1
|
Ray S, Hewitt K. Sticky, Adaptable, and Many-sided: SAM protein versatility in normal and pathological hematopoietic states. Bioessays 2023; 45:e2300022. [PMID: 37318311 PMCID: PMC10527593 DOI: 10.1002/bies.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
With decades of research seeking to generalize sterile alpha motif (SAM) biology, many outstanding questions remain regarding this multi-tool protein module. Recent data from structural and molecular/cell biology has begun to reveal new SAM modes of action in cell signaling cascades and biomolecular condensation. SAM-dependent mechanisms underlie blood-related (hematologic) diseases, including myelodysplastic syndromes and leukemias, prompting our focus on hematopoiesis for this review. With the increasing coverage of SAM-dependent interactomes, a hypothesis emerges that SAM interaction partners and binding affinities work to fine tune cell signaling cascades in developmental and disease contexts, including hematopoiesis and hematologic disease. This review discusses what is known and remains unknown about the standard mechanisms and neoplastic properties of SAM domains and what the future might hold for developing SAM-targeted therapies.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Kyle Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
2
|
Polycomb Alterations in Acute Myeloid Leukaemia: From Structure to Function. Cancers (Basel) 2023; 15:cancers15061693. [PMID: 36980579 PMCID: PMC10046783 DOI: 10.3390/cancers15061693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Epigenetic dysregulation is a hallmark of many haematological malignancies and is very frequent in acute myeloid leukaemia (AML). A cardinal example is the altered activity of the Polycomb Repressive Complex 2 (PRC2) due to somatic mutations and deletions in genes encoding PRC2 core factors that are necessary for correct complex assembly. These genetic alterations typically lead to reduced histone methyltransferase activity that, in turn, has been strongly linked to poor prognosis and chemoresistance. In this review, we provide an overview of genetic alterations of PRC components in AML, with particular reference to structural and functional features of PRC2 factors. We further review genetic interactions between these alterations and other AML-associated mutations in both adult and paediatric leukaemias. Finally, we discuss reported prognostic links between PRC2 mutations and deletions and disease outcomes and potential implications for therapy.
Collapse
|
3
|
Shaheen N, Akhtar J, Umer Z, Khan MHF, Bakhtiari MH, Saleem M, Faisal A, Tariq M. Polycomb Requires Chaperonin Containing TCP-1 Subunit 7 for Maintaining Gene Silencing in Drosophila. Front Cell Dev Biol 2021; 9:727972. [PMID: 34660585 PMCID: PMC8517254 DOI: 10.3389/fcell.2021.727972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In metazoans, heritable states of cell type-specific gene expression patterns linked with specialization of various cell types constitute transcriptional cellular memory. Evolutionarily conserved Polycomb group (PcG) and trithorax group (trxG) proteins contribute to the transcriptional cellular memory by maintaining heritable patterns of repressed and active expression states, respectively. Although chromatin structure and modifications appear to play a fundamental role in maintenance of repression by PcG, the precise targeting mechanism and the specificity factors that bind PcG complexes to defined regions in chromosomes remain elusive. Here, we report a serendipitous discovery that uncovers an interplay between Polycomb (Pc) and chaperonin containing T-complex protein 1 (TCP-1) subunit 7 (CCT7) of TCP-1 ring complex (TRiC) chaperonin in Drosophila. CCT7 interacts with Pc at chromatin to maintain repressed states of homeotic and non-homeotic targets of PcG, which supports a strong genetic interaction observed between Pc and CCT7 mutants. Depletion of CCT7 results in dissociation of Pc from chromatin and redistribution of an abundant amount of Pc in cytoplasm. We propose that CCT7 is an important modulator of Pc, which helps Pc recruitment at chromatin, and compromising CCT7 can directly influence an evolutionary conserved epigenetic network that supervises the appropriate cellular identities during development and homeostasis of an organism.
Collapse
Affiliation(s)
- Najma Shaheen
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Jawad Akhtar
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zain Umer
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Haider Farooq Khan
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Mahnoor Hussain Bakhtiari
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Murtaza Saleem
- Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Cancer Therapeutics Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Tariq
- Epigenetics and Gene Regulation Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
4
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
5
|
Poynter ST, Kadoch C. Polycomb and trithorax opposition in development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:659-688. [PMID: 27581385 DOI: 10.1002/wdev.244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/07/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023]
Abstract
Early discoveries in chromatin biology and epigenetics heralded new insights into organismal development. From these studies, two mediators of cellular differentiation were discovered: the Polycomb group (PcG) of transcriptional repressors, and the trithorax group (trxG) of transcriptional activators. These protein families, while opposed in function, work together to coordinate the appropriate cellular developmental programs that allow for both embryonic stem cell self-renewal and differentiation. Recently, both the PcG and trxG chromatin modulators have been observed to be deregulated in a wide spectrum diseases including developmental disorders and cancer. To understand the impact of these findings we outline the past, present, and future. WIREs Dev Biol 2016, 5:659-688. doi: 10.1002/wdev.244 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Steven T Poynter
- Chemical Biology Program, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
7
|
Pimpinelli S, Bonaccorsi S, Fanti L, Gatti M. Immunostaining of mitotic chromosomes from Drosophila larval brain. Cold Spring Harb Protoc 2011; 2011:2011/9/pdb.prot065524. [PMID: 21880821 DOI: 10.1101/pdb.prot065524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Good mitotic chromosome preparations are essential for the immunolocalization of chromosomal proteins. Although methanol/acetic acid fixation techniques preserve chromosome morphology very well, they remove a substantial fraction of chromosomal proteins. We have developed fixation/immunostaining procedures, described here, that are suitable for the immunolocalization of proteinaceous components of metaphase chromosomes from larval Drosophila brain cells. These procedures result in good chromosomal quality with minimal removal of proteins.
Collapse
|
8
|
Fedorova EV, Pindyurin AV, Baricheva EM. Maintenance of the patterns of expression of homeotic genes in the development of Drosophila melanogaster by proteins of the polycomb, trithorax, and ETP groups. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10:697-708. [PMID: 19738629 DOI: 10.1038/nrm2763] [Citation(s) in RCA: 1004] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb proteins form chromatin-modifying complexes that implement transcriptional silencing in higher eukaryotes. Hundreds of genes are silenced by Polycomb proteins, including dozens of genes that encode crucial developmental regulators in organisms ranging from plants to humans. Two main families of complexes, called Polycomb repressive complex 1 (PRC1) and PRC2, are targeted to repressed regions. Recent studies have advanced our understanding of these complexes, including their potential mechanisms of gene silencing, the roles of chromatin modifications, their means of delivery to target genes and the functional distinctions among variant complexes. Emerging concepts include the existence of a Polycomb barrier to transcription elongation and the involvement of non-coding RNAs in the targeting of Polycomb complexes. These findings have an impact on the epigenetic programming of gene expression in many biological systems.
