1
|
Kim-Yip RP, McNulty R, Joyce B, Mollica A, Chen PJ, Ravisankar P, Law BK, Liu DR, Toettcher JE, Ivakine EA, Posfai E, Adamson B. Efficient prime editing in two-cell mouse embryos using PEmbryo. Nat Biotechnol 2024; 42:1822-1830. [PMID: 38321114 PMCID: PMC11631759 DOI: 10.1038/s41587-023-02106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.
Collapse
Affiliation(s)
- Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ryan McNulty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Antonio Mollica
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Prime Medicine, Inc., Cambridge, MA, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Benjamin K Law
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Sato M, Inada E, Saitoh I, Morohoshi K, Nakamura S. Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm. BIOTECH 2024; 13:45. [PMID: 39584902 PMCID: PMC11587059 DOI: 10.3390/biotech13040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Advances in genome editing technology have made it possible to create genome-edited (GE) animals, which are useful for identifying isolated genes and producing models of human diseases within a short period of time. The production of GE animals mainly relies on the gene manipulation of pre-implantation embryos, such as fertilized eggs and two-cell embryos, which can usually be achieved by the microinjection of nucleic acids, electroporation in the presence of nucleic acids, or infection with viral vectors, such as adeno-associated viruses. In contrast, GE animals can theoretically be generated by fertilizing ovulated oocytes with GE sperm. However, there are only a few reports showing the successful production of GE animals using GE sperm. Artificial insemination (AI) is an assisted reproduction technology based on the introduction of isolated sperm into the female reproductive tract, such as the uterine horn or oviductal lumen, for the in vivo fertilization of ovulated oocytes. This approach is simpler than the in vitro fertilization-based production of offspring, as the latter always requires an egg transfer to recipient females, which is labor-intensive and time-consuming. In this review, we summarize the various methods for AI reported so far, the history of sperm-mediated gene transfer, a technology to produce genetically engineered animals through in vivo fertilization with sperm carrying exogenous DNA, and finally describe the possibility of AI-mediated creation of GE animals using GE sperm.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
3
|
Miura H, Nakamura A, Kurosaki A, Kotani A, Motojima M, Tanaka K, Kakuta S, Ogiwara S, Ohmi Y, Komaba H, Schilit SLP, Morton CC, Gurumurthy CB, Ohtsuka M. Targeted insertion of conditional expression cassettes into the mouse genome using the modified i-PITT. BMC Genomics 2024; 25:568. [PMID: 38840068 PMCID: PMC11155135 DOI: 10.1186/s12864-024-10250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Transgenic (Tg) mice are widely used in biomedical research, and they are typically generated by injecting transgenic DNA cassettes into pronuclei of one-cell stage zygotes. Such animals often show unreliable expression of the transgenic DNA, one of the major reasons for which is random insertion of the transgenes. We previously developed a method called "pronuclear injection-based targeted transgenesis" (PITT), in which DNA constructs are directed to insert at pre-designated genomic loci. PITT was achieved by pre-installing so called landing pad sequences (such as heterotypic LoxP sites or attP sites) to create seed mice and then injecting Cre recombinase or PhiC31 integrase mRNAs along with a compatible donor plasmid into zygotes derived from the seed mice. PITT and its subsequent version, improved PITT (i-PITT), overcome disadvantages of conventional Tg mice such as lack of consistent and reliable expression of the cassettes among different Tg mouse lines, and the PITT approach is superior in terms of cost and labor. One of the limitations of PITT, particularly using Cre-mRNA, is that the approach cannot be used for insertion of conditional expression cassettes using Cre-LoxP site-specific recombination. This is because the LoxP sites in the donor plasmids intended for achieving conditional expression of the transgene will interfere with the PITT recombination reaction with LoxP sites in the landing pad. RESULTS To enable the i-PITT method to insert a conditional expression cassette, we modified the approach by simultaneously using PhiC31o and FLPo mRNAs. We demonstrate the strategy by creating a model containing a conditional expression cassette at the Rosa26 locus with an efficiency of 13.7%. We also demonstrate that inclusion of FLPo mRNA excludes the insertion of vector backbones in the founder mice. CONCLUSIONS Simultaneous use of PhiC31 and FLP in i-PITT approach allows insertion of donor plasmids containing Cre-loxP-based conditional expression cassettes.
