1
|
Barron JJ, Mroz NM, Taloma SE, Dahlgren MW, Ortiz-Carpena JF, Keefe MG, Escoubas CC, Dorman LC, Vainchtein ID, Chiaranunt P, Kotas ME, Nowakowski TJ, Bender KJ, Molofsky AB, Molofsky AV. Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior. Science 2024; 386:eadi1025. [PMID: 39480923 DOI: 10.1126/science.adi1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/22/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024]
Abstract
The innate immune system shapes brain development and is implicated in neurodevelopmental diseases. It is critical to define the relevant immune cells and signals and their impact on brain circuits. In this work, we found that group 2 innate lymphoid cells (ILC2s) and their cytokine interleukin-13 (IL-13) signaled directly to inhibitory interneurons to increase inhibitory synapse density in the developing mouse brain. ILC2s expanded and produced IL-13 in the developing brain meninges. Loss of ILC2s or IL-13 signaling to interneurons decreased inhibitory, but not excitatory, cortical synapses. Conversely, ILC2s and IL-13 were sufficient to increase inhibitory synapses. Loss of this signaling pathway led to selective impairments in social interaction. These data define a type 2 neuroimmune circuit in early life that shapes inhibitory synapse development and behavior.
Collapse
Affiliation(s)
- Jerika J Barron
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas M Mroz
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sunrae E Taloma
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madelene W Dahlgren
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jorge F Ortiz-Carpena
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew G Keefe
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline C Escoubas
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leah C Dorman
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pailin Chiaranunt
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin J Bender
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
2
|
Wang L, Li W, Zhou F, Yu K, Feng C, Zhao D. nsDCC: dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis. Brief Bioinform 2024; 25:bbae477. [PMID: 39327063 PMCID: PMC11427072 DOI: 10.1093/bib/bbae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Dimensionality reduction and clustering are crucial tasks in single-cell RNA sequencing (scRNA-seq) data analysis, treated independently in the current process, hindering their mutual benefits. The latest methods jointly optimize these tasks through deep clustering. However, contrastive learning, with powerful representation capability, can bridge the gap that common deep clustering methods face, which requires pre-defined cluster centers. Therefore, a dual-level contrastive clustering method with nonuniform sampling (nsDCC) is proposed for scRNA-seq data analysis. Dual-level contrastive clustering, which combines instance-level contrast and cluster-level contrast, jointly optimizes dimensionality reduction and clustering. Multi-positive contrastive learning and unit matrix constraint are introduced in instance- and cluster-level contrast, respectively. Furthermore, the attention mechanism is introduced to capture inter-cellular information, which is beneficial for clustering. The nsDCC focuses on important samples at category boundaries and in minority categories by the proposed nearest boundary sparsest density weight assignment algorithm, making it capable of capturing comprehensive characteristics against imbalanced datasets. Experimental results show that nsDCC outperforms the six other state-of-the-art methods on both real and simulated scRNA-seq data, validating its performance on dimensionality reduction and clustering of scRNA-seq data, especially for imbalanced data. Simulation experiments demonstrate that nsDCC is insensitive to "dropout events" in scRNA-seq. Finally, cluster differential expressed gene analysis confirms the meaningfulness of results from nsDCC. In summary, nsDCC is a new way of analyzing and understanding scRNA-seq data.