Collapse
Affiliation(s)
- Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
10
|
|
11
|
Doheny JG, Mottus R, Grigliatti TA. Telomeric position effect--a third silencing mechanism in eukaryotes. PLoS One 2008; 3:e3864. [PMID: 19057646 PMCID: PMC2587703 DOI: 10.1371/journal.pone.0003864] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/20/2008] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic chromosomes terminate in telomeres, complex nucleoprotein structures that are required for chromosome integrity that are implicated in cellular senescence and cancer. The chromatin at the telomere is unique with characteristics of both heterochromatin and euchromatin. The end of the chromosome is capped by a structure that protects the end and is required for maintaining proper chromosome length. Immediately proximal to the cap are the telomere associated satellite-like (TAS) sequences. Genes inserted into the TAS sequences are silenced indicating the chromatin environment is incompatible with transcription. This silencing phenomenon is called telomeric position effect (TPE). Two other silencing mechanisms have been identified in eukaryotes, suppressors position effect variegation [Su(var)s, greater than 30 members] and Polycomb group proteins (PcG, approximately 15 members). We tested a large number of each group for their ability to suppress TPE [Su(TPE)]. Our results showed that only three Su(var)s and only one PcG member are involved in TPE, suggesting silencing in the TAS sequences occurs via a novel silencing mechanism. Since, prior to this study, only five genes have been identified that are Su(TPE)s, we conducted a candidate screen for Su(TPE) in Drosophila by testing point mutations in, and deficiencies for, proteins involved in chromatin metabolism. Screening with point mutations identified seven new Su(TPE)s and the deficiencies identified 19 regions of the Drosophila genome that harbor suppressor mutations. Chromatin immunoprecipitation experiments on a subset of the new Su(TPE)s confirm they act directly on the gene inserted into the telomere. Since the Su(TPE)s do not overlap significantly with either PcGs or Su(var)s, and the candidates were selected because they are involved generally in chromatin metabolism and act at a wide variety of sites within the genome, we propose that the Su(TPE) represent a third, widely used, silencing mechanism in the eukaryotic genome.
Collapse
Affiliation(s)
- J. Greg Doheny
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Randy Mottus
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas A. Grigliatti
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Fedorova E, Sadoni N, Dahlsveen IK, Koch J, Kremmer E, Eick D, Paro R, Zink D. The nuclear organization of Polycomb/Trithorax group response elements in larval tissues of Drosophila melanogaster. Chromosome Res 2008; 16:649-73. [PMID: 18560994 DOI: 10.1007/s10577-008-1218-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 01/28/2023]
Abstract
We analysed the nuclear organization of the Polycomb/Trithorax group response element (PRE/TRE) Fab-7 and of other PRE/TREs in larval tissues of D. melanogaster. The results show that pairing/clustering of transgenic and endogenous Fab-7 elements and of other endogenous PRE/TREs occurs only to a limited degree in a highly locus-specific and tissue-specific manner. However, transgenic Fab-7 elements as well as the Fab-7-regulated Abd-B gene and other endogenous loci preferentially occupied defined nuclear regions. Preferred association with the nuclear periphery was observed in the inactive state. However, also in the active state, Fab-7 was often found associated with the nuclear periphery as well as with the boundary of heterochromatin in a fly line- and tissue-specific manner. The boundary between heterochromatin and euchromatin revealed a highly complex architecture in the three-dimensional nuclear space with a close juxtaposition of active and repressed domains. The results suggest that such complex architectures create nuclear microenvironments sustaining specific states of activity of defined PRE/TREs. However, the data also show that the positional behaviour of the transgenic Fab-7 element does not apply to PRE/TREs in general. Altogether, this finding and the highly locus-, tissue-, and fly line-specific behaviour with regard to nuclear positioning and pairing/clustering suggest that the relationships between nuclear organization and functional regulation of PRE/TREs are highly complex and that simple models making general predictions might not be appropriate.
Collapse
Affiliation(s)
- Elena Fedorova
- Department Biologie II, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells. PLoS One 2008; 3:e2235. [PMID: 18493325 PMCID: PMC2375055 DOI: 10.1371/journal.pone.0002235] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/28/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Polycomb repressive complex 1 (PRC1) core member Ring1b/Rnf2, with ubiquitin E3 ligase activity towards histone H2A at lysine 119, is essential for early embryogenesis. To obtain more insight into the role of Ring1b in early development, we studied its function in mouse embryonic stem (ES) cells. METHODOLOGY/PRINCIPAL FINDINGS We investigated the effects of Ring1b ablation on transcriptional regulation using Ring1b conditional knockout ES cells and large-scale gene expression analysis. The absence of Ring1b results in aberrant expression of key developmental genes and deregulation of specific differentiation-related pathways, including TGFbeta signaling, cell cycle regulation and cellular communication. Moreover, ES cell markers, including Zfp42/Rex-1 and Sox2, are downregulated. Importantly, retained expression of ES cell regulators Oct4, Nanog and alkaline phosphatase indicates that Ring1b-deficient ES cells retain important ES cell specific characteristics. Comparative analysis of our expression profiling data with previously published global binding studies shows that the genes that are bound by Ring1b in ES cells have bivalent histone marks, i.e. both active H3K4me3 and repressive H3K27me3, or the active H3K4me3 histone mark alone and are associated with CpG-'rich' promoters. However, deletion of Ring1b results in deregulation, mainly derepression, of only a subset of these genes, suggesting that additional silencing mechanisms are involved in repression of the other Ring1b bound genes in ES cells. CONCLUSIONS Ring1b is essential to stably maintain an undifferentiated state of mouse ES cells by repressing genes with important roles during differentiation and development. These genes are characterized by high CpG content promoters and bivalent histone marks or the active H3K4me3 histone mark alone.
Collapse
|
14
|
Fanti L, Perrini B, Piacentini L, Berloco M, Marchetti E, Palumbo G, Pimpinelli S. The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma 2007; 117:25-39. [PMID: 17823810 DOI: 10.1007/s00412-007-0123-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/09/2007] [Accepted: 08/09/2007] [Indexed: 11/27/2022]
Abstract
In Drosophila, the Polycomb group and trithorax group proteins play a critical role in controlling the expression states of homeotic gene complexes during development. The common view is that these two classes of proteins bind to the homeotic complexes and regulate transcription at the level of chromatin. In the present work, we tested the involvement of both groups in mitotic heterochromatin formation in Drosophila. Using specific antibodies, we show that some of the tested Pc-G proteins are present in heterochromatin, while all the tested trx-G proteins localize to specific regions of heterochromatin in both mitotic chromosomes and interphase nuclei. We also observed that mutations in trx-G genes are recessive enhancers of position-effect variegation and are able to repress the transcription of heterochromatic genes. These results strongly suggest that trx-G proteins, along with some Pc-G proteins, play an active role in heterochromatin formation in Drosophila.
Collapse
Affiliation(s)
- Laura Fanti
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia molecolare, Università La Sapienza, 00185, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Sipos L, Kozma G, Molnár E, Bender W. In situ dissection of a Polycomb response element in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:12416-21. [PMID: 17640916 PMCID: PMC1941339 DOI: 10.1073/pnas.0703144104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes of the Polycomb group maintain long-term, segment-specific repression of the homeotic genes in Drosophila. DNA targets of Polycomb group proteins, called Polycomb response elements (PREs), have been defined by several assays, but they have not been dissected in their original chromosomal context. An enhanced method of gene conversion was developed to generate a series of small, targeted deletions encompassing the best-studied PRE, upstream of the Ultrabithorax (Ubx) transcription unit in the bithorax complex. Deletions that removed an essential 185-bp core of the PRE caused anterior misexpression of Ubx and posterior segmental transformations, including the conversion of the third thoracic segment toward a duplicate first abdominal segment. These phenotypes were variable, suggesting some cooperation between this PRE and others in the bithorax complex. Larger deletions up to 3 kb were also created, which removed DNA sites reportedly needed for Ubx activation, including putative trithorax response elements. These deletions resulted in neither loss of Ubx expression nor loss-of-function phenotypes. Thus, the 3-kb region including the PRE is required for repression, but not for activation, of Ubx.
