) is among the most prevalent neurodegenerative diseases globally, marked by cognitive and behavioral disruptions. Ferroptosis is a form of controlled cell death characterized by intracellular iron accumulation associated with lipid peroxide formation, which subsequently promotes AD initiation and progression. We hypothesized that targeting the ferroptosis pathway may help in AD management. Therefore, our study aimed to evaluate the potential neuroprotective effect of the antifungal Ciclopirox olamine (CPX-O) that acts through iron chelation. We employed CPX-O separately or in combination with the JNK inhibitor (SP600125) in a mice model of AlCl3-induced AD. Animals underwent examination for behavioral, biochemical, histological, and immunohistochemical findings. Our results revealed that AlCl3 was associated with disruptions in learning and memory parameters, neuronal degeneration in the hippocampus, increased immunoreactivity of amyloid-β and tau proteins, a significant rise in iron, nitric oxide (NO), malondialdehyde (MDA), JNK, and P53 levels, along with the significant decrease in glutathione peroxidase activity. Interestingly, the administration of CPX-O alone or in combination with SP600125 in the AlCl3-induced AD model caused an improvement in the previously described examination findings. Therefore, CPX-O may be a promising candidate for AD treatment, and future clinical trials will be required to confirm these preclinical findings.
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nashwa Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Alaa E El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31512, Egypt
| |
Collapse
|
3
|
Yao Z, Jia F, Wang S, Jiao Q, Du X, Chen X, Jiang H. The involvement of IRP2-induced ferroptosis through the p53-SLC7A11-ALOX12 pathway in Parkinson's disease. Free Radic Biol Med 2024; 222:386-396. [PMID: 38936518 DOI: 10.1016/j.freeradbiomed.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/17/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Disturbance in iron homeostasis has been described in Parkinson's disease (PD), in which iron regulatory protein 2 (IRP2) plays a crucial role. IRP2 deletion resulted in the misregulation of iron metabolism and subsequent neurodegeneration. However, growing evidence showed that the levels of IRP2 were increased in the substantia nigra (SN) in MPTP-induced PD mice. To further clarify the role of increased IRP2 in PD, we developed IRP2-overexpressed mice by microinjecting AAV-Ireb2 in the SN. These mice showed decreased motor ability, abnormal gait and anxiety. Iron deposits induced by increased TFR1 and dopaminergic neuronal loss were observed in the SN. When these mice were treated with MPTP, exacerbated dyskinesia and dopaminergic neuronal loss were observed. In addition, TP53 was post-transcriptionally upregulated by IRP2 binding to the iron regulated element (IRE) in its 3' untranslated region. This resulted in increased lipid peroxidation levels and induced ferroptosis through the SLC7A11-ALOX12 pathway, which was independent of GPX4. This study revealed that IRP2 homeostasis in the SN was critical for PD progression and clarified the molecular mechanism of ferroptosis caused by IRP2.
Collapse
Affiliation(s)
- Zhengyang Yao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Shuhua Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266500, China.
| |
Collapse
|
4
|
Miyahara S, Ohuchi M, Nomura M, Hashimoto E, Soga T, Saito R, Hayashi K, Sato T, Saito M, Yamashita Y, Shimada M, Yaegashi N, Yamada H, Tanuma N. FDX2, an iron-sulfur cluster assembly factor, is essential to prevent cellular senescence, apoptosis or ferroptosis of ovarian cancer cells. J Biol Chem 2024; 300:107678. [PMID: 39151727 PMCID: PMC11414659 DOI: 10.1016/j.jbc.2024.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis, or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global downregulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53 deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids. Our results suggest that p53 status and phospholipid homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.
Collapse
Affiliation(s)
- Shuko Miyahara
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mai Ohuchi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Eifumi Hashimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rintaro Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Kayoko Hayashi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Taku Sato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan; Department of Biochemical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
5
|
Lin H, Lin S, Shi L, Xu G, Lin M, Li S, Chen J, Li Z, Nakazibwe C, Xiao Y, Li X, Pan X, Wang C. FGFR1 governs iron homeostasis via regulating intracellular protein degradation pathways of IRP2 in prostate cancer cells. Commun Biol 2024; 7:1011. [PMID: 39154074 PMCID: PMC11330447 DOI: 10.1038/s42003-024-06704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The acquisition of ectopic fibroblast growth factor receptor 1 (FGFR1) expression is well documented in prostate cancer (PCa) progression, notably in conferring tumor growth advantage and facilitating metastasis. However, how FGFR1 contributes to PCa progression is not fully revealed. Here we report that ectopic FGFR1 in PCa cells promotes transferrin receptor 1 (TFR1) expression and expands the labile iron pool (LIP), and vice versa. We further demonstrate that FGFR1 stabilizes iron regulatory proteins 2 (IRP2) and therefore, upregulates TFR1 via promoting IRP2 binding to the IRE of TFR1. Deletion of FGFR1 in DU145 cells decreases the LIP, which potentiates the anticancer efficacy of iron chelator. Intriguingly, forced expression of IRP2 in FGFR1 depleted cells reinstates TFR1 expression and LIP, subsequently restoring the tumorigenicity of the cells. Together, our results here unravel a new mechanism by which FGFR1 drives PCa progression and suggest a potential novel target for PCa therapy.
Collapse
Affiliation(s)
- Hui Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuaijun Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liuhong Shi
- Department of Head and Neck Surgery, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guangsen Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Manjie Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Supeng Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiale Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiquan Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Catherine Nakazibwe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Sui Y, Geng X, Wang Z, Zhang J, Yang Y, Meng Z. Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease. Metabolism 2024; 157:155953. [PMID: 38885833 DOI: 10.1016/j.metabol.2024.155953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
With aging and the increasing incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. NAFLD mainly includes simple hepatic steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma (HCC). An imbalance in hepatic iron homeostasis is usually associated with the progression of NAFLD and induces iron overload, reactive oxygen species (ROS) production, and lipid peroxide accumulation, which leads to ferroptosis. Ferroptosis is a unique type of programmed cell death (PCD) that is characterized by iron dependence, ROS production and lipid peroxidation. The ferroptosis inhibition systems involved in NAFLD include the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate (NADPH) regulatory axes. The main promotion system involved is the acyl-CoA synthetase long-chain family (ACSL4)/arachidonic lipoxygenase 15 (ALOX15) axis. In recent years, an increasing number of studies have focused on the multiple roles of iron homeostasis imbalance and ferroptosis in the progression of NAFLD. This review highlights the latest studies about iron homeostasis imbalance- and ferroptosis-associated NAFLD, mainly including the physiology and pathophysiology of hepatic iron metabolism, hepatic iron homeostasis imbalance during the development of NAFLD, and key regulatory molecules and roles of hepatic ferroptosis in NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yanqun Yang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
7
|
Wang Z, Zheng F, Wei S, Li S, Xiong S, Zhang L, Wan L, Xu S, Deng J, Liu X. Exploring necrosis-associated mitochondrial gene signatures: revealing their role in prognosis and immunotherapy of renal clear cell carcinoma. Clin Exp Med 2024; 24:161. [PMID: 39023752 PMCID: PMC11258092 DOI: 10.1007/s10238-024-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Mitochondrial dysfunction and necrotic apoptosis, pivotal in therapeutic strategies for multiple diseases, lack comprehensive understanding in the context of renal clear cell carcinoma (ccRCC). This study explores their potential as valuable tools for ccRCC prediction, prevention, and personalized medical care. Transcriptomic and clinical datasets were acquired from the Cancer Genome Atlas (TCGA) repository. Mitochondrial and necrosis-associated gene sets were sourced from MitoCarta3.0 and the KEGG Pathway databases, respectively. Six necrosis-related mitochondrial genes (nc-MTGs) with prognostic significance were analyzed and screened, and a prognostic model was constructed. The accuracy of the model was verified using external data (E-MTAB-1980). TISCH was used to explore nc-MTGs at the cellular level. Finally, the expression level of BH3 interacting domain death agonist (BID) in ccRCC cell line was detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), and the effect of BID down-regulation on tumor cell migration was verified by transwell assays and wound-healing experiments. We established and validated a prognostic model for clear cell renal cell carcinoma (ccRCC) utilizing six necrosis-related mitochondrial genes (nc-MTGs), affirming its efficacy in evaluating tumor progression. RT-PCR results showed that BID expression was up-regulated in ccRCC tissues compared with controls and exhibited oncogenic effects. In vitro cell function experiments showed that BID may be an important factor affecting the migration of ccRCC. Our study is the first to elucidate the biological functions and prognostic significance of mitochondrial molecules related to necroptosis, providing a new way to evaluate mitochondrial therapeutics in patients with ccRCC.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fuchun Zheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shiliang Wei
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lei Zhang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Liangwei Wan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Deng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? Am J Physiol Endocrinol Metab 2024; 326:E767-E775. [PMID: 38506752 PMCID: PMC11376490 DOI: 10.1152/ajpendo.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increasing prevalence worldwide. NAFLD could develop from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH-related fibrosis, cirrhosis, and even hepatocellular carcinoma. However, the mechanism of NAFLD development has not yet been fully defined. Recently, emerging evidence shows that the dysregulated iron metabolism marked by elevated serum ferritin, and ferroptosis are involved in the NAFLD. Understanding iron metabolism and ferroptosis can shed light on the mechanisms of NAFLD development. Here, we summarized studies on iron metabolism and the ferroptosis process involved in NAFLD development to highlight potential medications and therapies for treating NAFLD.
