1
|
Wu H, Wang LC, Sow BM, Leow D, Zhu J, Gallo KM, Wilsbach K, Gupta R, Ostrow LW, Yeo CJJ, Sobota RM, Li R. TDP43 aggregation at ER-exit sites impairs ER-to-Golgi transport. Nat Commun 2024; 15:9026. [PMID: 39424779 PMCID: PMC11489672 DOI: 10.1038/s41467-024-52706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Protein aggregation plays key roles in age-related degenerative diseases, but how different proteins coalesce to form inclusions that vary in composition, morphology, molecular dynamics and confer physiological consequences is poorly understood. Here we employ a general reporter based on mutant Hsp104 to identify proteins forming aggregates in human cells under common proteotoxic stress. We identify over 300 proteins that form different inclusions containing subsets of aggregating proteins. In particular, TDP43, implicated in Amyotrophic Lateral Sclerosis (ALS), partitions dynamically between two distinct types of aggregates: stress granule and a previously unknown non-dynamic (solid-like) inclusion at the ER exit sites (ERES). TDP43-ERES co-aggregation is induced by diverse proteotoxic stresses and observed in the motor neurons of ALS patients. Such aggregation causes retention of secretory cargos at ERES and therefore delays ER-to-Golgi transport, providing a link between TDP43 aggregation and compromised cellular function in ALS patients.
Collapse
Affiliation(s)
- Hongyi Wu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Belle M Sow
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Damien Leow
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Kathryn M Gallo
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathleen Wilsbach
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Roshni Gupta
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Lyle W Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Crystal J J Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, UK
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, Hao N, Chen W, Alber M. Study of impacts of two types of cellular aging on the yeast bud morphogenesis. PLoS Comput Biol 2024; 20:e1012491. [PMID: 39348424 PMCID: PMC11476777 DOI: 10.1371/journal.pcbi.1012491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/10/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024] Open
Abstract
Understanding the mechanisms of the cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short cell cycle, and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. By analyzing experimental data, this study shows that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional multiscale chemical-mechanical model was developed and used to suggest and test hypothesized impacts of aging on bud morphogenesis. Experimentally calibrated model simulations showed that during the early stage of budding, tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip, a process guided by the polarized Cdc42 signal. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage as observed in experiments in this work. The model simulation results suggest that the localization of new cell surface material insertion, regulated by chemical signal polarization, could be weakened due to cellular aging in yeast and other cell types, leading to the change and stabilization of the bud aspect ratio.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, California, United States of America
| | - Jiadong Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
| | - Zhiliang Xu
- Applied and Computational Mathematics and Statistics Department, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Roya Zandi
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Physics and Astronomy, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, California, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591398. [PMID: 38712168 PMCID: PMC11071516 DOI: 10.1101/2024.04.26.591398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Peter J. Carman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Craig W. Gambogi
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Nathan M. Kendsersky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Stephanie N. Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Adam L. Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Alexandrea N. Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158. U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| |
Collapse
|
5
|
Schneider KL, Hao X, Keuenhof KS, Berglund LL, Fischbach A, Ahmadpour D, Chawla S, Gómez P, Höög JL, Widlund PO, Nyström T. Elimination of virus-like particles reduces protein aggregation and extends replicative lifespan in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2024; 121:e2313538121. [PMID: 38527193 PMCID: PMC10998562 DOI: 10.1073/pnas.2313538121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024] Open
Abstract
A major consequence of aging and stress, in yeast to humans, is an increased accumulation of protein aggregates at distinct sites within the cells. Using genetic screens, immunoelectron microscopy, and three-dimensional modeling in our efforts to elucidate the importance of aggregate annexation, we found that most aggregates in yeast accumulate near the surface of mitochondria. Further, we show that virus-like particles (VLPs), which are part of the retrotransposition cycle of Ty elements, are markedly enriched in these sites of protein aggregation. RNA interference-mediated silencing of Ty expression perturbed aggregate sequestration to mitochondria, reduced overall protein aggregation, mitigated toxicity of a Huntington's disease model, and expanded the replicative lifespan of yeast in a partially Hsp104-dependent manner. The results are in line with recent data demonstrating that VLPs might act as aging factors in mammals, including humans, and extend these findings by linking VLPs to a toxic accumulation of protein aggregates and raising the possibility that they might negatively influence neurological disease progression.
Collapse
Affiliation(s)
- K. L. Schneider
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - X. Hao
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - K. S. Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - L. L. Berglund
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - A. Fischbach
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - D. Ahmadpour
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - S. Chawla
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - P. Gómez
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - J. L. Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg41390, Sweden
| | - P. O. Widlund
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| | - T. Nyström
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health—AgeCap, University of Gothenburg, Gothenburg40530, Sweden
| |
Collapse
|
6
|
Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, Hao N, Chen W, Alber M. Study of Impacts of Two Types of Cellular Aging on the Yeast Bud Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582376. [PMID: 38464259 PMCID: PMC10925247 DOI: 10.1101/2024.02.29.582376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding the mechanisms of cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short lifespan and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. In this study, by analyzing experimental data it was shown that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional chemical-mechanical model was developed and used to suggest and test hypothesized mechanisms of bud morphogenesis during aging. Experimentally calibrated simulations showed that tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip guided by the polarized Cdc42 signal during the early stage of budding. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage, as observed in experiments, through a reduction on the new cell surface material insertion or an expansion of the polarization site. Thus model simulations suggest the maintenance of new cell surface material insertion or chemical signal polarization could be weakened due to cellular aging in yeast and other cell types.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Jiadong Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States of America
| | - Zhiliang Xu
- Applied and Computational Mathematics and Statistics Department, University of Notre Dame, Notre Dame, IN, United States of America
| | - Shixin Xu
- Duke Kunshan University, Kunshan, Jiangsu, China
| | - Roya Zandi
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Physics and Astronomy, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Bioengineering, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| |
Collapse
|
7
|
Carter Z, Creamer D, Kouvidi A, Grant CM. Sequestrase chaperones protect against oxidative stress-induced protein aggregation and [PSI+] prion formation. PLoS Genet 2024; 20:e1011194. [PMID: 38422160 DOI: 10.1371/journal.pgen.1011194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Misfolded proteins are usually refolded to their functional conformations or degraded by quality control mechanisms. When misfolded proteins evade quality control, they can be sequestered to specific sites within cells to prevent the potential dysfunction and toxicity that arises from protein aggregation. Btn2 and Hsp42 are compartment-specific sequestrases that play key roles in the assembly of these deposition sites. Their exact intracellular functions and substrates are not well defined, particularly since heat stress sensitivity is not observed in deletion mutants. We show here that Btn2 and Hsp42 are required for tolerance to oxidative stress conditions induced by exposure to hydrogen peroxide. Btn2 and Hsp42 act to sequester oxidized proteins into defined PQC sites following ROS exposure and their absence leads to an accumulation of protein aggregates. The toxicity of protein aggregate accumulation causes oxidant sensitivity in btn2 hsp42 sequestrase mutants since overexpression of the Hsp104 disaggregase rescues oxidant tolerance. We have identified the Sup35 translation termination factor as an in vivo sequestrase substrate and show that Btn2 and Hsp42 act to suppress oxidant-induced formation of the yeast [PSI+] prion, which is the amyloid form of Sup35. [PSI+] prion formation in sequestrase mutants does not require IPOD (insoluble protein deposit) localization which is the site where amyloids are thought to undergo fragmentation and seeding to propagate their heritable prion form. Instead, both amorphous and amyloid Sup35 aggregates are increased in btn2 hsp42 mutants consistent with the idea that prion formation occurs at multiple intracellular sites during oxidative stress conditions in the absence of sequestrase activity. Taken together, our data identify protein sequestration as a key antioxidant defence mechanism that functions to mitigate the damaging consequences of protein oxidation-induced aggregation.
