1
|
Zaytseva O, Quinn LM. Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes (Basel) 2017; 8:genes8040118. [PMID: 28398229 PMCID: PMC5406865 DOI: 10.3390/genes8040118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor and cell growth regulator MYC is potently oncogenic and estimated to contribute to most cancers. Decades of attempts to therapeutically target MYC directly have not resulted in feasible clinical applications, and efforts have moved toward indirectly targeting MYC expression, function and/or activity to treat MYC-driven cancer. A multitude of developmental and growth signaling pathways converge on the MYC promoter to modulate transcription through their downstream effectors. Critically, even small increases in MYC abundance (<2 fold) are sufficient to drive overproliferation; however, the details of how oncogenic/growth signaling networks regulate MYC at the level of transcription remain nebulous even during normal development. It is therefore essential to first decipher mechanisms of growth signal-stimulated MYC transcription using in vivo models, with intact signaling environments, to determine exactly how these networks are dysregulated in human cancer. This in turn will provide new modalities and approaches to treat MYC-driven malignancy. Drosophila genetic studies have shed much light on how complex networks signal to transcription factors and enhancers to orchestrate Drosophila MYC (dMYC) transcription, and thus growth and patterning of complex multicellular tissue and organs. This review will discuss the many pathways implicated in patterning MYC transcription during development and the molecular events at the MYC promoter that link signaling to expression. Attention will also be drawn to parallels between mammalian and fly regulation of MYC at the level of transcription.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
2
|
Abstract
Drosophila genetic studies demonstrate that cell and tissue growth regulation is a primary developmental function of P-element somatic inhibitor (Psi), the sole ortholog of FUBP family RNA/DNA-binding proteins. Psi achieves growth control through interaction with Mediator, observations that should put to rest controversy surrounding Pol II transcriptional functions for these KH domain proteins.
Collapse
Affiliation(s)
- Leonie M Quinn
- a Department of Cancer Biology and Therapeutics , The John Curtin School of Medical Research, The Australian National University , Canberra , ACT , Australia
| |
Collapse
|
3
|
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 2016; 5:e16691. [PMID: 27336723 DOI: 10.7554/elife.16691.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 05/21/2023] Open
Abstract
In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8(-) Mediator, during memory, Cdk8(+) Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism.
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, United States
| | - Jessica Marone
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, United States
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
4
|
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 2016; 5. [PMID: 27336723 PMCID: PMC4951200 DOI: 10.7554/elife.16691] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022] Open
Abstract
In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8- Mediator, during memory, Cdk8+ Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism. DOI:http://dx.doi.org/10.7554/eLife.16691.001 Cells respond to stressful conditions by changing which of their genes are switched on. Such stress-specific genes are typically switched off again when the conditions improve, but can remain primed and ready to be switched on again when needed. This phenomenon is known as “epigenetic transcriptional memory” and allows for a faster or stronger response to the same stress in the future. In fact, these memories can last for a long time, even after the cell divides many times. Inside cells, most of the DNA is wrapped tightly around proteins called histones. To activate – or transcribe – a gene, the DNA must be re-packaged to allow better access for specific proteins including the enzyme called RNA polymerase II. This repackaging involves a number of changes including chemical modification of the histone proteins. Genes that have been previously transcribed under stress are packaged in a different way so that they are poised and ready for the next time they are needed. However, the details of this process were not clear. Using yeast as a model, D'Urso et al. have dissected the changes that are responsible for priming genes to respond to future events. The yeast gene INO1, which shows transcriptional memory, was studied in cells by characterizing the proteins bound at and around the gene and the histone modifications in the region. D'Urso et al. found that a protein called SfI1 bound to this gene only during transcriptional memory and that this binding was critical to start the phenomenon. Further experiments showed that transcriptional memory also required altering two protein complexes that normally bind to genes when they are switched on. One complex, which includes an enzyme that modifies histones, was altered so that the histones at the INO1 gene were marked in a unique way. The other complex was responsible for recruiting an inactive, poised form of RNA polymerase II to the gene, which allowed the gene to be activated when needed. In addition, D'Urso found that other genes that show transcriptional memory in yeast, as well as such genes in human cells, were also marked in the same ways. A future challenge will be to understand how different conditions in different organisms can lead to transcriptional memory. Further studies could also explore how this memory phenomenon is inherited and how it influences an organism’s fitness. DOI:http://dx.doi.org/10.7554/eLife.16691.002
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, United States
| | - Jessica Marone
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, United States
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
5
|
|
6
|
Wilda M, Busch K, Klose I, Keller T, Woessmann W, Kreuder J, Harbott J, Borkhardt A. Level of MYC overexpression in pediatric Burkitt's lymphoma is strongly dependent on genomic breakpoint location within the MYC locus. Genes Chromosomes Cancer 2004; 41:178-82. [PMID: 15287031 DOI: 10.1002/gcc.20063] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Increased transcriptional activity of the MYC gene is a characteristic feature of Burkitt's lymphoma. Aberrant MYC expression is caused by (1) chromosomal translocation to one of the loci carrying an immunoglobulin gene, (2) mutation within the translocated allele, (3) loss of the block to transcription elongation, or (4) promoter shift. To investigate the influence of breakpoint locations within the MYC gene on MYC transcript levels, we determined both the precise genomic MYC/IGH breakpoints and the amount of MYC mRNA in 25 samples of pediatric Burkitt's lymphoma with translocation t(8;14)(q24;q32). Patients with breakpoints that were 5' from MYC exon 1 had significantly lower expression of MYC than did patients who had a breakpoint within exon 1 or intron 1 (P < 0.05 and 0.005, respectively). The highest mRNA level of MYC (1,006 copies per 100 copies ABL1) was detected in patients with loss of the first exon and transcription initiation from a cryptic P3 promoter within the first intron of the MYC gene. In contrast, there was no obvious correlation between breakpoint locations within the IgH locus and the amount of MYC mRNA.
Collapse
Affiliation(s)
- Monika Wilda
- Department of Pediatric Hematology and Oncology, Children's University Hospital, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cencig S, Nanbru C, Le SY, Gueydan C, Huez G, Kruys V. Mapping and characterization of the minimal internal ribosome entry segment in the human c-myc mRNA 5' untranslated region. Oncogene 2004; 23:267-77. [PMID: 14712232 DOI: 10.1038/sj.onc.1207017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human c-myc proto-oncogene is transcribed from four alternative promoters generating transcripts with 5' untranslated regions of various lengths. These transcripts encode two proteins, c-Myc1 and c-Myc2, from two initiation codons, CUG and AUG, respectively. We and others have previously demonstrated that the region of c-myc transcripts between nucleotides (nt) -363 and -94 upstream from the CUG start codon contained an internal ribosome entry site leading to the cap-independent translation of c-myc open reading frames (ORFs). Here, we mapped a 50-nt sequence (-143 -94), which is sufficient to promote internal translation initiation of c-myc ORFs. Interestingly, this 50-nt element can be further dissected into two segments of 14 nt, each capable of activating internal translation initiation. We also demonstrate that this 50-nt element acts as the ribosome landing site from which the preinitiation ribosomal complex scans the mRNA until the CUG or AUG start codons.