Collapse
Affiliation(s)
- László Sipos
- Institute of Genetics, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
16
|
Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 2007; 134:223-32. [PMID: 17185323 DOI: 10.1242/dev.02723] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb/Trithorax group response elements (PRE/TREs) are fascinating chromosomal pieces. Just a few hundred base pairs long, these elements can remember and maintain the active or silent transcriptional state of their associated genes for many cell generations, long after the initial determining activators and repressors have disappeared. Recently, substantial progress has been made towards understanding the nuts and bolts of PRE/TRE function at the molecular level and in experimentally mapping PRE/TRE sites across whole genomes. Here we examine the insights, controversies and new questions that have been generated by this recent flood of data.
Collapse
Affiliation(s)
- Leonie Ringrose
- IMBA - Institute of Molecular Biotechnology GmbH, Dr Bohr-Gasse 3, 1030 Vienna, Austria.
| | | |
Collapse
|
17
|
Grimaud C, Nègre N, Cavalli G. From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 2006; 14:363-75. [PMID: 16821133 DOI: 10.1007/s10577-006-1069-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Polycomb gene was discovered 60 years ago as a mutation inducing a particular homeotic phenotype. Subsequent work showed that Polycomb is a general repressor of homeotic genes. Other genes with similar function were identified and named Polycomb group (PcG) genes, while trithorax group (trxG) genes were shown to counteract PcG-mediated repression of homeotic genes. We now know that PcG and trxG proteins are conserved factors that regulate hundreds of different genomic loci. A sophisticated pathway is responsible for recruitment of these proteins at regulatory regions that were named PcG and trxG response elements (PRE and TRE). Once recruited to their targets, multimeric PcG and trxG protein complexes regulate transcription by modulating chromatin structure, in particular via deposition of specific post-translational histone modification marks and control of chromatin accessibility, as well as regulation of the three-dimensional nuclear organization of PRE and TRE. Here, we recapitulate the history of PcG and trxG gene discovery, we review the current evidence on their molecular function and, based on this evidence, we propose a revised classification of genes involved in PcG and trxG regulatory pathways.
Collapse
Affiliation(s)
- Charlotte Grimaud
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | | | | |
Collapse
|
18
|
Papp B, Müller J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 2006; 20:2041-54. [PMID: 16882982 PMCID: PMC1536056 DOI: 10.1101/gad.388706] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 05/24/2006] [Indexed: 01/17/2023]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins act as antagonistic regulators to maintain transcriptional OFF and ON states of HOX and other target genes. To study the molecular basis of PcG/trxG control, we analyzed the chromatin of the HOX gene Ultrabithorax (Ubx) in Ubx(OFF)and Ubx(ON)cells purified from developing Drosophila. We find that PcG protein complexes PhoRC, PRC1, and PRC2 and the Trx protein are all constitutively bound to Polycomb response elements (PREs) in the OFF and ON state. In contrast, the trxG protein Ash1 is only bound in the ON state; not at PREs but downstream of the transcription start site. In the OFF state, we find extensive trimethylation at H3-K27, H3-K9, and H4-K20 across the entire Ubx gene; i.e., throughout the upstream control, promoter, and coding region. In the ON state, the upstream control region is also trimethylated at H3-K27, H3-K9, and H4-K20, but all three modifications are absent in the promoter and 5' coding region. Our analyses of mutants that lack the PcG histone methyltransferase (HMTase) E(z) or the trxG HMTase Ash1 provide strong evidence that differential histone lysine trimethylation at the promoter and in the coding region confers transcriptional ON and OFF states of Ubx. In particular, our results suggest that PRE-tethered PcG protein complexes act over long distances to generate Pc-repressed chromatin that is trimethylated at H3-K27, H3-K9, and H4-K20, but that the trxG HMTase Ash1 selectively prevents this trimethylation in the promoter and coding region in the ON state.
Collapse
Affiliation(s)
- Bernadett Papp
- European Molecular Biology Laboratory, Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|
19
|
Wang J, Lee CHJ, Lin S, Lee T. Steroid hormone-dependent transformation ofpolyhomeoticmutant neurons in theDrosophilabrain. Development 2006; 133:1231-40. [PMID: 16495309 DOI: 10.1242/dev.02299] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polyhomeotic (Ph), which forms complexes with other Polycomb-group (PcG)proteins, is widely required for maintenance of cell identity by ensuring differential gene expression patterns in distinct types of cells. Genetic mosaic screens in adult fly brains allow for recovery of a mutation that simultaneously disrupts the tandemly duplicated Drosophila phtranscriptional units. Distinct clones of neurons normally acquire different characteristic projection patterns and can be differentially labeled using various subtype-specific drivers in mosaic brains. Such neuronal diversity is lost without Ph. In response to ecdysone, ph mutant neurons are transformed into cells with unidentifiable projection patterns and indistinguishable gene expression profiles during early metamorphosis. Some subtype-specific neuronal drivers become constitutively activated, while others are constantly suppressed. By contrast, loss of other PcG proteins,including Pc and E(z), causes different neuronal developmental defects; and,consistent with these phenomena, distinct Hox genes are differentially misexpressed in different PcG mutant clones. Taken together, Drosophila Ph is essential for governing neuronal diversity,especially during steroid hormone signaling.
Collapse
Affiliation(s)
- Jian Wang
- Department of Entomology, University of Maryland, College Park, 20742, USA
| | | | | | | |
Collapse
|
20
|
The e(y)3 Gene Codes for SAYP, an Evolutionary Conserved Protein That Is Essential for Ontogeny. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Shidlovskii YV, Krasnov AN, Nikolenko YV, Georgieva SG, Nabirochkina EN. Characteristics of a Novel Activator of RNA Polymerase II Transcription. DOKL BIOCHEM BIOPHYS 2005; 402:204-6. [PMID: 16116749 DOI: 10.1007/s10628-005-0071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yu V Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 117334 Russia
| | | | | | | | | |
Collapse
|
22
|
Shidlovskii YV, Krasnov AN, Nikolenko JV, Lebedeva LA, Kopantseva M, Ermolaeva MA, Ilyin YV, Nabirochkina EN, Georgiev PG, Georgieva SG. A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO J 2005; 24:97-107. [PMID: 15616585 PMCID: PMC544920 DOI: 10.1038/sj.emboj.7600508] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 11/15/2004] [Indexed: 11/08/2022] Open
Abstract
Enhancers of yellow (e(y)) is a group of genetically and functionally related genes for proteins involved in transcriptional regulation. The e(y)3 gene of Drosophila considered here encodes a ubiquitous nuclear protein that has homologues in other metazoan species. The protein encoded by e(y)3, named Supporter of Activation of Yellow Protein (SAYP), contains an AT-hook, two PHD fingers, and a novel evolutionarily conserved domain with a transcriptional coactivator function. Mutants expressing a truncated SAYP devoid of the conserved domain die at a midembryonic stage, which suggests a crucial part for SAYP during early development. SAYP binds to numerous sites of transcriptionally active euchromatin on polytene chromosomes and coactivates transcription of euchromatin genes. Unexpectedly, SAYP is also abundant in the heterochromatin regions of the fourth chromosome and in the chromocenter, and represses the transcription of euchromatin genes translocated to heterochromatin; its PHD fingers are essential to heterochromatic silencing. Thus, SAYP plays a dual role in transcription regulation in euchromatic and heterochromatic regions.
Collapse
Affiliation(s)
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Russia
- Centre for Medical Studies, University of Oslo, Moscow, Russia
| | | | | | | | | | - Yurij V Ilyin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Russia
| | - Elena N Nabirochkina
- Institute of Gene Biology, Russian Academy of Sciences, Russia
- Centre for Medical Studies, University of Oslo, Moscow, Russia
| | | | - Sofia G Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Russia
- Centre for Medical Studies, University of Oslo, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Russia
| |
Collapse
|
23
|
Abstract
In development, cells pass on established gene expression patterns to daughter cells over multiple rounds of cell division. The cellular memory of the gene expression state is termed maintenance, and the proteins required for this process are termed maintenance proteins. The best characterized are proteins of the Polycomb and trithorax Groups that are required for silencing and maintenance of activation of target loci, respectively. These proteins act through DNA elements termed maintenance elements. Here, we re-examine the genetics and molecular biology of maintenance proteins. We discuss molecular models for the maintenance of activation and silencing, and the establishment of epigenetic marks, and suggest that maintenance proteins may play a role in propagating the mark through DNA synthesis.