Collapse
Affiliation(s)
- Linjie Wang
- School of Computer Science and Engineering, No. 195 Chuangxin Road, Hunnan District, Northeastern University, Shenyang 110819, China
| | - Wei Li
- Key Laboratory of Intelligent Computing in Medical Image (MIIC), Northeastern University, No. 195 Chuangxin Road, Hunnan District, Shenyang 110000, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, No. 3-11 Wenhua Road, Heping District, Northeastern University, Shenyang 110819, China
| | - Fanghui Zhou
- School of Computer Science and Engineering, No. 195 Chuangxin Road, Hunnan District, Northeastern University, Shenyang 110819, China
| | - Kun Yu
- College of Medicine and Bioinformation Engineering, Northeastern University, No. 195 Chuangxin Road, Hunnan District, Shenyang 110819, China
| | - Chaolu Feng
- Key Laboratory of Intelligent Computing in Medical Image (MIIC), Northeastern University, No. 195 Chuangxin Road, Hunnan District, Shenyang 110000, China
| | - Dazhe Zhao
- Key Laboratory of Intelligent Computing in Medical Image (MIIC), Northeastern University, No. 195 Chuangxin Road, Hunnan District, Shenyang 110000, China
| |
Collapse
|
3
|
Kline-Schoder AR, Chintamen S, Willner MJ, DiBenedetto MR, Noel RL, Batts AJ, Kwon N, Zacharoulis S, Wu CC, Menon V, Kernie SG, Konofagou EE. Characterization of the responses of brain macrophages to focused ultrasound-mediated blood-brain barrier opening. Nat Biomed Eng 2024; 8:650-663. [PMID: 37857722 DOI: 10.1038/s41551-023-01107-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/16/2023] [Indexed: 10/21/2023]
Abstract
The opening of the blood-brain barrier (BBB) by focused ultrasound (FUS) coupled with intravenously injected microbubbles can be leveraged as a form of immunotherapy for the treatment of neurodegenerative disorders. However, how FUS BBB opening affects brain macrophages is not well understood. Here by using single-cell sequencing to characterize the distinct responses of microglia and central nervous system-associated macrophages (CAMs) to FUS-mediated BBB opening in mice, we show that the treatment remodels the immune landscape via the recruitment of CAMs and the proliferation of microglia and via population size increases in disease-associated microglia. Both microglia and CAMs showed early and late increases in population sizes, yet only the proliferation of microglia increased at both timepoints. The population of disease-associated microglia also increased, accompanied by the upregulation of genes associated with gliogenesis and phagocytosis, with the depletion of brain macrophages significantly decreasing the duration of BBB opening.
Collapse
Affiliation(s)
| | - Sana Chintamen
- Department of Neurobiology and Behaviour, Columbia University, New York, NY, USA
| | - Moshe J Willner
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Rebecca L Noel
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alec J Batts
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Cheng-Chia Wu
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Steven G Kernie
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Radiology, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Di Martino E, Rayasam A, Vexler ZS. Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Transl Stroke Res 2024; 15:69-86. [PMID: 36705821 PMCID: PMC10796425 DOI: 10.1007/s12975-022-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 01/28/2023]
Abstract
Injuries in the developing brain cause significant long-term neurological deficits. Emerging clinical and preclinical data have demonstrated that the pathophysiology of neonatal and childhood stroke share similar mechanisms that regulate brain damage, but also have distinct molecular signatures and cellular pathways. The focus of this review is on two different diseases-neonatal and childhood stroke-with emphasis on similarities and distinctions identified thus far in rodent models of these diseases. This includes the susceptibility of distinct cell types to brain injury with particular emphasis on the role of resident and peripheral immune populations in modulating stroke outcome. Furthermore, we discuss some of the most recent and relevant findings in relation to the immune-neurovascular crosstalk and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we comment on the current state of treatments geared toward inducing neuroprotection and promoting brain repair after injury and highlight that future prophylactic and therapeutic strategies for stroke should be age-specific and consider gender differences in order to achieve optimal translational success.
Collapse
Affiliation(s)
- Elena Di Martino
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Aditya Rayasam
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158-0663, USA.
| |
Collapse
|
5
|
Mallard C, Ferriero DM, Vexler ZS. Immune-Neurovascular Interactions in Experimental Perinatal and Childhood Arterial Ischemic Stroke. Stroke 2024; 55:506-518. [PMID: 38252757 DOI: 10.1161/strokeaha.123.043399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden (C.M.)
| | - Donna M Ferriero
- Department of Pediatrics, UCSF, San Francisco, CA (D.M.F.)
