1
|
Sandhya S, Talukdar J, Gogoi G, Dey KS, Das B, Baishya D. Impact of coconut kernel extract on carcinogen-induced skin cancer model: Oxidative stress, C-MYC proto-oncogene and tumor formation. Heliyon 2024; 10:e29385. [PMID: 38665592 PMCID: PMC11043960 DOI: 10.1016/j.heliyon.2024.e29385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed at analysing the effects of coconut (Cocos nucifera L.) kernel extract (CKE) on oxidative stress, C-MYC proto-oncogene, and tumour formation in a skin cancer model. Tumorigenesis was induced by dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). In vitro antioxidant activity of CKE was assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), total phenolic and flavonoid content assays. CKE showed a higher antioxidant activity then ascorbic acid (*P < 0.05, ****P < 0.0001). HPLC and NMR study of the CKE revealed the presence of lauric acid (LA). Following the characterization of CKE, mice were randomly assigned to receive DMBA/TPA Induction and CKE treatment at different doses (50, 100, and 200 mg/kg) of body weight. LA 100 mg/kg of body weight used as standard. Significantly, the CKE200 and control groups' mice did not develop tumors; however, the CKE100 and CKE50 treated groups did develop tumors less frequently than the DMBA/TPA-treated mice. Histopathological analysis revealed that the epidermal layer in DMBA-induced mice was thicker and had squamous pearls along with a hyperplasia/dysplasia lesion, indicating skin squamous cell carcinoma (SCC), whereas the epidermal layers in CKE200-treated and control mice were normal. Additionally, the CKE treatment demonstrated a significant stimulatory effect on the activities of reactive oxygen species (ROS), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD), as well as an inhibitory effect on lipid peroxidase (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) and c-MYC protein expression (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). In conclusion, CKE prevents the growth of tumors on mouse skin by reducing oxidative stress and suppressing c-MYC overexpression brought on by DMBA/TPA induction. This makes it an effective dietary antioxidant with anti-tumor properties.
Collapse
Affiliation(s)
- Sorra Sandhya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Joyeeta Talukdar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College and Hospital (AMCH), Assam, India
| | | | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
- Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, MA, USA
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
2
|
Ascanelli C, Dahir R, Wilson CH. Manipulating Myc for reparative regeneration. Front Cell Dev Biol 2024; 12:1357589. [PMID: 38577503 PMCID: PMC10991803 DOI: 10.3389/fcell.2024.1357589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Laine A, Nagelli SG, Farrington C, Butt U, Cvrljevic AN, Vainonen JP, Feringa FM, Grönroos TJ, Gautam P, Khan S, Sihto H, Qiao X, Pavic K, Connolly DC, Kronqvist P, Elo LL, Maurer J, Wennerberg K, Medema RH, Joensuu H, Peuhu E, de Visser K, Narla G, Westermarck J. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res 2021; 81:4319-4331. [PMID: 34145035 DOI: 10.1158/0008-5472.can-20-3651] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/02/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNA damage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. SIGNIFICANCE: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.
Collapse
Affiliation(s)
- Anni Laine
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Srikar G Nagelli
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Caroline Farrington
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Umar Butt
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anna N Cvrljevic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Julia P Vainonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Femke M Feringa
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tove J Grönroos
- Turku PET Center, University of Turku, Turku, Finland.,Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Xi Qiao
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), Aachen, Germany
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rene H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heikki Joensuu
- Department of Pathology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland
| | - Karin de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland. .,Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Lee J, Wu Y, Harada BT, Li Y, Zhao J, He C, Ma Y, Wu X. N 6 -methyladenosine modification of lncRNA Pvt1 governs epidermal stemness. EMBO J 2021; 40:e106276. [PMID: 33729590 DOI: 10.15252/embj.2020106276] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 11/09/2022] Open
Abstract
Dynamic chemical modifications of RNA represent novel and fundamental mechanisms that regulate stemness and tissue homeostasis. Rejuvenation and wound repair of mammalian skin are sustained by epidermal progenitor cells, which are localized within the basal layer of the skin epidermis. N6 -methyladenosine (m6 A) is one of the most abundant modifications found in eukaryotic mRNA and lncRNA (long noncoding RNA). In this report, we survey changes of m6 A RNA methylomes upon epidermal differentiation and identify Pvt1, a lncRNA whose m6 A modification is critically involved in sustaining stemness of epidermal progenitor cells. With genome-editing and a mouse genetics approach, we show that ablation of m6 A methyltransferase or Pvt1 impairs the self-renewal and wound healing capability of skin. Mechanistically, methylation of Pvt1 transcripts enhances its interaction with MYC and stabilizes the MYC protein in epidermal progenitor cells. Our study presents a global view of epitranscriptomic dynamics that occur during epidermal differentiation and identifies the m6 A modification of Pvt1 as a key signaling event involved in skin tissue homeostasis and wound repair.
Collapse
Affiliation(s)
- Jimmy Lee
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Yuchen Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bryan T Harada
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yuanyuan Li
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Jing Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.,Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Zheng Y, Dubois W, Benham C, Batchelor E, Levens D. FUBP1 and FUBP2 enforce distinct epigenetic setpoints for MYC expression in primary single murine cells. Commun Biol 2020; 3:545. [PMID: 33005010 PMCID: PMC7530719 DOI: 10.1038/s42003-020-01264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Physiologically, MYC levels must be precisely set to faithfully amplify the transcriptome, but in cancer MYC is quantitatively misregulated. Here, we study the variation of MYC amongst single primary cells (B-cells and murine embryonic fibroblasts, MEFs) for the repercussions of variable cellular MYC-levels and setpoints. Because FUBPs have been proposed to be molecular “cruise controls” that constrain MYC expression, their role in determining basal or activated MYC-levels was also examined. Growing cells remember low and high-MYC setpoints through multiple cell divisions and are limited by the same expression ceiling even after modest MYC-activation. High MYC MEFs are enriched for mRNAs regulating inflammation and immunity. After strong stimulation, many cells break through the ceiling and intensify MYC expression. Lacking FUBPs, unstimulated MEFs express levels otherwise attained only with stimulation and sponsor MYC chromatin changes, revealed by chromatin marks. Thus, the FUBPs enforce epigenetic setpoints that restrict MYC expression. Ying Zheng et al. characterize MYC gene and protein expression in single mammalian cells in response to various external signals. They find that individual cells show either high or low basal MYC expression setpoints, and that adherence to these setpoints as well as the magnitude of the response of MYC to stimulation, is controlled by FUBP1 and FUBP2.
Collapse
Affiliation(s)
- Ying Zheng
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA
| | - Wendy Dubois
- Lab of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institutes, Bethesda, MD, USA
| | - Craig Benham
- Biomedical Engineering, University of California, Davis, CA, USA
| | - Eric Batchelor
- Masonic Cancer Center and Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Lab of Pathology, National Cancer Institutes, Bethesda, MD, USA.
| |
Collapse
|
7
|
Myc-Miz1 signaling promotes self-renewal of leukemia stem cells by repressing Cebpα and Cebpδ. Blood 2020; 135:1133-1145. [PMID: 32040550 PMCID: PMC9981456 DOI: 10.1182/blood.2019001863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 01/08/2020] [Indexed: 11/20/2022] Open
Abstract
c-Myc (Myc hereafter) is found to be deregulated and/or amplified in most acute myeloid leukemias (AMLs). Almost all AML cells are dependent upon Myc for their proliferation and survival. Thus, Myc has been proposed as a critical anti-AML target. Myc has Max-mediated transactivational and Myc-interacting zinc finger protein 1 (Miz1)-mediated transrepressional activities. The role of Myc-Max-mediated transactivation in the pathogenesis of AML has been well studied; however, the role of Myc-Miz1-mediated transrepression in AML is still somewhat obscure. Myc protein harboring a V394D mutation (MycV394D) is a mutant form of Myc that lacks transrepressional activity due to a defect in its ability to interact with Miz1. We found that, compared with Myc, the oncogenic function of MycV394D is significantly impaired. The AML/myeloproliferative disorder that develops in mice receiving MycV394D-transduced hematopoietic stem/progenitor cells (HSPCs) is significantly delayed compared with mice receiving Myc-transduced HSPCs. Using a murine MLL-AF9 AML model, we found that AML cells expressing MycV394D (intrinsic Myc deleted) are partially differentiated and show reductions in both colony-forming ability in vitro and leukemogenic capacity in vivo. The reduced frequency of leukemia stem cells (LSCs) among MycV394D-AML cells and their reduced leukemogenic capacity during serial transplantation suggest that Myc-Miz1 interaction is required for the self-renewal of LSCs. In addition, we found that MycV394D-AML cells are more sensitive to chemotherapy than are Myc-AML cells. Mechanistically, we found that Myc represses Miz1-mediated expression of CCAAT/enhancer-binding protein α (Cebpα) and Cebpδ, thus playing an important role in the pathogenesis of AML by maintaining the undifferentiated state and self-renewal capacity of LSCs.