Collapse
Affiliation(s)
- Hugh W Brock
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
24
|
Ali JY, Bender W. Cross-regulation among the polycomb group genes in Drosophila melanogaster. Mol Cell Biol 2004; 24:7737-47. [PMID: 15314179 PMCID: PMC507012 DOI: 10.1128/mcb.24.17.7737-7747.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 02/02/2004] [Accepted: 06/01/2004] [Indexed: 11/20/2022] Open
Abstract
Genes of the Polycomb group in Drosophila melanogaster function as long-term transcriptional repressors. A few members of the group encode proteins found in two evolutionarily conserved chromatin complexes, Polycomb repressive complex 1 (PRC1) and the ESC-E(Z) complex. The majority of the group, lacking clear biochemical functions, might be indirect regulators. The transcript levels of seven Polycomb group genes were assayed in embryos mutant for various other genes in the family. Three Polycomb group genes were identified as upstream positive regulators of the core components of PRC1. There is also negative feedback regulation of some PRC1 core components by other PRC1 genes. Finally, there is positive regulation of PRC1 components by the ESC-E(Z) complex. These multiple pathways of cross-regulation help to explain the large size of the Polycomb group family of genes, but they complicate the genetic analysis of any single member.
Collapse
Affiliation(s)
- Janann Y Ali
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Mosquna A, Katz A, Shochat S, Grafi G, Ohad N. Interaction of FIE, a polycomb protein, with pRb: a possible mechanism regulating endosperm development. Mol Genet Genomics 2004; 271:651-7. [PMID: 15221456 DOI: 10.1007/s00438-004-1024-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 05/05/2004] [Indexed: 01/30/2023]
Abstract
Inactivation of the Arabidopsis protein FERTILIZATION INDEPENDENT ENDOSPERM (FIE) induces division of the central cell of the embryo sac, leading to endosperm development in the absence of fertilization. The mechanism whereby FIE regulates this process is unknown. We postulated that activation of central cell division in fie mutant plants might involve the retinoblastoma protein (pRb), a cell cycle regulatory element. Pull-down and surface plasmon resonance assays demonstrated that FIE interacts in-vitro with the pRb homologues from Arabidopsis (AtRb), maize (ZmRb) and human (HuRb). The interaction of FIE with ZmRB and HuRb in the yeast two-hybrid system supports the possibility that a FIE-pRb interaction may occur also in planta. Mutational analysis showed that this interaction does not occur via the LxCxE motif of the FIE protein nor via the pocket B domain of pRb. These results suggest that FIE may inhibit premature division of the central cell of the embryo sac, at least partly, through interaction with pRb, and suppression of pRb-regulated genes.
Collapse
Affiliation(s)
- A Mosquna
- Department of Plant Sciences, Tel-Aviv University, 69978, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
26
|
Gorfinkiel N, Fanti L, Melgar T, García E, Pimpinelli S, Guerrero I, Vidal M. The Drosophila Polycomb group gene Sex combs extra encodes the ortholog of mammalian Ring1 proteins. Mech Dev 2004; 121:449-62. [PMID: 15147763 DOI: 10.1016/j.mod.2004.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 03/26/2004] [Accepted: 03/26/2004] [Indexed: 11/28/2022]
Abstract
In Drosophila, the Polycomb group (PcG) of genes is required for the maintenance of homeotic gene repression during development. Here, we have characterized the Drosophila ortholog of the products of the mammalian Ring1/Ring1A and Rnf2/Ring1B genes. We show that Drosophila Ring corresponds to the Sex combs extra (Sce), a previously described PcG gene. We find that Ring/Sce is expressed and required throughout development and that the extreme Pc embryonic phenotype due to the lack of maternal and zygotic Sce can be rescued by ectopic expression of Ring/Sce. This phenotypic rescue is also obtained by ectopic expression of the murine Ring1/Ring1A, suggesting a functional conservation of the proteins during evolution. In addition, we find that Ring/Sce binds to about 100 sites on polytene chromosomes, 70% of which overlap those of other PcG products such as Polycomb, Posterior sex combs and Polyhomeotic, and 30% of which are unique. We also show that Ring/Sce interacts directly with PcG proteins, as it occurs in mammals.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Narbonne K, Besse F, Brissard-Zahraoui J, Pret AM, Busson D. polyhomeoticis required for somatic cell proliferation and differentiation during ovarian follicle formation inDrosophila. Development 2004; 131:1389-400. [PMID: 14993188 DOI: 10.1242/dev.01003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The polyhomeotic (ph) gene of Drosophila is a member of the Polycomb group (Pc-G) genes, which are required for maintenance of a repressed state of homeotic gene transcription, which stabilizes cell identity throughout development. The ph gene was recovered in the course of a gain-of-function screen aimed at identifying genes with a role during ovarian follicle formation in Drosophila, a process that involves coordinated proliferation and differentiation of two cell lineages, somatic and germline. Subsequent analysis revealed that ph loss-of-function mutations lead to production of follicles with greater or fewer than the normal number of germ cells associated with reduced proliferation of somatic prefollicular cells, abnormal prefollicular cell encapsulation of germline cysts and an excess of both interfollicular stalk cells and polar cells. Clonal analysis showed that ph function for follicle formation resides specifically in somatic cells and not in the germline. This is thus the first time that a role has been shown for a Pc-G gene during Drosophila folliculogenesis. In addition,we tested mutations in a number of other Pc-G genes, and two of them, Sex combs extra (Sce) and Sex comb on midleg(Scm), also displayed ovarian defects similar to those observed for ph. Our results provide a new model system, the Drosophilaovary, in which the function of Pc-G genes, distinct from that of control of homeotic gene expression, can be explored.
Collapse
Affiliation(s)
- Karine Narbonne
- Institut Jacques Monod, (UMR 7592 - CNRS/Université Pierre et Marie Curie/Université Denis Diderot Génétique du Développement et Evolution, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
28
|
Bloyer S, Cavalli G, Brock HW, Dura JM. Identification and characterization of polyhomeotic PREs and TREs. Dev Biol 2003; 261:426-42. [PMID: 14499651 DOI: 10.1016/s0012-1606(03)00314-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polyhomeotic (ph) gene is a member of the Polycomb group of genes (Pc-G), which are required for the maintenance of the spatial expression pattern of homeotic genes. In contrast to homeotic genes, ph is ubiquitously expressed and it is quantitatively regulated. ph is negatively regulated by the Pc-G genes, except Psc, and positively regulated by the antagonist trithorax group of genes (trx-G), suggesting that Pc-G and trx-G response elements (PREs and TREs) exist at the ph locus. In this study, we have functionally characterized PREs and TREs at the ph locus that function in transgenic constructs. We have identified a strong PRE and TRE in the ph proximal unit as well as a weak one in the ph distal unit. The PRE/TRE of both ph units appear atypical compared with the well-defined homeotic maintenance elements because the minimal ph proximal response element activity requires at least 2 kb of sequence and does not work at long range. We have used chromatin immunoprecipitation experiments on cultured cells and embryos to show that Pc-G proteins are located in restricted regions, close to the ph promoters that overlap functionally defined PRE/TREs. Our data suggest that ph PRE/TREs are cis-acting DNA elements that modulate rather than silence Pc-G- and trx-G-mediated regulation, enlarging the role of these two groups of genes in transcriptional regulation.