Collapse
Affiliation(s)
- Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Ayaka Nakamura
- Life Science Support Center, Tokai University, Kanagawa, Japan
| | - Aki Kurosaki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Ai Kotani
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Kanagawa, Japan
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Kanagawa, Japan
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa, Japan
| | - Keiko Tanaka
- Departments of Basic Medicine, Tokai University School of Medicine, Kanagawa, Japan
- Division of Kidney, Diabetes and Endocrine Diseases, Okayama University Hospital, Okayama, Japan
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sanae Ogiwara
- Life Science Support Center, Tokai University, Kanagawa, Japan
| | - Yuhsuke Ohmi
- Department of Clinical Engineering, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Hirotaka Komaba
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Samantha L P Schilit
- Program in Genetics and Genomics and Certificate Program in Leder Human Biology and Translational Medicine, Biological and Biomedical Sciences Program, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Institute Member, Broad Institute of Massachusetts Institute of Technology and Harvard University, Kendall Square, Cambridge, MA, USA
- Manchester Center for Hearing and Deafness, University of Manchester, Manchester, UK
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan.
- The Institute of Medical Sciences, Tokai University, Kanagawa, Japan.
| |
Collapse
|
4
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
5
|
Murphy KC, Ruscetti M. Advances in Making Cancer Mouse Models More Accessible and Informative through Non-Germline Genetic Engineering. Cold Spring Harb Perspect Med 2024; 14:a041348. [PMID: 37277206 PMCID: PMC10982712 DOI: 10.1101/cshperspect.a041348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetically engineered mouse models (GEMMs) allow for modeling of spontaneous tumorigenesis within its native microenvironment in mice and have provided invaluable insights into mechanisms of tumorigenesis and therapeutic strategies to treat human disease. However, as their generation requires germline manipulation and extensive animal breeding that is time-, labor-, and cost-intensive, traditional GEMMs are not accessible to most researchers, and fail to model the full breadth of cancer-associated genetic alterations and therapeutic targets. Recent advances in genome-editing technologies and their implementation in somatic tissues of mice have ushered in a new class of mouse models: non-germline GEMMs (nGEMMs). nGEMM approaches can be leveraged to generate somatic tumors de novo harboring virtually any individual or group of genetic alterations found in human cancer in a mouse through simple procedures that do not require breeding, greatly increasing the accessibility and speed and scale on which GEMMs can be produced. Here we describe the technologies and delivery systems used to create nGEMMs and highlight new biological insights derived from these models that have rapidly informed functional cancer genomics, precision medicine, and immune oncology.
Collapse
Affiliation(s)
- Katherine C Murphy
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA;
- Immunology and Microbiology Program, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
- Cancer Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
6
|
Xue L, Mukherjee K, Kelley KA, Bieker JJ. Generation, characterization, and use of EKLF(Klf1)/CRE knock-in mice for cell-restricted analyses. FRONTIERS IN HEMATOLOGY 2024; 2:1292589. [PMID: 39280931 PMCID: PMC11393758 DOI: 10.3389/frhem.2023.1292589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Introduction EKLF/Klf1 is a tissue-restricted transcription factor that plays a critical role in all aspects of erythropoiesis. Of particular note is its tissue-restricted pattern of expression, a property that could prove useful for expression control of a linked marker or enzymatic gene. Methods and results With this in mind, we fused the CRE recombinase to the genomic EKLF coding region and established mouse lines. We find by FACS analyses that CRE expression driven by the EKLF transcription unit recapitulates erythroid-restricted expression with high penetrance in developing embryos. We then used this line to test its properties in the adult, where we found EKLF/CRE is an active and is a robust mimic of normal EKLF expression in the adult bone marrow. EKLF/CRE is also expressed in erythroblastic island macrophage in the fetal liver, and we demonstrate for the first time that, as seen during embryonic development, EKLF is also expressed in adult BM-derived erythroblastic island macrophage. Our data also support lineage studies showing EKLF expression at early stages of hematopoiesis. Discussion The EKLF/CRE mouse lines are novel reagents whose availability will be of great utility for future experiments by investigators in the red cell field.