Collapse
Affiliation(s)
- Sabrina Cencig
- Laboratoire de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Perkins KD, Gregonis J, Borge S, Rice SA. Transactivation of a viral target gene by herpes simplex virus ICP27 is posttranscriptional and does not require the endogenous promoter or polyadenylation site. J Virol 2003; 77:9872-84. [PMID: 12941897 PMCID: PMC224566 DOI: 10.1128/jvi.77.18.9872-9884.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ICP27 is an essential herpes simplex virus type 1 (HSV-1) immediate-early protein that stimulates viral mRNA expression from many viral delayed-early and late genes during infection. One HSV-1 late gene which is highly dependent on ICP27 during infection is that encoding the glycoprotein C (gC). Here we report that the gC gene is specifically transactivated by ICP27 in transfected Vero cells. Using various gC plasmid constructs, we show that ICP27's stimulatory effects are independent of the gC gene's endogenous promoter and polyadenylation site. This suggests that ICP27-responsive elements lie in the transcribed body of the gC gene. We also show that transactivation of the gC gene by ICP27 is independent of other viral proteins, as ICP27 alone can transactivate the gC gene when its transcription is mediated by the human cytomegalovirus immediate-early gene promoter. However, when gC gene expression is driven by its endogenous promoter, the stimulatory effect of ICP27 requires additional transactivators. To explore the level at which ICP27 transactivates the gC gene, we established stably transfected Vero cell lines that have integrated copies of the gC gene under control of the cytomegalovirus immediate-early gene promoter. These gC genes are not constitutively expressed but can be efficiently induced by HSV-1 infection. Using nuclear run-on transcription assays, we show that transcriptional induction of the stably transfected genes is ICP27 independent. In contrast, accumulation of gC mRNA is very highly dependent on ICP27. Together, these results demonstrate that ICP27 posttranscriptionally activates mRNA expression from a biologically relevant viral target gene.
Collapse
Affiliation(s)
- Keith D Perkins
- Department of Microbiology, University of Minnesota Medical School, Mayo Mail Code 196, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
9
|
Small GW, Chou TY, Dang CV, Orlowski RZ. Evidence for involvement of calpain in c-Myc proteolysis in vivo. Arch Biochem Biophys 2002; 400:151-61. [PMID: 12054425 DOI: 10.1016/s0003-9861(02)00005-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Precise control of the level of c-Myc protein is important to normal cellular homeostasis, and this is accomplished in part by degradation through the ubiquitin-proteasome pathway. The calpains are a family of calcium-dependent proteases that play important roles in proteolysis of some proteins, and their possible participation in degradation of intracellular c-Myc was therefore investigated. Activation of calpain with the cell-permeable calcium ionophore A23187 in Rat1a-myc or ts85 cells in culture induced rapid cleavage of c-Myc. This degradation was both calpain- and calcium-dependent since it was inhibited by preincubation with either the calpain-inhibitory peptide calpeptin or the calcium-chelating agent EGTA. A23187-induced c-Myc cleavage occurred in a time-dependent manner comparable to that of FAK, a known calpain substrate, and while calpeptin was able to significantly protect c-Myc from degradation, inhibitors of the proteasome or caspase proteases could not. Exposure of Rat1a-myc or ts85 cells in culture to calpeptin, or to the thiol-protease inhibitor E64d, resulted in the accumulation of c-Myc protein without an impact on ubiquitin-protein conjugates. Using an in vitro assay, calpain-mediated degradation occurred rapidly with wild-type c-Myc as the substrate, but was significantly prolonged in some c-Myc mutants with increased transforming activity derived from lymphoma patients. Those mutants with a prolonged half-life in vitro were also more resistant to A23187-induced cleavage in intact cells. These studies support a role for calpain in the control of c-Myc levels in vivo, and suggest that mutations impacting on sensitivity to calpain may contribute to c-Myc-mediated tumorigenesis.
Collapse
Affiliation(s)
- George W Small
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
10
|
Davila M, Foster S, Kelsoe G, Yang K. A role for secondary V(D)J recombination in oncogenic chromosomal translocations? Adv Cancer Res 2002; 81:61-92. [PMID: 11430596 DOI: 10.1016/s0065-230x(01)81002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosomal translocations are hallmarks of certain lymphoproliferative disorders. Indeed, in many leukemias and lymphomas, translocations are the transforming event that brings about malignancy. Recurrence of the immunoglobulin (Ig) and T-cell receptor (Tcr) loci at the breakpoints of oncogenic chromosomal translocations has led to speculation that the lymphocyte-specific process of V(D)J rearrangement, which is necessary for the generation of functional Ig and TCR antigen receptors on B and T lymphocytes, mediates translocation. Recent studies have led to a fuller understanding of the molecular mechanisms of V(D)J rearrangement and have revealed that the V(D)J recombinase possesses latent transposase activity. These studies have led to plausible models of illegitimate V(D)J recombination producing chromosomal translocations consistent with those present in lymphomas and leukemias. Errors of V(D)J recombination may even generate lymphomas with the phenotypes of mature cells. For example, follicular and Burkitt's lymphomas have been classified by phenotype and somatic genotype as malignant germinal center (GC) B or post-GC B cells. The GC is a site of affinity maturation where B cells undergo V(D)J hypermutation and Ig class switch; in addition, much evidence has accumulated to suggest that GC B cells may also support secondary V(D)J recombination. Interestingly, all three of these elements, genomic plasticity, mutation, and translocation breakpoints near switch sites or recombinational elements, are characteristic of certain lymphomas. The high frequency of lymphomas carrying these GC markers suggests that the GC reaction may play a significant role in lymphomagenesis.
Collapse
Affiliation(s)
- M Davila
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
11
|
Buckley AF, Kuo CT, Leiden JM. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway. Nat Immunol 2001; 2:698-704. [PMID: 11477405 DOI: 10.1038/90633] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
T lymphocytes circulate in a quiescent state until they encounter cognate antigen bound to the surface of an antigen-presenting cell. The molecular pathways that regulate T cell quiescence remain largely unknown. Here we show that forced expression of the lung Krüppel-like transcription factor (LKLF) in Jurkat T cells is sufficient to program a quiescent phenotype characterized by decreased proliferation, reduced cell size and protein synthesis and decreased surface expression of activation markers. Conversely, LKLF-deficient peripheral T cells produced by gene targeting showed increased proliferation, increased cell size and enhanced expression of surface activation markers in vivo. LKLF appeared to function, at least in part, by decreasing expression of the proto-oncogene encoding c-Myc. Forced expression of LKLF was associated with markedly decreased c-Myc expression. In addition, many effects of LKLF expression were mimicked by expression of the dominant-negative MadMyc protein and rescued by overexpression of c-Myc. Thus, LKLF is both necessary and sufficient to program quiescence in T cells and functions, in part, by negatively regulating a c-Myc--dependent pathway.
Collapse
Affiliation(s)
- A F Buckley
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
12
|
Nanbru C, Prats AC, Droogmans L, Defrance P, Huez G, Kruys V. Translation of the human c-myc P0 tricistronic mRNA involves two independent internal ribosome entry sites. Oncogene 2001; 20:4270-80. [PMID: 11464293 DOI: 10.1038/sj.onc.1204548] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/08/2022]
Abstract
The human c-myc proto-oncogene is transcribed from four alternative promoters (P0, P1, P2, and P3) giving rise to mRNAs having 5' leader sequences of various length. The c-myc P0 mRNA contains three open reading frames (ORFs), the last one encoding c-Myc1 and c-Myc2 proteins generated by alternative translation initiated at CUG and AUG codons. The middle ORF (MYCHEX1) and the 5' ORF (ORF1) code for proteins 188 and 114 amino acids in length, respectively. We and others previously identified an internal ribosome entry site (IRES) in P0 and P2 c-myc mRNAs, promoting the cap-independent translation of c-Myc1 and c-Myc2. Here, we report the presence of a second IRES (named IRES1) promoting the cap-independent translation of MYCHEX1 in c-myc P0 mRNA. Using deletion analysis, we mapped an 80-nt region essential for IRES1 activity. c-myc P0 mRNA is thus the first eukaryotic polycistronic mRNA described for which translation initiation of two different open reading frames (MYCHEX1 and c-Myc1/c-Myc2) involves internal ribosome entry.
Collapse
Affiliation(s)
- C Nanbru
- Laboratoire de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, rue Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Chen L, Smith L, Johnson MR, Wang K, Diasio RB, Smith JB. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells. J Biol Chem 2000; 275:32227-33. [PMID: 10918054 DOI: 10.1074/jbc.m002645200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.