Collapse
Affiliation(s)
- Sébastien Bloyer
- Institut de Génétique Humaine, C.N.R.S.-U.P.R. 1142, 141 rue de la Cardonille, 34396 5, Montpellier Cedex, France
| | | | | | | |
Collapse
|
29
|
Salvaing J, Lopez A, Boivin A, Deutsch JS, Peronnet F. The Drosophila Corto protein interacts with Polycomb-group proteins and the GAGA factor. Nucleic Acids Res 2003; 31:2873-82. [PMID: 12771214 PMCID: PMC156716 DOI: 10.1093/nar/gkg381] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Drosophila, PcG complexes provide heritable transcriptional silencing of target genes. Among them, the ESC/E(Z) complex is thought to play a role in the initiation of silencing whereas other complexes such as the PRC1 complex are thought to maintain it. PcG complexes are thought to be recruited to DNA through interaction with DNA binding proteins such as the GAGA factor, but no direct interactions between the constituents of PcG complexes and the GAGA factor have been reported so far. The Drosophila corto gene interacts with E(z) as well as with genes encoding members of maintenance complexes, suggesting that it could play a role in the transition between the initiation and maintenance of PcG silencing. Moreover, corto also interacts genetically with Trl, which encodes the GAGA factor, suggesting that it may serve as a mediator in recruiting PcG complexes. Here, we show that Corto bears a chromo domain and we provide evidence for in vivo association of Corto with ESC and with PC in embryos. Moreover, we show by GST pull-down and two-hybrid experiments that Corto binds to E(Z), ESC, PH, SCM and GAGA and co-localizes with these proteins on a few sites on polytene chromosomes. These results reinforce the idea that Corto plays a role in PcG silencing, perhaps by confering target specificity.
Collapse
Affiliation(s)
- Juliette Salvaing
- UMR 7622-Biologie du Développement, CNRS et Université Paris VI, 9 Quai Saint-Bernard, F-75252 Paris cedex 05, France
| | | | | | | | | |
Collapse
|
30
|
Furuyama T, Tie F, Harte PJ. Polycomb group proteins ESC and E(Z) are present in multiple distinct complexes that undergo dynamic changes during development. Genesis 2003; 35:114-24. [PMID: 12533794 DOI: 10.1002/gene.10173] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Polycomb Group proteins are required for stable long-term maintenance of transcriptionally repressed states. Two distinct Polycomb Group complexes have been identified, a 2-MDa PRC1 complex and a 600-kDa complex containing the ESC and E(Z) proteins together with the histone deacetylase RPD3 and the histone-binding protein p55. We report here that there are at least two embryonic ESC/E(Z) complexes that undergo dynamic changes during development and a third larval E(Z) complex that forms after disappearance of ESC. We have identified a larger embryonic ESC complex containing RPD3 and p55, along with E(Z), that is present only until mid-embryogenesis, while the previously identified 600-kDa ESC/E(Z) complex persists until the end of embryogenesis. Constitutive overexpression of ESC does not promote abnormal persistence of the larger or smaller embryonic complexes and does not delay a dissociation of E(Z) from the smaller ESC complex or delay appearance of the larval E(Z) complex, indicating that these changes are developmentally programmed and not regulated by the temporal profile of ESC itself. Genetic removal of ESC prevents appearance of E(Z) in the smaller embryonic complex, but does not appear to affect formation of the large embryonic ESC complex or the PRC1 complex. We also show that the ESC complex is already bound to chromosomes in preblastoderm embryos and present genetic evidence that ESC is required during this very early period.
Collapse
Affiliation(s)
- Takehito Furuyama
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
31
|
Cmarko D, Verschure PJ, Otte AP, van Driel R, Fakan S. Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus. J Cell Sci 2003; 116:335-43. [PMID: 12482919 DOI: 10.1242/jcs.00225] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human Polycomb group (PcG) proteins are involved in cell-type-dependent epigenetic gene silencing in an evolutionarily conserved manner. We have analysed the subnuclear localisation of these regulatory proteins in two different human cell lines and in rat liver tissue by means of light and electron immunomicroscopy using specific antibodies. We find that the PcG proteins HPC2, HPH1, BMI1 and RING1 are highly concentrated in the perichromatin compartment, situated at the surface of condensed chromatin domains. This compartment was demonstrated earlier to be the nuclear site where most pre-mRNA synthesis takes place. Interestingly, these PcG proteins are virtually absent from the interior of condensed chromatin areas. The present observations therefore show that transcriptionally active and PcG-silenced loci occur within the same spatially limited nuclear domain. Our novel high-resolution data strongly support the idea that epigenetic PcG-mediated gene silencing is a local event, rather than affecting large chromatin domains. In addition to being associated with the perichromatin region, PcG proteins also occur in the interchromatin space. Implications of these observations for higher order chromatin structure and for the mechanisms of PcG-mediated gene silencing are discussed.
Collapse
Affiliation(s)
- Dusan Cmarko
- Centre of Electron Microscopy, University of Lausanne, 27 Bugnon, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Brown JL, Fritsch C, Mueller J, Kassis JA. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 2003; 130:285-94. [PMID: 12466196 DOI: 10.1242/dev.00204] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycomb group proteins (PcG) repress homeotic genes in cells where these genes must remain inactive during Drosophila and vertebrate development. This repression depends on cis-acting silencer sequences, called Polycomb group response elements (PREs). Pleiohomeotic (Pho), the only known sequence-specific DNA-binding PcG protein, binds to PREs but pho mutants show only mild phenotypes compared with other PcG mutants. We characterize pho-like, a gene encoding a protein with high similarity to Pho. Pho-like binds to Pho-binding sites in vitro and pho-like, pho double mutants show more severe misexpression of homeotic genes than do the single mutants. These results suggest that Pho and Pho-like act redundantly to repress homeotic genes. We examined the distribution of five PcG proteins on polytene chromosomes from pho-like, pho double mutants. Pc, Psc, Scm, E(z) and Ph remain bound to polytene chromosomes at most sites in the absence of Pho and Pho-like. At a few chromosomal locations, however, some of the PcG proteins are no longer present in the absence of Pho and Pho-like, suggesting that Pho-like and Pho may anchor PcG protein complexes to only a subset of PREs. Alternatively, Pho-like and Pho may not participate in the anchoring of PcG complexes, but may be necessary for transcriptional repression mediated through PREs. In contrast to Pho and Pho-like, removal of Trithorax-like/GAGA factor or Zeste, two other DNA-binding proteins implicated in PRE function, does not cause misexpression of homeotic genes or reporter genes in imaginal disks.
Collapse
Affiliation(s)
- J Lesley Brown
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
33
|
Nakayama M, Kikuno R, Ohara O. Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Res 2002; 12:1773-84. [PMID: 12421765 PMCID: PMC187542 DOI: 10.1101/gr.406902] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large proteins have multiple domains that are potentially capable of binding many kinds of partners. It is conceivable, therefore, that such proteins could function as an intricate framework of assembly protein complexes. To comprehensively study protein-protein interactions between large KIAA proteins, we have constructed a library composed of 1087 KIAA cDNA clones based on prior functional classifications done in silico. We were guided by two principles that raise the success rate for detecting interactions per tested combination: we avoided testing low-probability combinations, and reduced the number of potential false negatives that arise from the fact that large proteins cannot reliably be expressed in yeast. The latter was addressed by constructing a cDNA library comprised of random fragments encoding large proteins. Cytoplasmic domains of KIAA transmembrane proteins (>1000 amino acids) were used as bait for yeast two-hybrid screening. Our analyses reveal that several KIAA proteins bearing a transmembrane region have the capability of binding to other KIAA proteins containing domains (e.g., PDZ, SH3, rhoGEF, and spectrin) known to be localized to highly specialized submembranous sites, indicating that they participate in cellular junction formation, receptor or channel clustering, and intracellular signaling events. Our representative library should be a very useful resource for detecting previously unidentified interactions because it complements conventional expression libraries, which seldom contain large cDNAs.