Collapse
Affiliation(s)
- Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Kevin A Kelley
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, United States
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Papaioannou VE, Behringer RR. Mouse Gene-Targeting Strategies for Maximum Ease and Versatility. Cold Spring Harb Protoc 2024; 2024:107957. [PMID: 37932102 DOI: 10.1101/pdb.over107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Well-planned strategies are an essential prerequisite for any mutational analysis involving gene targeting. Consideration of the advantages or disadvantages of different methods will aid in the production of a final product that is both technically feasible and versatile. Strategies for gene-targeting experiments in the mouse are discussed, including the rationale behind some of the common elements of gene-targeting vectors, such as homologous DNA and the use of different site-specific recombinases. We detail positive and negative selection as well as screening strategies for homologous recombination events in embryonic stem (ES) cells. For the planning stages of making different types of alleles, we first consider general strategies and then provide details specific to either homologous recombination in ES cells or making alleles by gene editing with CRISPR-Cas in preimplantation embryos. The types of alleles considered are null or knockout alleles, reporter gene knock-in alleles, point mutations, and conditional null alleles.
Collapse
Affiliation(s)
- Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Nakamura S, Morohoshi K, Inada E, Sato Y, Watanabe S, Saitoh I, Sato M. Recent Advances in In Vivo Somatic Cell Gene Modification in Newborn Pups. Int J Mol Sci 2023; 24:15301. [PMID: 37894981 PMCID: PMC10607593 DOI: 10.3390/ijms242015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Germline manipulation at the zygote stage using the CRISPR/Cas9 system has been extensively employed for creating genetically modified animals and maintaining established lines. However, this approach requires a long and laborious task. Recently, many researchers have attempted to overcome these limitations by generating somatic mutations in the adult stage through tail vein injection or local administration of CRISPR reagents, as a new strategy called "in vivo somatic cell genome editing". This approach does not require manipulation of early embryos or strain maintenance, and it can test the results of genome editing in a short period. The newborn is an ideal stage to perform in vivo somatic cell genome editing because it is immune-privileged, easily accessible, and only a small amount of CRISPR reagents is required to achieve somatic cell genome editing throughout the entire body, owing to its small size. In this review, we summarize in vivo genome engineering strategies that have been successfully demonstrated in newborns. We also report successful in vivo genome editing through the neonatal introduction of genome editing reagents into various sites in newborns (as exemplified by intravenous injection via the facial vein), which will be helpful for creating models for genetic diseases or treating many genetic diseases.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Yoko Sato
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Aoi-ku, Shizuoka 420-0881, Japan;
| | - Satoshi Watanabe
- Institute of Livestock and Grassland Science, NARO, Tsukuba 305-0901, Japan;
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho 501-0296, Japan;
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan;
| |
Collapse
|
9
|
Selleri L, Rijli FM. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. Nat Rev Genet 2023; 24:610-626. [PMID: 37095271 DOI: 10.1038/s41576-023-00594-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Major differences in facial morphology distinguish vertebrate species. Variation of facial traits underlies the uniqueness of human individuals, and abnormal craniofacial morphogenesis during development leads to birth defects that significantly affect quality of life. Studies during the past 40 years have advanced our understanding of the molecular mechanisms that establish facial form during development, highlighting the crucial roles in this process of a multipotent cell type known as the cranial neural crest cell. In this Review, we discuss recent advances in multi-omics and single-cell technologies that enable genes, transcriptional regulatory networks and epigenetic landscapes to be closely linked to the establishment of facial patterning and its variation, with an emphasis on normal and abnormal craniofacial morphogenesis. Advancing our knowledge of these processes will support important developments in tissue engineering, as well as the repair and reconstruction of the abnormal craniofacial complex.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| | - Filippo M Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Stefancsik R, Balhoff JP, Balk MA, Ball RL, Bello SM, Caron AR, Chesler EJ, de Souza V, Gehrke S, Haendel M, Harris LW, Harris NL, Ibrahim A, Koehler S, Matentzoglu N, McMurry JA, Mungall CJ, Munoz-Torres MC, Putman T, Robinson P, Smedley D, Sollis E, Thessen AE, Vasilevsky N, Walton DO, Osumi-Sutherland D. The Ontology of Biological Attributes (OBA)-computational traits for the life sciences. Mamm Genome 2023; 34:364-378. [PMID: 37076585 PMCID: PMC10382347 DOI: 10.1007/s00335-023-09992-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.