Collapse
Affiliation(s)
- Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Changli Wei
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Chong W, Ren H, Chen H, Xu K, Zhu X, Liu Y, Sang Y, Li H, Liu J, Ye C, Shang L, Jing C, Li L. Clinical features and molecular landscape of cuproptosis signature-related molecular subtype in gastric cancer. IMETA 2024; 3:e190. [PMID: 38898987 PMCID: PMC11183172 DOI: 10.1002/imt2.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Recent studies have highlighted the biological significance of cuproptosis in disease occurrence and development. However, it remains unclear whether cuproptosis signaling also has potential impacts on tumor initiation and prognosis of gastric cancer (GC). In this study, 16 cuproptosis-related genes (CRGs) transcriptional profiles were harnessed to perform the regularized latent variable model-based clustering in GC. A cuproptosis signature risk scoring (CSRS) scheme, based on a weighted sum of principle components of the CRGs, was used to evaluate the prognosis and risk of individual tumors of GC. Four distinct cuproptosis signature-based clusters, characterized by differential expression patterns of CRGs, were identified among 1136 GC samples across three independent databases. The four clusters were also associated with different clinical outcomes and tumor immune contexture. Based on the CSRS, GC patients can be divided into CSRS-High and CSRS-Low subtypes. We found that DBT, MTF1, and ATP7A were significantly elevated in the CSRS-High subtype, while SLC31A1, GCSH, LIAS, DLAT, FDX1, DLD, and PDHA1 were increased in the CSRS-Low subtype. Patients with CSRS-Low score were characterized by prolonged survival time. Further analysis indicated that CSRS-Low score also correlated with greater tumor mutation burden (TMB) and higher mutation rates of significantly mutated genes (SMG) in GC. In addition, the CSRS-High subtype harbored more significantly amplified focal regions related to tumorigenesis (3q27.1, 12p12.1, 11q13.3, etc.) than the CSRS-Low tumors. Drug sensitivity analyses revealed the potential compounds for the treatment of gastric cancer with CSRS-High score, which were experimentally validated using GC cells. This study highlights that cuproptosis signature-based subtyping is significantly associated with different clinical features and molecular landscape of GC. Quantitative evaluation of the CSRS of individual tumors will strengthen our understanding of the occurrence and development of cuproptosis and the treatment progress of GC.
Collapse
Affiliation(s)
- Wei Chong
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Huicheng Ren
- Department of Gastrointestinal SurgeryZibo Central HospitalZiboChina
| | - Hao Chen
- Clinical Research Center of Shandong University, Clinical Epidemiology UnitQilu Hospital of Shandong UniversityJinanChina
| | - Kang Xu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Xingyu Zhu
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yuan Liu
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yaodong Sang
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Han Li
- Department of Gastroenterological SurgeryThe First Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | - Jin Liu
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Chunshui Ye
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Liang Shang
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Changqing Jing
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Leping Li
- Department of Gastrointestinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Key Laboratory of Engineering of Shandong Province, Shandong Provincial Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
10
|
Zhang J, Kong X, Yang HJ, Zhang W, Chen M, Chen X. Ninjurin 2 Modulates Tumorigenesis, Inflammation, and Metabolism via Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:849-860. [PMID: 38325550 DOI: 10.1016/j.ajpath.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The nerve injury-induced protein 2 (NINJ2) belongs to a family of homophilic adhesion molecules and was initially found to be involved in nerve regeneration. However, the role of NINJ2 in other cellular processes is not well studied. The Ninj2-deficient mice generated in the current study had a short lifespan and were prone to spontaneous tumors, systemic inflammation, and metabolic defects. Comprehensive carbohydrate and lipid metabolic analyses were performed to better understand the metabolic traits that contribute to these phenotypes. Carbohydrate metabolic analyses showed that NINJ2 deficiency led to defects in monosaccharide metabolism along with accumulation of multiple disaccharides and sugar alcohols. Lipidomic analyses showed that Ninj2 deficiency altered patterns of several lipids, including triglycerides, phospholipids, and ceramides. To identify a cellular process that associated with these metabolic defects, the role of NINJ2 in pyroptosis, a programmed cell death that links cancer, inflammation, and metabolic disorders, was examined. Loss of NINJ2 promoted pyroptosis by activating the NOD-like receptor protein 3 (NLRP3) inflammasome. Taken together, these data reveal a critical role of NINJ2 in tumorigenesis, inflammatory response, and metabolism via pyroptosis.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, University of California, Davis, Davis, California.
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, University of California, Davis, Davis, California
| | - Hee Jung Yang
- Comparative Oncology Laboratory, University of California, Davis, Davis, California
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xinbin Chen
- Comparative Oncology Laboratory, University of California, Davis, Davis, California.
| |
Collapse
|
11
|
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 2024; 42:513-534. [PMID: 38593779 DOI: 10.1016/j.ccell.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In cancer treatment, the recurrent challenge of inducing apoptosis through conventional therapeutic modalities, often thwarted by therapy resistance, emphasizes the critical need to explore alternative cell death pathways. Ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides on cellular membranes, has emerged as one such promising frontier in oncology. Induction of ferroptosis not only suppresses tumor growth but also holds potential for augmenting immunotherapy responses and surmounting resistance to existing cancer therapies. This review navigates the role of ferroptosis in tumor suppression. Furthermore, we delve into the complex role of ferroptosis within the tumor microenvironment and its interplay with antitumor immunity, offering insights into the prospect of targeting ferroptosis as a strategic approach in cancer therapy.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
12
|
Yu S, Tong L, Shen J, Li C, Hu Y, Feng K, Shao J. Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. Eur J Med Chem 2024; 269:116290. [PMID: 38518522 DOI: 10.1016/j.ejmech.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
The existing therapies for cancer are not remote satisfactory due to drug-resistance in tumors that are malignant. There is a pressing necessity to take a step forward to develop innovative therapies that can complement current ones. Multiple investigations have demonstrated that ferroptosis therapy, a non-apoptotic modality of programmed cell death, has tremendous potential in face of multiple crucial events, such as drug resistance and toxicity in aggressive malignancies. Recently, ferroptosis at the crosswalk of chemotherapy, materials science, immunotherapy, tumor microenvironment, and bionanotechnology has been presented to elucidate its therapeutic feasibility. Given the burgeoning progression of ferroptosis-based nanomedicine, the newest advancements in this field at the confluence of ferroptosis-inducers, nanotherapeutics, along with tumor microenvironment are given an overview. Here, the signaling pathways of ferroptosis-related were first talked about briefly. The emphasis discussion was placed on the pharmacological mechanisms and the nanodrugs design of ferroptosis inducing agents based on multiple distinct metabolism pathways. Additionally, a comprehensive overview of the action mechanisms by which the tumor microenvironment influences ferroptosis was elaborately descripted. Finally, some limitations of current researches and future research directions were also deliberately discussed to provide details about therapeutic avenues for ferroptosis-related diseases along with the design of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lingwu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenglei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongshan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Keke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
13
|
Shin D, Lee J, Roh JL. Pioneering the future of cancer therapy: Deciphering the p53-ferroptosis nexus for precision medicine. Cancer Lett 2024; 585:216645. [PMID: 38280477 DOI: 10.1016/j.canlet.2024.216645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
The TP53 gene, encoding the p53 protein, has been a focal point of research since its 1979 discovery, playing a crucial role in tumor suppression. Ferroptosis, a distinct form of cell death characterized by lipid peroxide accumulation, has gained prominence since its recognition in 2012. Recent studies have unveiled an intriguing connection between p53 and ferroptosis, with implications for cancer therapy. Recent research underscores p53 as a novel target for cancer therapy, influencing key metabolic processes in ferroptosis. Notably, p53 represses the expression of the cystine-glutamate antiporter SLC7A11, supporting p53-mediated tumor growth suppression. Furthermore, under metabolic stress, p53 mitigates ferroptosis sensitivity, aiding cancer cells in coping and delaying cell death. This dynamic interplay between p53 and ferroptosis has far-reaching implications for various diseases, particularly cancer. This review provides a comprehensive overview of ferroptosis in cancer cells, elucidating p53's role in regulating ferroptosis, and explores the potential of targeting p53 to induce ferroptosis for cancer therapy. Understanding this complex relationship between p53 and ferroptosis offers a promising avenue for developing innovative cancer treatments.
