1
|
Asashima M, Satou-Kobayashi Y. Spemann-Mangold organizer and mesoderm induction. Cells Dev 2024; 178:203903. [PMID: 38295873 DOI: 10.1016/j.cdev.2024.203903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The discovery of the Spemann-Mangold organizer strongly influenced subsequent research on embryonic induction, with research aiming to elucidate the molecular characteristics of organizer activity being currently underway. Herein, we review the history of research on embryonic induction, and describe how the mechanisms of induction phenomena and developmental processes have been investigated. Classical experiments investigating the differentiation capacity and inductive activity of various embryonic regions were conducted by many researchers, and important theories of region-specific induction and the concept for chain of induction were proposed. The transition from experimental embryology to developmental biology has enabled us to understand the mechanisms of embryonic induction at the molecular level. Consequently, many inducing substances and molecules such as transcriptional factors and peptide growth factors involved in the organizer formation were identified. One of peptide growth factors, activin, acts as a mesoderm- and endoderm-inducing substance. Activin induces several tissues and organs from the undifferentiated cell mass of amphibian embryos in a concentration-dependent manner. We review the extent to which we can control in vitro organogenesis from undifferentiated cells, and discuss the application to stem cell-based regenerative medicine based on insights gained from animal experiments, such as in amphibians.
Collapse
Affiliation(s)
- Makoto Asashima
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan.
| | - Yumeko Satou-Kobayashi
- Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-0003, Japan
| |
Collapse
|
2
|
Goutam RS, Kumar V, Lee U, Kim J. Cdx1 and Gsc distinctly regulate the transcription of BMP4 target gene ventx3.2 by directly binding to the proximal promoter region in Xenopus gastrulae. Mol Cells 2024; 47:100058. [PMID: 38522664 PMCID: PMC11031840 DOI: 10.1016/j.mocell.2024.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
A comprehensive regulatory network of transcription factors controls the dorsoventral patterning of the body axis in developing vertebrate embryos. Bone morphogenetic protein signaling is essential for activating the Ventx family of homeodomain transcription factors, which regulates embryonic patterning and germ layer identity during Xenopus gastrulation. Although Ventx1.1 and Ventx2.1 of the Xenopus Ventx family have been extensively investigated, Ventx3.2 remains largely understudied. Therefore, this study aimed to investigate the transcriptional regulation of ventx3.2 during the embryonic development of Xenopus. We used goosecoid (Gsc) genome-wide chromatin immunoprecipitation-sequencing data to isolate and replicate the promoter region of ventx3.2. Serial deletion and site-directed mutagenesis were used to identify the cis-acting elements for Gsc and caudal type homeobox 1 (Cdx1) within the ventx3.2 promoter. Cdx1 and Gsc differentially regulated ventx3.2 transcription in this study. Additionally, positive cis-acting and negative response elements were observed for Cdx1 and Gsc, respectively, within the 5' flanking region of the ventx3.2 promoter. This result was corroborated by mapping the active Cdx1 response element (CRE) and Gsc response element (GRE). Moreover, a point mutation within the CRE and GRE completely abolished the activator and repressive activities of Cdx1 and Gsc, respectively. Furthermore, the chromatin immunoprecipitation-polymerase chain reaction confirmed the direct binding of Cdx1 and Gsc to the CRE and GRE, respectively. Inhibition of Cdx1 and Gsc activities at their respective functional regions, namely, the ventral marginal zone and dorsal marginal zone, reversed their effects on ventx3.2 transcription. These results indicate that Cdx1 and Gsc modulate ventx3.2 transcription in the ventral marginal zone and dorsal marginal zone by directly binding to the promoter region during Xenopus gastrulation.