Collapse
Affiliation(s)
- Ray Stefancsik
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - James P Balhoff
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, 27517, USA
| | - Meghan A Balk
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Robyn L Ball
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - Anita R Caron
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | | | - Vinicius de Souza
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Sarah Gehrke
- Anschutz Medical Campus, University of Colorado, Aurora, CO, 80045, USA
| | - Melissa Haendel
- Anschutz Medical Campus, University of Colorado, Aurora, CO, 80045, USA
| | - Laura W Harris
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Nomi L Harris
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Arwa Ibrahim
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | | | | | - Julie A McMurry
- Anschutz Medical Campus, University of Colorado, Aurora, CO, 80045, USA
| | - Christopher J Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Tim Putman
- Anschutz Medical Campus, University of Colorado, Aurora, CO, 80045, USA
| | | | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Elliot Sollis
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Anne E Thessen
- Anschutz Medical Campus, University of Colorado, Aurora, CO, 80045, USA
| | - Nicole Vasilevsky
- Data Collaboration Center, Critical Path Institute, Tucson, AZ, 85718, USA
| | | | | |
Collapse
|
11
|
Li ZH, Wang J, Xu JP, Wang J, Yang X. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Mil Med Res 2023; 10:12. [PMID: 36895064 PMCID: PMC9999643 DOI: 10.1186/s40779-023-00447-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein (Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases (CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed.
Collapse
Affiliation(s)
- Zhen-Hua Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China
| | - Jing-Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.,Yaneng BIOScience (Shenzhen) Co., Ltd., Shenzhen, 518102, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 100071, China.
| |
Collapse
|
12
|
Stefancsik R, Balhoff JP, Balk MA, Ball R, Bello SM, Caron AR, Chessler E, de Souza V, Gehrke S, Haendel M, Harris LW, Harris NL, Ibrahim A, Koehler S, Matentzoglu N, McMurry JA, Mungall CJ, Munoz-Torres MC, Putman T, Robinson P, Smedley D, Sollis E, Thessen AE, Vasilevsky N, Walton DO, Osumi-Sutherland D. The Ontology of Biological Attributes (OBA) - Computational Traits for the Life Sciences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525742. [PMID: 36747660 PMCID: PMC9900877 DOI: 10.1101/2023.01.26.525742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focused measurable trait data. Moreover, variations in gene expression in response to environmental disturbances even without any genetic alterations can also be associated with particular biological attributes. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.