Collapse
Affiliation(s)
- L Chen
- Department of Pharmacology and Toxicology and Comprehensive Cancer Center, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bemark M, Neuberger MS. The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt's lymphoma line. Oncogene 2000; 19:3404-10. [PMID: 10918597 DOI: 10.1038/sj.onc.1203686] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Burkitt's lymphomas harbour chromosomal translocations bringing c-MYC into the vicinity of one of the immunoglobulin gene loci. Point mutations have been described within c-MYC in several Burkitt's lymphomas and it has been proposed that translocation into the Ig loci might have transformed c-MYC into a substrate for the antibody hypermutation mechanism. Here we test this hypothesis by exploiting a Burkitt's lymphoma line (Ramos) that we have previously shown to hypermutate its immunoglobulin genes constitutively. We find that, during in vitro culture, Ramos mutates the c-MYC allele that is translocated into the IgH locus whilst leaving the untranslocated c-MYC and other control genes essentially unaffected. The mutations are introduced downstream of the c-MYC transcription start with the pattern of substitutions being characteristic of the antibody hypermutation mechanism; the mutation frequency is 2-3-fold lower than for the endogenous functional IgH allele. Thus chromosomal translocations involving the Ig loci may not only contribute to transformation by deregulating oncogene expression but could also act by potentiating subsequent oncogene hypermutation.
Collapse
Affiliation(s)
- M Bemark
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
15
|
Wittekindt NE, Hörtnagel K, Geltinger C, Polack A. Activation of c-myc promoter P1 by immunoglobulin kappa gene enhancers in Burkitt lymphoma: functional characterization of the intron enhancer motifs kappaB, E box 1 and E box 2, and of the 3' enhancer motif PU. Nucleic Acids Res 2000; 28:800-8. [PMID: 10637333 PMCID: PMC102546 DOI: 10.1093/nar/28.3.800] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/1999] [Revised: 12/02/1999] [Accepted: 12/02/1999] [Indexed: 01/31/2023] Open
Abstract
Deregulated expression of the proto-oncogene c- myc in Burkitt lymphoma (BL) cells carrying a t(2;8) translocation is mediated by a synergistic interaction of the translocated immunoglobulin (Ig) kappa gene intron (kappaEi) and 3' (kappaE3') enhancers and characterized by a strong activation of the promoter P1. We have investigated the functional role of distinct kappa enhancer sequence motifs in P1 activation on both mini-chromosomes and reporter gene constructs. Stable and transient transfections of BL cells revealed critical roles of the kappaEi and kappaE3' elements kappaB and PU, respectively. Joint mutation of kappaB and PU completely abolished P1 activity, implying that an interaction of kappaB- and PU-binding factors is essential for the enhancer synergism. Mutation of the E box 1 and E box 2 motifs markedly decreased P1 activity in transient but not in stable transfection experiments. Co-expression of the NF-kappaB subunit p65(RelA) and Sp1, an essential factor for P1 transcription, in Drosophila melanogaster SL2 cells synergistically enhanced promoter activity. Our results support a model which proposes cross-talk between promoter and enhancer binding factors as the basic mechanism for kappa enhancer-mediated c- myc activation in BL cells.
Collapse
Affiliation(s)
- N E Wittekindt
- GSF-National Research Center for Environment and Health, Institute of Clinical Molecular Biology and Tumor Genetics, Marchioninistrasse 25, D-81377 Munich, Germany.
| | | | | | | |
Collapse
|
16
|
Tai KF, Rogers SW, Pont-Kingdon G, Carroll WL. Definition of the human N-myc promoter region during development in a transgenic mouse model. Pediatr Res 1999; 46:255-62. [PMID: 10473038 DOI: 10.1203/00006450-199909000-00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The N-myc oncogene directs organogenesis, and gene amplification is associated with aggressive forms of neuroblastoma, a common malignant tumor in children. N-myc is expressed in fetal epithelium, and expression decreases markedly postnatally. To localize sequences responsible for directing expression, we have analyzed the human N-myc promoter. We noted previously that N-myc promoter regions 5' to exon 1 directed reporter gene expression in all cell lines, including those without detectable N-myc transcripts. However, when promoter constructs included 3' exon 1 and the 5' portion of intron 1, reporter activity was detected only when there was expression of the endogenous gene. To determine the role of this "tissue-specific region" in directing expression during development, we generated transgenic mice carrying N-myc promoter lacZ minigenes that contained 5' N-myc promoter elements alone or the promoter linked to the 3' exon 1/5' intron 1 tissue-specific region. Animals lacking the tissue-specific exon 1/intron 1 region showed beta-galactosidase expression in the CNS, but expression was not observed in other organs in which endogenously derived N-myc transcripts were seen. Within the CNS, transgene expression was seen mainly in the olfactory system and was not observed in other areas in which expression of the murine gene has been noted. In contrast, no transgene expression was observed in any of the animals carrying the tissue-specific exon 1/intron 1 region. Thus, sequences that direct expression within the olfactory system were contained within our 5' promoter transgene, whereas sequences that guide the ubiquitous expression of N-myc during organogenesis lie outside the regions studied here. Finally, the exon 1/intron 1 region seems to act in a dominant fashion to repress expression in the CNS from the immediate 5' N-myc promoter.
Collapse
Affiliation(s)
- K F Tai
- Center for Children of the Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
17
|
Long MC, Leong V, Schaffer PA, Spencer CA, Rice SA. ICP22 and the UL13 protein kinase are both required for herpes simplex virus-induced modification of the large subunit of RNA polymerase II. J Virol 1999; 73:5593-604. [PMID: 10364308 PMCID: PMC112617 DOI: 10.1128/jvi.73.7.5593-5604.1999] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection alters the phosphorylation of the large subunit of RNA polymerase II (RNAP II), resulting in the depletion of the hypophosphorylated and hyperphosphorylated forms of this polypeptide (known as IIa and IIo, respectively) and induction of a novel, alternatively phosphorylated form (designated IIi). We previously showed that the HSV-1 immediate-early protein ICP22 is involved in this phenomenon, since induction of IIi and depletion of IIa are deficient in cells infected with 22/n199, an HSV-1 ICP22 nonsense mutant (S. A. Rice, M. C. Long, V. Lam, P. A. Schaffer, and C. A. Spencer, J. Virol. 69:5550-5559, 1995). However, depletion of IIo still occurs in 22/n199-infected cells. This suggests either that another viral gene product affects the RNAP II large subunit or that the truncated ICP22 polypeptide encoded by 22/n199 retains residual activity which leads to IIo depletion. To distinguish between these possibilities, we engineered an HSV-1 ICP22 null mutant, d22-lacZ, and compared it to 22/n199. The two mutants are indistinguishable in their effects on the RNAP II large subunit, suggesting that an additional viral gene product is involved in altering RNAP II. Two candidates are UL13, a protein kinase which has been implicated in ICP22 phosphorylation, and the virion host shutoff (Vhs) factor, the expression of which is positively regulated by ICP22 and UL13. To test whether UL13 is involved, a UL13-deficient viral mutant, d13-lacZ, was engineered. This mutant was defective in IIi induction and IIa depletion, displaying a phenotype very similar to that of d22-lacZ. In contrast, a Vhs mutant had effects that were indistinguishable from wild-type HSV-1. Therefore, UL13 but not the Vhs function plays a role in modifying the RNAP II large subunit. To study the potential role of UL13 in viral transcription, we carried out nuclear run-on transcription analyses in infected human embryonic lung cells. Infections with either UL13 or ICP22 mutants led to significantly reduced amounts of viral genome transcription at late times after infection. Together, our results suggest that ICP22 and UL13 are involved in a common pathway that alters RNAP II phosphorylation and that in some cell lines this change promotes viral late transcription.