Collapse
Affiliation(s)
- Zorana Carter
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Declan Creamer
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Aikaterini Kouvidi
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
8
|
Yang EJN, Liao PC, Pon L. Mitochondrial protein and organelle quality control-Lessons from budding yeast. IUBMB Life 2024; 76:72-87. [PMID: 37731280 PMCID: PMC10842221 DOI: 10.1002/iub.2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Mitochondria are essential for normal cellular function and have emerged as key aging determinants. Indeed, defects in mitochondrial function have been linked to cardiovascular, skeletal muscle and neurodegenerative diseases, premature aging, and age-linked diseases. Here, we describe mechanisms for mitochondrial protein and organelle quality control. These surveillance mechanisms mediate repair or degradation of damaged or mistargeted mitochondrial proteins, segregate mitochondria based on their functional state during asymmetric cell division, and modulate cellular fitness, the response to stress, and lifespan control in yeast and other eukaryotes.
Collapse
Affiliation(s)
- Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Pin-Chao Liao
- Institute of Molecular Medicine & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Liza Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
9
|
Eisele-Bürger AM, Eisele F, Malmgren Hill S, Hao X, Schneider KL, Imamoglu R, Balchin D, Liu B, Hartl FU, Bozhkov PV, Nyström T. Calmodulin regulates protease versus co-chaperone activity of a metacaspase. Cell Rep 2023; 42:113372. [PMID: 37938971 DOI: 10.1016/j.celrep.2023.113372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/11/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Metacaspases are ancestral homologs of caspases that can either promote cell death or confer cytoprotection. Furthermore, yeast (Saccharomyces cerevisiae) metacaspase Mca1 possesses dual biochemical activity: proteolytic activity causing cell death and cytoprotective, co-chaperone-like activity retarding replicative aging. The molecular mechanism favoring one activity of Mca1 over another remains elusive. Here, we show that this mechanism involves calmodulin binding to the N-terminal pro-domain of Mca1, which prevents its proteolytic activation and promotes co-chaperone-like activity, thus switching from pro-cell death to anti-aging function. The longevity-promoting effect of Mca1 requires the Hsp40 co-chaperone Sis1, which is necessary for Mca1 recruitment to protein aggregates and their clearance. In contrast, proteolytically active Mca1 cleaves Sis1 both in vitro and in vivo, further clarifying molecular mechanism behind a dual role of Mca1 as a cell-death protease versus gerontogene.
Collapse
Affiliation(s)
- Anna Maria Eisele-Bürger
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Frederik Eisele
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | - Sandra Malmgren Hill
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Kara L Schneider
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Rahmi Imamoglu
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - David Balchin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden.
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
10
|
Yamashita YM. Asymmetric Stem Cell Division and Germline Immortality. Annu Rev Genet 2023; 57:181-199. [PMID: 37552892 DOI: 10.1146/annurev-genet-022123-040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Germ cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality. Even unicellular organisms age at a cellular level, demonstrating that cellular aging is inevitable. Extensive studies in yeast have established the framework of how asymmetric cell division and gametogenesis may contribute to the resetting of cellular age. This review examines the mechanisms of germline immortality-how germline cells reset the aging of cells-drawing a parallel between yeast and multicellular organisms.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
11
|
Kim YH, Ryu JI, Devare MN, Jung J, Kim JY. The intricate role of Sir2 in oxidative stress response during the post-diauxic phase in Saccharomyces cerevisiae. Front Microbiol 2023; 14:1285559. [PMID: 38029141 PMCID: PMC10666771 DOI: 10.3389/fmicb.2023.1285559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Silent information regulator 2 (Sir2) is a conserved NAD+-dependent histone deacetylase crucial for regulating cellular stress response and the aging process in Saccharomyces cerevisiae. In this study, we investigated the molecular mechanism underlying how the absence of Sir2 can lead to altered stress susceptibilities in S. cerevisiae under different environmental and physiological conditions. In a glucose-complex medium, the sir2Δ strain showed increased sensitivity to H2O2 compared to the wild-type strain during the post-diauxic phase. In contrast, it displayed increased resistance during the exponential growth phase. Transcriptome analysis of yeast cells in the post-diauxic phase indicated that the sir2Δ mutant expressed several oxidative defense genes at lower levels than the wild-type, potentially accounting for its increased susceptibility to H2O2. Interestingly, however, the sir2Δras2Δ double mutant exhibited greater resistance to H2O2 than the ras2Δ single mutant counterpart. We found that the expression regulation of the cytoplasmic catalase encoded by CTT1 was critical for the increased resistance to H2O2 in the sir2Δras2Δ strain. The expression of the CTT1 gene was influenced by the combined effect of RAS2 deletion and the transcription factor Azf1, whose level was modulated by Sir2. These findings provide insights into the importance of understanding the intricate interactions among various factors contributing to cellular stress response.
Collapse
Affiliation(s)
| | | | | | | | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Mouton SN, Boersma AJ, Veenhoff LM. A physicochemical perspective on cellular ageing. Trends Biochem Sci 2023; 48:949-962. [PMID: 37716870 DOI: 10.1016/j.tibs.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/18/2023]
Abstract
Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.
Collapse
Affiliation(s)
- Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Sun G, Hwang C, Jung T, Liu J, Li R. Biased placement of Mitochondria fission facilitates asymmetric inheritance of protein aggregates during yeast cell division. PLoS Comput Biol 2023; 19:e1011588. [PMID: 38011208 PMCID: PMC10703421 DOI: 10.1371/journal.pcbi.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/07/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
Mitochondria are essential and dynamic eukaryotic organelles that must be inherited during cell division. In yeast, mitochondria are inherited asymmetrically based on quality, which is thought to be vital for maintaining a rejuvenated cell population; however, the mechanisms underlying mitochondrial remodeling and segregation during this process are not understood. We used high spatiotemporal imaging to quantify the key aspects of mitochondrial dynamics, including motility, fission, and fusion characteristics, upon aggregation of misfolded proteins in the mitochondrial matrix. Using these measured parameters, we developed an agent-based stochastic model of dynamics of mitochondrial inheritance. Our model predicts that biased mitochondrial fission near the protein aggregates facilitates the clustering of protein aggregates in the mitochondrial matrix, and this process underlies asymmetric mitochondria inheritance. These predictions are supported by live-cell imaging experiments where mitochondrial fission was perturbed. Our findings therefore uncover an unexpected role of mitochondrial dynamics in asymmetric mitochondrial inheritance.
Collapse
Affiliation(s)
- Gordon Sun
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Christine Hwang
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tony Jung
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jian Liu
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Paukštytė J, López Cabezas RM, Feng Y, Tong K, Schnyder D, Elomaa E, Gregorova P, Doudin M, Särkkä M, Sarameri J, Lippi A, Vihinen H, Juutila J, Nieminen A, Törönen P, Holm L, Jokitalo E, Krisko A, Huiskonen J, Sarin LP, Hietakangas V, Picotti P, Barral Y, Saarikangas J. Global analysis of aging-related protein structural changes uncovers enzyme-polymerization-based control of longevity. Mol Cell 2023; 83:3360-3376.e11. [PMID: 37699397 DOI: 10.1016/j.molcel.2023.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.