Collapse
Affiliation(s)
- Manabu Nakayama
- Department of Human Gene Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan.
| | | | | |
Collapse
|
34
|
Huang DH, Chang YL, Yang CC, Pan IC, King B. pipsqueak encodes a factor essential for sequence-specific targeting of a polycomb group protein complex. Mol Cell Biol 2002; 22:6261-71. [PMID: 12167718 PMCID: PMC134006 DOI: 10.1128/mcb.22.17.6261-6271.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Polycomb (Pc) group (Pc-G) of repressors is essential for transcriptional silencing of homeotic genes that determine the axial development of metazoan animals. It is generally believed that the multimeric complexes formed by these proteins nucleate certain chromatin structures to silence promoter activity upon binding to Pc-G response elements (PRE). Little is known, however, about the molecular mechanism involved in sequence-specific binding of these complexes. Here, we show that an immunoaffinity-purified Pc protein complex contains a DNA binding activity specific to the (GA)n motif in a PRE from the bithoraxoid region. We found that this activity can be attributed primarily to the large protein isoform encoded by pipsqueak (psq) instead of to the well-characterized GAGA factor. The functional relevance of psq to the silencing mechanism is strongly supported by its synergistic interactions with a subset of Pc-G that cause misexpression of homeotic genes.
Collapse
Affiliation(s)
- Der-Hwa Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China.
| | | | | | | | | |
Collapse
|
35
|
Akasaka T, Takahashi N, Suzuki M, Koseki H, Bodmer R, Koga H. MBLR, a new RING finger protein resembling mammalian Polycomb gene products, is regulated by cell cycle-dependent phosphorylation. Genes Cells 2002; 7:835-50. [PMID: 12167161 DOI: 10.1046/j.1365-2443.2002.00565.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The RING finger proteins function in a variety of fundamental cellular processes. The products of some members of the Polycomb group (PcG) bear ring finger domains and are defined as a subclass of RING finger proteins. Among them are Drosophila posterior sex combs and suppressor 2 of zeste, whose RING fingers are conserved in vertebrate PcG proteins Mel18 and Bmi1. RESULTS We have identified a new mammalian RING finger protein, termed MBLR due to its structural similarity to Mel18 and Bmi1 (Mel18 and Bmi1-like RING finger protein). MBLR interacts with some PcG proteins: in vitro biochemical data support the idea of a direct interaction of MBLR's RING finger domain with Ring1B, which is highly homologous to one of the mammalian PcG genes, Ring1A. We also show that MBLR acts as a transcriptional repressor in transiently transfected cells, as is the case for other PcG proteins. Immunocytochemical analysis reveals that MBLR protein is localized in a fine-grained distribution throughout the nucleoplasm in interphase cultured cells and in a fainter diffuse cytoplasmic distribution in mitotic cells. In addition, we find that serine 32 of MBLR is specifically phosphorylated during mitosis, most likely by CDK7, a component of the basal transcriptional machinery. CONCLUSION Similarities to previously defined PcG proteins suggest that MBLR should be included in the same subclass of RING finger proteins as Mel18 and Bmi1. Although the biological relevance of the cell cycle-related phosphorylation remains to be demonstrated, serine 32 phosphorylation could nevertheless be functionally important.
Collapse
Affiliation(s)
- Takeshi Akasaka
- Department of Cellular, Molecular and Developmental Biology, University of Michigan, 830 N University, Ann Arbor, MI 48109-1048, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Sewalt RGAB, Lachner M, Vargas M, Hamer KM, den Blaauwen JL, Hendrix T, Melcher M, Schweizer D, Jenuwein T, Otte AP. Selective interactions between vertebrate polycomb homologs and the SUV39H1 histone lysine methyltransferase suggest that histone H3-K9 methylation contributes to chromosomal targeting of Polycomb group proteins. Mol Cell Biol 2002; 22:5539-53. [PMID: 12101246 PMCID: PMC133945 DOI: 10.1128/mcb.22.15.5539-5553.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Polycomb group (PcG) proteins form multimeric chromatin-associated protein complexes that are involved in heritable repression of gene activity. Two distinct human PcG complexes have been characterized. The EED/EZH2 PcG complex utilizes histone deacetylation to repress gene activity. The HPC/HPH PcG complex contains the HPH, RING1, BMI1, and HPC proteins. Here we show that vertebrate Polycomb homologs HPC2 and XPc2, but not M33/MPc1, interact with the histone lysine methyltransferase (HMTase) SUV39H1 both in vitro and in vivo. We further find that overexpression of SUV39H1 induces selective nuclear relocalization of HPC/HPH PcG proteins but not of the EED/EZH2 PcG proteins. This SUV39H1-dependent relocalization concentrates the HPC/HPH PcG proteins to the large pericentromeric heterochromatin domains (1q12) on human chromosome 1. Within these PcG domains we observe increased H3-K9 methylation. Finally, we show that H3-K9 HMTase activity is associated with endogenous HPC2. Our findings suggest a role for the SUV39H1 HMTase and histone H3-K9 methylation in the targeting of human HPC/HPH PcG proteins to modified chromatin structures.
Collapse
Affiliation(s)
- Richard G A B Sewalt
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Polycomb proteins form DNA-binding protein complexes with gene-suppressing activity. They maintain cell identity but, also, contribute to the regulation of cell proliferation. Mice with mutated Polycomb-group genes exhibit various hematological disorders, ranging from the loss of mature B and T cells to development of lymphomas. Lymphopoiesis in humans is associated with characteristic expression patterns of Polycomb-group genes in defined lymphocyte populations. Collectively, these results indicate that Polycomb-group genes encode novel gene regulators involved in the differentiation of lymphocytes. The underlying mechanism is related, most probably, to gene silencing by chromatin modification, and might affect proliferative behavior and account for the irreversibility of lineage choice.
Collapse
Affiliation(s)
- F M Raaphorst
- VU Medical Center, Department of Pathology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
38
|
Muyrers-Chen I, Paro R. Epigenetics: unforeseen regulators in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1552:15-26. [PMID: 11781112 DOI: 10.1016/s0304-419x(01)00032-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past several years have seen a tremendous advance in the understanding of the basic mechanisms of epigenetic regulation. A large number of studies have not only linked epigenetics with cell cycle regulation but also partially unravelled how epigenetics may regulate gene expression. The aim of this review is to provide an overview of the latest findings and current ideas on epigenetics with a focus on emphasizing the emerging influence epigenetics has on the onset and progression of cancer.