Collapse
Affiliation(s)
- Daiha Shin
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
14
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
15
|
Jiang S, Zhang G, Ma Y, Wu D, Xie D, Zhou S, Jiang X. Ferroptosis in hepatocellular carcinoma, from mechanism to effect. Front Oncol 2024; 14:1350011. [PMID: 38511140 PMCID: PMC10952836 DOI: 10.3389/fonc.2024.1350011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide, characterized by high malignancy and rapid progression. Most cases are diagnosed at intermediate to advanced stages. Current treatment methods have limited efficacy, resulting in high recurrence rates and poor prognosis. Radical hepatectomy remains the primary treatment for HCC, complemented by radiotherapy, chemotherapy, targeted therapy, and immunotherapy. Despite significant improvement in patient prognosis with radical hepatectomy, the five-year survival rate post-surgery remains low; thus necessitating exploration of more effective therapeutic approaches. Ferroptosis is a recently discovered form of cell death that can modulate the occurrence and development of HCC through various mechanisms. This article aims to elucidate the mechanism of ferroptosis and its impact on HCC development to provide novel insights for diagnosis and treatment.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Gastroenterology, Hainan General Hospital (Affiliated Hainan Hospital of Hainan Medical University), Haikou, China
| | - Guangcong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yanan Ma
- Department of Gastroenterology, Hainan General Hospital (Affiliated Hainan Hospital of Hainan Medical University), Haikou, China
| | - Dongyu Wu
- Department of Gastroenterology, Hainan General Hospital (Affiliated Hainan Hospital of Hainan Medical University), Haikou, China
| | - Da Xie
- Department of Gastroenterology, Hainan General Hospital (Affiliated Hainan Hospital of Hainan Medical University), Haikou, China
| | - Songke Zhou
- Department of Gastroenterology, Hainan General Hospital (Affiliated Hainan Hospital of Hainan Medical University), Haikou, China
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital (Affiliated Hainan Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
16
|
Gonzalez L, Chau-Duy Tam Vo S, Faivre B, Pierrel F, Fontecave M, Hamdane D, Lombard M. Activation of Coq6p, a FAD Monooxygenase Involved in Coenzyme Q Biosynthesis, by Adrenodoxin Reductase/Ferredoxin. Chembiochem 2024; 25:e202300738. [PMID: 38141230 DOI: 10.1002/cbic.202300738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/25/2023]
Abstract
Adrenodoxin reductase (AdxR) plays a pivotal role in electron transfer, shuttling electrons between NADPH and iron/sulfur adrenodoxin proteins in mitochondria. This electron transport system is essential for P450 enzymes involved in various endogenous biomolecules biosynthesis. Here, we present an in-depth examination of the kinetics governing the reduction of human AdxR by NADH or NADPH. Our results highlight the efficiency of human AdxR when utilizing NADPH as a flavin reducing agent. Nevertheless, akin to related flavoenzymes such as cytochrome P450 reductase, we observe that low NADPH concentrations hinder flavin reduction due to intricate equilibrium reactions between the enzyme and its substrate/product. Remarkably, the presence of MgCl2 suppresses this complex kinetic behavior by decreasing NADPH binding to oxidized AdxR, effectively transforming AdxR into a classical Michaelis-Menten enzyme. We propose that the addition of MgCl2 may be adapted for studying the reductive half-reactions of other flavoenzymes with NADPH. Furthermore, in vitro experiments provide evidence that the reduction of the yeast flavin monooxygenase Coq6p relies on an electron transfer chain comprising NADPH-AdxR-Yah1p-Coq6p, where Yah1p shuttles electrons between AdxR and Coq6p. This discovery explains the previous in vivo observation that Yah1p and the AdxR homolog, Arh1p, are required for the biosynthesis of coenzyme Q in yeast.
Collapse
Affiliation(s)
- Lucie Gonzalez
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Samuel Chau-Duy Tam Vo
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
- Institut de Biologie Paris-Seine, Biology of Aging and Adaptation, UMR 8256, Sorbonne Université, 7 quai Saint-Bernard, 75 252, Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| |
Collapse
|
17
|
Punziano C, Trombetti S, Cesaro E, Grosso M, Faraonio R. Antioxidant Systems as Modulators of Ferroptosis: Focus on Transcription Factors. Antioxidants (Basel) 2024; 13:298. [PMID: 38539832 PMCID: PMC10967371 DOI: 10.3390/antiox13030298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 10/28/2024] Open
Abstract
Ferroptosis is a type of programmed cell death that differs from apoptosis, autophagy, and necrosis and is related to several physio-pathological processes, including tumorigenesis, neurodegeneration, senescence, blood diseases, kidney disorders, and ischemia-reperfusion injuries. Ferroptosis is linked to iron accumulation, eliciting dysfunction of antioxidant systems, which favor the production of lipid peroxides, cell membrane damage, and ultimately, cell death. Thus, signaling pathways evoking ferroptosis are strongly associated with those protecting cells against iron excess and/or lipid-derived ROS. Here, we discuss the interaction between the metabolic pathways of ferroptosis and antioxidant systems, with a particular focus on transcription factors implicated in the regulation of ferroptosis, either as triggers of lipid peroxidation or as ferroptosis antioxidant defense pathways.
Collapse
Affiliation(s)
- Carolina Punziano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (C.P.); (S.T.); (E.C.)
| |
Collapse
|
18
|
Zhu W, Zhu W, Wang S, Liu S, Zhang H. UCHL1 deficiency upon HCMV infection induces vascular endothelial inflammatory injury mediated by mitochondrial iron overload. Free Radic Biol Med 2024; 211:96-113. [PMID: 38081437 DOI: 10.1016/j.freeradbiomed.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Human cytomeglovirus (HCMV) infection predisposes blood vessels to atherosclerosis (AS) and post-transplantation restenosis, but the underlying molecular basis remains elusive. Here, we found that HCMV infection activates AIM2 inflammasome and pyroptosis in vascular endothelial cells by inducing mitochondrial iron overload. Mechanistically, under normal conditions, ubiquitin carboxyl terminal hydrolase-L1 (UCHL1) was identified as a DUB enzyme that interacts with, deubiquitylates, and stabilizes ferredoxin reductase (FDXR), an important mitochondrial protein that regulates mitochondral iron homeostasis. However, HCMV infection induces the aberrantly elevated m6A modification and R-loops, the three-stranded DNA-DNA:RNA hybrid structures. The expression of UCHL1 was remarkably reduced by m6A modification-mediated mRNA decay and R-loop-dependent transcriptional termination after HCMV infection. Deficiency of UCHL1 causes ubiquitination and degradation of FDXR. Loss of FDXR induces the mitochondrial iron overload, which consequently leads to AIM2 inflammasome activation and endothelial injury. Moreover, both downregulation expression of UCHL1 and related inflammatory injury in vascular endothelium was observed in MCMV-infected mice. Notably, STM2457, a METTL3 specific inhibitor, restores the expression of UCHL1 upon HCMV infection, thereby inhibiting the inflammatory injury of vascular endothelial cells. Our findings delineate a novel mechnism involved in HCMV-induced inflammatory injury to vascular endothelium and implicate the role of METTL3 inhibitor as a potential therapeutic approach.
Collapse
Affiliation(s)
- Wenbo Zhu
- The First Affiliated Hospital, Clinical Medical Research Center, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wentong Zhu
- Unchained Labs (Shanghai) Trading Co., Ltd, Shanghai 201203, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Science, Fuzhou 350013, China
| | - Shuangquan Liu
- The First Affiliated Hospital, Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hongbo Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States.
| |
Collapse
|
19
|
Mohibi S, Zhang Y, Perng V, Chen M, Zhang J, Chen X. Ferredoxin 1 is essential for embryonic development and lipid homeostasis. eLife 2024; 13:e91656. [PMID: 38251655 PMCID: PMC10846857 DOI: 10.7554/elife.91656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Mammalian ferredoxin 1 and 2 (FDX1/2) belong to an evolutionary conserved family of iron-sulfur cluster containing proteins and act as electron shutters between ferredoxin reductase (FDXR) and numerous proteins involved in critical biological pathways. FDX1 is involved in biogenesis of steroids and bile acids, Vitamin A/D metabolism, and lipoylation of tricarboxylic acid (TCA) cycle enzymes. FDX1 has been extensively characterized biochemically but its role in physiology and lipid metabolism has not been explored. In this study, we generated Fdx1-deficient mice and showed that knockout of both alleles of the Fdx1 gene led to embryonic lethality. We also showed that like Fdxr+/-+/-, Fdx1+/-+/- had a shorter life span and were prone to steatohepatitis. However, unlike Fdxr+/-+/-, Fdx1+/-+/- were not prone to spontaneous tumors. Additionally, we showed that FDX1 deficiency led to lipid droplet accumulation possibly via the ABCA1-SREBP1/2 pathway. Specifically, untargeted lipidomic analysis showed that FDX1 deficiency led to alterations in several classes of lipids, including cholesterol, triacylglycerides, acylcarnitines, ceramides, phospholipids and lysophospholipids. Taken together, our data indicate that FDX1 is essential for mammalian embryonic development and lipid homeostasis at both cellular and organismal levels.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Vivian Perng
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, DallasDallasUnited States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| |
Collapse
|
20
|
Yang J, Gu Z. Ferroptosis in head and neck squamous cell carcinoma: from pathogenesis to treatment. Front Pharmacol 2024; 15:1283465. [PMID: 38313306 PMCID: PMC10834699 DOI: 10.3389/fphar.2024.1283465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide, with high morbidity and mortality. Surgery and postoperative chemoradiotherapy have largely reduced the recurrence and fatality rates for most HNSCCs. Nonetheless, these therapeutic approaches result in poor prognoses owing to severe adverse reactions and the development of drug resistance. Ferroptosis is a kind of programmed cell death which is non-apoptotic. Ferroptosis of tumor cells can inhibit tumor development. Ferroptosis involves various biomolecules and signaling pathways, whose expressions can be adjusted to modulate the sensitivity of cells to ferroptosis. As a tool in the fight against cancer, the activation of ferroptosis is a treatment that has received much attention in recent years. Therefore, understanding the molecular mechanism of ferroptosis in HNSCC is an essential strategy with therapeutic potential. The most important thing to treat HNSCC is to choose the appropriate treatment method. In this review, we discuss the molecular and defense mechanisms of ferroptosis, analyze the role and mechanism of ferroptosis in the inhibition and immunity against HNSCC, and explore the therapeutic strategy for inducing ferroptosis in HNSCC including drug therapy, radiation therapy, immunotherapy, nanotherapy and comprehensive treatment. We find ferroptosis provides a new target for HNSCC treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. BIOLOGY 2023; 12:1511. [PMID: 38132337 PMCID: PMC10740672 DOI: 10.3390/biology12121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama, Fukushima 963-8611, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| |
Collapse
|
22
|
Matovinovic F, Novak R, Hrkac S, Salai G, Mocibob M, Pranjic M, Košec A, Bedekovic V, Grgurevic L. In search of new stratification strategies: tissue proteomic profiling of papillary thyroid microcarcinoma in patients with localized disease and lateral neck metastases. J Cancer Res Clin Oncol 2023; 149:17405-17417. [PMID: 37861757 DOI: 10.1007/s00432-023-05452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Papillary thyroid carcinomas (PTC) are the most common thyroid malignancies that are often diagnosed as microcarcinomas when the tumor is less than one centimetre in diameter. Currently, there are no valid stratification strategies that would reliably assess the risk of lateral neck metastases and optimize surgical treatment. MATERIALS AND METHODS Aiming to find potential tissue biomarkers of metastatic potential, we conducted a cross-sectional proteomic pilot study on formalin-fixed paraffin-embedded tissues of metastatic (N = 10) and non-metastatic (N = 10) papillary thyroid microcarcinoma patients. Samples were analysed individually using liquid chromatography/mass spectrometry, and the differentially expressed proteins (DEP) were functionally annotated. RESULTS We identified five overexpressed DEPs in the metastatic group (EPB41L2, CSE1L, GLIPR2, FGA and FGG) with a known association to tumour biology. Using bioinformatic-based tools, we found markedly different profiles of significantly enriched biological processes between the two groups. CONCLUSIONS The identified DEPs might have a role as potential tissue biomarkers for PTC metastases. However, further prospective research is needed to confirm our findings.