Collapse
|
8
|
AL-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Genome-Wide Tiling Array Analysis of HPV-Induced Warts Reveals Aberrant Methylation of Protein-Coding and Non-Coding Regions. Genes (Basel) 2019; 11:E34. [PMID: 31892232 PMCID: PMC7017144 DOI: 10.3390/genes11010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
The human papillomaviruses (HPV) are a group of double-stranded DNA viruses that exhibit an exclusive tropism for squamous epithelia. HPV can either be low- or high-risk depending on its ability to cause benign lesions or cancer, respectively. Unsurprisingly, the majority of epigenetic research has focused on the high-risk HPV types, neglecting the low-risk types in the process. Therefore, the main objective of this study is to better understand the epigenetics of wart formation by investigating the differences in methylation between HPV-induced cutaneous warts and normal skin. A number of clear and very significant differences in methylation patterns were found between cutaneous warts and normal skin. Around 55% of the top-ranking 100 differentially methylated genes in warts were protein coding, including the EXOC4, KCNU, RTN1, LGI1, IRF2, and NRG1 genes. Additionally, non-coding RNA genes, such as the AZIN1-AS1, LINC02008, and MGC27382 genes, constituted 11% of the top-ranking 100 differentially methylated genes. Warts exhibited a unique pattern of methylation that is a possible explanation for their transient nature. Since the genetics of cutaneous wart formation are not completely known, the findings of the present study could contribute to a better understanding of how HPV infection modulates host methylation to give rise to warts in the skin.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Firas A. Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
9
|
Dave K, Sur I, Yan J, Zhang J, Kaasinen E, Zhong F, Blaas L, Li X, Kharazi S, Gustafsson C, De Paepe A, Månsson R, Taipale J. Mice deficient of Myc super-enhancer region reveal differential control mechanism between normal and pathological growth. eLife 2017; 6. [PMID: 28583252 PMCID: PMC5461110 DOI: 10.7554/elife.23382] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The gene desert upstream of the MYC oncogene on chromosome 8q24 contains susceptibility loci for several major forms of human cancer. The region shows high conservation between human and mouse and contains multiple MYC enhancers that are activated in tumor cells. However, the role of this region in normal development has not been addressed. Here we show that a 538 kb deletion of the entire MYC upstream super-enhancer region in mice results in 50% to 80% decrease in Myc expression in multiple tissues. The mice are viable and show no overt phenotype. However, they are resistant to tumorigenesis, and most normal cells isolated from them grow slowly in culture. These results reveal that only cells whose MYC activity is increased by serum or oncogenic driver mutations depend on the 8q24 super-enhancer region, and indicate that targeting the activity of this element is a promising strategy of cancer chemoprevention and therapy.
Collapse
Affiliation(s)
- Kashyap Dave
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Inderpreet Sur
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian Yan
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jilin Zhang
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eevi Kaasinen
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fan Zhong
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leander Blaas
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoze Li
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shabnam Kharazi
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ayla De Paepe
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Duperret EK, Dahal A, Ridky TW. Focal-adhesion-independent integrin-αv regulation of FAK and c-Myc is necessary for 3D skin formation and tumor invasion. J Cell Sci 2015; 128:3997-4013. [PMID: 26359297 DOI: 10.1242/jcs.175539] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022] Open
Abstract
Integrins play crucial roles in epithelial adhesion, proliferation, wound healing and cancer. In the epidermis, the roles of many integrin subunits are incompletely defined and mechanistic details regarding their functions are lacking. We performed a multiplexed small hairpin (sh)RNA screen to define roles for each subunit in human organotypic skin. We show that integrin-αv (also known as ITGAV) heterodimers are essential for epidermal generation, with integrin-αv loss driving a keratinocyte G1-S cell cycle block. Surprisingly, integrin αv is not localized within keratinocyte focal adhesions, and instead maintains proliferation by controlling cellular (c)-Myc translation through FAK, p38β and p90RSK1. These phenotypes depend only on the binding partners of integrin-αv--integrin β5 and integrin β6 (also known as ITGB5 and ITGB6, respectively). Through inducible depletion of integrin αv in both normal organotypic epidermis and Ras-driven invasive neoplasia, we show that integrin αv is required for de novo tissue generation and neoplastic invasion but that it is dispensable for epidermal maintenance. Heterodimers of integrin αv with integrin β5 (integrin αvβ5) or integrin β6 (integrin αvβ6) are required to similar extents for neoplastic invasion, thus identifying integrin αvβ5 and integrin αvβ6 heterodimers as potential therapeutic targets for epidermal squamous cell carcinoma.
Collapse
Affiliation(s)
- Elizabeth K Duperret
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, BRB 1010, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Ankit Dahal
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, BRB 1010, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Todd W Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, BRB 1010, 421 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Neidler S, Murphy DJ. Studying lung cancer progression: insights from genetically engineered mouse models of cancer. Lung Cancer Manag 2015. [DOI: 10.2217/lmt.15.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Sarah Neidler
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel J Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
12
|
REGγ is critical for skin carcinogenesis by modulating the Wnt/β-catenin pathway. Nat Commun 2015; 6:6875. [PMID: 25908095 DOI: 10.1038/ncomms7875] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
Here we report that mice deficient for the proteasome activator, REGγ, exhibit a marked resistance to TPA (12-O-tetradecanoyl-phorbol-13-acetate)-induced keratinocyte proliferation, epidermal hyperplasia and onset of papillomas compared with wild-type counterparts. Interestingly, a massive increase of REGγ in skin tissues or cells resulting from TPA induces activation of p38 mitogen-activated protein kinase (MAPK/p38). Blocking p38 MAPK activation prevents REGγ elevation in HaCaT cells with TPA treatment. AP-1, the downstream effector of MAPK/p38, directly binds to the REGγ promoter and activates its transcription in response to TPA stimulation. Furthermore, we find that REGγ activates Wnt/β-catenin signalling by degrading GSK-3β in vitro and in cells, increasing levels of CyclinD1 and c-Myc, the downstream targets of β-catenin. Conversely, MAPK/p38 inactivation or REGγ deletion prevents the increase of cyclinD1 and c-Myc by TPA. This study demonstrates that REGγ acts in skin tumorigenesis mediating MAPK/p38 activation of the Wnt/β-catenin pathway.