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| | - Zinaida S Vexler
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| |
Collapse
|
6
|
Pokrajac NT, Tokarew NJA, Gurdita A, Ortin-Martinez A, Wallace VA. Meningeal macrophages inhibit chemokine signaling in pre-tumor cells to suppress mouse medulloblastoma initiation. Dev Cell 2023; 58:2015-2031.e8. [PMID: 37774709 DOI: 10.1016/j.devcel.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
The microenvironment profoundly influences tumor initiation across numerous tissues but remains understudied in brain tumors. In the cerebellum, canonical Wnt signaling controlled by Norrin/Frizzled4 (Fzd4) activation in meningeal endothelial cells is a potent inhibitor of preneoplasia and tumor progression in mouse models of Sonic hedgehog medulloblastoma (Shh-MB). Single-cell transcriptome profiling and phenotyping of the meninges indicate that Norrin/Frizzled4 sustains the activation of meningeal macrophages (mMΦs), characterized by Lyve1 and CXCL4 expression, during the critical preneoplastic period. Depleting mMΦs during this period enhances preneoplasia and tumorigenesis, phenocopying the effects of Norrin loss. The anti-tumorigenic function of mMΦs is derived from the expression of CXCL4, which counters CXCL12/CXCR4 signaling in pre-tumor cells, thereby inhibiting cell-cycle progression and promoting migration away from the pre-tumor niche. These findings identify a pivotal role for mMΦs as key mediators in chemokine-regulated anti-cancer crosstalk between the stroma and pre-tumor cells in the control of MB initiation.
Collapse
Affiliation(s)
- Nenad T Pokrajac
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicholas J A Tokarew
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada.
| |
Collapse
|
7
|
Li B, Li J, Fan Y, Zhao Z, Li L, Okano H, Ouchi T. Dissecting calvarial bones and sutures at single-cell resolution. Biol Rev Camb Philos Soc 2023; 98:1749-1767. [PMID: 37171117 DOI: 10.1111/brv.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Cranial bones constitute a protective shield for the vulnerable brain tissue, bound together as a rigid entity by unique immovable joints known as sutures. Cranial sutures serve as major growth centres for calvarial morphogenesis and have been identified as a niche for mesenchymal stem cells (MSCs) and/or skeletal stem cells (SSCs) in the craniofacial skeleton. Despite the established dogma of cranial bone and suture biology, technological advancements now allow us to investigate these tissues and structures at unprecedented resolution and embrace multiple novel biological insights. For instance, a decrease or imbalance of representation of SSCs within sutures might underlie craniosynostosis; dural sinuses enable neuroimmune crosstalk and are newly defined as immune hubs; skull bone marrow acts as a myeloid cell reservoir for the meninges and central nervous system (CNS) parenchyma in mediating immune surveillance, etc. In this review, we revisit a growing body of recent studies that explored cranial bone and suture biology using cutting-edge techniques and have expanded our current understanding of this research field, especially from the perspective of development, homeostasis, injury repair, resident MSCs/SSCs, immunosurveillance at the brain's border, and beyond.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingya Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 1608582, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, 3510198, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18 Kanda-Misaki-cho, Chiyoda-ku, Tokyo, 1010061, Japan
| |
Collapse
|
8
|
Zhang L, Xu Y, Sun S, Liang C, Li W, Li H, Zhang X, Pang D, Li M, Li H, Lang Y, Liu J, Jiang S, Shi X, Li B, Yang Y, Wang Y, Li Z, Song C, Duan G, Leavenworth JW, Wang X, Zhu C. Integrative analysis of γδT cells and dietary factors reveals predictive values for autism spectrum disorder in children. Brain Behav Immun 2023; 111:76-89. [PMID: 37011865 DOI: 10.1016/j.bbi.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent. METHODS A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children. RESULTS Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (β: 0.156; 95% CI: 0.888 ∼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: β: 0.288; 95% CI: 0.420 ∼ 4.899, p = 0.020; age ≥ 48 months: β: 0.458; 95% CI: 0.694 ∼ 9.352, p = 0.024), as well as in boys (β: 0.174; 95% CI: 0.834 ∼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model. CONCLUSIONS Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αβT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.