Collapse
Affiliation(s)
- Ray Stefancsik
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - James P. Balhoff
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC 27517, USA
| | - Meghan A. Balk
- National Ecological Observatory Network, Battelle, Boulder, CO 80301, USA
| | - Robyn Ball
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Anita R. Caron
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | | | - Vinicius de Souza
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Sarah Gehrke
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Melissa Haendel
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Laura W. Harris
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Nomi L. Harris
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Arwa Ibrahim
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | | | | | - Julie A. McMurry
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Christopher J. Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Tim Putman
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | | | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Elliot Sollis
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Anne E Thessen
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Nicole Vasilevsky
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | | | | |
Collapse
|
13
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
14
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Cheng KC, Burdine RD, Dickinson ME, Ekker SC, Lin AY, Lloyd KCK, Lutz CM, MacRae CA, Morrison JH, O'Connor DH, Postlethwait JH, Rogers CD, Sanchez S, Simpson JH, Talbot WS, Wallace DC, Weimer JM, Bellen HJ. Promoting validation and cross-phylogenetic integration in model organism research. Dis Model Mech 2022; 15:dmm049600. [PMID: 36125045 PMCID: PMC9531892 DOI: 10.1242/dmm.049600] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.
Collapse
Affiliation(s)
- Keith C. Cheng
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, Park, PA 16802, USA
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77007, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77007, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55906, USA
| | - Alex Y. Lin
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - K. C. Kent Lloyd
- Mouse Biology Program, School of Medicinel, University of California Davis, Davis, CA 95618, USA
- Department of Surgery, School of Medicine, University of California Davis, Davis, CA 95618, USA
| | - Cathleen M. Lutz
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609, USA
| | - Calum A. MacRae
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 360 Longwood Avenue, Boston, MA 02215, USA
| | - John H. Morrison
- California National Primate Research Center, University of California Davis, Davis, CA 95616, USA
- Department of Neurology, University of California Davis, Davis, CA 95616, USA
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University ofWisconsin-Madison, Madison, WI 53711, USA
| | | | - Crystal D. Rogers
- School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Julie H. Simpson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93117, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Douglas C. Wallace
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute (TCH), Baylor College of Medicine, Houston, TX 77007, USA
| |
Collapse
|
16
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
17
|
Satir-Basaran G, Kianmehr L, Mehmetbeyoglu E, Korkmaz Bayram K, Memis M, Yilmaz Z, Tufan E, Taheri S, Kelestimur F, Rassoulzadegan M. Mouse Paternal RNAs Initiate a Pattern of Metabolic Disorders in a Line-Dependent Manner. Front Genet 2022; 13:839841. [PMID: 35419033 PMCID: PMC8996111 DOI: 10.3389/fgene.2022.839841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
A wide range of diseases result from environmental effects, and the levels of many native transcripts are altered. The alteration of non-coding RNAs (ncRNAs) and transmission of the variation to the next generation is increasingly recognized as a marker of disease. However, the determining signals and mechanisms of RNA-induced heritability remain unclear. We performed functional tests with four different genotypes of mice maintained on a high-fat diet to trace the transfer of the obesity/diabetes phenotype to the next generation in order to detect common signals. Two founders of four mouse lines (B6/D2 hybrid and Dnmt2 -/-C57BL/6 ) resist and do not change their phenotype while their sperm RNAs after microinjection into fertilized mouse eggs transfer the newly acquired phenotypes in a susceptible inbred line (C57BL/6 or Balb/c). Unexpectedly, in the same line of experiments, sperm RNA from animals raised on a normal diet when mixed with the sperm RNA from animals raised on a diet high in fat or synthetic miR-19b (inducer of obesity) affects or prevents the development of obesity and diabetes. However, it remains unclear what happens to ncRNA signaling under diet. With a comprehensive new analysis of the transcripts maintained as an RNA/DNA hybrid in sperm, we suggest that a fraction of the RNAs are stably attached to the genome. Thus, we propose that changes in the dynamics of ncRNA retention on DNA by factors such as transcriptional variations or lack of adequate methylation could serve as molecular markers to trace these epigenetics events.