Collapse
Affiliation(s)
- Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
- Laboratory of Regenerative Medicine, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do 24252, Korea
| |
Collapse
|
3
|
Slack J. The organizer: What it meant, and still means, to developmental biology. Curr Top Dev Biol 2023; 157:1-42. [PMID: 38556456 DOI: 10.1016/bs.ctdb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
This article is about how the famous organizer experiment has been perceived since it was first published in 1924. The experiment involves the production of a secondary embryo under the influence of a graft of a dorsal lip from an amphibian gastrula to a host embryo. The early experiments of Spemann and his school gave rise to a view that the whole early amphibian embryo was "indifferent" in terms of determination, except for a special region called "the organizer". This was viewed mainly as an agent of neural induction, also having the ability to generate an anteroposterior body pattern. Early biochemical efforts to isolate a factor emitted by the organizer were not successful but culminated in the definition of "neuralizing (N)" and "mesodermalizing (M)" factors present in a wide variety of animal tissues. By the 1950s this view became crystallized as a "two gradient" model involving the N and M factors, which explained the anteroposterior patterning effect. In the 1970s, the phenomenon of mesoderm induction was characterized as a process occurring before the commencement of gastrulation. Reinvestigation of the organizer effect using lineage labels gave rise to a more precise definition of the sequence of events. Since the 1980s, modern research using the tools of molecular biology, combined with microsurgery, has explained most of the processes involved. The organizer graft should now be seen as an experiment which involves multiple interactions: dorsoventral polarization following fertilization, mesoderm induction, the dorsalizing signal responsible for neuralization and dorsoventral patterning of the mesoderm, and additional factors responsible for anteroposterior patterning.
Collapse
Affiliation(s)
- Jonathan Slack
- Department of Life Sciences, University of Bath, Bath, United Kingdom.
| |
Collapse
|
4
|
Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. Sci Rep 2023; 13:16671. [PMID: 37794075 PMCID: PMC10551014 DOI: 10.1038/s41598-023-43662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
Affiliation(s)
- Ailen S Cervino
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Mariano G Collodel
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Ivan A Lopez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Carolina Roa
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Schmidt P, Leman E, Lagadec R, Schubert M, Mazan S, Reshef R. Evolutionary Transition in the Regulation of Vertebrate Pronephros Development: A New Role for Retinoic Acid. Cells 2022; 11:1304. [PMID: 35455988 PMCID: PMC9026449 DOI: 10.3390/cells11081304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
The anterior-posterior (AP) axis in chordates is regulated by a conserved set of genes and signaling pathways, including Hox genes and retinoic acid (RA), which play well-characterized roles in the organization of the chordate body plan. The intermediate mesoderm (IM), which gives rise to all vertebrate kidneys, is an example of a tissue that differentiates sequentially along this axis. Yet, the conservation of the spatiotemporal regulation of the IM across vertebrates remains poorly understood. In this study, we used a comparative developmental approach focusing on non-conventional model organisms, a chondrichthyan (catshark), a cyclostome (lamprey), and a cephalochordate (amphioxus), to assess the involvement of RA in the regulation of chordate and vertebrate pronephros formation. We report that the anterior expression boundary of early pronephric markers (Pax2 and Lim1), positioned at the level of somite 6 in amniotes, is conserved in the catshark and the lamprey. Furthermore, RA, driving the expression of Hox4 genes like in amniotes, regulates the anterior pronephros boundary in the catshark. We find no evidence for the involvement of this regulatory hierarchy in the AP positioning of the lamprey pronephros and the amphioxus pronephros homolog, Hatschek's nephridium. This suggests that despite the conservation of Pax2 and Lim1 expressions in chordate pronephros homologs, the responsiveness of the IM, and hence of pronephric genes, to RA- and Hox-dependent regulation is a gnathostome novelty.
Collapse
Affiliation(s)
- Pascal Schmidt
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France;
| | - Eva Leman
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
| | - Ronan Lagadec
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (R.L.); (S.M.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, CNRS, Sorbonne Université, 06230 Villefranche-sur-Mer, France;
| | - Sylvie Mazan
- CNRS, Sorbonne Université, UMR7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (R.L.); (S.M.)
| | - Ram Reshef
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (P.S.); (E.L.)