Collapse
Affiliation(s)
- Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Sun
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Cailing Liang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenhua Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dizhou Pang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengyue Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huihui Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yongbin Lang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiatian Liu
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuqin Jiang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyi Shi
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bingbing Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Yang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yazhe Wang
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhenghua Li
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunlan Song
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jianmei W Leavenworth
- Department of Neurosurgery and Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Centre of Perinatal Medicine and Health, Institute of Clinical Science, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 40530, Sweden.
| |
Collapse
|
9
|
Dermitzakis I, Theotokis P, Evangelidis P, Delilampou E, Evangelidis N, Chatzisavvidou A, Avramidou E, Manthou ME. CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease. Curr Issues Mol Biol 2023; 45:4285-4300. [PMID: 37232741 PMCID: PMC10217436 DOI: 10.3390/cimb45050272] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Being immune privileged, the central nervous system (CNS) is constituted by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while being phenotypically and functionally distinct from microglial cells. Although the ontogeny of microglia has been largely determined, BAMs need comparable scrutiny as they have been recently discovered and have not been thoroughly explored. Newly developed techniques have transformed our understanding of BAMs, revealing their cellular heterogeneity and diversity. Recent data showed that BAMs also originate from yolk sac progenitors instead of bone marrow-derived monocytes, highlighting the absolute need to further investigate their repopulation pattern in adult CNS. Shedding light on the molecular cues and drivers orchestrating BAM generation is essential for delineating their cellular identity. BAMs are receiving more attention since they are gradually incorporated into neurodegenerative and neuroinflammatory disease evaluations. The present review provides insights towards the current understanding regarding the ontogeny of BAMs and their involvement in CNS diseases, paving their way into targeted therapeutic strategies and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (P.T.); (P.E.); (E.D.); (N.E.); (A.C.); (E.A.)
| |
Collapse
|
10
|
Drummond RA. What fungal CNS infections can teach us about neuroimmunology and CNS-specific immunity. Semin Immunol 2023; 67:101751. [PMID: 36989541 DOI: 10.1016/j.smim.2023.101751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 03/29/2023]
Abstract
Immunity to fungal infections of the central nervous system (CNS) is one of the most poorly understood subjects within the field of medical mycology. Yet, the majority of deaths from invasive fungal infections are caused by brain-tropic fungi. In recent years, there have been several significant discoveries in the regulation of neuroinflammation and the role of the immune system in tissue homeostasis within the CNS. In this review, I highlight five important advances in the neuroimmunology field over the last decade and discuss how we should capitalise on these discoveries to better understand the pathogenesis of fungal CNS infections. In addition, the latest insights into fungal invasion tactics, microglia-astrocyte crosstalk and regulation of antifungal adaptive immune responses are summarised in the context of our contemporary understanding of CNS-specific immunity.
Collapse
|
11
|
Barron JJ, Mroz NM, Taloma SE, Dahlgren MW, Ortiz-Carpena J, Dorman LC, Vainchtein ID, Escoubas CC, Molofsky AB, Molofsky AV. Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532850. [PMID: 36993292 PMCID: PMC10055027 DOI: 10.1101/2023.03.16.532850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The innate immune system plays essential roles in brain synaptic development, and immune dysregulation is implicated in neurodevelopmental diseases. Here we show that a subset of innate lymphocytes (group 2 innate lymphoid cells, ILC2s) is required for cortical inhibitory synapse maturation and adult social behavior. ILC2s expanded in the developing meninges and produced a surge of their canonical cytokine Interleukin-13 (IL-13) between postnatal days 5-15. Loss of ILC2s decreased cortical inhibitory synapse numbers in the postnatal period where as ILC2 transplant was sufficient to increase inhibitory synapse numbers. Deletion of the IL-4/IL-13 receptor (Il4ra) from inhibitory neurons phenocopied the reduction inhibitory synapses. Both ILC2 deficient and neuronal Il4ra deficient animals had similar and selective impairments in adult social behavior. These data define a type 2 immune circuit in early life that shapes adult brain function.