Collapse
Affiliation(s)
- I Muyrers-Chen
- ZMBH, University of Heidelberg, INF 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
39
|
Bajusz I, Sipos L, Györgypál Z, Carrington EA, Jones RS, Gausz J, Gyurkovics H. The Trithorax-mimic allele of Enhancer of zeste renders active domains of target genes accessible to polycomb-group-dependent silencing in Drosophila melanogaster. Genetics 2001; 159:1135-50. [PMID: 11729158 PMCID: PMC1461870 DOI: 10.1093/genetics/159.3.1135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two antagonistic groups of genes, the trithorax- and the Polycomb-group, are proposed to maintain the appropriate active or inactive state of homeotic genes set up earlier by transiently expressed segmentation genes. Although some details about the mechanism of maintenance are available, it is still unclear how the initially active or inactive chromatin domains are recognized by either the trithorax-group or the Polycomb-group proteins. We describe an unusual dominant allele of a Polycomb-group gene, Enhancer of zeste, which mimics the phenotype of loss-of-function mutations in trithorax-group genes. This mutation, named E(z)(Trithorax mimic) [E(z)(Trm)], contains a single-amino-acid substitution in the conserved SET domain. The strong dominant trithorax-like phenotypes elicited by this E(z) allele suggest that the mutated arginine-741 plays a critical role in distinguishing between active and inactive chromatin domains of the homeotic gene complexes. We have examined the modification of E(z)(Trm) phenotypes by mutant alleles of PcG and trxG genes and other mutations that alter the phosphorylation of nuclear proteins, covalent modifications of histones, or histone dosage. These data implicate some trxG genes in transcriptional repression as well as activation and provide genetic evidence for involvement of histone modifications in PcG/trxG-dependent transcriptional regulation.
Collapse
Affiliation(s)
- I Bajusz
- Institute of Genetics, Biological Research Center, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The opposing actions of polycomb (PcG) and trithorax group (trxG) gene products maintain essential gene expression patterns during Drosophila development. PcG proteins are thought to establish repressive chromatin structures, but the mechanisms by which this occurs are not known. Polycomb repressive complex 1 (PRC1) contains several PcG proteins and inhibits chromatin remodeling by trxG-related SWI/SNF complexes. We have defined a functional core of PRC1 by reconstituting a stable complex using four recombinant PcG proteins. One subunit, PSC, can also inhibit chromatin remodeling on its own. These PcG proteins create a chromatin structure that has normal nucleosome organization and is accessible to nucleases but excludes hSWI/SNF.
Collapse
Affiliation(s)
- N J Francis
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
41
|
Chang YL, Peng YH, Pan IC, Sun DS, King B, Huang DH. Essential role of Drosophila Hdac1 in homeotic gene silencing. Proc Natl Acad Sci U S A 2001; 98:9730-5. [PMID: 11493709 PMCID: PMC55521 DOI: 10.1073/pnas.171325498] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 06/27/2001] [Indexed: 11/18/2022] Open
Abstract
Deacetylation of the N-terminal tails of core histones plays a crucial role in gene silencing. Rpd3 and Hda1 represent two major types of genes encoding trichostatin A-sensitive histone deacetylases. Although they have been widely found, their cellular and developmental roles remain to be elucidated in metazoa. We show that Drosophila Hdac1, an Rpd3-type gene, interacts cooperatively with Polycomb group repressors in silencing the homeotic genes that are essential for axial patterning of body segments. The biochemical copurification and cytological colocalization of HDAC1 and Polycomb group repressors strongly suggest that HDAC1 is a component of the silencing complex for chromatin modification on specific regulatory regions of homeotic genes.
Collapse
Affiliation(s)
- Y L Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Netter S, Faucheux M, Théodore L. Developmental dynamics of a polyhomeotic-EGFP fusion in vivo. DNA Cell Biol 2001; 20:483-92. [PMID: 11560780 DOI: 10.1089/104454901316976118] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyhomeotic is a member of the Polycomb group of genes. The products of this group are chromatin-associated proteins that act together as multimeric complexes. These proteins are required for the maintenance of target gene repression in a permanent and heritable manner during development. In order to better understand the dynamics of their action during development, we generated transgenic flies expressing a polyhomeotic protein tagged with the enhanced green fluorescent protein. Here we show that this fusion protein (PH-EGFP) retains both the functional properties of the endogenous protein and its target specificity on polytene chromosomes. The distribution of the PH-EGFP protein is partly dependent on the presence of wildtype Polycomb protein, indicating that PH-EGFP behaves as does the wildtype PH protein. Therefore, the PH-EGFP chimera appears to be an appropriate reporter of PH protein distribution and a suitable tool for the study of Polycomb-group complex assembly in vivo. The subnuclear distribution of PH-EGFP is dynamic throughout development. In the interphase nucleus at the cellular blastoderm, a diffuse granular pattern is observed. From the early gastrula stage onward, a few brighter dots appear. As development progressed from germ band retraction through hatching of the larva, numerous discrete dots accumulate in the nucleus of epidermal cells. The increasing number of dots observed during development may indicate that PH-EGFP is recruited at different stages on different target sites, a result that is in good agreement with functional data previously reported.
Collapse
Affiliation(s)
- S Netter
- Laboratoire d'Embryologie Moléculaire et Expérimentale, Equipe Chromatine et Développement, CNRS, UPRES-A 8080, Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|
43
|
Hodgson JW, Argiropoulos B, Brock HW. Site-specific recognition of a 70-base-pair element containing d(GA)(n) repeats mediates bithoraxoid polycomb group response element-dependent silencing. Mol Cell Biol 2001; 21:4528-43. [PMID: 11416132 PMCID: PMC87112 DOI: 10.1128/mcb.21.14.4528-4543.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycomb group proteins act through Polycomb group response elements (PREs) to maintain silencing at homeotic loci. The minimal 1.5-kb bithoraxoid (bxd) PRE contains a region required for pairing-sensitive repression and flanking regions required for maintenance of embryonic silencing. Little is known about the identity of specific sequences necessary for function of the flanking regions. Using gel mobility shift analysis, we identify DNA binding activities that interact specifically with a multipartite 70-bp fragment (MHS-70) downstream of the pairing-sensitive sequence. Deletion of MHS-70 in the context of a 5.1-kb bxd Polycomb group response element derepresses maintenance of silencing in embryos. A partially purified binding activity requires multiple, nonoverlapping d(GA)(3) repeats for MHS-70 binding in vitro. Mutation of d(GA)(3) repeats within MHS-70 in the context of the 5.1-kb bxd PRE destabilizes maintenance of silencing in a subset of cells in vivo but gives weaker derepression than deletion of MHS-70. These results suggest that d(GA)(3) repeats are important for silencing but that other sequences within MHS-70 also contribute to silencing. Antibody supershift assays and Western analyses show that distinct isoforms of Polyhomeotic and two proteins that recognize d(GA)(3) repeats, the TRL/GAGA factor and Pipsqueak (Psq), are present in the MHS-70 binding activity. Mutations in Trl and psq enhance homeotic phenotypes of ph, indicating that TRL/GAGA factor and Psq are enhancers of Polycomb which have sequence-specific DNA binding activity. These studies demonstrate that site-specific recognition of the bxd PRE by d(GA)(n) repeat binding activities mediates PcG-dependent silencing.
Collapse
Affiliation(s)
- J W Hodgson
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | |
Collapse
|
44
|
Abstract
Polycomb response elements (PREs) are regulatory switch elements that can direct the genes that they control to be either active or silenced. Once decided, this on or off state is maintained through subsequent cell divisions. We do not know how the switching works, or how it is copied to newly replicated chromosomes. Experiments that switch a silenced PRE to an active state have provided insights into both questions. A PRE switched experimentally can remember its previously silenced state and return to it after several cell divisions. In the most recent study of this phenomen on, the data show that several distinct variables affect the ability of PREs to "remember" and restore their previous state. The authors' interpretation of these results is discussed here.