Collapse
|
13
|
Kim T, Jeon YJ, Cui R, Lee JH, Peng Y, Kim SH, Tili E, Alder H, Croce CM. Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. J Natl Cancer Inst 2015; 107:dju505. [PMID: 25663692 DOI: 10.1093/jnci/dju505] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The functions of long noncoding RNAs (lncRNAs) have been identified in several cancers, but the roles of lncRNAs in colorectal cancer (CRC) are less well understood. The transcription factor MYC is known to regulate lncRNAs and has been implicated in cancer cell proliferation and tumorigenesis. METHODS CRC cells and tissues were profiled to identify lncRNAs differentially expressed in CRC, from which we further selected MYC-regulated lncRNAs. We used luciferase promoter assay, ChIP, RNA pull-down assay, deletion mapping assay, LC-MS/MS and RNA immunoprecipitation to determine the mechanisms of MYC regulation of lncRNAs. Moreover, soft agar assay and in vivo xenograft experiments (four athymic nude mice per group) provided evidence of MYC-regulated lncRNAs in cancer cell transformation and tumorigenesis. The Kaplan-Meier method was used for survival analyses. All statistical tests were two-sided. RESULTS We identified lncRNAs differentially expressed in CRC (P < .05, greater than two-fold) and verified four lncRNAs upregulated and two downregulated in CRC cells and tissues. We further identified MYC-regulated lncRNAs, named MYCLos. The MYC-regulated MYCLos may function in cell proliferation and cell cycle by regulating MYC target genes such as CDKN1A (p21) and CDKN2B (p15), suggesting new regulatory mechanisms of MYC-repressed target genes through lncRNAs. RNA binding proteins including HuR and hnRNPK are involved in the function of MYCLos by interacting with MYCLo-1 and MYCLo-2, respectively. Knockdown experiments also showed that MYCLo-2, differentially expressed not only in CRC but also in prostate cancer, has a role in cancer transformation and tumorigenesis. CONCLUSIONS Our results provide novel regulatory mechanisms in MYC function through lncRNAs and new potential lncRNA targets of CRC.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK)
| | - Young-Jun Jeon
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK)
| | - Ri Cui
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK)
| | - Ji-Hoon Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK)
| | - Yong Peng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK)
| | - Sung-Hak Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK)
| | - Esmerina Tili
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK)
| | - Hansjuerg Alder
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK)
| | - Carlo M Croce
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (TK); Department of Molecular Virology, Immunology and Medical Genetics (TK, YJJ, RC, ET, HA, CMC), Department of Neurological Surgery (SHK), and Department of Anesthesiology (ET), Wexner Medical Center, The Ohio State University, OH; School of Biological Sciences, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul, Republic of Korea (JHL); State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (YP); School of Life Sciences and Biotechnology, Korea University, Republic of Korea (SHK).
| |
Collapse
|
14
|
Haematopoietic cell-derived Jnk1 is crucial for chronic inflammation and carcinogenesis in an experimental model of liver injury. J Hepatol 2015; 62:140-9. [PMID: 25173965 DOI: 10.1016/j.jhep.2014.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/02/2014] [Accepted: 08/18/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Chronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signalling pathways. Of particular interest is the interaction between mechanisms controlled by IKKγ/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMO(Δhepa)), a genetic model of chronic inflammatory liver injury. METHODS We generated Jnk1(-/-)/NEMO(Δhepa) and Jnk2(-/-)/NEMO(Δhepa) mice by crossing NEMO(Δhepa) mice with Jnk1 and Jnk2 global deficient animals, respectively, and examined the progression of chronic liver disease. Moreover, we investigated the expression of Jnk during acute liver injury, evaluated the role of Jnk1 in bone marrow-derived cells, and analysed the expression of NEMO and p-JNK in human diseased-livers. RESULTS Deletion of Jnk1 significantly aggravated the progression of liver disease, exacerbating apoptosis, compensatory proliferation and carcinogenesis in NEMO(Δhepa) mice. Conversely, Jnk2(-/-)/NEMO(Δhepa) displayed hepatic inflammation. By using bone marrow transfer, we observed that Jnk1 in haematopoietic cells had an impact on the progression of chronic liver disease in NEMO(Δhepa) livers. These findings are of clinical relevance since NEMO expression was downregulated in hepatocytes of patients with HCC whereas NEMO and p-JNK were expressed in a large amount of infiltrating cells. CONCLUSIONS A synergistic function of Jnk1 in haematopoietic cells and hepatocytes might be relevant for the development of chronic liver injury. These results elucidate the complex function of Jnk in chronic inflammatory liver disease.
Collapse
|
15
|
Peter S, Bultinck J, Myant K, Jaenicke LA, Walz S, Müller J, Gmachl M, Treu M, Boehmelt G, Ade CP, Schmitz W, Wiegering A, Otto C, Popov N, Sansom O, Kraut N, Eilers M. Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase. EMBO Mol Med 2014; 6:1525-41. [PMID: 25253726 PMCID: PMC4287973 DOI: 10.15252/emmm.201403927] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 07/30/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022] Open
Abstract
Deregulated expression of MYC is a driver of colorectal carcinogenesis, necessitating novel strategies to inhibit MYC function. The ubiquitin ligase HUWE1 (HECTH9, ARF-BP1, MULE) associates with both MYC and the MYC-associated protein MIZ1. We show here that HUWE1 is required for growth of colorectal cancer cells in culture and in orthotopic xenograft models. Using high-throughput screening, we identify small molecule inhibitors of HUWE1, which inhibit MYC-dependent transactivation in colorectal cancer cells, but not in stem and normal colon epithelial cells. Inhibition of HUWE1 stabilizes MIZ1. MIZ1 globally accumulates on MYC target genes and contributes to repression of MYC-activated target genes upon HUWE1 inhibition. Our data show that transcriptional activation by MYC in colon cancer cells requires the continuous degradation of MIZ1 and identify a novel principle that allows for inhibition of MYC function in tumor cells.
Collapse
Affiliation(s)
- Stefanie Peter
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jennyfer Bultinck
- Cytokine Receptor Lab, Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | - Laura A Jaenicke
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Susanne Walz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Judith Müller
- Department of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael Gmachl
- Department Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Matthias Treu
- Department Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Guido Boehmelt
- Department Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Carsten P Ade
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Armin Wiegering
- Department of General, Visceral, Vascular and Paediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Vascular and Paediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Nikita Popov
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | - Norbert Kraut
- Department Lead Discovery, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Cialfi S, Palermo R, Manca S, De Blasio C, Vargas Romero P, Checquolo S, Bellavia D, Uccelletti D, Saliola M, D'Alessandro A, Zolla L, Gulino A, Screpanti I, Talora C. Loss of Notch1-dependent p21(Waf1/Cip1) expression influences the Notch1 outcome in tumorigenesis. Cell Cycle 2014; 13:2046-55. [PMID: 24801890 DOI: 10.4161/cc.29079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor-suppressor and oncogenic components. In this study we investigated the effects of reactive oxygen species (ROS) on Notch1 signaling outcome in keratinocyte biology. We demonstrate that Notch1 function contributes to the arsenic-induced keratinocyte transformation. We found that acute exposure to arsenite increases oxidative stress and inhibits proliferation of keratinocyte cells by upregulation of p21(waf1/Cip1). The necessity of p21(waf1/Cip1) for arsenite-induced cell death was demonstrated by targeted downregulation of p21(waf1/Cip1) by using RNA interference. We further demonstrated that on acute exposure to arsenite, p21(waf1/Cip1) is upregulated and Notch1 downmodulated, whereas on chronic exposure to arsenite, malignant progression of arsenite-treated keratinocytes cells was accompanied by regained expression and activity of Notch1. Notch1 activity in arsenite-transformed keratinocytes inhibits arsenite-induced upregulation of p21(waf1/Cip1) by sustaining c-myc expression. We further demonstrated that c-myc collaborates with Nrf2, a key regulator for the maintenance of redox homeostasis, to promote metabolic activities that support cell proliferation and cytoprotection. Therefore, Notch1-mediated repression of p21(waf1/Cip1) expression results in the inhibition of cell death and keratinocytes transformation. Our results not only demonstrate that sustained Notch1 expression is at least one key event implicated in the arsenite human skin carcinogenic effect, but also may provide mechanistic insights into the molecular aspects that determine whether Notch signaling will be either oncogenic or tumor suppressive.