Collapse
Affiliation(s)
- Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Yuehan Feng
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Ellinoora Elomaa
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Pavlina Gregorova
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Matteo Doudin
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Meeri Särkkä
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Jesse Sarameri
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Helena Vihinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Juhana Juutila
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Anni Nieminen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Törönen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Liisa Holm
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Juha Huiskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - L Peter Sarin
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland; Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
15
|
Babazadeh R, Schneider KL, Fischbach A, Hao X, Liu B, Nystrom T. The yeast guanine nucleotide exchange factor Sec7 is a bottleneck in spatial protein quality control and detoxifies neurological disease proteins. Sci Rep 2023; 13:14068. [PMID: 37640758 PMCID: PMC10462735 DOI: 10.1038/s41598-023-41188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
ER-to-Golgi trafficking partakes in the sorting of misfolded cytoplasmic proteins to reduce their cytological toxicity. We show here that yeast Sec7, a protein involved in proliferation of the Golgi, is part of this pathway and participates in an Hsp70-dependent formation of insoluble protein deposits (IPOD). Sec7 associates with the disaggregase Hsp104 during a mild heat shock and increases the rate of Hsp104 diffusion in an Hsp70-dependent manner when overproduced. Sec7 overproduction increased formation of IPODs from smaller aggregates and mitigated the toxicity of Huntingtin exon-1 upon heat stress while Sec7 depletion increased sensitivity to aẞ42 of the Alzheimer's disease and α-synuclein of the Parkinson's disease, suggesting a role of Sec7 in mitigating proteotoxicity.
Collapse
Affiliation(s)
- Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
16
|
Chawla S, Ahmadpour D, Schneider KL, Kumar N, Fischbach A, Molin M, Nystrom T. Calcineurin stimulation by Cnb1p overproduction mitigates protein aggregation and α-synuclein toxicity in a yeast model of synucleinopathy. Cell Commun Signal 2023; 21:220. [PMID: 37620860 PMCID: PMC10464345 DOI: 10.1186/s12964-023-01242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The calcium-responsive phosphatase, calcineurin, senses changes in Ca2+ concentrations in a calmodulin-dependent manner. Here we report that under non-stress conditions, inactivation of calcineurin signaling or deleting the calcineurin-dependent transcription factor CRZ1 triggered the formation of chaperone Hsp100p (Hsp104p)-associated protein aggregates in Saccharomyces cerevisiae. Furthermore, calcineurin inactivation aggravated α-Synuclein-related cytotoxicity. Conversely, elevated production of the calcineurin activator, Cnb1p, suppressed protein aggregation and cytotoxicity associated with the familial Parkinson's disease-related mutant α-Synuclein A53T in a partly CRZ1-dependent manner. Activation of calcineurin boosted normal localization of both wild type and mutant α-synuclein to the plasma membrane, an intervention previously shown to mitigate α-synuclein toxicity in Parkinson's disease models. The findings demonstrate that calcineurin signaling, and Ca2+ influx to the vacuole, limit protein quality control in non-stressed cells and may have implications for elucidating to which extent aberrant calcineurin signaling contributes to the progression of Parkinson's disease(s) and other synucleinopathies. Video Abstract.
Collapse
Affiliation(s)
- Srishti Chawla
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden.
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Doryaneh Ahmadpour
- Center for Bionics and Pain Research, Sahlgrenska University Hospital, Mölndal, 431 30, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Navinder Kumar
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Arthur Fischbach
- Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany
| | - Mikael Molin
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, 405 30, Sweden.
| |
Collapse
|
17
|
Stanford KE, Zhao X, Kim N, Masison DC, Greene LE. Overexpression of Hsp104 by Causing Dissolution of the Prion Seeds Cures the Yeast [ PSI+] Prion. Int J Mol Sci 2023; 24:10833. [PMID: 37446010 DOI: 10.3390/ijms241310833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The yeast Sup35 protein misfolds into the infectious [PSI+] prion, which is then propagated by the severing activity of the molecular chaperone, Hsp104. Unlike other yeast prions, this prion is unique in that it is efficiently cured by the overexpression as well as the inactivation of Hsp104. However, it is controversial whether curing by overexpression is due to the dissolution of the prion seeds by the trimming activity of Hsp104 or the asymmetric segregation of the prion seeds between mother and daughter cells which requires cell division. To answer this question, we conducted experiments and found no difference in the extent of curing between mother and daughter cells when half of the cells were cured by Hsp104 overexpression in one generation. Furthermore, curing was not affected by the lack of Sir2 expression, which was reported to be required for asymmetric segregation of the [PSI+] seeds. More importantly, when either hydroxyurea or ethanol were used to inhibit cell division, the extent of curing by Hsp104 overexpression was not significantly reduced. Therefore, the curing of [PSI+] by Hsp104 overexpression is not due to asymmetric segregation of the prion seeds, but rather their dissolution by Hsp104.
Collapse
Affiliation(s)
- Katherine E Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Kim
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lois E Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Josefson R, Kumar N, Hao X, Liu B, Nyström T. The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae. Sci Rep 2023; 13:9285. [PMID: 37286562 DOI: 10.1038/s41598-023-35666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
A hallmark of aging in a variety of organisms is a breakdown of proteostasis and an ensuing accumulation of protein aggregates and inclusions. However, it is not clear if the proteostasis network suffers from a uniform breakdown during aging or if some distinct components act as bottlenecks especially sensitive to functional decline. Here, we report on a genome-wide, unbiased, screen for single genes in young cells of budding yeast required to keep the proteome aggregate-free under non-stress conditions as a means to identify potential proteostasis bottlenecks. We found that the GET pathway, required for the insertion of tail-anchored (TA) membrane proteins in the endoplasmic reticulum, is such a bottleneck as single mutations in either GET3, GET2 or GET1 caused accumulation of cytosolic Hsp104- and mitochondria-associated aggregates in nearly all cells when growing at 30 °C (non-stress condition). Further, results generated by a second screen identifying proteins aggregating in GET mutants and analyzing the behavior of cytosolic reporters of misfolding, suggest that there is a general collapse in proteostasis in GET mutants that affects other proteins than TA proteins.
Collapse
Affiliation(s)
- Rebecca Josefson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Navinder Kumar
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
19
|
Yang EJN, Boldogh IR, Ji H, Pon L, Swayne TC. Imaging of mtHyPer7, a Ratiometric Biosensor for Mitochondrial Peroxide, in Living Yeast Cells. J Vis Exp 2023:10.3791/65428. [PMID: 37335116 PMCID: PMC11091793 DOI: 10.3791/65428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Mitochondrial dysfunction, or functional alteration, is found in many diseases and conditions, including neurodegenerative and musculoskeletal disorders, cancer, and normal aging. Here, an approach is described to assess mitochondrial function in living yeast cells at cellular and subcellular resolutions using a genetically encoded, minimally invasive, ratiometric biosensor. The biosensor, mitochondria-targeted HyPer7 (mtHyPer7), detects hydrogen peroxide (H2O2) in mitochondria. It consists of a mitochondrial signal sequence fused to a circularly permuted fluorescent protein and the H2O2-responsive domain of a bacterial OxyR protein. The biosensor is generated and integrated into the yeast genome using a CRISPR-Cas9 marker-free system, for more consistent expression compared to plasmid-borne constructs. mtHyPer7 is quantitatively targeted to mitochondria, has no detectable effect on yeast growth rate or mitochondrial morphology, and provides a quantitative readout for mitochondrial H2O2 under normal growth conditions and upon exposure to oxidative stress. This protocol explains how to optimize imaging conditions using a spinning-disk confocal microscope system and perform quantitative analysis using freely available software. These tools make it possible to collect rich spatiotemporal information on mitochondria both within cells and among cells in a population. Moreover, the workflow described here can be used to validate other biosensors.