Collapse
Affiliation(s)
- Guzide Satir-Basaran
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Leila Kianmehr
- Departement of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ecmel Mehmetbeyoglu
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Department of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Kezban Korkmaz Bayram
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Department of Medical Genetics, Medical Faculty, Yıldırım Beyazıt University, 06800 Ankara, Turkey
| | - Mehmet Memis
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zeynep Yilmaz
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Esra Tufan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Serpil Taheri
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Department of Medical Biology, Erciyes University Medical School, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Yeditepe University Medical School, Istanbul, Turkey
| | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,INSERM-CNRS, Université de Nice, Nice, France
| |
Collapse
|
18
|
Abstract
For many years, the laboratory mouse has been the favored model organism to study mammalian development, biology and disease. Among its advantages for these studies are its close concordance with human biology, the syntenic relationship between the mouse and other mammalian genomes, the existence of many inbred strains, its short gestation period, its relatively low cost for housing and husbandry, and the wide array of tools for genome modification, mutagenesis, and for cryopreserving embryos, sperm and eggs. The advent of CRISPR genome modification techniques has considerably broadened the landscape of model organisms available for study, including other mammalian species. However, the mouse remains the most popular and utilized system to model human development, biology, and disease processes. In this review, we will briefly summarize the long history of mice as a preferred mammalian genetic and model system, and review current large-scale mutagenesis efforts using genome modification to produce improved models for mammalian development and disease.
Collapse
Affiliation(s)
- Thomas Gridley
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States.
| | | |
Collapse
|
19
|
Dinsmore CJ, Ke CY, Soriano P. The Wnt1-Cre2 transgene is active in the male germline. Genesis 2022; 60:e23468. [PMID: 35180326 PMCID: PMC8940701 DOI: 10.1002/dvg.23468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
The Wnt1-Cre transgenic mouse line is widely used to express the CRE recombinase in neural crest lineages, but it overexpresses WNT1 itself, which can cause undesired phenotypes. To address this, we and others previously developed a Wnt1-Cre2 line based on the same regulatory elements as Wnt1-Cre but without ectopic Wnt1 expression. However, while Wnt1-Cre2 exhibits normal activity when transmitted from female mice, it exhibits unexpected activity in the male germline. The Wnt1-Cre2 transgene was previously mapped to the E2f1 locus. Several genes in this genomic region exhibit significant expression in spermatogonia or spermatocytes, suggesting that local regulatory elements may be driving ectopic transgene expression. The Wnt1-Cre2 line can therefore be used both as a neural crest specific and a general deleter, and care should be taken when setting up genetic crosses.
Collapse
|
20
|
Sato M, Nakamura S, Inada E, Takabayashi S. Recent Advances in the Production of Genome-Edited Rats. Int J Mol Sci 2022; 23:ijms23052548. [PMID: 35269691 PMCID: PMC8910656 DOI: 10.3390/ijms23052548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| |
Collapse
|
21
|
Farrants H, Tebo AG. Fluorescent chemigenetic actuators and indicators for use in living animals. Curr Opin Pharmacol 2022; 62:159-167. [DOI: 10.1016/j.coph.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
|
22
|
Clark JF, Soriano PM. Pulling back the curtain: The hidden functions of receptor tyrosine kinases in development. Curr Top Dev Biol 2022; 149:123-152. [PMID: 35606055 PMCID: PMC9127239 DOI: 10.1016/bs.ctdb.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) are a conserved superfamily of transmembrane growth factor receptors that drive numerous cellular processes during development and in the adult. Upon activation, multiple adaptors and signaling effector proteins are recruited to binding site motifs located within the intracellular domain of the RTK. These RTK-effector interactions drive subsequent intracellular signaling cascades involved in canonical RTK signaling. Genetic dissection has revealed that alleles of Fibroblast Growth Factor receptors (FGFRs) that lack all canonical RTK signaling still retain some kinase-dependent biological activity. Here we examine how genetic analysis can be used to understand the mechanism by which RTKs drive multiple developmental processes via canonical signaling while revealing noncanonical activities. Recent data from both FGFRs and other RTKs highlight potential noncanonical roles in cell adhesion and nuclear signaling. The data supporting such functions are discussed as are recent technologies that have the potential to provide valuable insight into the developmental significance of these noncanonical activities.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philippe M Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