Collapse
Affiliation(s)
- Samantha Cialfi
- Department of Molecular Medicine; Sapienza University of Rome; Rome, Italy
| | - Rocco Palermo
- Center for Life Nanosciences at Sapienza; Istituto Italiano di Tecnologia; Rome, Italy
| | - Sonia Manca
- Department of Molecular Medicine; Sapienza University of Rome; Rome, Italy
| | - Carlo De Blasio
- Department of Molecular Medicine; Sapienza University of Rome; Rome, Italy
| | | | - Saula Checquolo
- Department of Biotechnology and Medical-Surgical Sciences; Sapienza University; Latina, Italy
| | - Diana Bellavia
- Department of Molecular Medicine; Sapienza University of Rome; Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin"; Sapienza University of Rome; Rome, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology "C. Darwin"; Sapienza University of Rome; Rome, Italy
| | - Angelo D'Alessandro
- Department of Ecological and Biological Sciences; University of Tuscia; Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences; University of Tuscia; Viterbo, Italy
| | - Alberto Gulino
- Department of Molecular Medicine; Sapienza University of Rome; Rome, Italy; Center for Life Nanosciences at Sapienza; Istituto Italiano di Tecnologia; Rome, Italy; Neuromed Institute; Pozzilli, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine; Sapienza University of Rome; Rome, Italy
| | - Claudio Talora
- Department of Molecular Medicine; Sapienza University of Rome; Rome, Italy
| |
Collapse
|
17
|
Wolf E, Gebhardt A, Kawauchi D, Walz S, von Eyss B, Wagner N, Renninger C, Krohne G, Asan E, Roussel MF, Eilers M. Miz1 is required to maintain autophagic flux. Nat Commun 2014; 4:2535. [PMID: 24088869 DOI: 10.1038/ncomms3535] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023] Open
Abstract
Miz1 is a zinc finger protein that regulates the expression of cell cycle inhibitors as part of a complex with Myc. Cell cycle-independent functions of Miz1 are poorly understood. Here we use a Nestin-Cre transgene to delete an essential domain of Miz1 in the central nervous system (Miz1(ΔPOZNes)). Miz1(ΔPOZNes) mice display cerebellar neurodegeneration characterized by the progressive loss of Purkinje cells. Chromatin immunoprecipitation sequencing and biochemical analyses show that Miz1 activates transcription upon binding to a non-palindromic sequence present in core promoters. Target genes of Miz1 encode regulators of autophagy and proteins involved in vesicular transport that are required for autophagy. Miz1(ΔPOZ) neuronal progenitors and fibroblasts show reduced autophagic flux. Consistently, polyubiquitinated proteins and p62/Sqtm1 accumulate in the cerebella of Miz1(ΔPOZNes) mice, characteristic features of defective autophagy. Our data suggest that Miz1 may link cell growth and ribosome biogenesis to the transcriptional regulation of vesicular transport and autophagy.
Collapse
Affiliation(s)
- Elmar Wolf
- 1] Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany [2]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The MYC oncogene family in human cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
19
|
Wiese KE, Walz S, von Eyss B, Wolf E, Athineos D, Sansom O, Eilers M. The role of MIZ-1 in MYC-dependent tumorigenesis. Cold Spring Harb Perspect Med 2013; 3:a014290. [PMID: 24296348 PMCID: PMC3839600 DOI: 10.1101/cshperspect.a014290] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A hallmark of MYC-transformed cells is their aberrant response to antimitogenic signals. Key examples include the inability of MYC-transformed cells to arrest proliferation in response to antimitogenic signals such as TGF-β or DNA damage and their inability to differentiate into adipocytes in response to hormonal stimuli. Given the plethora of antimitogenic signals to which a tumor cell is exposed, it is likely that the ability to confer resistance to these signals is central to the transforming properties of MYC in vivo. At the same time, the inability of MYC-transformed cells to halt cell-cycle progression on stress may establish a dependence on mutations that impair or disable apoptosis. We propose that the interaction of MYC with the zinc finger protein MIZ-1 mediates resistance to antimitogenic signals. In contrast to other interactions of MYC, there is currently little evidence that MIZ-1 associates with MYC in normal, unperturbed cells. The functional interaction of both proteins becomes apparent at oncogenic expression levels of MYC and association with MIZ-1 mediates both oncogenic functions of MYC as well as tumor-suppressive responses to oncogenic levels of MYC.
Collapse
Affiliation(s)
- Katrin E Wiese
- Comprehensive Cancer Center Mainfranken and Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Law AL, Vehlow A, Kotini M, Dodgson L, Soong D, Theveneau E, Bodo C, Taylor E, Navarro C, Perera U, Michael M, Dunn GA, Bennett D, Mayor R, Krause M. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol 2013; 203:673-89. [PMID: 24247431 PMCID: PMC3840943 DOI: 10.1083/jcb.201304051] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022] Open
Abstract
Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd's Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.
Collapse
Affiliation(s)
- Ah-Lai Law
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Anne Vehlow
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Maria Kotini
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Lauren Dodgson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Daniel Soong
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Cristian Bodo
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eleanor Taylor
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Christel Navarro
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Upamali Perera
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Magdalene Michael
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Graham A. Dunn
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Matthias Krause
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| |
Collapse
|
21
|
Drosten M, Lechuga CG, Barbacid M. Genetic analysis of Ras genes in epidermal development and tumorigenesis. Small GTPases 2013; 4:236-41. [PMID: 24150175 DOI: 10.4161/sgtp.26905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Oncology Programme; Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid, Spain
| | - Carmen G Lechuga
- Molecular Oncology Programme; Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid, Spain
| | - Mariano Barbacid
- Molecular Oncology Programme; Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid, Spain
| |
Collapse
|
22
|
Abstract
The study of MYC has led to pivotal discoveries in cancer biology, induced pluripotency, and transcriptional regulation. In this review, continuing advances in our understanding of the function of MYC as a transcription factor and how its transcriptional activity controls normal vertebrate development and contributes to developmental disorders is discussed.
Collapse
Affiliation(s)
- Peter J Hurlin
- Shriners Hospitals for Children Portland, Portland, Oregon 97239
| |
Collapse
|
23
|
Inoue S, Hao Z, Elia AJ, Cescon D, Zhou L, Silvester J, Snow B, Harris IS, Sasaki M, Li WY, Itsumi M, Yamamoto K, Ueda T, Dominguez-Brauer C, Gorrini C, Chio IIC, Haight J, You-Ten A, McCracken S, Wakeham A, Ghazarian D, Penn LJZ, Melino G, Mak TW. Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev 2013; 27:1101-14. [PMID: 23699408 DOI: 10.1101/gad.214577.113] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling. Mule deficiency resulted in increased penetrance, number, and severity of skin tumors, which could be reversed by concomitant genetic knockout of c-Myc but not by knockout of p53 or p19Arf. Notably, in the absence of Mule, c-Myc/Miz1 transcriptional complexes accumulated, and levels of p21CDKN1A (p21) and p15INK4B (p15) were down-regulated. In vitro, Mule-deficient primary keratinocytes exhibited increased proliferation that could be reversed by Miz1 knockdown. Transfer of Mule-deficient transformed cells to nude mice resulted in enhanced tumor growth that again could be abrogated by Miz1 knockdown. Our data demonstrate in vivo that Mule suppresses Ras-mediated tumorigenesis by preventing an accumulation of c-Myc/Miz1 complexes that mediates p21 and p15 down-regulation.