Collapse
Affiliation(s)
- Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; Confocal and Specialized Microscopy Shared Resource in the Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Haojie Ji
- Confocal and Specialized Microscopy Shared Resource in the Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Liza Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; Confocal and Specialized Microscopy Shared Resource in the Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center
| | - Theresa C Swayne
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; Confocal and Specialized Microscopy Shared Resource in the Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center;
| |
Collapse
|
20
|
Fischbach A, Johns A, Schneider KL, Hao X, Tessarz P, Nyström T. Artificial Hsp104-mediated systems for re-localizing protein aggregates. Nat Commun 2023; 14:2663. [PMID: 37160881 PMCID: PMC10169802 DOI: 10.1038/s41467-023-37706-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Spatial Protein Quality Control (sPQC) sequesters misfolded proteins into specific, organelle-associated inclusions within the cell to control their toxicity. To approach the role of sPQC in cellular fitness, neurodegenerative diseases and aging, we report on the construction of Hsp100-based systems in budding yeast cells, which can artificially target protein aggregates to non-canonical locations. We demonstrate that aggregates of mutant huntingtin (mHtt), the disease-causing agent of Huntington's disease can be artificially targeted to daughter cells as well as to eisosomes and endosomes with this approach. We find that the artificial removal of mHtt inclusions from mother cells protects them from cell death suggesting that even large mHtt inclusions may be cytotoxic, a trait that has been widely debated. In contrast, removing inclusions of endogenous age-associated misfolded proteins does not significantly affect the lifespan of mother cells. We demonstrate also that this approach is able to manipulate mHtt inclusion formation in human cells and has the potential to be useful as an alternative, complementary approach to study the role of sPQC, for example in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Angela Johns
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Peter Tessarz
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
21
|
Schepers J, Carter Z, Kritsiligkou P, Grant CM. Methionine Sulfoxide Reductases Suppress the Formation of the [ PSI+] Prion and Protein Aggregation in Yeast. Antioxidants (Basel) 2023; 12:antiox12020401. [PMID: 36829961 PMCID: PMC9952077 DOI: 10.3390/antiox12020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Prions are self-propagating, misfolded forms of proteins associated with various neurodegenerative diseases in mammals and heritable traits in yeast. How prions form spontaneously into infectious amyloid-like structures without underlying genetic changes is poorly understood. Previous studies have suggested that methionine oxidation may underlie the switch from a soluble protein to the prion form. In this current study, we have examined the role of methionine sulfoxide reductases (MXRs) in protecting against de novo formation of the yeast [PSI+] prion, which is the amyloid form of the Sup35 translation termination factor. We show that [PSI+] formation is increased during normal and oxidative stress conditions in mutants lacking either one of the yeast MXRs (Mxr1, Mxr2), which protect against methionine oxidation by reducing the two epimers of methionine-S-sulfoxide. We have identified a methionine residue (Met124) in Sup35 that is important for prion formation, confirming that direct Sup35 oxidation causes [PSI+] prion formation. [PSI+] formation was less pronounced in mutants simultaneously lacking both MXR isoenzymes, and we show that the morphology and biophysical properties of protein aggregates are altered in this mutant. Taken together, our data indicate that methionine oxidation triggers spontaneous [PSI+] prion formation, which can be alleviated by methionine sulfoxide reductases.
Collapse
Affiliation(s)
- Jana Schepers
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Zorana Carter
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Chris M. Grant
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Correspondence:
| |
Collapse
|
22
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
23
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
24
|
Kukhtevich IV, Rivero-Romano M, Rakesh N, Bheda P, Chadha Y, Rosales-Becerra P, Hamperl S, Bureik D, Dornauer S, Dargemont C, Kirmizis A, Schmoller KM, Schneider R. Quantitative RNA imaging in single live cells reveals age-dependent asymmetric inheritance. Cell Rep 2022; 41:111656. [DOI: 10.1016/j.celrep.2022.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
|
25
|
Therapeutic Antiaging Strategies. Biomedicines 2022; 10:biomedicines10102515. [PMID: 36289777 PMCID: PMC9599338 DOI: 10.3390/biomedicines10102515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aging constitutes progressive physiological changes in an organism. These changes alter the normal biological functions, such as the ability to manage metabolic stress, and eventually lead to cellular senescence. The process itself is characterized by nine hallmarks: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks are risk factors for pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Emerging evidence has been focused on examining the genetic pathways and biological processes in organisms surrounding these nine hallmarks. From here, the therapeutic approaches can be addressed in hopes of slowing the progression of aging. In this review, data have been collected on the hallmarks and their relative contributions to aging and supplemented with in vitro and in vivo antiaging research experiments. It is the intention of this article to highlight the most important antiaging strategies that researchers have proposed, including preventive measures, systemic therapeutic agents, and invasive procedures, that will promote healthy aging and increase human life expectancy with decreased side effects.
Collapse
|
26
|
Paxman J, Zhou Z, O'Laughlin R, Liu Y, Li Y, Tian W, Su H, Jiang Y, Holness SE, Stasiowski E, Tsimring LS, Pillus L, Hasty J, Hao N. Age-dependent aggregation of ribosomal RNA-binding proteins links deterioration in chromatin stability with challenges to proteostasis. eLife 2022; 11:e75978. [PMID: 36194205 PMCID: PMC9578700 DOI: 10.7554/elife.75978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of Saccharomyces cerevisiae, a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes.
Collapse
Affiliation(s)
- Julie Paxman
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Zhen Zhou
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Richard O'Laughlin
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Yuting Liu
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yang Li
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Wanying Tian
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Hetian Su
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yanfei Jiang
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Shayna E Holness
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Elizabeth Stasiowski
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Lorraine Pillus
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- UCSD Moores Cancer Center, University of California San, DiegoLa JollaUnited States
| | - Jeff Hasty
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| | - Nan Hao
- Department of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
- Department of Bioengineering, University of California, San DiegoLa JollaUnited States
- Synthetic Biology Institute, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
27
|
Schneider KL, Ahmadpour D, Keuenhof KS, Eisele-Bürger AM, Berglund LL, Eisele F, Babazadeh R, Höög JL, Nyström T, Widlund PO. Using reporters of different misfolded proteins reveals differential strategies in processing protein aggregates. J Biol Chem 2022; 298:102476. [PMID: 36096201 PMCID: PMC9636550 DOI: 10.1016/j.jbc.2022.102476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 colocalized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling EM in which both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing.