Collapse
Affiliation(s)
- Filip Matovinovic
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
| | - Rudjer Novak
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Stela Hrkac
- Department of Clinical Immunology, Allergology and Rheumatology, University Hospital Dubrava, 10000, Zagreb, Croatia
| | - Grgur Salai
- Department of Pulmonology, University Hospital Dubrava, 10000, Zagreb, Croatia
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marija Pranjic
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Andro Košec
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Vladimir Bedekovic
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
| | - Lovorka Grgurevic
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
- Department of Anatomy, "Drago Perovic", School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
23
|
Yu T, Xu-Monette ZY, Yu L, Li Y, Young KH. Mechanisms of ferroptosis and targeted therapeutic approaches in lymphoma. Cell Death Dis 2023; 14:771. [PMID: 38007476 PMCID: PMC10676406 DOI: 10.1038/s41419-023-06295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Lymphoma is the sixth most common type of cancer worldwide. Under the current treatment standards, patients with lymphoma often fail to respond to treatment or relapse early and require further therapy. Hence, novel therapeutic strategies need to be explored and our understanding of the molecular underpinnings of lymphomas should be expanded. Ferroptosis, a non-apoptotic regulated cell death, is characterized by increased reactive oxygen species and lipid peroxidation due to metabolic dysfunction. Excessive or lack of ferroptosis has been implicated in tumor development. Current preclinical evidences suggest that ferroptosis participates in tumorigenesis, progression, and drug resistance of lymphoma, identifying a potential biomarker and an attractive molecular target. Our review summarizes the core mechanisms and regulatory networks of ferroptosis and discusses existing evidences of ferroptosis induction for the treatment of lymphoma, with intent to provide a framework for understanding the role of ferroptosis in lymphomagenesis and a new perspective of lymphoma treatment.
Collapse
Affiliation(s)
- Tiantian Yu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Li Yu
- Department of Hematology and Oncology, The Second Affiliated Hospital of NanChang University, Nanchang, China
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
- Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
24
|
Li J, Zheng S, Fan Y, Tan K. Emerging significance and therapeutic targets of ferroptosis: a potential avenue for human kidney diseases. Cell Death Dis 2023; 14:628. [PMID: 37739961 PMCID: PMC10516929 DOI: 10.1038/s41419-023-06144-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Kidney diseases remain one of the leading causes of human death and have placed a heavy burden on the medical system. Regulated cell death contributes to the pathology of a plethora of renal diseases. Recently, with in-depth studies into kidney diseases and cell death, a new iron-dependent cell death modality, known as ferroptosis, has been identified and has attracted considerable attention among researchers in the pathogenesis of kidney diseases and therapeutics to treat them. The majority of studies suggest that ferroptosis plays an important role in the pathologies of multiple kidney diseases, such as acute kidney injury (AKI), chronic kidney disease, and renal cell carcinoma. In this review, we summarize recently identified regulatory molecular mechanisms of ferroptosis, discuss ferroptosis pathways and mechanisms of action in various kidney diseases, and describe the protective effect of ferroptosis inhibitors against kidney diseases, especially AKI. By summarizing the prominent roles of ferroptosis in different kidney diseases and the progress made in studying ferroptosis, we provide new directions and strategies for future research on kidney diseases. In summary, ferroptotic factors are potential targets for therapeutic intervention to alleviate different kidney diseases, and targeting them may lead to new treatments for patients with kidney diseases.
Collapse
Affiliation(s)
- Jinghan Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sujuan Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
25
|
Kong X, Yan W, Sun W, Zhang Y, Yang HJ, Chen M, Chen H, de Vere White RW, Zhang J, Chen X. Isoform-specific disruption of the TP73 gene reveals a critical role for TAp73γ in tumorigenesis via leptin. eLife 2023; 12:e82115. [PMID: 37650871 PMCID: PMC10471163 DOI: 10.7554/elife.82115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
TP73, a member of the p53 family, is expressed as TAp73 and ΔNp73 along with multiple C-terminal isoforms (α-η). ΔNp73 is primarily expressed in neuronal cells and necessary for neuronal development. Interestingly, while TAp73α is a tumor suppressor and predominantly expressed in normal cells, TAp73 is found to be frequently altered in human cancers, suggesting a role of TAp73 C-terminal isoforms in tumorigenesis. To test this, the TCGA SpliceSeq database was searched and showed that exon 11 (E11) exclusion occurs frequently in several human cancers. We also found that p73α to p73γ isoform switch resulting from E11 skipping occurs frequently in human prostate cancers and dog lymphomas. To determine whether p73α to p73γ isoform switch plays a role in tumorigenesis, CRISPR technology was used to generate multiple cancer cell lines and a mouse model in that Trp73 E11 is deleted. Surprisingly, we found that in E11-deificient cells, p73γ becomes the predominant isoform and exerts oncogenic activities by promoting cell proliferation and migration. In line with this, E11-deficient mice were more prone to obesity and B-cell lymphomas, indicating a unique role of p73γ in lipid metabolism and tumorigenesis. Additionally, we found that E11-deficient mice phenocopies Trp73-deficient mice with short lifespan, infertility, and chronic inflammation. Mechanistically, we showed that Leptin, a pleiotropic adipocytokine involved in energy metabolism and oncogenesis, was highly induced by p73γ,necessary for p73γ-mediated oncogenic activity, and associated with p73α to γ isoform switch in human prostate cancer and dog lymphoma. Finally, we showed that E11-knockout promoted, whereas knockdown of p73γ or Leptin suppressed, xenograft growth in mice. Our study indicates that the p73γ-Leptin pathway promotes tumorigenesis and alters lipid metabolism, which may be targeted for cancer management.
Collapse
Affiliation(s)
- Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Wenqiang Sun
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Hee Jung Yang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Hongwu Chen
- Department of Biochemistry and Molecular Medicine, University of California, DavisDavisUnited States
| | - Ralph W de Vere White
- Department of Urology Surgery, School of Medicine, University of California, DavisDavisUnited States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| |
Collapse
|
26
|
Wu H, Liu Q, Shan X, Gao W, Chen Q. ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy 2023; 19:2062-2077. [PMID: 36752571 PMCID: PMC10283418 DOI: 10.1080/15548627.2023.2170960] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a newly characterized form of programmed cell death, which is driven by the lethal accumulation of lipid peroxides catalyzed by the intracellular bioactive iron. Targeted induction of ferroptotic cell death holds great promise for therapeutic design against other therapy-resistant cancers. To date, multiple post-translational modifications have been elucidated to impinge on the ferroptotic sensitivity. Here we report that the Ser/Thr protein kinase ATM, the major sensor of DNA double-strand break damage, is indispensable for ferroptosis execution. Pharmacological inhibition or genetic ablation of ATM significantly antagonizes ferroptosis. Besides, ATM ablation-induced ferroptotic resistance is largely independent of its downstream target TRP53, as cells defective in both Trp53 and Atm are still more insensitive to ferroptotic inducers than the trp53 single knockout cells. Mechanistically, ATM dominates the intracellular labile free iron by phosphorylating NCOA4, facilitating NCOA4-ferritin interaction and therefore sustaining ferritinophagy, a selective type of macroautophagy/autophagy specifically degrading ferritin for iron recycling. Our results thus uncover a novel regulatory circuit of ferroptosis comprising ATM-NCOA4 in orchestrating ferritinophagy and iron bioavailability.Abbreviations: AMPK: AMP-activated protein kinase; ATM: ataxia telangiectasia mutated; BSO: buthionine sulphoximine; CDKN1A: cyclin-dependent kinase inhibitor 1A (P21); CQ: chloroquine; DFO: deferoxamine; DFP: deferiprone; Fer: ferrostatin-1; FTH1: ferritin heavy polypeptide 1; GPX4: glutathione peroxidase 4; GSH: glutathione; MEF: mouse embryonic fibroblast; NCOA4: nuclear receptor coactivator 4; PFTα: pifithrin-α; PTGS2: prostaglandin-endoperoxide synthase 2; Slc7a11: solute carrier family 7 member 11; Sul: sulfasalazine; TFRC: transferrin receptor; TRP53: transformation related protein 53.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinyi Shan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Gao
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Quan Chen
- State key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Cardona CJ, Montgomery MR. Iron regulatory proteins: players or pawns in ferroptosis and cancer? Front Mol Biosci 2023; 10:1229710. [PMID: 37457833 PMCID: PMC10340119 DOI: 10.3389/fmolb.2023.1229710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Cells require iron for essential functions like energy production and signaling. However, iron can also engage in free radical formation and promote cell proliferation thereby contributing to both tumor initiation and growth. Thus, the amount of iron within the body and in individual cells is tightly regulated. At the cellular level, iron homeostasis is maintained post-transcriptionally by iron regulatory proteins (IRPs). Ferroptosis is an iron-dependent form of programmed cell death with vast chemotherapeutic potential, yet while IRP-dependent targets have established roles in ferroptosis, our understanding of the contributions of IRPs themselves is still in its infancy. In this review, we present the growing circumstantial evidence suggesting that IRPs play critical roles in the adaptive response to ferroptosis and ferroptotic cell death and describe how this knowledge can be leveraged to target neoplastic iron dysregulation more effectively.