Collapse
Affiliation(s)
- Satoshi Inoue
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Drosten M, Lechuga CG, Barbacid M. Ras signaling is essential for skin development. Oncogene 2013; 33:2857-65. [PMID: 23831572 DOI: 10.1038/onc.2013.254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/03/2013] [Accepted: 06/03/2013] [Indexed: 12/30/2022]
Abstract
Proliferation in the epidermis is a tightly controlled process. During skin development, epidermis formation and hair follicle morphogenesis crucially depend on the regulated balance between proliferation and differentiation. Here we deleted all three Ras loci (H-Ras, N-Ras and K-Ras) from keratinocytes in vitro as well as specifically from the epidermis in mice using a K5Cre strain. Upon Ras elimination, keratinocytes ceased proliferation and entered into senescence without any signs of apoptosis induction. Constitutive activation of the mitogen-activated protein kinase pathway was able to partially rescue the proliferative defects. In mice, Ras signaling was essential for proper development of the epidermis and hair follicles. Deletion of the three Ras loci during epidermis formation in mouse embryos caused a dramatic decrease in proliferation, resulting in a substantially thinner epidermis and delayed appearance of differentiation markers. We could not detect apoptotic or senescent cells in these embryos suggesting that loss of Ras protein expression only leads to severe hypoproliferation. These observations provide genetic evidence for an essential role of Ras proteins in the control of keratinocyte and epidermal proliferation.
Collapse
Affiliation(s)
- M Drosten
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Spanish National Cancer Research Center, Madrid, Spain
| | - C G Lechuga
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Spanish National Cancer Research Center, Madrid, Spain
| | - M Barbacid
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Spanish National Cancer Research Center, Madrid, Spain
| |
Collapse
|
25
|
Tokarsky-Amiel R, Azazmeh N, Helman A, Stein Y, Hassan A, Maly A, Ben-Porath I. Dynamics of senescent cell formation and retention revealed by p14ARF induction in the epidermis. Cancer Res 2013; 73:2829-39. [PMID: 23423975 DOI: 10.1158/0008-5472.can-12-3730] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular senescence, a state of cell-cycle arrest accompanied by dramatic morphologic and metabolic changes, is a central means by which cells respond to physiologic stress and oncogene activity. Senescence is thought to play important roles in aging and in tumor suppression, yet the dynamics by which senescent cells are formed, their effects on tissue function and their eventual fate are poorly understood. To study cellular senescence within an adult tissue, we developed transgenic mice inducibly expressing p14(ARF) (human ortholog of murine p19(ARF)), a central activator of senescence. Induction of p14(ARF) in the epidermis rapidly led to widespread apoptosis and cell-cycle arrest, a stage that was transient, and was followed by p53-dependent cellular senescence. The endogenous Cdkn2a products p19(ARF) and p16(Ink4a) were activated by the transgenic p14(ARF) through p53, revealing a senescence-promoting feed-forward loop. Commitment of cells to senescence required continued p14(ARF) expression, indicating that entry into this state depends on a persistent signal. However, once formed, senescent cells were retained in the epidermis, often for weeks after transgene silencing, indicating an absence of an efficient rapidly acting mechanism for their removal. Stem cells in the hair follicle bulge were largely protected from apoptosis upon p14(ARF) induction, but irreversibly lost their ability to proliferate and initiate follicle growth. Interestingly, induction of epidermal hyperplasia prevented the appearance of senescent cells upon p14(ARF) induction. Our findings provide basic insights into the dynamics of cellular senescence, a central tumor- suppressive mechanism, and reveal the potential for prolonged retention of senescent cells within tissues.
Collapse
Affiliation(s)
- Ronit Tokarsky-Amiel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research-Israel-Canada, Hadassah School of Medicine, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Ridgway RA, Serrels B, Mason S, Kinnaird A, Muir M, Patel H, Muller WJ, Sansom OJ, Brunton VG. Focal adhesion kinase is required for β-catenin-induced mobilization of epidermal stem cells. Carcinogenesis 2012; 33:2369-76. [PMID: 22971575 DOI: 10.1093/carcin/bgs284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates signals downstream of integrin and growth factor activation. Previously, we have shown that skin-specific loss of fak prevents chemically induced skin carcinogenesis in mice following phorbol ester treatment. In this study, we show that skin-specific deletion of fak prevents mobilization of stem cells within the bulge region of the hair follicle, which are the precursors of papillomas following phorbol ester treatment. We also show that phorbol ester treatment results in activation of-catenin within the skin and that FAK is required for β-catenin-induced stem cell mobilization. In addition, inhibition of Src kinase activity, a major binding partner of FAK also prevents stem cell mobilization. We show that FAK is required for the nuclear localization of β-catenin in the skin following phorbol ester treatment and the transcriptional activation of the β-catenin target gene c-Myc. This provides the first evidence of cross-talk between integrin and Wnt signalling pathways in the control of epidermal stem cells and the early events associated with skin carcinogenesis.
Collapse
Affiliation(s)
- Rachel A Ridgway
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gandarillas A. The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint. Cell Cycle 2012; 11:4507-16. [PMID: 23114621 PMCID: PMC3562294 DOI: 10.4161/cc.22529] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fifteen years ago, we reported that proto-oncogene MYC promoted differentiation of human epidermal stem cells, a finding that was surprising to the MYC and the skin research communities. MYC was one of the first human oncogenes identified, and it had been strongly associated with proliferation. However, it was later shown that MYC could induce apoptosis under low survival conditions. Currently, the notion that MYC promotes epidermal differentiation is widely accepted, but the cell cycle mechanisms that elicit this function remain unresolved. We have recently reported that keratinocytes respond to cell cycle deregulation and DNA damage by triggering terminal differentiation. This mechanism might constitute a homeostatic protection face to cell cycle insults. Here, I discuss recent and not-so-recent evidence suggesting the existence of a largely unexplored oncogene-induced differentiation response (OID) analogous to oncogene-induced apoptosis (OIA) or senescence (OIS). In addition, I propose a model for the role of the cell cycle in skin homeostasis maintenance and for the dual role of MYC in differentiation.
Collapse
Affiliation(s)
- Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Spain.
| |
Collapse
|
29
|
Patched knockout mouse models of Basal cell carcinoma. J Skin Cancer 2012; 2012:907543. [PMID: 23024864 PMCID: PMC3449132 DOI: 10.1155/2012/907543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/06/2012] [Indexed: 01/22/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common human tumor. Mutations in the hedgehog (HH) receptor Patched (PTCH) are the main cause of BCC. Due to their high and increasing incidence, BCC are becoming all the more important for the health care system. Adequate animal models are required for the improvement of current treatment strategies. A good model should reflect the situation in humans (i.e., BCC initiation due to Ptch mutations on an immunocompetent background) and should allow for (i) BCC induction at a defined time point, (ii) analysis of defined BCC stages, and (iii) induction of BCC in 100% of animals. In addition, it should be easy to handle. Here, we compare several currently existing conventional and conditional Ptch knockout mouse models for BCC and their potential use in preclinical research. In addition, we provide new data using conditional Ptchflox/flox mice and the K5-Cre-ERT+/− driver.
Collapse
|
30
|
TRADD contributes to tumour suppression by regulating ULF-dependent p19Arf ubiquitylation. Nat Cell Biol 2012; 14:625-33. [DOI: 10.1038/ncb2496] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/03/2012] [Indexed: 12/11/2022]
|
31
|
Hönnemann J, Sanz-Moreno A, Wolf E, Eilers M, Elsässer HP. Miz1 is a critical repressor of cdkn1a during skin tumorigenesis. PLoS One 2012; 7:e34885. [PMID: 22509363 PMCID: PMC3324535 DOI: 10.1371/journal.pone.0034885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 03/08/2012] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Miz1 forms repressive DNA-binding complexes with the Myc, Gfi-1 and Bcl-6 oncoproteins. Known target genes of these complexes encode the cyclin-dependent kinase inhibitors (CKIs) cdkn2b (p15Ink4), cdkn1a (p21Cip1), and cdkn1c (p57Kip2). Whether Miz1-mediated repression is important for control of cell proliferation in vivo and for tumor formation is unknown. Here we show that deletion of the Miz1 POZ domain, which is critical for Miz1 function, restrains the development of skin tumors in a model of chemically-induced, Ras-dependent tumorigenesis. While the stem cell compartment appears unaffected, interfollicular keratinocytes lacking functional Miz1 exhibit a reduced proliferation and an accelerated differentiation of the epidermis in response to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Tumorigenesis, proliferation and normal differentiation are restored in animals lacking cdkn1a, but not in those lacking cdkn2b. Our data demonstrate that Miz1-mediated attenuation of cell cycle arrest pathways via repression of cdkn1a has a critical role during tumorigenesis in the skin.