Collapse
Affiliation(s)
- Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Katharina S Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Maria Eisele-Bürger
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lisa Larsson Berglund
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Per O Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
28
|
Mołoń M, Stępień K, Kielar P, Vasileva B, Lozanska B, Staneva D, Ivanov P, Kula-Maximenko M, Molestak E, Tchórzewski M, Miloshev G, Georgieva M. Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing. Cells 2022; 11:cells11172754. [PMID: 36078161 PMCID: PMC9454676 DOI: 10.3390/cells11172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Ageing is accompanied by dramatic changes in chromatin structure organization and genome function. Two essential components of chromatin, the linker histone Hho1p and actin-related protein 4 (Arp4p), have been shown to physically interact in Saccharomyces cerevisiae cells, thus maintaining chromatin dynamics and function, as well as genome stability and cellular morphology. Disrupting this interaction has been proven to influence the stability of the yeast genome and the way cells respond to stress during chronological ageing. It has also been proven that the abrogated interaction between these two chromatin proteins elicited premature ageing phenotypes. Alterations in chromatin compaction have also been associated with replicative ageing, though the main players are not well recognized. Based on this knowledge, here, we examine how the interaction between Hho1p and Arp4p impacts the ageing of mitotically active yeast cells. For this purpose, two sets of strains were used—haploids (WT(n), arp4, hho1Δ and arp4 hho1Δ) and their heterozygous diploid counterparts (WT(2n), ARP4/arp4, HHO1/hho1Δ and ARP4 HHO1/arp4 hho1Δ)—for the performance of extensive morphological and physiological analyses during replicative ageing. These analyses included a comparative examination of the yeast cells’ chromatin structure, proliferative and reproductive potential, and resilience to stress, as well as polysome profiles and chemical composition. The results demonstrated that the haploid chromatin mutants arp4 and arp4 hho1Δ demonstrated a significant reduction in replicative and total lifespan. These findings lead to the conclusion that the importance of a healthy interaction between Arp4p and Hho1p in replicative ageing is significant. This is proof of the concomitant importance of Hho1p and Arp4p in chronological and replicative ageing.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.M.); (M.G.)
| | - Karolina Stępień
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Patrycja Kielar
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Bela Vasileva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Bonka Lozanska
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Penyo Ivanov
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
- Correspondence: (M.M.); (M.G.)
| |
Collapse
|
29
|
Schnitzer B, Österberg L, Skopa I, Cvijovic M. Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing. PLoS Comput Biol 2022; 18:e1010261. [PMID: 35797415 PMCID: PMC9295998 DOI: 10.1371/journal.pcbi.1010261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iro Skopa
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Oamen HP, Romero Romero N, Knuckles P, Saarikangas J, Radman‐Livaja M, Dong Y, Caudron F. A rare natural lipid induces neuroglobin expression to prevent amyloid oligomers toxicity and retinal neurodegeneration. Aging Cell 2022; 21:e13645. [PMID: 35656861 PMCID: PMC9282837 DOI: 10.1111/acel.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Most neurodegenerative diseases such as Alzheimer's disease are proteinopathies linked to the toxicity of amyloid oligomers. Treatments to delay or cure these diseases are lacking. Using budding yeast, we report that the natural lipid tripentadecanoin induces expression of the nitric oxide oxidoreductase Yhb1 to prevent the formation of protein aggregates during aging and extends replicative lifespan. In mammals, tripentadecanoin induces expression of the Yhb1 orthologue, neuroglobin, to protect neurons against amyloid toxicity. Tripentadecanoin also rescues photoreceptors in a mouse model of retinal degeneration and retinal ganglion cells in a Rhesus monkey model of optic atrophy. Together, we propose that tripentadecanoin affects p-bodies to induce neuroglobin expression and offers a potential treatment for proteinopathies and retinal neurodegeneration.
Collapse
Affiliation(s)
- Henry Patrick Oamen
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Nathaly Romero Romero
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Philip Knuckles
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of HelsinkiHelsinkiFinland
- Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Neuroscience Center, University of HelsinkiHelsinkiFinland
| | | | | | | |
Collapse
|
31
|
Gorelik SG, Belousova ON, Treneva EV, Bulgakova SV, Zakharova NO, Nesterenko SA. Effect of Daily Rhythms of Cortisol Secretion on the Rate of Aging in Men. ARCHIVES OF RAZI INSTITUTE 2022; 77:1233-1239. [PMID: 36618277 PMCID: PMC9759242 DOI: 10.22092/ari.2022.357394.2034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 01/10/2023]
Abstract
The phenomenon of human aging is the result of a complex interaction among several factors in which the immune system plays a key role. Cortisol is a glucocorticoid secreted by the adrenal gland and has a specific secretion pattern. The current study aimed at identifying the cause and pathogenesis of premature aging using biological markers. This study was performed based on the results of clinical and instrumental examinations on 91 middle-aged men aged 45-59 years. VaseraVS-1500 sphygmomanometer based on standard methods was used to measure biological age. The relationship between biological age and circadian rhythms of cortisol secretion was calculated to elucidate the pathophysiological mechanisms of aging development. The recorded data showed that the violation of the circadian rhythms of cortisol secretion characterized by a consistently high level of the hormone throughout the day was typical among individuals with accelerated types of aging. Based on the obtained data, a formula for determining the biological age of the studied groups of patients was prepared by considering the circadian rhythm of cortisol secretion, which can be an additional tool for early detection of aging in men.
Collapse
Affiliation(s)
- S. G Gorelik
- Belgorod State University, Pobedy Str., 85, Belgorod, Russia, 308015
| | - O. N Belousova
- Belgorod State University, Pobedy Str., 85, Belgorod, Russia, 308015
| | - E. V Treneva
- Samara State Medical University, Chapaevskaya Str., 89, Samara, Russia, 443009
| | - S. V Bulgakova
- Samara State Medical University, Chapaevskaya Str., 89, Samara, Russia, 443009
| | - N. O Zakharova
- Samara State Medical University, Chapaevskaya Str., 89, Samara, Russia, 443009
| | - S. A Nesterenko
- Samara State Medical University, Chapaevskaya Str., 89, Samara, Russia, 443009
| |
Collapse
|
32
|
Yeast red pigment, protein aggregates, and amyloidoses: a review. Cell Tissue Res 2022; 388:211-223. [PMID: 35258715 DOI: 10.1007/s00441-022-03609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Estimating the amyloid level in yeast Saccharomyces, we found out that the red pigment (product of polymerization of aminoimidazole ribotide) accumulating in ade1 and ade2 mutants leads to drop of the amyloid content. We demonstrated in vitro that fibrils of several proteins grown in the presence of the red pigment stop formation at the protofibril stage and form stable aggregates due to coalescence. Also, the red pigment inhibits reactive oxygen species accumulation in cells. This observation suggests that red pigment is involved in oxidative stress response. We developed an approach to identify the proteins whose aggregation state depends on prion (amyloid) or red pigment presence. These sets of proteins overlap and in both cases involve many different chaperones. Red pigment binds amyloids and is supposed to prevent chaperone-mediated prion propagation. An original yeast-Drosophila model was offered to estimate the red pigment effect on human proteins involved in neurodegeneration. As yeast cells are a natural feed of Drosophila, we could compare the data on transgenic flies fed on red and white yeast cells. Red pigment inhibits aggregation of human Amyloid beta and α-synuclein expressed in yeast cells. In the brain of transgenic flies, the red pigment diminishes amyloid beta level and the area of neurodegeneration. An improvement in memory and viability accompanied these changes. In transgenic flies expressing human α-synuclein, the pigment leads to a decreased death rate of dopaminergic neurons and improves mobility. The obtained results demonstrate yeast red pigment potential for the treatment of neurodegenerative diseases.