| |
Collapse
|
6
|
Evo-Devo of Urbilateria and its larval forms. Dev Biol 2022; 487:10-20. [DOI: 10.1016/j.ydbio.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
|
7
|
Satou-Kobayashi Y, Kim JD, Fukamizu A, Asashima M. Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment. Sci Rep 2021; 11:14537. [PMID: 34267234 PMCID: PMC8282838 DOI: 10.1038/s41598-021-93524-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Activin, a member of the transforming growth factor-β (TGF-β) superfamily of proteins, induces various tissues from the amphibian presumptive ectoderm, called animal cap explants (ACs) in vitro. However, it remains unclear how and to what extent the resulting cells recapitulate in vivo development. To comprehensively understand whether the molecular dynamics during activin-induced ACs differentiation reflect the normal development, we performed time-course transcriptome profiling of Xenopus ACs treated with 50 ng/mL of activin A, which predominantly induced dorsal mesoderm. The number of differentially expressed genes (DEGs) in response to activin A increased over time, and totally 9857 upregulated and 6663 downregulated DEGs were detected. 1861 common upregulated DEGs among all Post_activin samples included several Spemann's organizer genes. In addition, the temporal transcriptomes were clearly classified into four distinct groups in correspondence with specific features, reflecting stepwise differentiation into mesoderm derivatives, and a decline in the regulation of nuclear envelop and golgi. From the set of early responsive genes, we also identified the suppressor of cytokine signaling 3 (socs3) as a novel activin A-inducible gene. Our transcriptome data provide a framework to elucidate the transcriptional dynamics of activin-driven AC differentiation, reflecting the molecular characteristics of early normal embryogenesis.
Collapse
Affiliation(s)
- Yumeko Satou-Kobayashi
- grid.264706.10000 0000 9239 9995Strategic Innovation and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| | - Jun-Dal Kim
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan ,grid.267346.20000 0001 2171 836XDivision of Complex Bioscience Research, Department of Research and Development, Institute of National Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Akiyoshi Fukamizu
- grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| | - Makoto Asashima
- grid.264706.10000 0000 9239 9995Strategic Innovation and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605 Japan ,grid.20515.330000 0001 2369 4728Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1, Tsukuba, Tennoudai Ibaraki 305-8577 Japan
| |
Collapse
|
8
|
Abstract
The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Raghavendra KP, Das J, Kumar R, Gawande SP, Santosh HB, Sheeba JA, Kranthi S, Kranthi KR, Waghmare VN. Genome-wide identification and expression analysis of the plant specific LIM genes in Gossypium arboreum under phytohormone, salt and pathogen stress. Sci Rep 2021; 11:9177. [PMID: 33911097 PMCID: PMC8080811 DOI: 10.1038/s41598-021-87934-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Asiatic cotton (Gossypium arboreum) cultivated as ‘desi cotton’ in India, is renowned for its climate resilience and robustness against biotic and abiotic stresses. The genome of G. arboreum is therefore, considered as a valued reserve of information for discovering novel genes or gene functions for trait improvements in the present context of cotton cultivation world-wide. In the present study, we carried out genome-wide analysis of LIM gene family in desi cotton and identified twenty LIM domain proteins (GaLIMs) which include sixteen animals CRP-like GaLIMs and four plant specific GaLIMs with presence (GaDA1) or absence (GaDAR) of UIM (Ubiquitin Interacting Motifs). Among the sixteen CRP-like GaLIMs, eleven had two conventional LIM domains while, five had single LIM domain which was not reported in LIM gene family of the plant species studied, except in Brassica rapa. Phylogenetic analysis of these twenty GaLIM proteins in comparison with LIMs of Arabidopsis, chickpea and poplar categorized them into distinct αLIM1, βLIM1, γLIM2, δLIM2 groups in CRP-like LIMs, and GaDA1 and GaDAR in plant specific LIMs group. Domain analysis had revealed consensus [(C-X2-C-X17-H-X2-C)-X2-(C-X2-C-X17-C-X2-H)] and [(C-X2-C-X17-H-X2-C)-X2-(C-X4-C-X15-C-X2-H)] being conserved as first and/or second LIM domains of animal CRP-like GaLIMs, respectively. Interestingly, single LIM domain containing GaLIM15 was found to contain unique consensus with longer inter-zinc-motif spacer but shorter second zinc finger motif. All twenty GaLIMs showed variable spatio-temporal expression patterns and accordingly further categorized into distinct groups of αLIM1, βLIM1, γLIM2 δLIM2 and plant specific LIM (DA1/DAR). For the first time, response of GaDA1/DAR under the influence of biotic and abiotic stresses were studied in cotton, involving treatments with phytohormones (Jasmonic acid and Abscisic acid), salt (NaCl) and wilt causing pathogen (Fusarium oxysporum). Expressions patterns of GaDA1/DAR showed variable response and identified GaDA2 as a probable candidate gene for stress tolerance in G. arboreum.