Collapse
|
28
|
Xu R, Wang W, Zhang W. Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov 2023; 9:197. [PMID: 37386007 DOI: 10.1038/s41420-023-01517-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron-mediated lipid peroxidation, in contrast with apoptosis, autophagy, and necrosis. It can be triggered by many pathological processes, including cellular metabolism, tumors, neurodegenerative diseases, cardiovascular diseases, and ischemia-reperfusion injuries. In recent years, ferroptosis has been discovered to be associated with p53. P53 is a tumor suppressor protein with multiple and powerful functions in cell cycle arrest, senescence, cell death, repair of DNA damage, and mitophagy. Emerging evidence shows that ferroptosis plays a crucial role in tumor suppression by p53. P53 functions as a key bidirectional regulator of ferroptosis by adjusting metabolism of iron, lipids, glutathione peroxidase 4, reactive oxygen species, and amino acids via a canonical pathway. In addition, a noncanonical pathway of p53 that regulates ferroptosis has been discovered in recent years. The specific details require to be further clarified. These mechanisms provide new ideas for clinical applications, and translational studies of ferroptosis have been performed to treat various diseases.
Collapse
Affiliation(s)
- Ren Xu
- Pulmonary and Critical Care Medicine Department, First Hospital of Jiliwn University, 130021, Changchun, China
| | - Wanning Wang
- Nephrology Department, First Hospital of Jilin University, 130021, Changchun, China
| | - Wenlong Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, China.
| |
Collapse
|
29
|
López-Riego M, Płódowska M, Lis-Zajęcka M, Jeziorska K, Tetela S, Węgierek-Ciuk A, Sobota D, Braziewicz J, Lundholm L, Lisowska H, Wojcik A. The DNA damage response to radiological imaging: from ROS and γH2AX foci induction to gene expression responses in vivo. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01033-4. [PMID: 37335333 DOI: 10.1007/s00411-023-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
Candidate ionising radiation exposure biomarkers must be validated in humans exposed in vivo. Blood from patients undergoing positron emission tomography-computed tomography scan (PET-CT) and skeletal scintigraphy (scintigraphy) was drawn before (0 h) and after (2 h) the procedure for correlation analyses of the response of selected biomarkers with radiation dose and other available patient information. FDXR, CDKN1A, BBC3, GADD45A, XPC, and MDM2 expression was determined by qRT-PCR, DNA damage (γH2AX) by flow cytometry, and reactive oxygen species (ROS) levels by flow cytometry using the 2', 7'-dichlorofluorescein diacetate test in peripheral blood mononuclear cells (PBMC). For ROS experiments, 0- and 2-h samples were additionally exposed to UVA to determine whether diagnostic irradiation conditioned the response to further oxidative insult. With some exceptions, radiological imaging induced weak γH2AX foci, ROS and gene expression fold changes, the latter with good coherence across genes within a patient. Diagnostic imaging did not influence oxidative stress in PBMC successively exposed to UVA. Correlation analyses with patient characteristics led to low correlation coefficient values. γH2AX fold change, which correlated positively with gene expression, presented a weak positive correlation with injected activity, indicating a radiation-induced subtle increase in DNA damage and subsequent activation of the DNA damage response pathway. The exposure discrimination potential of these biomarkers in the absence of control samples as frequently demanded in radiological emergencies, was assessed using raw data. These results suggest that the variability of the response in heterogeneous populations might complicate identifying individuals exposed to low radiation doses.
Collapse
Affiliation(s)
- Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Milena Lis-Zajęcka
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Kamila Jeziorska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Sylwia Tetela
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Aneta Węgierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Daniel Sobota
- Department of Medical Physics, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Janusz Braziewicz
- Department of Medical Physics, Institute of Biology, Jan Kochanowski University, Kielce, Poland
- Department of Nuclear Medicine With Positron Emission Tomography (PET) Unit, Holy Cross Cancer Centre, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
30
|
Beretta GL, Zaffaroni N. Radiotherapy-induced ferroptosis for cancer treatment. Front Mol Biosci 2023; 10:1216733. [PMID: 37388241 PMCID: PMC10304297 DOI: 10.3389/fmolb.2023.1216733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Ferroptosis is a regulated cell death mechanism controlled by iron, amino acid and reactive oxygen species metabolisms, which is very relevant for cancer therapy. Radiotherapy-induced ferroptosis is critical for tumor suppression and several preclinical studies have demonstrated that the combination of ionizing radiation with small molecules or nano-systems is effective in combating cancer growth and overcoming drug or ionizing radiation resistance. Here, we briefly overview the mechanisms of ferroptosis and the cross-talk existing between the cellular pathways activated by ferroptosis and those induced by radiotherapy. Lastly, we discuss the recently reported combinational studies involving radiotherapy, small molecules as well as nano-systems and report the recent findings achieved in this field for the treatment of tumors.
Collapse
|
31
|
Zanin A, Meneghetti G, Menilli L, Tesoriere A, Argenton F, Mognato M. Analysis of Radiation Toxicity in Mammalian Cells Stably Transduced with Mitochondrial Stat3. Int J Mol Sci 2023; 24:8232. [PMID: 37175941 PMCID: PMC10179518 DOI: 10.3390/ijms24098232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (A.Z.); (G.M.); (L.M.); (A.T.); (F.A.)
| |
Collapse
|
32
|
Zheng S, Guan XY. Ferroptosis: Promising approach for cancer and cancer immunotherapy. Cancer Lett 2023; 561:216152. [PMID: 37023938 DOI: 10.1016/j.canlet.2023.216152] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Ferroptosis is the cell death induced by ferrous ions and lipid peroxidation accumulation in tumor cells. Targeting ferroptosis, which is regulated by various metabolic and immune elements, might become a novel strategy for anti-tumor therapy. In this review, we will focus on the mechanism of ferroptosis and its interaction with cancer and tumor immune microenvironment, especially for the relationship between immune cells and ferroptosis. Also, we will discuss the latest preclinical progress of the collaboration between the ferroptosis-targeted drugs and immunotherapy, and the best potential conditions for their combined use. It will present a future insight on the possible value of ferroptosis in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuyue Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Advanced Nuclear Energy and Nuclear Technology Research Center, Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China.