Collapse
|
33
|
Kang PJ, Mullner R, Li H, Hansford D, Shen HW, Park HO. Upregulation of the Cdc42 GTPase limits the replicative lifespan of budding yeast. Mol Biol Cell 2022; 33:br5. [PMID: 35044837 PMCID: PMC9250358 DOI: 10.1091/mbc.e21-04-0208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. Cell polarity is critical for asymmetric cell division, and asymmetric cell division underlies replicative aging of budding yeast. Yet how Cdc42 and other polarity factors impact life span is largely unknown. Here we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild type during repeated cell divisions but rarely in the long-lived bud8 deletion cells. We find a novel Bud8 localization with cytokinesis remnants, which also recruit Rga1, a Cdc42 GTPase activating protein. Genetic analyses and live-cell imaging suggest that Rga1 and Bud8 oppositely impact life span likely by modulating active Cdc42 levels. An rga1 mutant, which has a shorter life span, dies at the unbudded state with a defect in polarity establishment. Remarkably, Cdc42 accumulates in old cells, and its mild overexpression accelerates aging with frequent symmetric cell divisions, despite no harmful effects on young cells. Our findings implicate that the interplay among these positive and negative polarity factors limits the life span of budding yeast.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Rachel Mullner
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Haoyu Li
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Derek Hansford
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Han-Wei Shen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Mazheika IS, Semenova MA, Voronko OV, Psurtseva NV, Kolomiets OL, Kamzolkina OV. Evaluation of the carbonylation of filamentous fungi proteins by dry immune dot blotting. Fungal Biol 2021; 125:923-933. [PMID: 34649679 DOI: 10.1016/j.funbio.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
The development of mycological gerontology requires effective methods for assessing the biological age of fungal cells. This assessment is based on the analysis of a complex of aging and oxidative stress markers. One of the most powerful such markers is the protein carbonylation. In this study, the already known method of dry immune dot blotting is adapted for mycological studies of the content of protein carbonyl groups. After testing the method on a number of filamentous fungi species, some features of the accumulation of carbonylated proteins in mycelium were established. Among these features: (i) a weak effect of exogenous oxidative stress on the accumulation of carbonyls in a number of fungi, (ii) reversibility of the carbonyl accumulation, (iii) possibility of arbitrary regulation of carbonyl content by fungus itself and (iv) the influence of hormesis. In addition, two polar strategies for the accumulation of carbonyl modification were revealed, named Id-strategy (Indifferent) and Cn-strategy (Concern). Thus, even the analysis of one marker allows making some preliminary general assumptions and conclusions. For example, the idea that fungi can freely regulate their biological age is confirmed. This feature makes fungi very flexible in terms of responding to environmental influences and promising objects for gerontology.
Collapse
Affiliation(s)
- Igor S Mazheika
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 117971, Russia.
| | - Marina A Semenova
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oxana V Voronko
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezhda V Psurtseva
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Oxana L Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 117971, Russia
| | - Olga V Kamzolkina
- Department of Mycology and Algology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
35
|
Fassler JS, Skuodas S, Weeks DL, Phillips BT. Protein Aggregation and Disaggregation in Cells and Development. J Mol Biol 2021; 433:167215. [PMID: 34450138 PMCID: PMC8530975 DOI: 10.1016/j.jmb.2021.167215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/01/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.
Collapse
Affiliation(s)
- Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States.
| | - Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@sskuodas
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States. https://twitter.com/@bt4phillips
| |
Collapse
|
36
|
Panagaki D, Croft JT, Keuenhof K, Larsson Berglund L, Andersson S, Kohler V, Büttner S, Tamás MJ, Nyström T, Neutze R, Höög JL. Nuclear envelope budding is a response to cellular stress. Proc Natl Acad Sci U S A 2021; 118:e2020997118. [PMID: 34290138 PMCID: PMC8325156 DOI: 10.1073/pnas.2020997118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear envelope budding (NEB) is a recently discovered alternative pathway for nucleocytoplasmic communication distinct from the movement of material through the nuclear pore complex. Through quantitative electron microscopy and tomography, we demonstrate how NEB is evolutionarily conserved from early protists to human cells. In the yeast Saccharomyces cerevisiae, NEB events occur with higher frequency during heat shock, upon exposure to arsenite or hydrogen peroxide, and when the proteasome is inhibited. Yeast cells treated with azetidine-2-carboxylic acid, a proline analog that induces protein misfolding, display the most dramatic increase in NEB, suggesting a causal link to protein quality control. This link was further supported by both localization of ubiquitin and Hsp104 to protein aggregates and NEB events, and the evolution of these structures during heat shock. We hypothesize that NEB is part of normal cellular physiology in a vast range of species and that in S. cerevisiae NEB comprises a stress response aiding the transport of protein aggregates across the nuclear envelope.
Collapse
Affiliation(s)
- Dimitra Panagaki
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jacob T Croft
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Katharina Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Verena Kohler
- Department of Molecular Bioscienses, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Bioscienses, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden;
| |
Collapse
|
37
|
Sun Y, Yu R, Guo HB, Qin H, Dang W. A quantitative yeast aging proteomics analysis reveals novel aging regulators. GeroScience 2021; 43:2573-2593. [PMID: 34241809 DOI: 10.1007/s11357-021-00412-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Calorie restriction (CR) is the most robust longevity intervention, extending lifespan from yeast to mammals. Numerous conserved pathways regulating aging and mediating CR have been identified; however, the overall proteomic changes during these conditions remain largely unexplored. We compared proteomes between young and replicatively aged yeast cells under normal and CR conditions using the Stable-Isotope Labeling by Amino acids in Cell culture (SILAC) quantitative proteomics and discovered distinct signatures in the aging proteome. We found remarkable proteomic similarities between aged and CR cells, including induction of stress response pathways, providing evidence that CR pathways are engaged in aged cells. These observations also uncovered aberrant changes in mitochondria membrane proteins as well as a proteolytic cellular state in old cells. These proteomics analyses help identify potential genes and pathways that have causal effects on longevity.
Collapse
Affiliation(s)
- Yu Sun
- Huffington Center On Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ruofan Yu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hao-Bo Guo
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, The University of Tennessee At Chattanooga, Chattanooga, TN, 37403, USA
| | - Hong Qin
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, The University of Tennessee At Chattanooga, Chattanooga, TN, 37403, USA
| | - Weiwei Dang
- Huffington Center On Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Schneider KL, Wollman AJM, Nyström T, Shashkova S. Comparison of endogenously expressed fluorescent protein fusions behaviour for protein quality control and cellular ageing research. Sci Rep 2021; 11:12819. [PMID: 34140587 PMCID: PMC8211707 DOI: 10.1038/s41598-021-92249-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The yeast Hsp104 protein disaggregase is often used as a reporter for misfolded or damaged protein aggregates and protein quality control and ageing research. Observing Hsp104 fusions with fluorescent proteins is a popular approach to follow post stress protein aggregation, inclusion formation and disaggregation. While concerns that bigger protein tags, such as genetically encoded fluorescent tags, may affect protein behaviour and function have been around for quite some time, experimental evidence of how exactly the physiology of the protein of interest is altered within fluorescent protein fusions remains limited. To address this issue, we performed a comparative assessment of endogenously expressed Hsp104 fluorescent fusions function and behaviour. We provide experimental evidence that molecular behaviour may not only be altered by introducing a fluorescent protein tag but also varies depending on such a tag within the fusion. Although our findings are especially applicable to protein quality control and ageing research in yeast, similar effects may play a role in other eukaryotic systems.