Collapse
Affiliation(s)
- K P Raghavendra
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India.
| | - J Das
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - R Kumar
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - S P Gawande
- Division of Crop Protection, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - H B Santosh
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - J A Sheeba
- Division of Crop Production, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - S Kranthi
- Division of Crop Protection, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| | - K R Kranthi
- Technical Information Section, International Cotton Advisory Committee (ICAC), Washington, DC, USA
| | - V N Waghmare
- Division of Crop Improvement, ICAR - Central Institute for Cotton Research (CICR), Nagpur, Maharashtra, India
| |
Collapse
|
10
|
Louie SH, Fisher M, Grainger RM. Elucidating the framework for specification and determination of the embryonic retina. Exp Cell Res 2020; 397:112316. [PMID: 33031807 DOI: 10.1016/j.yexcr.2020.112316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 01/01/2023]
Abstract
How cell determination is regulated remains a major unsolved problem in developmental biology. The early embryonic rudiments of many tissues and organs are difficult or impossible to identify, isolate and study at the time when determination occurs. We have examined the commitment process leading to retina formation in Xenopus laevis, where presumptive eye tissue can be identified and studied to assay its biological properties during the events leading up to determination. We find that for the retina, specification, the point at which a tissue placed in neutral culture medium can first properly differentiate, occurs during mid-gastrulation. By late gastrulation, determination, the final, irreversible step in commitment, has occurred. At this stage, the presumptive retina will differentiate and cannot be reprogrammed even if exposed to other active inducers, e.g. when challenged by transplantation to ectopic sites in the embryo. Key eye regulatory genes are initially expressed in the retinal field during specification and/or determination (e.g. rax, pax6, lhx2, and fzd5) potentially linking them, or genes that regulate them, to these processes. This study provides essential groundwork for defining the mechanisms for how these important developmental transitions occur.
Collapse
Affiliation(s)
- Sarah H Louie
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Marilyn Fisher
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
11
|
Chambers JM, Wingert RA. Advances in understanding vertebrate nephrogenesis. Tissue Barriers 2020; 8:1832844. [PMID: 33092489 PMCID: PMC7714473 DOI: 10.1080/21688370.2020.1832844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The kidney is a complex organ that performs essential functions such as blood filtration and fluid homeostasis, among others. Recent years have heralded significant advancements in our knowledge of the mechanisms that control kidney formation. Here, we provide an overview of vertebrate renal development with a focus on nephrogenesis, the process of generating the epithelialized functional units of the kidney. These steps begin with intermediate mesoderm specification and proceed all the way to the terminally differentiated nephron cell, with many detailed stages in between. The establishment of nephron architecture with proper cellular barriers is vital throughout these processes. Continuously striving to gain further insights into nephrogenesis can ultimately lead to a better understanding and potential treatments for developmental maladies such as Congenital Anomalies of the Kidney and Urinary Tract (CAKUT).