Collapse
Affiliation(s)
- Jerika J. Barron
- Departments of Psychiatry/Weill Institute for Neurosciences
- Biomedical Sciences Graduate Program
| | - Nicholas M. Mroz
- Biomedical Sciences Graduate Program
- Department of Laboratory Medicine. University of California, San Francisco, San Francisco, CA
| | - Sunrae E. Taloma
- Departments of Psychiatry/Weill Institute for Neurosciences
- Neuroscience Graduate Program
| | - Madelene W. Dahlgren
- Department of Laboratory Medicine. University of California, San Francisco, San Francisco, CA
| | - Jorge Ortiz-Carpena
- Department of Laboratory Medicine. University of California, San Francisco, San Francisco, CA
| | - Leah C. Dorman
- Departments of Psychiatry/Weill Institute for Neurosciences
- Neuroscience Graduate Program
| | | | | | - Ari B. Molofsky
- Department of Laboratory Medicine. University of California, San Francisco, San Francisco, CA
| | | |
Collapse
|
12
|
Wang S, Sun ST, Zhang XY, Ding HR, Yuan Y, He JJ, Wang MS, Yang B, Li YB. The Evolution of Single-Cell RNA Sequencing Technology and Application: Progress and Perspectives. Int J Mol Sci 2023; 24:ijms24032943. [PMID: 36769267 PMCID: PMC9918030 DOI: 10.3390/ijms24032943] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
As an emerging sequencing technology, single-cell RNA sequencing (scRNA-Seq) has become a powerful tool for describing cell subpopulation classification and cell heterogeneity by achieving high-throughput and multidimensional analysis of individual cells and circumventing the shortcomings of traditional sequencing for detecting the average transcript level of cell populations. It has been applied to life science and medicine research fields such as tracking dynamic cell differentiation, revealing sensitive effector cells, and key molecular events of diseases. This review focuses on the recent technological innovations in scRNA-Seq, highlighting the latest research results with scRNA-Seq as the core technology in frontier research areas such as embryology, histology, oncology, and immunology. In addition, this review outlines the prospects for its innovative application in traditional Chinese medicine (TCM) research and discusses the key issues currently being addressed by scRNA-Seq and its great potential for exploring disease diagnostic targets and uncovering drug therapeutic targets in combination with multiomics technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yang
- Correspondence: (B.Y.); (Y.-B.L.)
| | - Yu-Bo Li
- Correspondence: (B.Y.); (Y.-B.L.)
| |
Collapse
|
13
|
Beyond microglia: Peripheral immune cells in the developing rat brain. Brain Behav Immun 2023; 107:399-400. [PMID: 36400334 DOI: 10.1016/j.bbi.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
|
14
|
Reinl EL, Blanchard AC, Graham EL, Edwards SW, Dionisos CV, McCarthy MM. The immune cell profile of the developing rat brain. Brain Behav Immun 2022; 106:198-226. [PMID: 36049705 DOI: 10.1016/j.bbi.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Little is known about the peripheral immune cell (PIC) profile of the developing brain despite growing appreciation for these cells in the mature nervous system. To address this gap, the PIC profile, defined as which cells are present, where they are located, and for how long, was examined in the developing rat using spectral flow cytometry. Select regions of the rat brain (cerebellum, hippocampus, and hypothalamus) were examined at embryonic day 20, and postnatal days 0, 7 and 16. At their peak (E20), PICs were most abundant in the cerebellum, then the hippocampus and hypothalamus. Within the PIC pool, monocytes were most prevalent in all regions and time points, and shifted from being majority classical at E20 to non-classical by PN7. T cells increased over time, and shifted from majority cytotoxic to T-helper cells by PN7. This suggests the PIC profile transitions from reactive to adaptive and surveilling in the second postnatal week. NK cells and mast cells increased temporarily, and mast cells were restricted to the hippocampus and hypothalamus, suggesting they may play a specific role in the development of those regions. Mimicking a viral infection by administration of Poly I:C increased the influx of PICs into the neonatal brain, particularly of NK cells and in the case of males only, non-classical monocytes. This work provides a map for researchers as they study immune cell contributions to healthy and pathological brain development.