Collapse
Affiliation(s)
- Kara L Schneider
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Adam J M Wollman
- Newcastle University Biosciences Institute, Newcastle, NE2 4HH, UK
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
39
|
Eisele F, Eisele-Bürger AM, Hao X, Berglund LL, Höög JL, Liu B, Nyström T. An Hsp90 co-chaperone links protein folding and degradation and is part of a conserved protein quality control. Cell Rep 2021; 35:109328. [PMID: 34192536 DOI: 10.1016/j.celrep.2021.109328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/30/2020] [Accepted: 06/09/2021] [Indexed: 10/21/2022] Open
Abstract
In this paper, we show that the essential Hsp90 co-chaperone Sgt1 is a member of a general protein quality control network that links folding and degradation through its participation in the degradation of misfolded proteins both in the cytosol and the endoplasmic reticulum (ER). Sgt1-dependent protein degradation acts in a parallel pathway to the ubiquitin ligase (E3) and ubiquitin chain elongase (E4), Hul5, and overproduction of Hul5 partly suppresses defects in cells with reduced Sgt1 activity. Upon proteostatic stress, Sgt1 accumulates transiently, in an Hsp90- and proteasome-dependent manner, with quality control sites (Q-bodies) of both yeast and human cells that co-localize with Vps13, a protein that creates organelle contact sites. Misfolding disease proteins, such as synphilin-1 involved in Parkinson's disease, are also sequestered to these compartments and require Sgt1 for their clearance.
Collapse
Affiliation(s)
- Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden.
| | - Anna Maria Eisele-Bürger
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7015, 75007 Uppsala, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden
| | - Lisa Larsson Berglund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden; Department of Chemistry & Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90 Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry & Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90 Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry & Molecular Biology, University of Gothenburg, Medicinaregatan 9 C, 413 90 Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Medicinaregatan 7A, 413 90 Gothenburg, Sweden.
| |
Collapse
|
40
|
Tavares JF, Davis NK, Poim A, Reis A, Kellner S, Sousa I, Soares AR, Moura GMR, Dedon PC, Santos M. tRNA-modifying enzyme mutations induce codon-specific mistranslation and protein aggregation in yeast. RNA Biol 2021; 18:563-575. [PMID: 32893724 PMCID: PMC7971265 DOI: 10.1080/15476286.2020.1819671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/28/2023] Open
Abstract
Protein synthesis rate and accuracy are tightly controlled by the cell and are essential for proteome homoeostasis (proteostasis); however, the full picture of how mRNA translational factors maintain protein synthesis accuracy and co-translational protein folding are far from being fully understood. To address this question, we evaluated the role of 70 yeast tRNA-modifying enzyme genes on protein aggregation and used mass spectrometry to identify the aggregated proteins. We show that modification of uridine at anticodon position 34 (U34) by the tRNA-modifying enzymes Elp1, Elp3, Sml3 and Trm9 is critical for proteostasis, the mitochondrial tRNA-modifying enzyme Slm3 plays a fundamental role in general proteostasis and that stress response proteins whose genes are enriched in codons decoded by tRNAs lacking mcm5U34, mcm5s2U34, ncm5U34, ncm5Um34, modifications are overrepresented in protein aggregates of the ELP1, SLM3 and TRM9 KO strains. Increased rates of amino acid misincorporation were also detected in these strains at protein sites that specifically mapped to the codons sites that are decoded by the hypomodified tRNAs, demonstrating that U34 tRNA modifications safeguard the proteome from translational errors, protein misfolding and proteotoxic stress.
Collapse
Affiliation(s)
- Joana F Tavares
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Nick K. Davis
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
| | - Ana Poim
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Andreia Reis
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
| | - Inês Sousa
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana R. Soares
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Gabriela M R Moura
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology – MIT, Cambridge, US
- Singapore-MIT Alliance for Research and Technology, Campus for Research Excellence and Technical Enterprise – CREATE, Singapore
| | - Manuel Santos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
41
|
Cabrera M, Boronat S, Marte L, Vega M, Pérez P, Ayté J, Hidalgo E. Chaperone-Facilitated Aggregation of Thermo-Sensitive Proteins Shields Them from Degradation during Heat Stress. Cell Rep 2021; 30:2430-2443.e4. [PMID: 32075773 DOI: 10.1016/j.celrep.2020.01.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Cells have developed protein quality-control strategies to manage the accumulation of misfolded substrates during heat stress. Using a soluble reporter of misfolding in fission yeast, Rho1.C17R-GFP, we demonstrate that upon mild heat shock, the reporter collapses in protein aggregate centers (PACs). They contain and/or require several chaperones, such as Hsp104, Hsp16, and the Hsp40/70 couple Mas5/Ssa2. Stress granules do not assemble at mild temperatures and, therefore, are not required for PAC formation; on the contrary, PACs may serve as nucleation centers for the assembly of stress granules. In contrast to the general belief, the dominant fate of these PACs is not degradation, and the aggregated reporter can be disassembled by chaperones and recovers native structure and activity. Using mass spectrometry, we show that thermo-unstable endogenous proteins form PACs as well. In conclusion, formation of PACs during heat shock is a chaperone-mediated adaptation strategy.
Collapse
Affiliation(s)
- Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Luis Marte
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
42
|
Differential role of cytosolic Hsp70s in longevity assurance and protein quality control. PLoS Genet 2021; 17:e1008951. [PMID: 33428620 PMCID: PMC7822560 DOI: 10.1371/journal.pgen.1008951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/22/2021] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70’s in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this ‘defect’ of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast. All organisms have proteins that network together to stabilize and protect the cell throughout its lifetime. One of these types of proteins are the Hsp70s (heat shock protein 70). Hsp70 proteins take part in folding other proteins to their functional form, untangling proteins from aggregates, organize aggregates inside the cell and ensure that damaged proteins are destroyed. In this study, we investigated three closely related Hsp70 proteins in yeast; Ssa1, 2 and 4, in an effort to describe the functional difference of Ssa4 compared to Ssa1 and 2 and to answer the question: What types of cellular stress protection are necessary to reach a normal lifespan? We show that Ssa4 can perform many of the same tasks as Ssa1 and 2, but Ssa4 doesn’t interact in the same manner as Ssa1 and 2 with other types of proteins. This leads to a delay in removing protein aggregates created after heat stress. Ssa4 also cannot ensure that misfolded proteins aggregate correctly inside the nucleus of the cell. However, this turns out not to be necessary for yeast cells to achieve a full lifespan, which shows us that as long as cells can prevent aggregates from forming in the first place, they can reach a full lifespan.
Collapse
|
43
|
Bhattacharya S, Bouklas T, Fries BC. Replicative Aging in Pathogenic Fungi. J Fungi (Basel) 2020; 7:6. [PMID: 33375605 PMCID: PMC7824483 DOI: 10.3390/jof7010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans, Candida auris, Candida glabrata, and Cryptococcus neoformans are pathogenic yeasts which can cause systemic infections in immune-compromised as well as immune-competent individuals. These yeasts undergo replicative aging analogous to a process first described in the nonpathogenic yeast Saccharomyces cerevisiae. The hallmark of replicative aging is the asymmetric cell division of mother yeast cells that leads to the production of a phenotypically distinct daughter cell. Several techniques to study aging that have been pioneered in S. cerevisiae have been adapted to study aging in other pathogenic yeasts. The studies indicate that aging is relevant for virulence in pathogenic fungi. As the mother yeast cell progressively ages, every ensuing asymmetric cell division leads to striking phenotypic changes, which results in increased antifungal and antiphagocytic resistance. This review summarizes the various techniques that are used to study replicative aging in pathogenic fungi along with their limitations. Additionally, the review summarizes some key phenotypic variations that have been identified and are associated with changes in virulence or resistance and thus promote persistence of older cells.