23
|
Yang SA, Salazar JL, Li-Kroeger D, Yamamoto S. Functional Studies of Genetic Variants Associated with Human Diseases in Notch Signaling-Related Genes Using Drosophila. Methods Mol Biol 2022; 2472:235-276. [PMID: 35674905 PMCID: PMC9396741 DOI: 10.1007/978-1-0716-2201-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare variants in the many genes related to Notch signaling cause diverse Mendelian diseases that affect myriad organ systems. In addition, genome- and exome-wide association studies have linked common and rare variants in Notch-related genes to common diseases and phenotypic traits. Moreover, somatic mutations in these genes have been observed in many types of cancer, some of which are classified as oncogenic and others as tumor suppressive. While functional characterization of some of these variants has been performed through experimental studies, the number of "variants of unknown significance" identified in patients with diverse conditions keeps increasing as high-throughput sequencing technologies become more commonly used in the clinic. Furthermore, as disease gene discovery efforts identify rare variants in human genes that have yet to be linked to a disease, the demand for functional characterization of variants in these "genes of unknown significance" continues to increase. In this chapter, we describe a workflow to functionally characterize a rare variant in a Notch signaling related gene that was found to be associated with late-onset Alzheimer's disease. This pipeline involves informatic analysis of the variant of interest using diverse human and model organism databases, followed by in vivo experiments in the fruit fly Drosophila melanogaster. The protocol described here can be used to study variants that affect amino acids that are not conserved between human and fly. By "humanizing" the almondex gene in Drosophila with mutant alleles and heterologous genomic rescue constructs, a missense variant in TM2D3 (TM2 Domain Containing 3) was shown to be functionally damaging. This, and similar approaches, greatly facilitate functional interpretations of genetic variants in the human genome and propel personalized medicine.
Collapse
Affiliation(s)
- Sheng-An Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - David Li-Kroeger
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Moreci RS, Lechler T. KIF18B is a cell type-specific regulator of spindle orientation in the epidermis. Mol Biol Cell 2021; 32:ar29. [PMID: 34432485 PMCID: PMC8693959 DOI: 10.1091/mbc.e21-06-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Proper spindle orientation is required for asymmetric cell division and the establishment of complex tissue architecture. In the developing epidermis, spindle orientation requires a conserved cortical protein complex of LGN/NuMA/dynein-dynactin. However, how microtubule dynamics are regulated to interact with this machinery and properly position the mitotic spindle is not fully understood. Furthermore, our understanding of the processes that link spindle orientation during asymmetric cell division to cell fate specification in distinct tissue contexts remains incomplete. We report a role for the microtubule catastrophe factor KIF18B in regulating microtubule dynamics to promote spindle orientation in keratinocytes. During mitosis, KIF18B accumulates at the cell cortex, colocalizing with the conserved spindle orientation machinery. In vivo we find that KIF18B is required for oriented cell divisions within the hair placode, the first stage of hair follicle morphogenesis, but is not essential in the interfollicular epidermis. Disrupting spindle orientation in the placode, using mutations in either KIF18B or NuMA, results in aberrant cell fate marker expression of hair follicle progenitor cells. These data functionally link spindle orientation to cell fate decisions during hair follicle morphogenesis. Taken together, our data demonstrate a role for regulated microtubule dynamics in spindle orientation in epidermal cells. This work also highlights the importance of spindle orientation during asymmetric cell division to dictate cell fate specification.