Collapse
Affiliation(s)
- Joseph M. Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
12
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
13
|
Corkins ME, Krneta-Stankic V, Kloc M, McCrea PD, Gladden AB, Miller RK. Divergent roles of the Wnt/PCP Formin Daam1 in renal ciliogenesis. PLoS One 2019; 14:e0221698. [PMID: 31469868 PMCID: PMC6716777 DOI: 10.1371/journal.pone.0221698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Kidneys are composed of numerous ciliated epithelial tubules called nephrons. Each nephron functions to reabsorb nutrients and concentrate waste products into urine. Defects in primary cilia are associated with abnormal formation of nephrons and cyst formation in a wide range of kidney disorders. Previous work in Xenopus laevis and zebrafish embryos established that loss of components that make up the Wnt/PCP pathway, Daam1 and ArhGEF19 (wGEF) perturb kidney tubulogenesis. Dishevelled, which activates both the canonical and non-canonical Wnt/PCP pathway, affect cilia formation in multiciliated cells. In this study, we investigated the role of the noncanoncial Wnt/PCP components Daam1 and ArhGEF19 (wGEF) in renal ciliogenesis utilizing polarized mammalian kidney epithelia cells (MDCKII and IMCD3) and Xenopus laevis embryonic kidney. We demonstrate that knockdown of Daam1 and ArhGEF19 in MDCKII and IMCD3 cells leads to loss of cilia, and Daam1's effect on ciliogenesis is mediated by the formin-activity of Daam1. Moreover, Daam1 co-localizes with the ciliary transport protein Ift88 and is present in cilia. Interestingly, knocking down Daam1 in Xenopus kidney does not lead to loss of cilia. These data suggests a new role for Daam1 in the formation of primary cilia.
Collapse
Affiliation(s)
- Mark E. Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Vanja Krneta-Stankic
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genes and Development, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
| | - Malgorzata Kloc
- Houston Methodist, Research Institute, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pierre D. McCrea
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrew B. Gladden
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rachel K. Miller
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics & Epigenetics, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry & Cell Biology, Houston, Texas, United States of America
| |
Collapse
|
14
|
McMahon R, Sibbritt T, Salehin N, Osteil P, Tam PPL. Mechanistic insights from the LHX1-driven molecular network in building the embryonic head. Dev Growth Differ 2019; 61:327-336. [PMID: 31111476 DOI: 10.1111/dgd.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022]
Abstract
Development of an embryo is driven by a series of molecular instructions that control the differentiation of tissue precursor cells and shape the tissues into major body parts. LIM homeobox 1 (LHX1) is a transcription factor that plays a major role in the development of the embryonic head of the mouse. Loss of LHX1 function disrupts the morphogenetic movement of head tissue precursors and impacts on the function of molecular factors in modulating the activity of the WNT signaling pathway. LHX1 acts with a transcription factor complex to regulate the transcription of target genes in multiple phases of development and in a range of embryonic tissues of the mouse and Xenopus. Determining the interacting factors and transcriptional targets of LHX1 will be key to unraveling the ensemble of factors involved in head development and building a head gene regulatory network.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Tennille Sibbritt
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Nazmus Salehin
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
15
|
DeLay BD, Baldwin TA, Miller RK. Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development. Front Physiol 2019; 10:143. [PMID: 30863317 PMCID: PMC6399408 DOI: 10.3389/fphys.2019.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
The adult human kidney contains over one million nephrons, with each nephron consisting of a tube containing segments that have specialized functions in nutrient and water absorption and waste excretion. The embryonic kidney of Xenopus laevis consists of a single functional nephron composed of regions that are analogous to those found in the human nephron, making it a simple model for the study of nephrogenesis. The exocyst complex, which traffics proteins to the cell membrane in vesicles via CDC42, is essential for normal kidney development. Here, we show that the CDC42-GEF, dynamin binding protein (Dnmbp/Tuba), is essential for nephrogenesis in Xenopus. dnmbp is expressed in Xenopus embryo kidneys during development, and knockdown of Dnmbp using two separate morpholino antisense oligonucleotides results in reduced expression of late pronephric markers, whereas the expression of early markers of nephrogenesis remains unchanged. A greater reduction in expression of markers of differentiated distal and connecting tubules was seen in comparison to proximal tubule markers, indicating that Dnmbp reduction may have a greater impact on distal and connecting tubule differentiation. Additionally, Dnmbp reduction results in glomus and ciliary defects. dnmbp knockout using CRISPR results in a similar reduction of late markers of pronephric tubulogenesis and also results in edema formation in later stage embryos. Overexpression of dnmbp in the kidney also resulted in disrupted pronephric tubules, suggesting that dnmbp levels in the developing kidney are tightly regulated, with either increased or decreased levels leading to developmental defects. Together, these data suggest that Dnmbp is required for nephrogenesis.