Collapse
|
45
|
Dietrich BH, Moore J, Kyba M, dosSantos G, McCloskey F, Milne TA, Brock HW, Krause HM. Tantalus, a novel ASX-interacting protein with tissue-specific functions. Dev Biol 2001; 234:441-53. [PMID: 11397012 DOI: 10.1006/dbio.2001.0255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Drosophila trithorax- and Polycomb-group (trxG and PcG) proteins maintain activated and repressed transcriptional states at specific target gene loci. The Additional sex combs (Asx) gene is of particular interest as it appears to function in both protein complexes and yet its effects on target genes are more restricted. A novel protein, Tantalus (TAN), was identified in a yeast two-hybrid screen for ASX-interacting proteins that might confer tissue-specific ASX functions. TAN contains consensus nuclear localization sites and binds DNA in vitro. However, its subcellular localization varies in a tissue-specific fashion. In salivary glands, TAN is predominantly nuclear and associates with 66 euchromatic sites on polytene chromosomes, more than half of which overlap with ASX. These loci do not include the homeotic genes of the ANT and BX complexes bound by other PcG and trxG proteins. Rather, tan mutant defects are restricted to sensory organs. We show that one of these defects, shared by Asx, is genetically enhanced by Asx. Taken together, the data suggest that TAN is a tissue-specific cofactor for ASX, and that its activity may be partially controlled by subcellular trafficking.
Collapse
Affiliation(s)
- B H Dietrich
- Banting and Best Department of Medical Research, University of Toronto, Charles H. Best Institute, 112 College Street, Toronto, Ontario, M5G 1L6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
How can the same gene remember that it is 'off' in one cell lineage and 'on' in another? Studies of how homeotic genes are regulated in Drosophila melanogaster have uncovered a transcriptional maintenance system, encoded by the Polycomb and trithorax group genes, that preserves expression patterns across development. Here we try to formulate a broad framework for the types of molecular mechanism used by the Polycomb and trithorax proteins.
Collapse
Affiliation(s)
- N J Francis
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
47
|
Mahmoudi T, Verrijzer CP. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene 2001; 20:3055-66. [PMID: 11420721 DOI: 10.1038/sj.onc.1204330] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Polycomb group (PcG) of repressors and the trithorax group (trxG) of activators maintain the correct expression of several key developmental regulators, including the homeotic genes. PcG and trxG proteins function in distinct multiprotein complexes that are believed to control transcription by changing the structure of chromatin, organizing it into either a 'closed' or an 'open' conformation. The hallmark of gene regulation by PcG/trxG proteins is that it can lead to a mitotically stable pattern of gene expression, often referred to as epigenetic regulation. Although much remains to be learned, recent studies have provided insights into how this epigenetic switch is set, how PcG/trxG proteins might be linked to cis-acting DNA elements and what potential mechanisms underlie stable inheritance of gene expression status over multiple cell divisions. Finally, the study of the evolutionarily conserved PcG/trxG factors has recently gained additional urgency with the realization that they play a pertinent role in certain human cancers.
Collapse
Affiliation(s)
- T Mahmoudi
- Department of Molecular Cell Biology, MGC Centre for Biomedical Genetics, Leiden University Medical Centre, PO Box 9503, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
48
|
Roseman RR, Morgan K, Mallin DR, Roberson R, Parnell TJ, Bornemann DJ, Simon JA, Geyer PK. Long-range repression by multiple polycomb group (PcG) proteins targeted by fusion to a defined DNA-binding domain in Drosophila. Genetics 2001; 158:291-307. [PMID: 11333237 PMCID: PMC1461647 DOI: 10.1093/genetics/158.1.291] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A tethering assay was developed to study the effects of Polycomb group (PcG) proteins on gene expression in vivo. This system employed the Su(Hw) DNA-binding domain (ZnF) to direct PcG proteins to transposons that carried the white and yellow reporter genes. These reporters constituted naive sensors of PcG effects, as bona fide PcG response elements (PREs) were absent from the constructs. To assess the effects of different genomic environments, reporter transposons integrated at nearly 40 chromosomal sites were analyzed. Three PcG fusion proteins, ZnF-PC, ZnF-SCM, and ZnF-ESC, were studied, since biochemical analyses place these PcG proteins in distinct complexes. Tethered ZnF-PcG proteins repressed white and yellow expression at the majority of sites tested, with each fusion protein displaying a characteristic degree of silencing. Repression by ZnF-PC was stronger than ZnF-SCM, which was stronger than ZnF-ESC, as judged by the percentage of insertion lines affected and the magnitude of the conferred repression. ZnF-PcG repression was more effective at centric and telomeric reporter insertion sites, as compared to euchromatic sites. ZnF-PcG proteins tethered as far as 3.0 kb away from the target promoter produced silencing, indicating that these effects were long range. Repression by ZnF-SCM required a protein interaction domain, the SPM domain, which suggests that this domain is not primarily used to direct SCM to chromosomal loci. This targeting system is useful for studying protein domains and mechanisms involved in PcG repression in vivo.
Collapse
Affiliation(s)
- R R Roseman
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ruhf ML, Braun A, Papoulas O, Tamkun JW, Randsholt N, Meister M. The domino gene of Drosophila encodes novel members of the SWI2/SNF2 family of DNA-dependent ATPases, which contribute to the silencing of homeotic genes. Development 2001; 128:1429-41. [PMID: 11262242 DOI: 10.1242/dev.128.8.1429] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila domino gene has been isolated in a screen for mutations that cause hematopoietic disorders. Generation and analysis of loss-of-function domino alleles show that the phenotypes are typical for proliferation gene mutations. Clonal analysis demonstrates that domino is necessary for cell viability and proliferation, as well as for oogenesis. domino encodes two protein isoforms of 3202 and 2498 amino acids, which contain a common N-terminal region but divergent C termini. The common region includes a 500 amino acid DNA-dependent ATPase domain of the SWI2/SNF2 family of proteins, which function via interaction with chromatin. We show that, although domino alleles do not exhibit homeotic phenotypes by themselves, domino mutations enhance Polycomb group mutations and counteract Trithorax group effects. The Domino proteins are present in large complexes in embryo extracts, and one isoform binds to a number of discrete sites on larval polytene chromosomes. Altogether, the data lead us to propose that domino acts as a repressor by interfering with chromatin structure. This activity is likely to be performed as a subunit of a chromatin-remodeling complex.
Collapse
Affiliation(s)
- M L Ruhf
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, France
| | | | | | | | | | | |
Collapse
|
50
|
Barnett MW, Seville RA, Nijjar S, Old RW, Jones EA. Xenopus Enhancer of Zeste (XEZ); an anteriorly restricted polycomb gene with a role in neural patterning. Mech Dev 2001; 102:157-67. [PMID: 11287189 DOI: 10.1016/s0925-4773(01)00304-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have identified the Xenopus homologue of Drosophila Enhancer of Zeste using a differential display strategy designed to identify genes involved in early anterior neural differentiation. XEZ codes for a protein of 748 amino acids that is very highly conserved in evolution and is 96% identical to both human and mouse EZ(H)2. In common with most other Xenopus Pc-G genes and unlike mammalian Pc-G genes, XEZ is anteriorly restricted. Zygotic expression of XEZ commences during gastrulation, much earlier than other anteriorly localized Pc-G genes; expression is restricted to the anterior neural plate and is confined later to the forebrain, eyes and branchial arches. XEZ is induced in animal caps overexpressing noggin; up-regulation of XEZ therefore represents a response to inhibition of BMP signalling in ectodermal cells. We show that the midbrain/hindbrain junction marker En-2,and hindbrain marker Krox-20, are target genes of XEZ and that XEZ functions to repress these anteroposterior marker genes. Conversely, XEZ does not repress the forebrain marker Otx-2. XEZ overexpression results in a greatly thickened floor of the forebrain. These results implicate an important role for XEZ in the patterning of the nervous system.
Collapse
Affiliation(s)
- M W Barnett
- Cell and Molecular Development Group, Department of Biological Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | | | | | | | | |
Collapse
|