Collapse
Affiliation(s)
- M C Long
- Departments of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
18
|
Sivak LE, Pont-Kingdon G, Le K, Mayr G, Tai KF, Stevens BT, Carroll WL. A novel intron element operates posttranscriptionally To regulate human N-myc expression. Mol Cell Biol 1999; 19:155-63. [PMID: 9858540 PMCID: PMC83874 DOI: 10.1128/mcb.19.1.155] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
Precisely regulated expression of oncogenes and tumor suppressor genes is essential for normal development, and deregulated expression can lead to cancer. The human N-myc gene normally is expressed in only a subset of fetal epithelial tissues, and its expression is extinguished in all adult tissues except transiently in pre-B lymphocytes. The N-myc gene is overexpressed due to genomic amplification in the childhood tumor neuroblastoma. In previous work to investigate mechanisms of regulation of human N-myc gene expression, we observed that N-myc promoter-chloramphemicol acelyltransferase reporter constructs containing sequences 5' to exon 1 were active in all cell types examined, regardless of whether endogenous N-myc RNA was detected. In contrast, inclusion of the first exon and a portion of the first intron allowed expression only in those cell types with detectable endogenous N-myc transcripts. We investigated further the mechanisms by which this tissue-specific control of N-myc expression is achieved. Using nuclear run-on analyses, we determined that the N-myc gene is actively transcribed in all cell types examined, indicating a posttranscriptional mode of regulation. Using a series of N-myc intron 1 deletion constructs, we localized a 116-bp element (tissue-specific element [TSE]) within the first intron that directs tissue-specific N-myc expression. The TSE can function independently to regulate expression of a heterologous promoter-reporter minigene in a cell-specific pattern that mirrors the expression pattern of the endogenous N-myc gene. Surprisingly, the TSE can function in both sense and antisense orientations to regulate gene expression. Our data indicate that the human N-myc TSE functions through a posttranscriptional mechanism to regulate N-myc expression.
Collapse
Affiliation(s)
- L E Sivak
- Department of Experimental Pathology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Madisen L, Krumm A, Hebbes TR, Groudine M. The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Mol Cell Biol 1998; 18:6281-92. [PMID: 9774645 PMCID: PMC109215 DOI: 10.1128/mcb.18.11.6281] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In chromosome translocations characteristic of Burkitt lymphomas (BL) and murine plasmacytomas, c-myc genes become juxtaposed to immunoglobulin heavy-chain (IgH) sequences, resulting in aberrant c-myc transcription. Translocated c-myc alleles that retain the first exon exhibit increased transcription from the normally minor c-myc promoter, P1, and increased transcriptional elongation through inherent pause sites proximal to the major c-myc promoter, P2. We recently demonstrated that a cassette derived from four DNase I-hypersensitive sites (HS1234) in the 3'Calpha region of the IgH locus functions as an enhancer-locus control region (LCR) and directs a similar pattern of deregulated expression of linked c-myc genes in BL and plasmacytoma cell lines. Here, we report that the HS1234 enhancer-LCR mediates a widespread increase in histone acetylation along linked c-myc genes in Raji BL cells. Significantly, the increase in acetylation was not restricted to nucleosomes within the promoter region but also was apparent upstream and downstream of the transcription start sites as well as along vector sequences. Histone hyperacetylation of control c-myc genes, which was induced by the deacetylase inhibitor trichostatin A, mimics the effect of the HS1234 enhancer on expression from the c-myc P2 promoter, but not that from the P1 promoter. These results suggest that the HS1234 enhancer stimulates transcription of c-myc by a combination of mechanisms. Whereas HS1234 activates expression from the P2 promoter through a mechanism that includes increased histone acetylation, a general increase in histone acetylation is not sufficient to explain the HS1234-mediated activation of transcription from P1.
Collapse
Affiliation(s)
- L Madisen
- Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Proteins with seven conserved "helicase domains" play essential roles in all aspects of nucleic acid metabolism. Deriving energy from ATP hydrolysis, helicases alter the structure of DNA, RNA, or DNA:RNA duplexes, remodeling chromatin and modulating access to the DNA template by the transcriptional machinery. This review focuses on the diverse functions of these proteins in the process of RNA polymerase II transcription in eukaryotes. Known or putative helicases are required for general transcription initiation and for transcription-coupled DNA repair, and may play important roles in elongation, termination, and transcript stability. Recent evidence suggests that helicase-domain-containing proteins are also involved in complexes that facilitate the activity of groups of seemingly unrelated genes.
Collapse
Affiliation(s)
- A Eisen
- Department of Biology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
21
|
Brooks PJ, Kleopoulos SP, Funabashi T, Mobbs CV, Pfaff DW. Widespread expression and estrogen regulation of PPEIA-3' nuclear RNA in the rat brain. Proc Natl Acad Sci U S A 1997; 94:14037-41. [PMID: 9391148 PMCID: PMC28428 DOI: 10.1073/pnas.94.25.14037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/1997] [Indexed: 02/05/2023] Open
Abstract
We previously identified a novel nuclear RNA species derived from the preproenkephalin (PPE) gene. This transcript, which we have named PPEIA-3' RNA, hybridizes with probes directed at a region of PPE intron A downstream of an alternative germ-cell transcription start site, but does not contain PPE protein coding sequences. We now report that estrogen treatment of ovariectomized rats increases the expression of conventional PPE heteronuclear RNA, and also induces the expression of PPEIA-3' RNA, apparently in separate cell populations within the ventromedial nucleus of the hypothalamus. Further, we show that cells expressing PPEIA-3' are found in several neuronal groups in the rat forebrain and brainstem, with a distinct topographical distribution. High densities of PPEIA-3' containing cells are found in the reticular thalamic nucleus, the basal forebrain, the vestibular complex, the deep cerebellar nuclei, and the trapezoid body, a pattern that parallels the distribution of atypical nuclear RNAs described by other groups. These results suggest that this diverse neuronal population shares a common set of nuclear factors responsible for the expression and retention of this atypical RNA transcript. The implication of these results for cell-specific gene transcription and regulation in the brain and the possible relationship of PPEIA-3' RNA and other atypical nuclear RNAs is discussed.
Collapse
Affiliation(s)
- P J Brooks
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 12501 Washington Avenue, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
22
|
Marcu KB, Patel AJ, Yang Y. Differential regulation of the c-MYC P1 and P2 promoters in the absence of functional tumor suppressors: implications for mechanisms of deregulated MYC transcription. Curr Top Microbiol Immunol 1997; 224:47-56. [PMID: 9308227 DOI: 10.1007/978-3-642-60801-8_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K B Marcu
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794, USA
| | | | | |
Collapse
|
23
|
Parsons GG, Spencer CA. Mitotic repression of RNA polymerase II transcription is accompanied by release of transcription elongation complexes. Mol Cell Biol 1997; 17:5791-802. [PMID: 9315637 PMCID: PMC232427 DOI: 10.1128/mcb.17.10.5791] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nuclear RNA synthesis is repressed during the mitotic phase of each cell cycle. Although total RNA synthesis remains low throughout mitosis, the degree of RNA polymerase II transcription repression on specific genes has not been examined. In addition, it is not known whether mitotic repression of RNA polymerase II transcription is due to polymerase pausing or ejection of transcription elongation complexes from mitotic chromosomes. In this study, we show that RNA polymerase II transcription is repressed in mammalian cells on a number of specific gene regions during mitosis. We also show that the majority of RNA polymerase II transcription elongation complexes are physically excluded from mitotic chromosomes between late prophase and late telophase. Despite generalized transcription repression and stripping of RNA polymerase II complexes from DNA, arrested RNA polymerase II ternary complexes appear to remain on some gene regions during mitosis. The cyclic repression of transcription and ejection of RNA polymerase II transcription elongation complexes may help regulate the transcriptional events that control cell cycle progression and differentiation.