Collapse
Affiliation(s)
- Bridget D. DeLay
- Department of Pediatrics, McGovern Medical School, Pediatric Research Center, University of Texas Health Science Center, Houston, TX, United States
| | - Tanya A. Baldwin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
- Program in Biochemistry and Cell Biology, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, TX, United States
| | - Rachel K. Miller
- Department of Pediatrics, McGovern Medical School, Pediatric Research Center, University of Texas Health Science Center, Houston, TX, United States
- Program in Biochemistry and Cell Biology, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, TX, United States
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Del Pino EM. Embryogenesis of Marsupial Frogs (Hemiphractidae), and the Changes that Accompany Terrestrial Development in Frogs. Results Probl Cell Differ 2019; 68:379-418. [PMID: 31598865 DOI: 10.1007/978-3-030-23459-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The developmental adaptations of the marsupial frogs Gastrotheca riobambae and Flectonotus pygmaeus (Hemiphractidae) are described and compared with frogs belonging to seven additional families. Incubation of embryos by the mother in marsupial frogs is associated with changes in the anatomy and physiology of the female, modifications of oogenesis, and extraordinary changes in embryonic development. The comparison of early development reveals that gene expression is highly conserved. However, the timing of gene expression varies between frog species. There are two modes of gastrulation according to the onset of convergent extension. In gastrulation mode 1, convergent extension is an intrinsic mechanism of gastrulation. This gastrulation mode occurs in frogs with aquatic reproduction, such as Xenopus laevis. In gastrulation mode 2, convergent extension occurs after the completion of gastrulation movements. Gastrulation mode 2 occurs in frogs with terrestrial reproduction, such as the marsupial frog, G. riobambae. The two modes of frog gastrulation resemble the two transitions toward meroblastic cleavage of ray-finned fishes (Actinopterygii). The comparison indicates that a major event in the evolution of frog terrestrial development is the separation of convergent extension from gastrulation.
Collapse
Affiliation(s)
- Eugenia M Del Pino
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|
17
|
Yasuoka Y, Tando Y, Kubokawa K, Taira M. Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. ZOOLOGICAL LETTERS 2019; 5:27. [PMID: 31388442 PMCID: PMC6679436 DOI: 10.1186/s40851-019-0143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 07/12/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND In cephalochordates (amphioxus), the notochord runs along the dorsal to the anterior tip of the body. In contrast, the vertebrate head is formed anterior to the notochord, as a result of head organizer formation in anterior mesoderm during early development. A key gene for the vertebrate head organizer, goosecoid (gsc), is broadly expressed in the dorsal mesoderm of amphioxus gastrula. Amphioxus gsc expression subsequently becomes restricted to the posterior notochord from the early neurula. This has prompted the hypothesis that a change in expression patterns of gsc led to development of the vertebrate head during chordate evolution. However, molecular mechanisms of head organizer evolution involving gsc have never been elucidated. RESULTS To address this question, we compared cis-regulatory modules of vertebrate organizer genes between amphioxus, Branchiostoma japonicum, and frogs, Xenopus laevis and Xenopus tropicalis. Here we show conservation and diversification of gene regulatory mechanisms through cis-regulatory modules for gsc, lim1/lhx1, and chordin in Branchiostoma and Xenopus. Reporter analysis using Xenopus embryos demonstrates that activation of gsc by Nodal/FoxH1 signal through the 5' upstream region, that of lim1 by Nodal/FoxH1 signal through the first intron, and that of chordin by Lim1 through the second intron, are conserved between amphioxus and Xenopus. However, activation of gsc by Lim1 and Otx through the 5' upstream region in Xenopus are not conserved in amphioxus. Furthermore, the 5' region of amphioxus gsc recapitulated the amphioxus-like posterior mesoderm expression of the reporter gene in transgenic Xenopus embryos. CONCLUSIONS On the basis of this study, we propose a model, in which the gsc gene acquired the cis-regulatory module bound with Lim1 and Otx at its 5' upstream region to be activated persistently in anterior mesoderm, in the vertebrate lineage. Because Gsc globally represses trunk (notochord) genes in the vertebrate head organizer, this cooption of gsc in vertebrates appears to have resulted in inhibition of trunk genes and acquisition of the head organizer and its derivative prechordal plate.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yukiko Tando