Collapse
Affiliation(s)
- Somanon Bhattacharya
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
| | - Tejas Bouklas
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568, USA
| | - Bettina C. Fries
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
44
|
Extracellular Vesicles-Encapsulated Yeast Prions and What They Can Tell Us about the Physical Nature of Propagons. Int J Mol Sci 2020; 22:ijms22010090. [PMID: 33374854 PMCID: PMC7794690 DOI: 10.3390/ijms22010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which generates small self-templating seeds, or propagons. The exact molecular nature of propagons and how they are faithfully transmitted from mother to daughter cells despite spatial protein quality control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies detectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+] do not fully correlate with the infectivity measured during growth by the mean of protein infection assays. We also discovered that significant amounts of infectious Sup35p particles are exported via extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner. In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable vehicle for their transmission to the bud.
Collapse
|
45
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
46
|
Goodman JS, King GA, Ünal E. Cellular quality control during gametogenesis. Exp Cell Res 2020; 396:112247. [PMID: 32882217 PMCID: PMC7572901 DOI: 10.1016/j.yexcr.2020.112247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
A hallmark of aging is the progressive accumulation of cellular damage. Age-induced damage arises due to a decrease in organelle function along with a decline in protein quality control. Although somatic tissues deteriorate with age, the germline must maintain cellular homeostasis in order to ensure the production of healthy progeny. While germline quality control has been primarily studied in multicellular organisms, recent evidence suggests the existence of gametogenesis-specific quality control mechanisms in unicellular eukaryotes, highlighting the evolutionary conservation of meiotic events beyond chromosome morphogenesis. Notably, budding yeast eliminates age-induced damage during meiotic differentiation, employing novel organelle and protein quality control mechanisms to produce young and healthy gametes. Similarly, organelle and protein quality control is present in metazoan gametogenesis; however, whether and how these mechanisms contribute to cellular rejuvenation requires further investigation. Here, we summarize recent findings that describe organelle and protein quality control in budding yeast gametogenesis, examine similar quality control mechanisms in metazoan development, and identify research directions that will improve our understanding of meiotic cellular rejuvenation.
Collapse
Affiliation(s)
- Jay S Goodman
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA.
| |
Collapse
|
47
|
ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo. Nat Commun 2020; 11:5226. [PMID: 33067463 PMCID: PMC7568574 DOI: 10.1038/s41467-020-19104-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Signs of proteostasis failure often entwine with those of metabolic stress at the cellular level. Here, we study protein sequestration during glucose deprivation-induced ATP decline in Saccharomyces cerevisiae. Using live-cell imaging, we find that sequestration of misfolded proteins and nascent polypeptides into two distinct compartments, stress granules, and Q-bodies, is triggered by the exhaustion of ATP. Both compartments readily dissolve in a PKA-dependent manner within minutes of glucose reintroduction and ATP level restoration. We identify the ATP hydrolase activity of Hsp104 disaggregase as the critical ATP-consuming process determining compartments abundance and size, even in optimal conditions. Sequestration of proteins into distinct compartments during acute metabolic stress and their retrieval during the recovery phase provide a competitive fitness advantage, likely promoting cell survival during stress. The sequestration of misfolded protein into insoluble aggregates occurs under conditions of proteotoxic stress. Here the authors observe that a reduction in cellular ATP promotes protein sequestration into two separate compartments: Q-bodies and stress granules; and identify Hsp104 as a critical ATP-consuming process that determines those compartments abundance and size.
Collapse
|
48
|
Schnitzer B, Borgqvist J, Cvijovic M. The synergy of damage repair and retention promotes rejuvenation and prolongs healthy lifespans in cell lineages. PLoS Comput Biol 2020; 16:e1008314. [PMID: 33044956 PMCID: PMC7598927 DOI: 10.1371/journal.pcbi.1008314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023] Open
Abstract
Damaged proteins are inherited asymmetrically during cell division in the yeast Saccharomyces cerevisiae, such that most damage is retained within the mother cell. The consequence is an ageing mother and a rejuvenated daughter cell with full replicative potential. Daughters of old and damaged mothers are however born with increasing levels of damage resulting in lowered replicative lifespans. Remarkably, these prematurely old daughters can give rise to rejuvenated cells with low damage levels and recovered lifespans, called second-degree rejuvenation. We aimed to investigate how damage repair and retention together can promote rejuvenation and at the same time ensure low damage levels in mother cells, reflected in longer health spans. We developed a dynamic model for damage accumulation over successive divisions in individual cells as part of a dynamically growing cell lineage. With detailed knowledge about single-cell dynamics and relationships between all cells in the lineage, we can infer how individual damage repair and retention strategies affect the propagation of damage in the population. We show that damage retention lowers damage levels in the population by reducing the variability across the lineage, and results in larger population sizes. Repairing damage efficiently in early life, as opposed to investing in repair when damage has already accumulated, counteracts accelerated ageing caused by damage retention. It prolongs the health span of individual cells which are moreover less prone to stress. In combination, damage retention and early investment in repair are beneficial for healthy ageing in yeast cell populations.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Johannes Borgqvist
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Excessive rDNA Transcription Drives the Disruption in Nuclear Homeostasis during Entry into Senescence in Budding Yeast. Cell Rep 2020; 28:408-422.e4. [PMID: 31291577 DOI: 10.1016/j.celrep.2019.06.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 01/11/2023] Open
Abstract
Budding yeast cells undergo a limited number of divisions before they enter senescence and die. Despite recent mechanistic advances, whether and how molecular events are temporally and causally linked during the transition to senescence remain elusive. Here, using real-time observation of the accumulation of extrachromosomal rDNA circles (ERCs) in single cells, we provide evidence that ERCs build up rapidly with exponential kinetics well before any physiological decline. We then show that ERCs fuel a massive increase in ribosomal RNA (rRNA) levels in the nucleolus, which do not mature into functional ribosomes. This breakdown in nucleolar coordination is followed by a loss of nuclear homeostasis, thus defining a chronology of causally related events leading to cell death. A computational analysis supports a model in which a series of age-independent processes lead to an age-dependent increase in cell mortality, hence explaining the emergence of aging in budding yeast.
Collapse
|
50
|
Babazadeh R, Ahmadpour D, Jia S, Hao X, Widlund P, Schneider K, Eisele F, Edo LD, Smits GJ, Liu B, Nystrom T. Syntaxin 5 Is Required for the Formation and Clearance of Protein Inclusions during Proteostatic Stress. Cell Rep 2020; 28:2096-2110.e8. [PMID: 31433985 DOI: 10.1016/j.celrep.2019.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/14/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Spatial sorting to discrete quality control sites in the cell is a process harnessing the toxicity of aberrant proteins. We show that the yeast t-snare phosphoprotein syntaxin5 (Sed5) acts as a key factor in mitigating proteotoxicity and the spatial deposition and clearance of IPOD (insoluble protein deposit) inclusions associates with the disaggregase Hsp104. Sed5 phosphorylation promotes dynamic movement of COPII-associated Hsp104 and boosts disaggregation by favoring anterograde ER-to-Golgi trafficking. Hsp104-associated aggregates co-localize with Sed5 as well as components of the ER, trans Golgi network, and endocytic vesicles, transiently during proteostatic stress, explaining mechanistically how misfolded and aggregated proteins formed at the vicinity of the ER can hitchhike toward vacuolar IPOD sites. Many inclusions become associated with mitochondria in a HOPS/vCLAMP-dependent manner and co-localize with Vps39 (HOPS/vCLAMP) and Vps13, which are proteins providing contacts between vacuole and mitochondria. Both Vps39 and Vps13 are required also for efficient Sed5-dependent clearance of aggregates.
Collapse
Affiliation(s)
- Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Song Jia
- School of Life Science, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Per Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Kara Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Laura Dolz Edo
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1090, the Netherlands
| | - Gertien J Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1090, the Netherlands
| | - Beidong Liu
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden.
| |
Collapse
|