| |
Collapse
|
33
|
Schüle S, Hackenbroch C, Beer M, Muhtadi R, Hermann C, Stewart S, Schwanke D, Ostheim P, Port M, Scherthan H, Abend M. Ex-vivo dose response characterization of the recently identified EDA2R gene after low level radiation exposures and comparison with FDXR gene expression and the γH2AX focus assay. Int J Radiat Biol 2023; 99:1584-1594. [PMID: 36988552 DOI: 10.1080/09553002.2023.2194402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Recently, promising radiation-induced EDA2R gene expression (GE) changes after low level radiation could be shown. Stimulated by that, in this study, we intended to independently validate these findings and to further characterize dose-response relationships in comparison to FDXR and the γH2AX-DNA double-strand break (DSB) focus assay, since both assays are already widely used for biodosimetry purposes. MATERIALS AND METHODS Peripheral blood samples from six healthy human donors were irradiated ex vivo (dose: ranging from 2.6 to 49.7 mGy). Subsequently, the fold-differences relative to the sham irradiated reference group were calculated. Radiation-induced changes in GE of FDXR and EDA2R were examined using the quantitative real-time polymerase-chain-reaction (qRT-PCR). DSB foci were quantified in 100 γH2AX + 53BP1 immunostained cells employing fluorescence microscopy. Examinations were performed at single time points enabling sufficient detection of both endpoints. RESULTS A significant increase in EDA2R GE relative to the unexposed control was observed in the range of 2.6 mGy (1.6-fold, p = .045) to 5.4 mGy (2.2-fold, p = .0002), whereas the copy numbers increased linearly up to 13.1-fold at 49.7 mGy. On the contrary, FDXR upregulation (2.2-fold) became significant after a 22.6 mGy exposure (p ≤ .02) and increased linearly up to 4-fold at 49.7 mGy. A significant increase in radiation-induced foci (relative to unexposed, RIF-fd) was observed after 11.3 mGy (RIF-fd: 1.5 ± 0.5, p ≤ .03), while the foci increased linearly up to 3-fold at 49.7 mGy. From this, the FDXR and RIF-fd slopes have shown comparability, while the EDA2R slope was five times higher. Nevertheless, the coefficient of variation (CV) of EDA2R was about 30% higher than for RIF-fd. CONCLUSION Higher radiation-induced EDA2R GE changes and a lower radiation detection level compared to RIF-fd and FDXR GE changes examined under optimal conditions ex vivo on human samples appear promising. Yet, our results represent just the beginning of further studies to be conducted in animal models for further time- and dose-dependent evaluation and additional examinations on radiologically examined patients to evaluate the impact of confounder, such as age, sex, social behavior, or diseases.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Force Hospital of Ulm, Ulm, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Ulm, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Daniel Schwanke
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
34
|
Akiyama H, Carter BZ, Andreeff M, Ishizawa J. Molecular Mechanisms of Ferroptosis and Updates of Ferroptosis Studies in Cancers and Leukemia. Cells 2023; 12:1128. [PMID: 37190037 PMCID: PMC10136912 DOI: 10.3390/cells12081128] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Ferroptosis is a mode of cell death regulated by iron-dependent lipid peroxidation. Growing evidence suggests ferroptosis induction as a novel anti-cancer modality that could potentially overcome therapy resistance in cancers. The molecular mechanisms involved in the regulation of ferroptosis are complex and highly dependent on context. Therefore, a comprehensive understanding of its execution and protection machinery in each tumor type is necessary for the implementation of this unique cell death mode to target individual cancers. Since most of the current evidence for ferroptosis regulation mechanisms is based on solid cancer studies, the knowledge of ferroptosis with regard to leukemia is largely lacking. In this review, we summarize the current understanding of ferroptosis-regulating mechanisms with respect to the metabolism of phospholipids and iron as well as major anti-oxidative pathways that protect cells from ferroptosis. We also highlight the diverse impact of p53, a master regulator of cell death and cellular metabolic processes, on the regulation of ferroptosis. Lastly, we discuss recent ferroptosis studies in leukemia and provide a future perspective for the development of promising anti-leukemia therapies implementing ferroptosis induction.
Collapse
Affiliation(s)
| | | | | | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.A.); (B.Z.C.); (M.A.)
| |
Collapse
|
35
|
Li D, Lu X, Xu G, Liu S, Gong Z, Lu F, Xia X, Jiang J, Wang H, Zou F, Ma X. Dihydroorotate dehydrogenase regulates ferroptosis in neurons after spinal cord injury via the P53-ALOX15 signaling pathway. CNS Neurosci Ther 2023. [PMID: 36942513 DOI: 10.1111/cns.14150] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a highly disabling condition in spinal surgery that leads to neuronal damage and secondary inflammation. Ferroptosis is a non-apoptotic type of cell death that has only recently been identified, which is marked primarily by iron-dependent and lipid-derived reactive oxygen species accumulation, and accompanied by morphological modifications such as mitochondrial atrophy and increase in membrane density. Dihydroorotate dehydrogenase (DHODH) is a powerful inhibitor of ferroptosis and has been demonstrated to inhibit cellular ferroptosis in tumor cells, but whether it can inhibit neuronal injury following spinal cord injury remains ambiguous. METHODS In this study, the effect of DHODH on neuronal ferroptosis was observed in vivo and in vitro using a rat spinal cord injury model and erastin-induced PC12 cells, respectively. A combination of molecular and histological approaches was performed to assess ferroptosis and explore the possible mechanisms in vivo and in vitro. RESULTS First, we confirmed the existence of neuronal ferroptosis after spinal cord injury and that DHODH attenuates neuronal damage after spinal cord injury. Second, we showed molecular evidence that DHODH inhibits the activation of ferroptosis-related molecules and reduces lipid peroxide production and mitochondrial damage, thereby reducing neuronal ferroptosis. Further analysis suggests that P53/ALOX15 may be one of the mechanisms regulated by DHODH. Importantly, we determined that DHODH inhibits ALOX15 expression by inhibiting P53. CONCLUSIONS Our findings reveal a novel function for DHODH in neuronal ferroptosis after spinal cord injury, suggesting a unique therapeutic target to alleviate the disease process of spinal cord injury.
Collapse
Affiliation(s)
- Dachuan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Hu H, Yin Y, Jiang B, Feng Z, Cai T, Wu S. Cuproptosis signature and PLCD3 predicts immune infiltration and drug responses in osteosarcoma. Front Oncol 2023; 13:1156455. [PMID: 37007130 PMCID: PMC10060837 DOI: 10.3389/fonc.2023.1156455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Osteosarcoma (OS) is a cancer that is frequently found in children and adolescents and has made little improvement in terms of prognosis in recent years. A recently discovered type of programmed cell death called cuproptosis is mediated by copper ions and the tricarboxylic acid (TCA) cycle. The expression patterns, roles, and prognostic and predictive capabilities of the cuproptosis regulating genes were investigated in this work. TARGET and GEO provided transcriptional profiling of OS. To find different cuproptosis gene expression patterns, consensus clustering was used. To identify hub genes linked to cuproptosis, differential expression (DE) and weighted gene co-expression network analysis (WGCNA) were used. Cox regression and Random Survival Forest were used to build an evaluation model for prognosis. For various clusters/subgroups, GSVA, mRNAsi, and other immune infiltration experiments were carried out. The drug-responsive study was carried out by the Oncopredict algorithm. Cuproptosis genes displayed two unique patterns of expression, and high expression of FDX1 was associated with a poor outcome in OS patients. The TCA cycle and other tumor-promoting pathways were validated by the functional study, and activation of the cuproptosis genes may also be connected with immunosuppressive state. The robust survival prediction ability of a five-gene prognostic model was verified. This rating method also took stemness and immunosuppressive characteristics into account. Additionally, it can be associated with a higher sensitivity to medications that block PI3K/AKT/mTOR signaling as well as numerous chemoresistances. U2OS cell migration and proliferation may be encouraged by PLCD3. The relevance of PLCD3 in immunotherapy prediction was verified. The prognostic significance, expressing patterns, and functions of cuproptosis in OS were revealed in this work on a preliminary basis. The cuproptosis-related scoring model worked well for predicting prognosis and chemoresistance.
Collapse
Affiliation(s)
- Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuesong Yin
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binbin Jiang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhennan Feng
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ting Cai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ting Cai, ; Song Wu,
| | - Song Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ting Cai, ; Song Wu,
| |
Collapse
|
37
|
Li Y, Wu S, Zhao X, Hao S, Li F, Wang Y, Liu B, Zhang D, Wang Y, Zhou H. Key events in cancer: Dysregulation of SREBPs. Front Pharmacol 2023; 14:1130747. [PMID: 36969840 PMCID: PMC10030587 DOI: 10.3389/fphar.2023.1130747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Lipid metabolism reprogramming is an important hallmark of tumor progression. Cancer cells require high levels of lipid synthesis and uptake not only to support their continued replication, invasion, metastasis, and survival but also to participate in the formation of biological membranes and signaling molecules. Sterol regulatory element binding proteins (SREBPs) are core transcription factors that control lipid metabolism and the expression of important genes for lipid synthesis and uptake. A growing number of studies have shown that SREBPs are significantly upregulated in human cancers and serve as intermediaries providing a mechanistic link between lipid metabolism reprogramming and malignancy. Different subcellular localizations, including endoplasmic reticulum, Golgi, and nucleus, play an indispensable role in regulating the cleavage maturation and activity of SREBPs. In this review, we focus on the relationship between aberrant regulation of SREBPs activity in three organelles and tumor progression. Because blocking the regulation of lipid synthesis by SREBPs has gradually become an important part of tumor therapy, this review also summarizes and analyzes several current mainstream strategies.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Shiming Hao
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yishu Wang, Honglan Zhou,
| |
Collapse
|
38
|
Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ 2023; 30:876-884. [PMID: 36755067 PMCID: PMC10070433 DOI: 10.1038/s41418-023-01125-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 02/10/2023] Open
Abstract
Cuproptosis is a novel type of copper-induced cell death that primarily occurs in cells that utilize oxidative phosphorylation as the main metabolic pathway to produce energy. Copper directly associates with the lipoylated proteins of the tricarboxylic acid cycle, leading to the disulfide-bond-dependent aggregation of these lipoylated proteins, destabilization of the iron-sulfur cluster proteins, and consequent proteotoxic stress. Cancer cells prefer glycolysis (Warburg effect) to oxidative phosphorylation for producing intermediate metabolites and energy, thereby achieving resistance to cuproptosis. Interestingly, the tumor suppressor p53 is a crucial metabolic regulator that inhibits glycolysis and drives a metabolic switch towards oxidative phosphorylation in cancer cells. Additionally, p53 regulates the biogenesis of iron-sulfur clusters and the copper chelator glutathione, which are two critical components of the cuproptotic pathway, suggesting that this tumor suppressor might play a role in cuproptosis. Furthermore, the possible roles of mutant p53 in regulating cuproptosis are discussed. In this essay, we review the recent progress in the understanding of the mechanism underlying cuproptosis, revisit the roles of p53 in metabolic regulation and iron-sulfur cluster and glutathione biosynthesis, and propose several potential mechanisms for wild-type and mutant p53-mediated cuproptosis regulation.