Collapse
Affiliation(s)
- G G Parsons
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
24
|
Keen NJ, Churcher MJ, Karn J. Transfer of Tat and release of TAR RNA during the activation of the human immunodeficiency virus type-1 transcription elongation complex. EMBO J 1997; 16:5260-72. [PMID: 9311986 PMCID: PMC1170158 DOI: 10.1093/emboj/16.17.5260] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The HIV-1 trans-activator protein, Tat, is a potent activator of transcriptional elongation. Tat is recruited to the elongating RNA polymerase during its transit through the trans-activation response region (TAR) because of its ability to bind directly to TAR RNA expressed on the nascent RNA chain. We have shown that transcription complexes that have acquired Tat produce 3-fold more full-length transcripts than complexes not exposed to Tat. Western blotting experiments demonstrated that Tat is tightly associated with the paused polymerases. To determine whether TAR RNA also becomes attached to the transcription complex, DNA oligonucleotides were annealed to the nascent chains on the arrested complexes and the RNA was cleaved by RNase H. After cleavage, the 5' end of the nascent chain, carrying TAR RNA, is quantitatively removed, but the 3' end of the transcript remains associated with the transcription complex. Even after the removal of TAR RNA, transcription complexes that have been activated by Tat show enhanced processivity. We conclude that Tat, together with cellular co-factors, becomes attached to the transcription complex and stimulates processivity, whereas TAR RNA does not play a direct role in the activation of elongation and is used simply to recruit Tat and cellular co-factors.
Collapse
Affiliation(s)
- N J Keen
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
25
|
Spencer CA, Dahmus ME, Rice SA. Repression of host RNA polymerase II transcription by herpes simplex virus type 1. J Virol 1997; 71:2031-40. [PMID: 9032335 PMCID: PMC191289 DOI: 10.1128/jvi.71.3.2031-2040.1997] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lytic infection of mammalian cells with herpes simplex virus type 1 (HSV-1) results in rapid repression of host gene expression and selective activation of the viral genome. This transformation in gene expression is thought to involve repression of host transcription and diversion of the host RNA polymerase (RNAP II) transcription machinery to the viral genome. However, the extent of virus-induced host transcription repression and the mechanisms responsible for these major shifts in transcription specificities have not been examined. To determine how HSV-1 accomplishes repression of host RNAP II transcription, we assayed transcription patterns on several cellular genes in cells infected with mutant and wild-type HSV-1. Our results suggest that HSV-1 represses RNAP II transcription on most cellular genes. However, each cellular gene we examined responds differently to the transcription repressive effects of virus infection, both quantitatively and with respect to the involvement of viral gene products. Virus-induced shutoff of host RNAP II transcription requires expression of multiple immediate-early genes. In contrast, expression of delayed-early and late genes and viral DNA replication appear to contribute little to repression of host cell RNAP II transcription. Modification of RNAP II to the intermediately phosphorylated (II(I)) form appears unlinked to virus-induced repression of host cell transcription. However, full repression of host transcription is correlated with depletion of the hyperphosphorylated (IIO) form of RNAP II.
Collapse
Affiliation(s)
- C A Spencer
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
26
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|
27
|
Michelotti GA, Michelotti EF, Pullner A, Duncan RC, Eick D, Levens D. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol Cell Biol 1996; 16:2656-69. [PMID: 8649373 PMCID: PMC231256 DOI: 10.1128/mcb.16.6.2656] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription activation and repression of eukaryotic genes are associated with conformational and topological changes of the DNA and chromatin, altering the spectrum of proteins associated with an active gene. Segments of the human c-myc gene possessing non-B structure in vivo located with enzymatic and chemical probes. Sites hypertensive to cleavage with single-strand-specific S1 nuclease or the single-strand-selective agent potassium permanganate included the major promoters P1 and P2 as well as the far upstream sequence element (FUSE) and CT elements, which bind, respectively, the single-strand-specific factors FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K in vitro. Active and inactive c-myc genes yielded different patterns of S1 nuclease and permanganate sensitivity, indicating alternative chromatin configurations of active and silent genes. The melting of specific cis elements of active c-myc genes in vivo suggested that transcriptionally associated torsional strain might assist strand separation and facilitate factor binding. Therefore, the interaction of FUSE-binding protein and heterogeneous nuclear ribonucleoprotein K with supercoiled DNA was studied. Remarkably, both proteins recognize their respective elements torsionally strained but not as liner duplexes. Single-strand- or supercoil-dependent gene regulatory proteins may directly link alterations in DNA conformation and topology with changes in gene expression.
Collapse
Affiliation(s)
- G A Michelotti
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
Cowley CG, Carroll WL, Johnston JM. The absence of ongoing immunoglobulin gene hypermutation suggests a distinct mechanism for c-myc mutation in endemic Burkitt's lymphoma. J Pediatr Hematol Oncol 1996; 18:29-35. [PMID: 8556366 DOI: 10.1097/00043426-199602000-00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE Burkitt's lymphoma is a malignancy of mature, immunoglobulin (Ig)-bearing B cells characterized by translocation between c-myc and Ig gene loci. A role for the juxtaposed Ig genes in the mutation and deregulation of c-myc expression typical of endemic Burkitt's lymphoma (eBL) has been proposed, but never proven. Our objective was to determine whether Ig gene hypermutation is ongoing in eBL. METHODS We isolated Ig heavy-chain sequences from K962 eBL tumor cells using reverse transcription and polymerase chain reaction (PCR) amplification. The PCR product was ligated into Bluescript II vectors. Multiple subclones were sequenced and the variable regions were compared for evidence of ongoing Ig hypermutation. RESULTS Six total single base substitutions were observed within four of the nine subclones studied. Four substitutions resulted in amino acid changes and two were silent. There was no clustering of mutations in hypervariable regions, or a high incidence of amino acid replacement or link substitutions, all of which are characteristic of Ig hypermutation. The observed mutations occurred at a rate consistent with Taq polymerase error. CONCLUSIONS Our data indicate that in the eBL tumor sample K962, the mechanism underlying c-myc mutation is distinct from that which gives rise to Ig hypermutation.
Collapse
Affiliation(s)
- C G Cowley
- Department of Pediatrics, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
29
|
Eberhardt NL, Jiang SW, Shepard AR, Arnold AM, Trujillo MA. Hormonal and cell-specific regulation of the human growth hormone and chorionic somatomammotropin genes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:127-63. [PMID: 8768074 DOI: 10.1016/s0079-6603(08)60362-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- N L Eberhardt
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
30
|
Krause MO. Chromatin structure and function: the heretical path to an RNA transcription factor. Biochem Cell Biol 1996; 74:623-32. [PMID: 9018369 DOI: 10.1139/o96-067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This review represents a synthesis of the work of the author and her collaborators through 40 years of research aimed at an understanding of chromatin composition and functional arrangement. It describes the progressive experimental stages, starting with autoradiography and protein analysis and continuing on to a more functional approach testing the template properties of intact nuclei, as well as nuclei depleted of, or reconstituted with, defined fractions extracted from the chromatin of other cell lines or tissues. As new questions were raised at each phase of these studies, the investigation was shifted from chromosomal proteins to the role of a small RNA that coextracted with one protein fraction and whose properties suggested a transcription-activating function. The active RNA was identified as a class III RNA, designated as 7SK. Its properties suggested a role in the activation of two oncogenes, the SV40 T-antigen and the mammalian C-myc gene. A detailed analysis of the c-myc gene expression during transformation induction in temperature-sensitive mammalian cells finally culminated in in vivo evidence for a role of 7SK in c-myc deregulation, using cells transfected with antisense oligonucleotides to block 7SK activity. This was followed by an investigation of promoter targeting by 7SK RNP using electrophoretic mobility shift assays with whole or 7SK-depleted cell extracts. Taken together, these studies indicate that 7SK RNP participates in transformation-dependent deregulation of the c-myc gene by activation of two c-myc minor promoters. The implications of these findings are discussed.