Collapse
Affiliation(s)
- Jan Hönnemann
- Department of Cytobiology, Philipps-University Marburg, Germany
| | | | - Elmar Wolf
- Theodor-Boveri-Institute, Biocentre, University of Würzburg, Germany
| | - Martin Eilers
- Theodor-Boveri-Institute, Biocentre, University of Würzburg, Germany
| | | |
Collapse
|
32
|
Abstract
The (c-)Myc oncoprotein and its cousins, the N-Myc and L-Myc proteins, show all hallmarks of transcriptional activator proteins: Myc carries a carboxy-terminal DNA binding domain, which mediates sequence-specific binding to DNA. At its amino-terminus, Myc carries a transcriptional regulatory domain that strongly activates transcription when fused to an ectopic DNA binding domain; moreover, the strength of activation of different members of the Myc family correlates with their ability to transform rodent cells. Furthermore, activation of conditional alleles of Myc, either tetracycline or estrogen inducible, upregulates expression of a large number of genes, both in tissue culture and in transgenic animals. Indeed, many of these genes have essential roles in cell proliferation, cell growth, and metabolism; two of them, odc, encoding ornithine decarboxylase, a rate-limiting enzyme of polyamine biosynthesis, and rpl24, encoding a constituent of the large ribosomal subunit, are haploinsufficient for Myc-induced lymphomagenesis but not for normal development, arguing very strongly that upregulation of both genes is critical for Myc-dependent tumor formation. Undoubtedly, therefore, Myc exerts part of its biological activities via transcriptional upregulation of a large number of target genes. One of the key issues in the field is whether there are additional biochemical activities of the Myc protein and, if so, whether and how they contribute to Myc biology. This review summarizes evidence demonstrating that Myc has the ability to repress transcription and that this may be an important function during oncogenic transformation.
Collapse
Affiliation(s)
- Barbara Herkert
- Theodor-Boveri-Institute, Biozentrum, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
33
|
Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI, Soucek L, Nasi S. The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS One 2011; 6:e22284. [PMID: 21811581 PMCID: PMC3141027 DOI: 10.1371/journal.pone.0022284] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 06/23/2011] [Indexed: 01/03/2023] Open
Abstract
Recent evidence points to Myc--a multifaceted bHLHZip transcription factor deregulated in the majority of human cancers--as a priority target for therapy. How to target Myc is less clear, given its involvement in a variety of key functions in healthy cells. Here we report on the action mechanism of the Myc interfering molecule termed Omomyc, which demonstrated astounding therapeutic efficacy in transgenic mouse cancer models in vivo. Omomyc action is different from the one that can be obtained by gene knockout or RNA interference, approaches designed to block all functions of a gene product. This molecule--instead--appears to cause an edge-specific perturbation that destroys some protein interactions of the Myc node and keeps others intact, with the result of reshaping the Myc transcriptome. Omomyc selectively targets Myc protein interactions: it binds c- and N-Myc, Max and Miz-1, but does not bind Mad or select HLH proteins. Specifically, it prevents Myc binding to promoter E-boxes and transactivation of target genes while retaining Miz-1 dependent binding to promoters and transrepression. This is accompanied by broad epigenetic changes such as decreased acetylation and increased methylation at H3 lysine 9. In the presence of Omomyc, the Myc interactome is channeled to repression and its activity appears to switch from a pro-oncogenic to a tumor suppressive one. Given the extraordinary therapeutic impact of Omomyc in animal models, these data suggest that successfully targeting Myc for cancer therapy might require a similar twofold action, in order to prevent Myc/Max binding to E-boxes and, at the same time, keep repressing genes that would be repressed by Myc.
Collapse
Affiliation(s)
- Mauro Savino
- Consiglio Nazionale delle Ricerche - Istituto di Biologia e Patologia Molecolari (CNR – IBPM), Dipartimento di Biologia e Biotecnologie, Università Sapienza, Roma, Italia
| | - Daniela Annibali
- Consiglio Nazionale delle Ricerche - Istituto di Biologia e Patologia Molecolari (CNR – IBPM), Dipartimento di Biologia e Biotecnologie, Università Sapienza, Roma, Italia
| | - Nicoletta Carucci
- Consiglio Nazionale delle Ricerche - Istituto di Biologia e Patologia Molecolari (CNR – IBPM), Dipartimento di Biologia e Biotecnologie, Università Sapienza, Roma, Italia
| | - Emilia Favuzzi
- Consiglio Nazionale delle Ricerche - Istituto di Biologia e Patologia Molecolari (CNR – IBPM), Dipartimento di Biologia e Biotecnologie, Università Sapienza, Roma, Italia
| | - Michael D. Cole
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Gerard I. Evan
- Department of Pathology, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Laura Soucek
- Department of Pathology, University of California San Francisco (UCSF), San Francisco, California, United States of America
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sergio Nasi
- Consiglio Nazionale delle Ricerche - Istituto di Biologia e Patologia Molecolari (CNR – IBPM), Dipartimento di Biologia e Biotecnologie, Università Sapienza, Roma, Italia
- * E-mail:
| |
Collapse
|
34
|
Kloet DEA, Burgering BMT. The PKB/FOXO switch in aging and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1926-37. [PMID: 21539865 DOI: 10.1016/j.bbamcr.2011.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/01/2011] [Accepted: 04/13/2011] [Indexed: 12/23/2022]
Abstract
Aging is characterized by the general decline in tissue and body function and the increased susceptibility to age-related pathologies, such as cancer. To maintain optimal tissue and body function, organisms have developed complex mechanisms for tissue homeostasis. Importantly, it is becoming apparent that these same mechanisms when deregulated also result in the development of age-related disease. The build in fail safe mechanisms of homeostasis, which prevent skewing toward disease, themselves contribute to aspects of aging. Thus, longevity is limited by an intrinsic trade-off between optimal tissue function and disease. Consequently, aging and age-related diseases, such as cancer and diabetes are driven by the same genetic determinants. Illustrative in this respect is the insulin/IGF-1 signaling pathway acting through PI3K/PKB and FOXO. Loss of PKB signaling contributes to diabetes, whereas gain of function of PKB drives cancer. Enhanced FOXO activity, at least in model organism contributes to extended lifespan and acts as a tumor suppressive mechanism. Here, we focus on the linkage between PKB and FOXO as a central switch in contributing to tissue homeostasis and age-related diseases in particular cancer. This article is part of a Special Issue entitled: P13K-AKT-FoxO axis in cancer and aging.