Collapse
Affiliation(s)
- Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Ling
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
39
|
Schulz V, Basu S, Freibert SA, Webert H, Boss L, Mühlenhoff U, Pierrel F, Essen LO, Warui DM, Booker SJ, Stehling O, Lill R. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol 2023; 19:206-217. [PMID: 36280795 PMCID: PMC10873809 DOI: 10.1038/s41589-022-01159-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
Ferredoxins comprise a large family of iron-sulfur (Fe-S) proteins that shuttle electrons in diverse biological processes. Human mitochondria contain two isoforms of [2Fe-2S] ferredoxins, FDX1 (aka adrenodoxin) and FDX2, with known functions in cytochrome P450-dependent steroid transformations and Fe-S protein biogenesis. Here, we show that only FDX2, but not FDX1, is involved in Fe-S protein maturation. Vice versa, FDX1 is specific not only for steroidogenesis, but also for heme a and lipoyl cofactor biosyntheses. In the latter pathway, FDX1 provides electrons to kickstart the radical chain reaction catalyzed by lipoyl synthase. We also identified lipoylation as a target of the toxic antitumor copper ionophore elesclomol. Finally, the striking target specificity of each ferredoxin was assigned to small conserved sequence motifs. Swapping these motifs changed the target specificity of these electron donors. Together, our findings identify new biochemical tasks of mitochondrial ferredoxins and provide structural insights into their functional specificity.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Somsuvro Basu
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
- Freelance Medical Communications Consultant, Brno, Czech Republic
| | - Sven-A Freibert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Holger Webert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Linda Boss
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Fabien Pierrel
- Univ. of Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Lars-O Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Douglas M Warui
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, USA
| | - Oliver Stehling
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| | - Roland Lill
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| |
Collapse
|
40
|
Poschel DB, Kehinde-Ige M, Klement JD, Yang D, Merting AD, Savage NM, Shi H, Liu K. IRF8 Regulates Intrinsic Ferroptosis through Repressing p53 Expression to Maintain Tumor Cell Sensitivity to Cytotoxic T Lymphocytes. Cells 2023; 12:310. [PMID: 36672246 PMCID: PMC9856547 DOI: 10.3390/cells12020310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis has emerged as a cytotoxic T lymphocyte (CTL)-induced tumor cell death pathway. The regulation of tumor cell sensitivity to ferroptosis is incompletely understood. Here, we report that interferon regulatory factor 8 (IRF8) functions as a regulator of tumor cell intrinsic ferroptosis. Genome-wide gene expression profiling identified the ferroptosis pathway as an IRF8-regulated pathway in tumor cells. IRF8.KO tumor cells acquire resistance to intrinsic ferroptosis induction and IRF8-deficient tumor cells also exhibit decreased ferroptosis in response to tumor-specific CTLs. Irf8 deletion increased p53 expression in tumor cells and knocking out p53 in IRF8.KO tumor cells restored tumor cell sensitivity to intrinsic ferroptosis induction. Furthermore, IRF8.KO tumor cells grew significantly faster than WT tumor cells in immune-competent mice. To restore IRF8 expression in tumor cells, we designed and synthesized codon usage-optimized IRF8-encoding DNA to generate IRF8-encoding plasmid NTC9385R-mIRF8. Restoring IRF8 expression via a lipid nanoparticle-encapsulated NTC9385R-mIRF8 plasmid therapy suppressed established tumor growth in vivo. In human cancer patients, nivolumab responders have a significantly higher IRF8 expression level in their tumor cells as compared to the non-responders. Our data determine that IRF8 represses p53 expression to maintain tumor cell sensitivity to intrinsic ferroptosis.
Collapse
Affiliation(s)
- Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mercy Kehinde-Ige
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
41
|
Zhang J, Sun W, Yan W, Kong X, Shen T, Laubach K, Chen M, Chen X. TP73 Isoform-specific disruption reveals a critical role of TAp73beta in growth suppression and inflammatory response. Cell Death Dis 2023; 14:14. [PMID: 36631448 PMCID: PMC9834251 DOI: 10.1038/s41419-022-05529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
TP73 is expressed as multiple N- and C-terminal isoforms through two separate promoters or alternative splicing. While N-terminal p73 isoforms have been well studied, very little is known about p73 C-terminal isoforms. Thus, CRISPR was used to delete TP73 Exon13 (E13-KO) to induce p73α to p73β isoform switch. We showed that E13-KO led to decreased cell proliferation and migration and sensitized cells to ferroptosis, which can be reverted by knockdown of TAp73β in E13-KO cells. To understand the biological function of p73β in vivo, we generated a mouse model in that the Trp73 E13 was deleted by CRISPR. We showed that p73α to p73β isoform switch led to increased cellular senescence in mouse embryonic fibroblasts. We also showed that E13-deficient mice exhibited shorter life span and were prone to spontaneous tumors, chronic inflammation and liver steatosis as compared to WT mice. Additionally, we found that the incidence of chronic inflammation and liver steatosis was higher in E13-deficient mice than that in Trp73-deficient mice, suggesting that p73β is a strong inducer of inflammatory response. Mechanistically, we showed that TAp73β was able to induce cysteine dioxygenase 1 (CDO-1), leading to cysteine depletion and subsequently, enhanced ferroptosis and growth suppression. Conversely, knockdown of CDO-1 was able to alleviate the growth suppression and ferroptosis in E13-KO cells. Together, our data suggest that at a physiologically relevant level, TAp73β is a strong inducer of growth suppression but insufficient to compensate for loss of TAp73α in tumor suppression due to aberrant induction of inflammatory response and liver steatosis.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA.
| | - Wenqiang Sun
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
- Department of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
- Berkeley Regional Lab, Pathology/Lab-Histology Department, The Permanente Medical group, Berkeley, CA, 94085, USA
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
| | - Tong Shen
- West Coast Metabolomics Center, UC Davis, Califronia, Davis, USA
| | - Kyra Laubach
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
| | - Mingyi Chen
- Department of Pathology, Southwestern Medical Center, University of Texas, Dallas, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA.
| |
Collapse
|
42
|
Schulz V, Freibert SA, Boss L, Mühlenhoff U, Stehling O, Lill R. Mitochondrial [2Fe-2S] ferredoxins: new functions for old dogs. FEBS Lett 2023; 597:102-121. [PMID: 36443530 DOI: 10.1002/1873-3468.14546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Ferredoxins (FDXs) comprise a large family of iron-sulfur proteins that shuttle electrons from NADPH and FDX reductases into diverse biological processes. This review focuses on the structure, function and specificity of mitochondrial [2Fe-2S] FDXs that are related to bacterial FDXs due to their endosymbiotic inheritance. Their classical function in cytochrome P450-dependent steroid transformations was identified around 1960, and is exemplified by mammalian FDX1 (aka adrenodoxin). Thirty years later the essential function in cellular Fe/S protein biogenesis was discovered for the yeast mitochondrial FDX Yah1 that is additionally crucial for the formation of haem a and ubiquinone CoQ6 . In mammals, Fe/S protein biogenesis is exclusively performed by the FDX1 paralog FDX2, despite the high structural similarity of both proteins. Recently, additional and specific roles of human FDX1 in haem a and lipoyl cofactor biosyntheses were described. For lipoyl synthesis, FDX1 transfers electrons to the radical S-adenosyl methionine-dependent lipoyl synthase to kickstart its radical chain reaction. The high target specificity of the two mammalian FDXs is contained within small conserved sequence motifs, that upon swapping change the target selection of these electron donors.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Linda Boss
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| |
Collapse
|
43
|
Mohibi S, Chen M, Chen X, Zhang J. Poly zinc finger protein ZFP14 suppresses lymphomagenesis and abnormal inflammatory response via the HOXA gene cluster. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166587. [PMID: 36349645 PMCID: PMC10907336 DOI: 10.1016/j.bbadis.2022.166587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Poly zinc finger proteins (ZFP) that contain a KRAB (Krüppel-associated box) domain represent the largest class of transcription factors in higher organisms, but their roles in development and pathogenesis are largely undefined. ZFP14 (also known as ZNF531) contains thirteen zinc fingers and is highly conserved across species. Notably, we found that ZFP14 is frequently down-regulated in a multitude of human cancers, which correlates with poor prognosis of patients. Since ZFP14 has never been characterized, we generated a Zfp14-deficient mouse model to investigate the role of ZFP14 in development and pathogenesis. We showed that the mice deficient in Zfp14 had a short lifespan and were prone to diffuse large B-cell lymphoma (DLBCL), hyperplasia in multiple organs, systemic chronic inflammation, liver steatosis, and pancreatitis. Additionally, several pro-inflammatory cytokines, including IL-1β, IL18, and TNFα, were highly expressed in inflamed Zfp14-/- mice spleens, livers, kidneys and lungs. To determine the underlying mechanism, RNA-seq analysis was performed and showed that the loss of ZFP14 led to increased expression of inflammatory and tumor-promoting genes. Out of the various tumor-promoting genes upregulated by ZFP14 loss, the HOXA gene cluster, which is known to promote lymphomagenesis and conserved between mouse and human, is consistently induced by loss of ZFP14. Moreover, we showed that the HOXA gene expression was inversely correlated with that of ZFP14 in human cancer patients and higher HOXA1 expression was correlated with poor patient prognosis. Together, we postulate that ZFP14 suppresses lymphomagenesis and abnormal inflammatory response by maintaining proper expression of the HOXA gene cluster.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, CA, United States of America.
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, CA, United States of America.