Collapse
Affiliation(s)
- M O Krause
- Department of Biology, University of New Brunswick, Federicton, Canada.
| |
Collapse
|
31
|
Rice SA, Long MC, Lam V, Schaffer PA, Spencer CA. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J Virol 1995; 69:5550-9. [PMID: 7637000 PMCID: PMC189408 DOI: 10.1128/jvi.69.9.5550-5559.1995] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Infection of cells with herpes simplex virus type 1 (HSV-1) results in a rapid alteration of phosphorylation on the large subunit of cellular RNA polymerase II (RNAP II), most likely on its C-terminal domain (S. A. Rice, M. C. Long, V. Lam, C. A. Spencer, J. Virol. 68:988-1001, 1994). This phosphorylation modification generates a novel form of the large subunit which we have designed IIi. In this study, we examine roles that HSV-1 gene products play in this process. An HSV-1 mutant defective in the immediate-early transcriptional activator protein ICP4 is able to efficiently induce IIi. Viruses having mutations in the genes for the ICP0, ICP6, or ICP27 proteins are also competent for IIi formation. In contrast, 22/n199, an HSV-1 mutant which contains a nonsense mutation in the gene encoding the immediate-early protein ICP22, is significantly deficient in IIi induction. This effect is seen in Vero cells, where 22/n199 grows relatively efficiently, and in human embryonic lung (HEL) cells, where 22/n199 growth in more restricted. RNAP II is recruited into viral replication compartments in 22/n199-infected cells, indicating that altered phosphorylation of RNAP II is not a prerequisite for nuclear relocalization of RNAP II. In addition, we show by nuclear run-on transcription analysis that viral gene transcription is deficient in HEL cells infected with 22/n199. Viral late gene transcription does not occur efficiently, and antisense transcription throughout the genome is diminished compared with that of the wild-type HSV-1 infection. These transcriptional effects cannot be explained by differences in viral DNA replication, since 22/n199 replicates its DNA efficiently in HEL cells. Our results demonstrated that ICP22 is necessary for virus-induced aberrant phosphorylation of RNAP II and for normal patterns of viral gene transcription in certain cell lines.
Collapse
Affiliation(s)
- S A Rice
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
32
|
Krumm A, Hickey LB, Groudine M. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev 1995; 9:559-72. [PMID: 7698646 DOI: 10.1101/gad.9.5.559] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have shown previously that the majority of RNA polymerase II complexes initiated at the c-myc gene are paused in the promoter-proximal region, similar to observations in the Drosophila hsp70 gene. Our analyses define the TATA box or initiator sequences in the c-myc gene as necessary components for the establishment of paused RNA polymerase II. Deletion of upstream sequences or even the TATA box does not influence significantly the degree of transcriptional initiation or pausing. Deletion of both the TATA box and sequences at the transcription initiation site, however, abolishes transcriptional pausing of transcription complexes but still allows synthesis of full-length RNA. Further analyses with synthetic promoter constructs reveal that the simple combination of upstream activator with TATA consensus sequences or initiator sequences act synergistically to recruit high levels of RNA polymerase II complexes. Only a minor fraction of these complexes escapes into regions further downstream. Several different trans-activation domains fused to GAL4-DNA-binding domains, including strong activators such as VP16, do not eliminate promoter-proximal pausing of RNA polymerase. Thus, we conclude that pausing of RNA polymerase II is a common phenomenon in eukaryotic transcription and does not require complex promoter structures. Further analyses reveal that enhancers have a modest influence on transcription initiation and on release of transcription complexes out of the pause site but may function primarily to increase the elongation competence of transcription complexes.
Collapse
Affiliation(s)
- A Krumm
- Fred Hutchinson Cancer Center, Seattle, Washington 98104, USA
| | | | | |
Collapse
|
33
|
Hörtnagel K, Polack A, Mautner J, Feederle R, Bornkamm GW. Regulatory elements in the immunoglobulin kappa locus induce c-myc activation in Burkitt's lymphoma cells. Curr Top Microbiol Immunol 1995; 194:415-22. [PMID: 7895517 DOI: 10.1007/978-3-642-79275-5_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
MESH Headings
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/pathology
- Chromosomes, Human, Pair 14/ultrastructure
- Chromosomes, Human, Pair 2/ultrastructure
- Chromosomes, Human, Pair 8/ultrastructure
- Enhancer Elements, Genetic
- Gene Expression Regulation, Neoplastic
- Genes, Immunoglobulin
- Genes, myc
- Genetic Vectors
- Humans
- Immunoglobulin kappa-Chains/genetics
- Plasmids
- Promoter Regions, Genetic
- Regulatory Sequences, Nucleic Acid
- Transfection
- Translocation, Genetic
Collapse
Affiliation(s)
- K Hörtnagel
- Institut für Klinische Molekularbiologie und Tumorgenetik, GSF, München
| | | | | | | | | |
Collapse
|
34
|
Raffeld M, Yano T, Hoang AT, Lewis B, Clark HM, Otsuki T, Dang CV. Clustered mutations in the transcriptional activation domain of Myc in 8q24 translocated lymphomas and their functional consequences. Curr Top Microbiol Immunol 1995; 194:265-72. [PMID: 7895498 DOI: 10.1007/978-3-642-79275-5_31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Raffeld
- Hematopathology Section, National Institutes of Health, Bethesda, MD
| | | | | | | | | | | | | |
Collapse
|
35
|
Madisen L, Groudine M. Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt's lymphoma cells. Genes Dev 1994; 8:2212-26. [PMID: 7958890 DOI: 10.1101/gad.8.18.2212] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In murine plasmacytoma and human Burkitt's lymphoma cells, one allele of c-myc is translocated into one of the immunoglobulin loci, resulting in a characteristic pattern of deregulated c-myc transcription. Translocation events between c-myc and the IgH locus segregate c-myc and the IgH intron enhancer to different reciprocal products in all plasmacytomas and in most Burkitt's lymphoma cells, suggesting that an additional element(s) capable of affecting c-myc expression over a large and variable distance must exist in the IgH locus. The region 3' of the IgH C alpha gene contains four tissue-specific and cell stage-specific DNase I hypersensitive sites (HSs), two of which map to the late B cell-specific 3' C alpha enhancer. We report here that DNA sequences comprising the two other 3' C alpha HSs contain potential protein-binding motifs for trans-activators commonly associated with immunoglobulin enhancers and that these sites can function as cell stage-specific enhancers in transient B cell assays. A DNA fragment containing all four HSs (HS1234) synergistically activates c-myc transcription in plasmacytoma and Burkitt's lymphoma cells in transient assays and induces high-level transcription, a promoter shift from P2 to P1, and an increase in readthrough transcription in stable transfections. Furthermore, plasmacytoma clones stably transfected with a HS1234-linked c-myc construct express c-myc in a position-independent, copy number-dependent manner. These results suggest that HS1234 may function as a locus control region (LCR), deregulating c-myc expression in t(15;12) plasmacytomas, as well as potentially contributing to aspects of normal IgH chain expression.
Collapse
Affiliation(s)
- L Madisen
- Hutchinson Cancer Center, University of Washington School of Medicine, Seattle 98104
| | | |
Collapse
|
36
|
Abstract
Glucocorticoids inhibit proliferation of L929 fibroblastic cells in culture. Inhibition of proliferation is reversible and is not associated with changes in the plating efficiency of the cells. Flow cytometric analysis indicates that glucocorticoid-treated cells exhibit a decrease in the percentage of cells with DNA content > 2 N. Thymidine kinase expression is inhibited as cells with 2 N DNA content accumulate. These observations indicate that glucocorticoids arrest proliferation of L929 cells in the G1 phase of the cell cycle. The abundance of c-Myc mRNA does not decrease in glucocorticoid-treated cells, and c-Myc protein content in dexamethasone-treated cells is approximately the same as that detected in mid-log phase cells. Nuclear run-on transcription of c-Myc is not inhibited by glucocorticoids. These observations indicate that glucocorticoid regulation of fibroblastic cell proliferation does not involve inhibition of c-Myc transcription. Although regulation of c-Myc expression is central to the mechanism whereby glucocorticoids regulate proliferation of lymphoid cells, it is clear that different mechanisms must be involved in glucocorticoid regulation of fibroblastic cell proliferation.