Collapse
Affiliation(s)
- David E A Kloet
- Medical Cancer Research, University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|
35
|
Cole AM, Ridgway RA, Derkits SE, Parry L, Barker N, Clevers H, Clarke AR, Sansom OJ. p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Mol Med 2010; 2:472-86. [PMID: 20976827 PMCID: PMC3394507 DOI: 10.1002/emmm.201000101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 12/21/2022] Open
Abstract
Senescence has been implicated as an important mechanism of tumour suppression in a number of human malignancies, including colorectal cancer (CRC). However, we still have a relatively poor understanding of how the underlying mutations that occur in cancer cause senescence and its relevance in vivo. The Apc gene is mutated in approximately 80% of CRC as the initiating event, but rarely elsewhere. In this study we have examined the capacity of Apc loss to induce senescence in the intestinal epithelium compared to the renal epithelium. Within the renal epithelium, loss of Apc function led to an induction of senescence, however, bypassing senescence through combined Apc and p21 or Ink4A gene deletion rapidly initiated renal carcinoma. Within the intestinal epithelium, loss of Apc did not induce senescence. Moreover, combined Apc and p21 or Ink4A loss had no impact upon tumourigenesis. Taken together, these results show that Apc loss in vivo invokes a senescence program in a context-dependent fashion, and implies senescence may play a key barrier to tumourigenesis in the kidney. However, in CRC, escape from senescence is likely to only be a barrier in cancers initiated by other mutations.
Collapse
Affiliation(s)
| | | | | | - Lee Parry
- School of Biosciences, University of CardiffCardiff, UK
| | - Nick Barker
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre UtrechtUtrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre UtrechtUtrecht, Netherlands
| | - Alan R Clarke
- School of Biosciences, University of CardiffCardiff, UK
| | | |
Collapse
|
36
|
Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D)-induced skin carcinogenesis in vivo. PLoS One 2010; 5:e13578. [PMID: 21042537 PMCID: PMC2962652 DOI: 10.1371/journal.pone.0013578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 09/22/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic Kras(G12D) mice with ablation of Notch1 and/or Notch2. METHODOLOGY/PRINCIPAL FINDINGS Surprisingly, mice with activated Kras(G12D) and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities. CONCLUSIONS/SIGNIFICANCE Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.
Collapse
|
37
|
Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 2010; 21:855-63. [PMID: 20837152 DOI: 10.1016/j.semcdb.2010.09.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
Canonical Wnt signaling supports the formation and maintenance of stem and cancer stem cells. Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, and allow a first assessment how embryonic and tissue stem cells are generated and maintained, and how Wnt signaling might be involved. The core of this review highlights the roles of Wnt signaling in stem and cancer stem cells of tissues such as skin, intestine and mammary gland. Lastly, we refer to the characterization of novel and powerful inhibitors of canonical Wnt signaling and describe attempts to bring these compounds into preclinical and clinical studies.
Collapse
Affiliation(s)
- Peter Wend
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|
38
|
Prathapam T, Aleshin A, Guan Y, Gray JW, Martin GS. p27Kip1 mediates addiction of ovarian cancer cells to MYCC (c-MYC) and their dependence on MYC paralogs. J Biol Chem 2010; 285:32529-38. [PMID: 20647308 DOI: 10.1074/jbc.m110.151902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The MYCC (c-MYC) gene is amplified in 30-60% of human ovarian cancers. We assessed the functional significance of MYCC amplification by siRNA inhibition of MYCC or MYC paralogs in a panel of ovarian cancer cell lines expressing varying levels of MYCC. Inactivation of MYCC inhibited cell proliferation and induced replicative senescence only in lines with amplified MYCC, indicating that these cells are addicted to continued MYCC overexpression. In contrast, siRNA knockdown of all three MYC isoforms inhibited proliferation of MYCC non-amplified ovarian cancer cells without inducing replicative senescence, and did not inhibit the proliferation of telomerase-immortalized ovarian surface epithelial cells. The arrest induced by MYCC knockdown was accompanied by an increase in the level of the Cdk inhibitor p27(Kip1) and a decrease in cyclin A expression and Cdk2 activity, and could be reversed by RNAi knockdown of p27(Kip1) or Rb, or by overexpression of cyclin A/Cdk2. The arrest induced by knockdown of all three MYC isoforms could similarly be reversed by p27(Kip1) knockdown. Our findings indicate that the addiction of MYCC-amplified ovarian cancer cells to MYCC differs from the dependence of MYCC non-amplified cancer cells on MYC paralogs, but both are mediated, at least in part, by p27(Kip1). They also suggest that growth of ovarian cancers may be blocked by inhibition of MYCC or MYC paralogs.
Collapse
Affiliation(s)
- Tulsiram Prathapam
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
39
|
Pal D, Banerjee S, Mukherjee S, Roy A, Panda CK, Das S. Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: Downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. J Dermatol Sci 2010; 59:31-9. [DOI: 10.1016/j.jdermsci.2010.04.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/19/2010] [Accepted: 04/26/2010] [Indexed: 02/02/2023]
|
40
|
van Riggelen J, Müller J, Otto T, Beuger V, Yetil A, Choi PS, Kosan C, Möröy T, Felsher DW, Eilers M. The interaction between Myc and Miz1 is required to antagonize TGFbeta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 2010; 24:1281-94. [PMID: 20551174 PMCID: PMC2885663 DOI: 10.1101/gad.585710] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Myc protein suppresses the transcription of several cyclin-dependent kinase inhibitors (CKIs) via binding to Miz1; whether this interaction is important for Myc's ability to induce or maintain tumorigenesis is not known. Here we show that the oncogenic potential of a point mutant of Myc (MycV394D) that is selectively deficient in binding to Miz1 is greatly attenuated. Binding of Myc to Miz1 is continuously required to repress CKI expression and inhibit accumulation of trimethylated histone H3 at Lys 9 (H3K9triMe), a hallmark of cellular senescence, in T-cell lymphomas. Lymphomas that arise express high amounts of transforming growth factor beta-2 (TGFbeta-2) and TGFbeta-3. Upon Myc suppression, TGFbeta signaling is required to induce CKI expression and cellular senescence and suppress tumor recurrence. Binding of Myc to Miz1 is required to antagonize growth suppression and induction of senescence by TGFbeta. We demonstrate that, since lymphomas express high levels of TGFbeta, they are poised to elicit an autocrine program of senescence upon Myc inactivation, demonstrating that TGFbeta is a key factor that establishes oncogene addiction of T-cell lymphomas.
Collapse
Affiliation(s)
- Jan van Riggelen
- Department of Medicine, Division of Oncology, Stanford University, School of Medicine, Stanford, California 94304, USA
- Department of Pathology, Division of Oncology, Stanford University, School of Medicine, Stanford, California 94304, USA
| | - Judith Müller
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Tobias Otto
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Vincent Beuger
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- TaconicArtemis GmbH, 51063 Koeln, Germany
| | - Alper Yetil
- Department of Medicine, Division of Oncology, Stanford University, School of Medicine, Stanford, California 94304, USA
- Department of Pathology, Division of Oncology, Stanford University, School of Medicine, Stanford, California 94304, USA
| | - Peter S. Choi
- Department of Medicine, Division of Oncology, Stanford University, School of Medicine, Stanford, California 94304, USA
- Department of Pathology, Division of Oncology, Stanford University, School of Medicine, Stanford, California 94304, USA
| | - Christian Kosan
- Institut de Recherches Cliniques de Montreal, Université de Montréal, Montreal, Québec H2W 1R7, Canada
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montreal, Université de Montréal, Montreal, Québec H2W 1R7, Canada
| | - Dean W. Felsher
- Department of Medicine, Division of Oncology, Stanford University, School of Medicine, Stanford, California 94304, USA
- Department of Pathology, Division of Oncology, Stanford University, School of Medicine, Stanford, California 94304, USA
- E-MAIL ; FAX (650) 725-1420
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Corresponding authors.E-MAIL ; FAX 49-9031-3184113
| |
Collapse
|
41
|
Soucek L, Evan GI. The ups and downs of Myc biology. Curr Opin Genet Dev 2009; 20:91-5. [PMID: 19962879 DOI: 10.1016/j.gde.2009.11.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 12/17/2022]
Abstract
The basic helix-loop-helix protein Myc is a renowned transcription factor controlling disparate aspects of cell physiology that, together, allow efficient proliferation of somatic cells. This ability, together with the observation that its deregulated expression occurs in the majority of human cancers, suggests that Myc could be a good therapeutic target. However, several aspects of Myc biology remain elusive: what is the major difference between oncogenic and physiological Myc? How does oncogenic Myc evade the intrinsic tumor surveillance pathways provided by evolution? If Myc inhibition were even possible, what would be the consequences for the homeostasis of normal proliferating tissues versus the fate of cancer cells? Here we summarize the latest works addressing these issues.