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, CA, United States of America.
| |
Collapse
|
44
|
Hino K, Yanatori I, Hara Y, Nishina S. Iron and liver cancer: an inseparable connection. FEBS J 2022; 289:7810-7829. [PMID: 34543507 DOI: 10.1111/febs.16208] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Iron is an essential element for all organisms. Iron-containing proteins play critical roles in cellular functions. The biological importance of iron is largely attributable to its chemical properties as a transitional metal. However, an excess of 'free' reactive iron damages the macromolecular components of cells and cellular DNA through the production of harmful free radicals. On the contrary, most of the body's excess iron is stored in the liver. Not only hereditary haemochromatosis but also some liver diseases with mild-to-moderate hepatic iron accumulation, such as chronic hepatitis C, alcoholic liver disease and nonalcoholic steatohepatitis, are associated with a high risk for liver cancer development. These findings have attracted attention to the causative and promotive roles of iron in the development of liver cancer. In the last decade, accumulating evidence regarding molecules regulating iron metabolism or iron-related cell death programmes such as ferroptosis has shed light on the relationship between hepatic iron accumulation and hepatocarcinogenesis. In this review, we briefly present the current molecular understanding of iron regulation in the liver. Next, we describe the mechanisms underlying dysregulated iron metabolism depending on the aetiology of liver diseases. Finally, we discuss the causative and promotive roles of iron in cancer development.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
45
|
Zhang J, Kong X, Sun W, Wang L, Shen T, Chen M, Chen X. The RNA-binding protein RBM24 regulates lipid metabolism and SLC7A11 mRNA stability to modulate ferroptosis and inflammatory response. Front Cell Dev Biol 2022; 10:1008576. [PMID: 36478739 PMCID: PMC9720322 DOI: 10.3389/fcell.2022.1008576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Lipids play a critical role in many cellular processes by serving as structural components of cell membranes or functioning as energy fuel and signaling molecules. The RNA-binding proteins RBM24 and RBM38 share an identical RNA-binding domain and thereby, regulate a group of same targets, such as p21. However, it is not certain whether RBM24 and RBM38 participates in lipid homeostasis. Here, lipidomic analysis showed that a deficiency in RBM24 or RBM38 leads to altered lipid metabolism, with more profound alteration by loss of RBM24 in MCF7 cells. We also showed that mice deficient in RBM24 were prone to chronic inflammation and liver steatosis, but not spontaneous tumors. These data let us speculate whether RBM24 regulates ferroptosis, a programmed cell death that links inflammation and liver steatosis via lipid peroxidation. Indeed, we found that over-expression of RBM24 protected, whereas knockout of RBM24 sensitized, cells to Erastin-induced ferroptosis by modulating the mRNA stability of SLC7A11, a ferroptosis inhibitor. Moreover, we showed that knockdown of SLC7A11 reversed the effect of RBM24 on ferroptosis. Together, our study revealed that RBM24 regulates lipid metabolism and SLC7A11 mRNA stability to modulate ferroptosis and inflammatory response.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC, Davis, CA, United States,*Correspondence: Jin Zhang, ; Xinbin Chen,
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC, Davis, CA, United States
| | | | - Leyi Wang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC, Davis, CA, United States
| | - Tong Shen
- West Coast Metabolomics Center, UC, Davis, CA, United States
| | - Mingyi Chen
- Department of Pathology, Southwestern Medical Center, University of Texas, Austin, TX, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC, Davis, CA, United States,*Correspondence: Jin Zhang, ; Xinbin Chen,
| |
Collapse
|
46
|
TP53 Mutant Acute Myeloid Leukemia: The Immune and Metabolic Perspective. HEMATO 2022. [DOI: 10.3390/hemato3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TP53 mutated/deleted acute myeloid leukemia (AML) stands out as one of the poorest prognosis forms of acute leukemia with a median overall survival not reaching one year in most cases, even in selected cases when allogenic stem-cell transplantation is performed. This aggressive behavior relies on intrinsic chemoresistance of blast cells and on high rates of relapse. New insights into the biology of the disease have shown strong linkage between TP53 mutant AML, altered metabolic features and immunoregulation uncovering new scenarios and leading to possibilities beyond current treatment approaches. Furthermore, new targeted therapies acting on misfolded/dysfunctional p53 protein are under current investigation with the aim to improve outcomes. In this review, we sought to offer an insight into TP53 mutant AML current biology and treatment approaches, with a special focus on leukemia-associated immune and metabolic changes.
Collapse
|
47
|
Zeng X, Li J, Yang F, Xia R. The effect of narcotics on ferroptosis-related molecular mechanisms and signalling pathways. Front Pharmacol 2022; 13:1020447. [PMID: 36313359 PMCID: PMC9606818 DOI: 10.3389/fphar.2022.1020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ferroptosis is a novel programmed cell death form characterized by iron-mediated reactive oxygen species-induced lipid peroxidation and subsequent cell damage that is distinct from apoptosis, necroptosis, pyroptosis, and autophagy. Most studies on ferroptosis are based on its function and mechanism, but there have been relatively few studies on the effects of drugs, especially anaesthetics, on ferroptosis. Therefore, we summarized the recent literature on the effects of anaesthetics on ferroptosis to understand the underlying mechanism. In particular, we focused on the targets of various anaesthetics in different mechanisms of ferroptosis and the effects of ferroptosis induction or inhibition by narcotics on various diseases. The aims of this review are to provide a relatively reasonable drug regimen for clinicians, to explore potential ferroptosis protection drugs and targets, to reduce perioperative complications and to improve the postoperative performance of patients, especially those who are critically ill.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jingda Li
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| | - Rui Xia
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| |
Collapse
|
48
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
49
|
Yang L, Zhang Y, Wang Y, Jiang P, Liu F, Feng N. Ferredoxin 1 is a cuproptosis-key gene responsible for tumor immunity and drug sensitivity: A pan-cancer analysis. Front Pharmacol 2022; 13:938134. [PMID: 36210836 PMCID: PMC9532935 DOI: 10.3389/fphar.2022.938134] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Ferredoxin 1 (FDX1) functions by transferring electrons from NADPH to mitochondrial cytochrome P450 via the ferredoxin reductase and is the key regulator in copper-dependent cell death. Although mounting evidence supports a vital role for FDX1 in tumorigenesis of some cancers, no pan-cancer analysis of FDX1 has been reported. Therefore, we aimed to explore the prognostic value of FDX1 in pan-cancer and investigate its potential immune function. Based on data from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, Human Protein Atlas, and Gene Set Cancer Analysis, we used a range of bioinformatics approaches to explore the potential carcinogenic role of FDX1, including analyzing the relationship between FDX1 expression and prognosis, DNA methylation, RNA methylation-related genes, mismatch repair (MMR) gene, microsatellite instability (MSI), tumor mutation burden (TMB), tumor microenvironment (TME), immune-related genes, and drug sensitivity in different tumors. The results show that FDX1 was lowly expressed in most cancers but higher in glioblastoma multiforme, stomach adenocarcinoma, and uterine corpus endometrial carcinoma. Moreover, FDX1 expression was positively or negatively associated with prognosis in different cancers. FDX1 expression was significantly associated with DNA methylation in 6 cancers, while there was a correlation between FDX1 expression and RNA methylation-related genes and MMR gene in most cancers. Furthermore, FDX1 expression was significantly associated with MSI in 8 cancers and TMB in 10 cancers. In addition, FDX1 expression was also significantly correlated with immune cell infiltration, immune-related genes, TME, and drug resistance in various cancers. An experiment in vitro showed FDX1 is downregulated by elesclomol, resulting in inhibiting cell viability of bladder cancer, clear cell renal cell carcinoma, and prostate cancer cells. Our study reveals that FDX1 can serve as a potential therapeutic target and prognostic marker for various malignancies due to its vital role in tumorigenesis and tumor immunity.
Collapse
Affiliation(s)
- Longfei Yang
- Medical School of Nantong University, Nantong, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yuwei Zhang
- Medical School of Nantong University, Nantong, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yang Wang
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Peng Jiang
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Fengping Liu, ; Ninghan Feng,
| | - Ninghan Feng
- Medical School of Nantong University, Nantong, China
- Department of Urology, Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Fengping Liu, ; Ninghan Feng,
| |
Collapse
|
50
|
Su J, Bian C, Zheng Z, Wang H, Meng L, Xin Y, Jiang X. Cooperation effects of radiation and ferroptosis on tumor suppression and radiation injury. Front Cell Dev Biol 2022; 10:951116. [PMID: 36176274 PMCID: PMC9513389 DOI: 10.3389/fcell.2022.951116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Ferroptosis is a kind of oxidative stress-dependent cell death characterized by iron accumulation and lipid peroxidation. It can work in conjunction with radiation to increase reactive oxygen species (ROS) generation and disrupt the antioxidant system, suppressing tumor progression. Radiation can induce ferroptosis by creating ROS, depleting glutathione, activating genes linked to DNA damage and increasing the expression of acyl-CoA synthetase long-chain family member 4 (ACSL4) in tumor cells. Furthermore, ferroptosis can enhance radiosensitivity by causing an iron overload, destruction of the antioxidant system, and lipid peroxidation. Radiation can also cause ferroptosis in normal cells, resulting in radiation injury. The role of ferroptosis in radiation-induced lung, intestinal, skin, and hematological injuries have been studied. In this review, we summarize the potential mechanisms linking ferroptosis, oxidative stress and radiation; analyze the function of ferroptosis in tumor suppression and radiation injury; and discuss the potential of ferroptosis regulation to improve radiotherapy efficacy and reduce adverse effects.
Collapse
Affiliation(s)
- Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|