Collapse
Affiliation(s)
- Erin L Reinl
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Alexa C Blanchard
- University of Maryland School of Medicine, Program in Molecular Medicine and Medical Scientist Training Program, United States
| | - Emily L Graham
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Serena W Edwards
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Christie V Dionisos
- University of Maryland School of Medicine, Program in Neuroscience, United States
| | - Margaret M McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, United States; University of Maryland School of Medicine, Program in Neuroscience, United States
| |
Collapse
|
15
|
Coulibaly AP. Neutrophil modulation of behavior and cognition in health and disease: The unexplored role of an innate immune cell. Immunol Rev 2022; 311:177-186. [PMID: 35924463 PMCID: PMC9804154 DOI: 10.1111/imr.13123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Behavior and cognition are multifaceted processes influenced by genetics, synaptic plasticity, and neuronal connectivity. Recent reports have demonstrated that peripheral inflammation and peripheral immune cells play important roles in the preservation and deterioration of behavior/cognition under various conditions. Indeed, several studies show that the activity of peripheral immune cells can be critical for normal cognitive function. Neutrophils are the most abundant immune cells in the mammalian system. Their activation is critical to the initiation of the inflammatory process and critical for wound healing. Neutrophils are the first cells to be activated and recruited to the central nervous system in both injury and disease. However, our understanding of the role these cells play in behavior and cognition is limited. The present review will summarize what is currently known about the effect the activation of these cells has on various behaviors and cognitive processes.
Collapse
Affiliation(s)
- Aminata P. Coulibaly
- Department of NeuroscienceRockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| |
Collapse
|
16
|
Single-cell RNA and protein profiling of immune cells from the mouse brain and its border tissues. Nat Protoc 2022; 17:2354-2388. [PMID: 35931780 DOI: 10.1038/s41596-022-00716-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
Brain-immune cross-talk and neuroinflammation critically shape brain physiology in health and disease. A detailed understanding of the brain immune landscape is essential for developing new treatments for neurological disorders. Single-cell technologies offer an unbiased assessment of the heterogeneity, dynamics and functions of immune cells. Here we provide a protocol that outlines all the steps involved in performing single-cell multi-omic analysis of the brain immune compartment. This includes a step-by-step description on how to microdissect the border regions of the mouse brain, together with dissociation protocols tailored to each of these tissues. These combine a high yield with minimal dissociation-induced gene expression changes. Next, we outline the steps involved for high-dimensional flow cytometry and droplet-based single-cell RNA sequencing via the 10x Genomics platform, which can be combined with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and offers a higher throughput than plate-based methods. Importantly, we detail how to implement CITE-seq with large antibody panels to obtain unbiased protein-expression screening coupled to transcriptome analysis. Finally, we describe the main steps involved in the analysis and interpretation of the data. This optimized workflow allows for a detailed assessment of immune cell heterogeneity and activation in the whole brain or specific border regions, at RNA and protein level. The wet lab workflow can be completed by properly trained researchers (with basic proficiency in cell and molecular biology) and takes between 6 and 11 h, depending on the chosen procedures. The computational analysis requires a background in bioinformatics and programming in R.
Collapse
|
17
|
Humoral immune defense of the central nervous system. Curr Opin Immunol 2022; 76:102179. [DOI: 10.1016/j.coi.2022.102179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022]
|
18
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|