Collapse
Affiliation(s)
- Laura Soucek
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143-0502, USA.
| | | |
Collapse
|
42
|
Laurenti E, Wilson A, Trumpp A. Myc's other life: stem cells and beyond. Curr Opin Cell Biol 2009; 21:844-54. [PMID: 19836223 DOI: 10.1016/j.ceb.2009.09.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 12/17/2022]
Abstract
Over the last three decades genetic and biochemical studies have revealed the pleiotropic effects of the Myc oncoprotein. While cell line studies have defined the intracellular processes regulated by Myc such as proliferation, differentiation, and metabolic growth, in vivo studies have confirmed these functions, and revealed roles in acquisition and maintenance of stem cell properties. These roles may be partially mediated by Myc's capacity to modify the chromatin landscape on a global scale. Myc also regulates numerous protein-coding transcripts, and many noncoding RNAs (rRNAs, tRNAs, and miRNAs). As Myc activity directly correlates with protein expression, further complexity is provided by post-translational modifications that regulate Myc in normal stem cells or deregulate it in malignant stem cells.
Collapse
Affiliation(s)
- Elisa Laurenti
- Ludwig Institute for Cancer Research Ltd, Lausanne Branch, University of Lausanne, Switzerland
| | | | | |
Collapse
|
43
|
Abstract
Data recently published in BMC Biology provide insights into the normal physiological function of c-myc in the development and regeneration of the mammary gland and indicate a key role in epithelial cell proliferation, elaboration of ductal alveoli, and the biosynthetic capacity and milk production of the mature organ. See related research article
Collapse
Affiliation(s)
- Nicole M Sodir
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143-0502, USA
| | | |
Collapse
|
44
|
Stoelzle T, Schwarb P, Trumpp A, Hynes NE. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland. BMC Biol 2009; 7:63. [PMID: 19785743 PMCID: PMC2761394 DOI: 10.1186/1741-7007-7-63] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/28/2009] [Indexed: 11/11/2022] Open
Abstract
Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role for c-Myc in progenitor cell proliferation and/or survival. See related minireview by Evan et al:
Collapse
Affiliation(s)
- Tina Stoelzle
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
45
|
Mycko MP, Ferrero I, Wilson A, Jiang W, Bianchi T, Trumpp A, MacDonald HR. Selective requirement for c-Myc at an early stage of V(alpha)14i NKT cell development. THE JOURNAL OF IMMUNOLOGY 2009; 182:4641-8. [PMID: 19342639 DOI: 10.4049/jimmunol.0803394] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Valpha14 invariant (Valpha14i) NKT cells are a subset of regulatory T cells that utilize a semi-invariant TCR to recognize glycolipids associated with monomorphic CD1d molecules. During development in the thymus, CD4(+)CD8(+) Valpha14i NKT precursors recognizing endogenous CD1d-associated glycolipids on other CD4(+)CD8(+) thymocytes are selected to undergo a maturation program involving sequential expression of CD44 and NK-related markers such as NK1.1. The molecular requirements for Valpha14i NKT cell maturation, particularly at early developmental stages, remain poorly understood. In this study, we show that CD4-Cre-mediated T cell-specific inactivation of c-Myc, a broadly expressed transcription factor with a wide range of biological activities, selectively impairs Valpha14i NKT cell development without perturbing the development of conventional T cells. In the absence of c-Myc, Valpha14i NKT cell precursors are blocked at an immature CD44(low)NK1.1(-) stage in a cell autonomous fashion. Residual c-Myc-deficient immature Valpha14i NKT cells appear to proliferate normally, cannot be rescued by transgenic expression of BCL-2, and exhibit characteristic features of immature Valpha14i NKT cells such as high levels of preformed IL-4 mRNA and the transcription factor promyelocytic leukemia zinc finger. Collectively our data identify c-Myc as a critical transcription factor that selectively acts early in Valpha14i NKT cell development to promote progression beyond the CD44(low)NK1.1(-) precursor stage.
Collapse
Affiliation(s)
- Marcin P Mycko
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
It has been found that c-Myc protein plays a critical role in controlling self-renewal versus differentiation in hematopoietic stem cells. We report that c-Myc also controls the fate of megakaryocyte-erythrocyte progenitors through regulating the differentiation of erythroid and megakaryocytic progenitors. In addition to the significant reduction of granulocytes/macrophages and B and T lymphocytes because of the reduction of their corresponding progenitors, we found significantly increased numbers of megakaryocytic progenitors and mature megakaryocytes in bone marrow and spleens of c-Myc-knockout (c-Myc(-/-)) mice. Differentiation of erythrocytes was blocked at the erythroid progenitor stage. This increased megakaryocytopoiesis is a cell-intrinsic defect of c-Myc-mutant hematopoietic stem cells, as shown by transplantation studies. Furthermore, we found that c-Myc is required for polyploidy formation but not for cytoplasmic maturation of megakaryocytes. Megakaryocytes from c-Myc(-/-) mice are significantly smaller in size and lower in ploidy than those of control mice; however, because of the dramatic increase in megakaryocyte number, although fewer platelets are produced by each megakaryocyte, a greater than 3-fold increase in platelet number was consistently observed in c-Myc(-/-) mice. Thus, c-Myc(-/-) mice develop a syndrome of severe thrombocytosis-anemia-leukopenia because of significant increases in megakaryocytopoiesis and concomitant blockage of erythrocyte differentiation and reductions in myelolymphopoiesis.
Collapse
|
47
|
Phesse TJ, Clarke AR. Normal stem cells in cancer prone epithelial tissues. Br J Cancer 2009; 100:221-7. [PMID: 19127254 PMCID: PMC2625959 DOI: 10.1038/sj.bjc.6604850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 12/17/2022] Open
Abstract
The concept of a cancer stem cell is not a new one, being first suggested over 100 years ago. Over recent years the concept has enjoyed renewed enthusiasm, partly because of our growing understanding of the nature of somatic stem cells, but also because of a growing realisation that the development of strategies that target cancer stem cells may offer considerable advantages over conventional approaches. However, despite this renewed enthusiasm the existence of cancer stem cells remains controversial in many tumour types and any potential relationship to the normal stem cell pool remains poorly defined. This review summarises key elements of our understanding of the normal stem cell populations within animal models of the predominant cancer prone epithelial tissues, and further investigates the potential links between these populations and putative cancer stem cells.
Collapse
Affiliation(s)
- T J Phesse
- Department of Biosciences, Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff, CF10 3US, UK
| | - A R Clarke
- Department of Biosciences, Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff, CF10 3US, UK
| |
Collapse
|
48
|
Couillard M, Trudel M. C-myc as a modulator of renal stem/progenitor cell population. Dev Dyn 2009; 238:405-14. [DOI: 10.1002/dvdy.21841] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
49
|
Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A, Knoepfler PS, Cheng PF, MacDonald HR, Eisenman RN, Bernstein ID, Trumpp A. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 2009; 3:611-24. [PMID: 19041778 DOI: 10.1016/j.stem.2008.09.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/29/2008] [Accepted: 09/15/2008] [Indexed: 01/28/2023]
Abstract
Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.
Collapse
Affiliation(s)
- Elisa Laurenti
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ISREC, Swiss Institute for Experimental Cancer Research, School of Life Science, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ambler CA, Määttä A. Epidermal stem cells: location, potential and contribution to cancer. J Pathol 2009; 217:206-16. [DOI: 10.1002/path.2468] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|