Collapse
Affiliation(s)
- Rebecca S Moreci
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| | - Terry Lechler
- Department of Dermatology and Department of Cell Biology, Duke University, Durham, NC 27710
| |
Collapse
|
25
|
Kaneko R, Kakinuma T, Sato S, Jinno-Oue A. Improvement of short straws for sperm cryopreservation: installing an air-permeable filter facilitates handling. J Reprod Dev 2021; 67:235-239. [PMID: 33853994 PMCID: PMC8238672 DOI: 10.1262/jrd.2021-019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Saving space for sperm cryopreservation would aid mouse genetics research. We previously developed the ST (sperm freezing in ShorT STraw to reduce STorage
space) method for cryopreserving mouse sperm in a smaller storage space than conventional methods. However, our ST method has two drawbacks: difficulties during
freeze-thaw procedures and the potential risk of sperm loss during storage. Here, we refine ST, terming the new method improved ST (iST). In iST, the straw has
an air-permeable filter and the straw container (2-ml cryotube) is endowed with air vents. As in our ST method, iST frozen-thawed sperm showed good performance
upon in vitro fertilization. Moreover, up to nine straws can be stored in one cryotube, occupying less storage space than conventional methods.
This method provides an easy and space-saving cryopreservation method for mouse sperm, and thus will be valuable for mouse genetics researchers.
Collapse
Affiliation(s)
- Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Toshie Kakinuma
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Sachiko Sato
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Atsushi Jinno-Oue
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| |
Collapse
|
26
|
Baldridge D, Wangler MF, Bowman AN, Yamamoto S, Schedl T, Pak SC, Postlethwait JH, Shin J, Solnica-Krezel L, Bellen HJ, Westerfield M. Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision. Orphanet J Rare Dis 2021; 16:206. [PMID: 33962631 PMCID: PMC8103593 DOI: 10.1186/s13023-021-01839-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Decreased sequencing costs have led to an explosion of genetic and genomic data. These data have revealed thousands of candidate human disease variants. Establishing which variants cause phenotypes and diseases, however, has remained challenging. Significant progress has been made, including advances by the National Institutes of Health (NIH)-funded Undiagnosed Diseases Network (UDN). However, 6000-13,000 additional disease genes remain to be identified. The continued discovery of rare diseases and their genetic underpinnings provides benefits to affected patients, of whom there are more than 400 million worldwide, and also advances understanding the mechanisms of more common diseases. Platforms employing model organisms enable discovery of novel gene-disease relationships, help establish variant pathogenicity, and often lead to the exploration of underlying mechanisms of pathophysiology that suggest new therapies. The Model Organism Screening Center (MOSC) of the UDN is a unique resource dedicated to utilizing informatics and functional studies in model organisms, including worm (Caenorhabditis elegans), fly (Drosophila melanogaster), and zebrafish (Danio rerio), to aid in diagnosis. The MOSC has directly contributed to the diagnosis of challenging cases, including multiple patients with complex, multi-organ phenotypes. In addition, the MOSC provides a framework for how basic scientists and clinicians can collaborate to drive diagnoses. Customized experimental plans take into account patient presentations, specific genes and variant(s), and appropriateness of each model organism for analysis. The MOSC also generates bioinformatic and experimental tools and reagents for the wider scientific community. Two elements of the MOSC that have been instrumental in its success are (1) multidisciplinary teams with expertise in variant bioinformatics and in human and model organism genetics, and (2) mechanisms for ongoing communication with clinical teams. Here we provide a position statement regarding the central role of model organisms for continued discovery of disease genes, and we advocate for the continuation and expansion of MOSC-type research entities as a Model Organisms Network (MON) to be funded through grant applications submitted to the NIH, family groups focused on specific rare diseases, other philanthropic organizations, industry partnerships, and other sources of support.
Collapse
Affiliation(s)
- Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA.
- Department of Pediatrics, BCM, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA.
| | - Angela N Bowman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
| | - Tim Schedl
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephen C Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, 77030, USA
- Department of Neuroscience, BCM, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Houston, TX, 77030, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|