Collapse
Affiliation(s)
- G H Frost
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | | | |
Collapse
|
37
|
Luo Y, Krause MO. Changes in promoter utilization in human and mouse c-myc genes upon transformation induction in temperature-sensitive cell lines. J Cell Physiol 1994; 160:303-15. [PMID: 8040189 DOI: 10.1002/jcp.1041600212] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously reported accelerated transcription and rapid accumulation of c-myc mRNAs upon induction of transformation in a temperature-sensitive mouse cell line (Gallant et al., 1989, Oncogene Res., 4:39-46). Here we have used both mouse and human cell lines transformed with a temperature-sensitive mutant of the Simian virus 40 (SV40) virus to investigate whether a shift in promoter utilization within the c-myc gene locus is part of a general mechanism that deregulates c-myc expression during transformation induction. We devised a simple and sensitive method using reverse transcription followed by radioactive polymerase chain reaction (RT-PCR) to measure the relative change in c-myc mRNAs arising from each of the four known promoters. We show that a three to fivefold increase in c-myc transcripts from the P1 and P3 promoters occurs in both human and mouse cell lines within 30 min of the shift to the permissive temperature. The major P2-initiated transcripts are not significantly effected. However, exon 3-containing RNAs increase more gradually up to 24 h postinduction and P1 and P3 transcripts, while remaining elevated, still contribute relatively little to the total c-myc RNA population. These and other results, demonstrating a transient activation of P1 and P3 promoters, suggest an indirect role of the minor transcripts in the deregulated expression of the c-myc gene in transformed cells.
Collapse
Affiliation(s)
- Y Luo
- Department of Biology, University of New Brunswick, Fredericton, Canada
| | | |
Collapse
|
38
|
Abstract
Cytoplasmic calcium is a nearly universal second messenger in eukaryotes. In many cell types, elevated intracellular calcium interacts synergistically with inducers of protein kinase C to elicit activation of complete biological programs normally induced by extracellular signals. In T cells, elevated cytoplasmic calcium is a critical mediator of activation in response to stimulation of the antigen receptor, and in some T-cell lines, treatment with a combination of calcium ionophore and protein kinase C activator mimics authentic antigen treatment. The synergistic interaction of calcium and protein kinase C in T cells is also observed at the level of gene expression. Here we examine the molecular mechanisms through which these agents exert synergistic control over the expression of the c-fos proto-oncogene in a T-cell hybridoma. We find that the principal effect of calcium is on the elongation of c-fos transcripts. This step constitutes the major control of c-fos mRNA accumulation in these cells. In addition, calcium regulates the initiation of c-fos transcription. This effect requires the serum response element of the c-fos gene and an additional sequence immediately 3' to this element. Thus, calcium regulates c-fos expression through at least two distinct molecular pathways.
Collapse
|
39
|
Lee G, Gilman M. Dual modes of control of c-fos mRNA induction by intracellular calcium in T cells. Mol Cell Biol 1994; 14:4579-87. [PMID: 8007962 PMCID: PMC358830 DOI: 10.1128/mcb.14.7.4579-4587.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytoplasmic calcium is a nearly universal second messenger in eukaryotes. In many cell types, elevated intracellular calcium interacts synergistically with inducers of protein kinase C to elicit activation of complete biological programs normally induced by extracellular signals. In T cells, elevated cytoplasmic calcium is a critical mediator of activation in response to stimulation of the antigen receptor, and in some T-cell lines, treatment with a combination of calcium ionophore and protein kinase C activator mimics authentic antigen treatment. The synergistic interaction of calcium and protein kinase C in T cells is also observed at the level of gene expression. Here we examine the molecular mechanisms through which these agents exert synergistic control over the expression of the c-fos proto-oncogene in a T-cell hybridoma. We find that the principal effect of calcium is on the elongation of c-fos transcripts. This step constitutes the major control of c-fos mRNA accumulation in these cells. In addition, calcium regulates the initiation of c-fos transcription. This effect requires the serum response element of the c-fos gene and an additional sequence immediately 3' to this element. Thus, calcium regulates c-fos expression through at least two distinct molecular pathways.
Collapse
Affiliation(s)
- G Lee
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
40
|
Yankulov K, Blau J, Purton T, Roberts S, Bentley DL. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 1994; 77:749-59. [PMID: 8205623 DOI: 10.1016/0092-8674(94)90058-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report that a variety of transactivators stimulate elongation by RNA polymerase II. Activated transcription complexes have high processivity and are able to read through pausing and termination sites efficiently. In contrast, nonactivated and "squelched" transcription mostly arrests prematurely. Activators differ in the extent to which they stimulate processivity; for example, GAL4-VP16 and GAL4-E1a are more effective than GAL4-AH. The stimulation of elongation can be as important as the stimulation of initiation in activating expression of a reporter gene. We suggest that setting the competence of polymerase II to elongate is an integral part of the initiation step that is controlled by activators cooperating with the general transcription factors.
Collapse
Affiliation(s)
- K Yankulov
- Molecular Genetics of Differentiation Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, England
| | | | | | | | | |
Collapse
|
41
|
Abstract
LR1 is a 106-kDa sequence-specific DNA-binding protein first identified as a potential regulator of immunoglobulin class switch recombination in B lymphocytes. Here we report that LR1 binds to a site 310 nt upstream of the human c-myc P1 promoter. Mutation of this site decreases reporter gene expression 5.5-fold in the Burkitt lymphoma line Raji and 3.8-fold in the lymphoma line BJAB. These experiments show that LR1 can function as a transcription factor and identify it as a cell type-specific activator of c-myc expression. There are multiple matches to the LR1 recognition consensus at the immunoglobulin heavy-chain locus and at c-myc, which further suggests that LR1 may play a dual role, facilitating c-myc translocation as well as regulating c-myc transcription.
Collapse
Affiliation(s)
- A Brys
- Department of Molecular Biophysics and Biochemistry, Yale Medical School, New Haven, CT 06510
| | | |
Collapse
|
42
|
Premature termination of tubulin gene transcription in Xenopus oocytes is due to promoter-dependent disruption of elongation. Mol Cell Biol 1994. [PMID: 8247007 DOI: 10.1128/mcb.13.12.7925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that the Xenopus alpha-tubulin gene, X alpha T14, exhibits premature termination of transcription when injected into oocyte nuclei. The 3' ends of prematurely terminated transcripts are formed immediately downstream of a stem-loop sequence found in the first 41 bp of the 5' leader. We show here, using deleted constructs, that premature termination requires the presence only of sequences from -200 to +19 relative to the initiation site. Deletion of the stem-loop does not increase the production of extended transcripts, and premature termination apparently continues at nonspecific sites. This finding indicates that disruption of the elongation phase of transcription rather than abrogation of a specific antitermination mechanism is the cause of premature termination in X alpha T14. We also found that disruption of elongation on a reporter gene could be induced specifically by competition with X alpha T14 promoters. To identify which elements of the promoter might interact with elongation determinants to cause this competition, we constructed a series of internal promoter mutants. Most mutations in the -200 to -60 region of the promoter had some effect on initiation frequency but did not cause any significant change in levels of premature termination. However, mutations in the core promoter that removed the TATA box consensus causes major change in initiation and resulted in a marked decrease in the production of prematurely terminated transcripts relative to extended transcripts. We discuss why such promoters can apparently escape the disruption of elongation that leads to premature termination.
Collapse
|
43
|
Andersson KB, Taskén K, Blomhoff HK. Cyclic AMP downregulates c-myc expression by inhibition of transcript initiation in human B-precursor Reh cells. FEBS Lett 1994; 337:71-6. [PMID: 8276117 DOI: 10.1016/0014-5793(94)80632-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the human pre-B cell line Reh, activation of the cyclic AMP signal transduction pathway induces a rapid, transient 10-fold down-regulation of steady-state c-myc mRNA. We have investigated the mechanisms involved in this cAMP-mediated regulation of c-myc expression. Forskolin did not alter c-myc mRNA stability. Initiation of c-myc transcripts was strongly inhibited after 1 h of forskolin treatment, as measured by nuclear run-on assays. Reinitiation of c-myc transcription was apparent after 3-4 h, and full transcriptional elongation was detected after 8 h of forskolin treatment. These data suggest that cyclic AMP downregulates c-myc expression by inhibition of transcriptional initiation.
Collapse
Affiliation(s)
- K B Andersson
- Norwegian Radium Hospital, Department of Immunology, Montebello
| | | | | |
Collapse
|
44
|
|
45
|
Hair A, Morgan GT. Premature termination of tubulin gene transcription in Xenopus oocytes is due to promoter-dependent disruption of elongation. Mol Cell Biol 1993; 13:7925-34. [PMID: 8247007 PMCID: PMC364864 DOI: 10.1128/mcb.13.12.7925-7934.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have shown previously that the Xenopus alpha-tubulin gene, X alpha T14, exhibits premature termination of transcription when injected into oocyte nuclei. The 3' ends of prematurely terminated transcripts are formed immediately downstream of a stem-loop sequence found in the first 41 bp of the 5' leader. We show here, using deleted constructs, that premature termination requires the presence only of sequences from -200 to +19 relative to the initiation site. Deletion of the stem-loop does not increase the production of extended transcripts, and premature termination apparently continues at nonspecific sites. This finding indicates that disruption of the elongation phase of transcription rather than abrogation of a specific antitermination mechanism is the cause of premature termination in X alpha T14. We also found that disruption of elongation on a reporter gene could be induced specifically by competition with X alpha T14 promoters. To identify which elements of the promoter might interact with elongation determinants to cause this competition, we constructed a series of internal promoter mutants. Most mutations in the -200 to -60 region of the promoter had some effect on initiation frequency but did not cause any significant change in levels of premature termination. However, mutations in the core promoter that removed the TATA box consensus causes major change in initiation and resulted in a marked decrease in the production of prematurely terminated transcripts relative to extended transcripts. We discuss why such promoters can apparently escape the disruption of elongation that leads to premature termination.
Collapse
Affiliation(s)
- A Hair
- Department of Genetics, Queens Medical Centre, University of Nottingham, United Kingdom
| | | |
Collapse
|
46
|
Krumm A, Meulia T, Groudine M. Common mechanisms for the control of eukaryotic transcriptional elongation. Bioessays 1993; 15:659-65. [PMID: 8274141 DOI: 10.1002/bies.950151005] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regulation of transcriptional elongation is emerging as an important control mechanism for eukaryotic gene expression. In this essay, we review the basis of the current view of the regulation of elongation in the human c-myc gene and discuss similarities in elongation control among the c-myc, Drosophila hsp70 and the HIV-1 genes. Based upon these similarities, we propose a model for control of expression of these genes at the elongation phase of transcription. This model suggests that distinct promoter elements direct the assembly of RNA polymerase II transcription complexes which differ in their elongation efficiency.
Collapse
MESH Headings
- Animals
- Bacteriophage lambda/genetics
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Drosophila/genetics
- Eukaryotic Cells/metabolism
- Gene Expression Regulation
- Gene Products, tat/physiology
- Genes, myc
- HIV Long Terminal Repeat
- HIV-1/genetics
- Heat-Shock Proteins/genetics
- Humans
- Models, Genetic
- Molecular Sequence Data
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
- Transcription, Genetic
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- A Krumm
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|
47
|
Repeated CT elements bound by zinc finger proteins control the absolute and relative activities of the two principal human c-myc promoters. Mol Cell Biol 1993. [PMID: 8355712 DOI: 10.1128/mcb.13.9.5710] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the human proto-oncogene c-myc is governed by two tandem principal promoters, termed P1 and P2. In general, the downstream promoter, P2, is predominant, which is in contrast to the promoter occlusion phenomenon usually observed in genes containing tandem promoters. A shift in human c-myc promoter usage has been observed in some tumor cells and in certain physiological conditions. However, the mechanisms that regulate promoter usage are not well understood. The present studies identify regulators which are required to promote transcription from both human c-myc promoters, P1 and P2, and have a role in determining their relative activities in vivo. A novel regulatory region located 101 bp upstream of P1 was characterized and contains five tandem repeats of the consensus sequence CCCTCCCC (CT element). The integrity of the region containing all five elements is required to promote transcription from P1 and for maximal activity from P2 in vivo. A single copy of this same element, designated CT-I2, also appears in an inverted orientation 53 bp upstream of the P2 transcription start site. This element has an inhibitory effect on P1 transcription and is required for P2 transcription. The transcription factor Sp1 was identified as the factor that binds specifically to the tandem CT elements upstream of P1 and to the CT-I2 element upstream of P2. In addition, the recently cloned zinc finger protein ZF87, or MAZ, was also able to bind these same elements in vitro. The five tandem CT elements can be functionally replaced by a heterologous enhancer that only in the absence of CT-I2 reverses the promoter usage, similar to what is observed in the translocated c-myc allele of Burkitt's lymphoma cells.
Collapse
|
48
|
Distinct properties of c-myc transcriptional elongation are revealed in Xenopus oocytes and mammalian cells and by template titration, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), and promoter mutagenesis. Mol Cell Biol 1993. [PMID: 8355707 DOI: 10.1128/mcb.13.9.5647] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A block to c-myc transcription elongation has been observed in Xenopus oocytes and mammalian cells. Here, we show that the distribution of RNA polymerase II transcription complexes in the c-myc promoter proximal region in Xenopus oocytes is different from that observed previously in mammalian cells. Thus, there are major differences in the c-myc elongation block observed in the two systems. In addition, as first reported for a Xenopus tubulin gene (K. M. Middleton and G. T. Morgan, Mol. Cell. Biol. 10:727-735, 1990). c-myc template titration experiments reveal the existence of two classes of RNA polymerase II transcription complexes in oocytes: one (at low template concentration) that is capable of reading through downstream sites of premature termination, and another (high template concentration) that does not. We show that these classes of polymerases are distinct from those previously identified by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), which distinguishes transcription complexes on the basis of transcribed distance, rather than on the basis of differential elongation through sites of premature termination. We also show that mutations that affect the efficiency of initiation of transcription from the c-myc P2 promoter can influence premature termination by at least two mechanisms: TATA box mutations function by the titration effect (decrease in transcription initiation results in a relative decrease in premature termination), while an upstream activator (E2F) site functions by contributing to the assembly of polymerase complexes competent to traverse the downstream sites of premature termination.
Collapse
|
49
|
Meulia T, Krumm A, Groudine M. Distinct properties of c-myc transcriptional elongation are revealed in Xenopus oocytes and mammalian cells and by template titration, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), and promoter mutagenesis. Mol Cell Biol 1993; 13:5647-58. [PMID: 8355707 PMCID: PMC360294 DOI: 10.1128/mcb.13.9.5647-5658.1993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A block to c-myc transcription elongation has been observed in Xenopus oocytes and mammalian cells. Here, we show that the distribution of RNA polymerase II transcription complexes in the c-myc promoter proximal region in Xenopus oocytes is different from that observed previously in mammalian cells. Thus, there are major differences in the c-myc elongation block observed in the two systems. In addition, as first reported for a Xenopus tubulin gene (K. M. Middleton and G. T. Morgan, Mol. Cell. Biol. 10:727-735, 1990). c-myc template titration experiments reveal the existence of two classes of RNA polymerase II transcription complexes in oocytes: one (at low template concentration) that is capable of reading through downstream sites of premature termination, and another (high template concentration) that does not. We show that these classes of polymerases are distinct from those previously identified by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), which distinguishes transcription complexes on the basis of transcribed distance, rather than on the basis of differential elongation through sites of premature termination. We also show that mutations that affect the efficiency of initiation of transcription from the c-myc P2 promoter can influence premature termination by at least two mechanisms: TATA box mutations function by the titration effect (decrease in transcription initiation results in a relative decrease in premature termination), while an upstream activator (E2F) site functions by contributing to the assembly of polymerase complexes competent to traverse the downstream sites of premature termination.
Collapse
Affiliation(s)
- T Meulia
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
50
|
Heruth D, Zirnstein G, Bradley J, Rothberg P. Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80749-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|