- Center for Advance Marine Research, Ocean Research Institute, The University of Tokyo, 1-15-1, Minamidai, Nakano-ku, Tokyo, 164-8639 Japan
- Present address: Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Kaoru Kubokawa
- Center for Advance Marine Research, Ocean Research Institute, The University of Tokyo, 1-15-1, Minamidai, Nakano-ku, Tokyo, 164-8639 Japan
- Present address: SIRC, Teikyo University, 2-11-1, Itabashi-ku, Tokyo, 173-8605 Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present address: Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan
| |
Collapse
|
18
|
The extraordinary biology and development of marsupial frogs (Hemiphractidae) in comparison with fish, mammals, birds, amphibians and other animals. Mech Dev 2018; 154:2-11. [DOI: 10.1016/j.mod.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 11/20/2022]
|
19
|
Espiritu EB, Crunk AE, Bais A, Hochbaum D, Cervino AS, Phua YL, Butterworth MB, Goto T, Ho J, Hukriede NA, Cirio MC. The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Sci Rep 2018; 8:16029. [PMID: 30375416 PMCID: PMC6207768 DOI: 10.1038/s41598-018-34038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abha Bais
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Hochbaum
- Universidad de Buenos Aires, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Ailen S Cervino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina. .,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
20
|
Lim1-related homeobox gene (HpLim1) expressed in sea urchin embryo. ZYGOTE 2018. [DOI: 10.1017/s0967199400130394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A characteristic cysteine-rich motif, LIM domain, was first detected in three different transcription factors: lin-11, Islet-1 and mec-3. A feature shared by these genes is the presence of two LIM domains linked to a DNA-binding homeodomain (Sánchez-García et al., 1994). LIM homeodomain (LHX) proteins have been reported to be implicated in a variety of developmental processes (Dawid et al., 1998).Expression patterns of LHX genes have been analysed in a wide variety of organisms and reported to be cell-type specific (Dawid et al., 1998). In vertebrates, they are expressed in organiser equivalent regions at the gastrula stage, suggesting their involvement in mesoderm induction (Taira et al., 1992; Barnes et al., 1994; Toyama et al., 1995). Hrlim, an ascidian Lim3, zygotically expresses in the endoderm lineage before gastrulation, suggesting that it is involved in the endoderm determination (Wada et al., 1995).Here, cDNA cloning of the Lim1-related homeobox gene (HpLim1) of the sea urchin, Hemicentrotus pulcherrimus, is described together with the spatially as well as temporally regulated expression of HpLim1 during sea urchin development. A possible role of HpLiml in sea urchin development is also discussed based on its spatial pattern of expression and on the result of an over-expression study.
Collapse
|
21
|
DeLay BD, Corkins ME, Hanania HL, Salanga M, Deng JM, Sudou N, Taira M, Horb ME, Miller RK. Tissue-Specific Gene Inactivation in Xenopus laevis: Knockout of lhx1 in the Kidney with CRISPR/Cas9. Genetics 2018; 208:673-686. [PMID: 29187504 PMCID: PMC5788530 DOI: 10.1534/genetics.117.300468] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/18/2017] [Indexed: 11/18/2022] Open
Abstract
Studying genes involved in organogenesis is often difficult because many of these genes are also essential for early development. The allotetraploid frog, Xenopus laevis, is commonly used to study developmental processes, but because of the presence of two homeologs for many genes, it has been difficult to use as a genetic model. Few studies have successfully used CRISPR in amphibians, and currently there is no tissue-targeted knockout strategy described in Xenopus The goal of this study is to determine whether CRISPR/Cas9-mediated gene knockout can be targeted to the Xenopus kidney without perturbing essential early gene function. We demonstrate that targeting CRISPR gene editing to the kidney and the eye of F0 embryos is feasible. Our study shows that knockout of both homeologs of lhx1 results in the disruption of kidney development and function but does not lead to early developmental defects. Therefore, targeting of CRISPR to the kidney may not be necessary to bypass the early developmental defects reported upon disruption of Lhx1 protein expression or function by morpholinos, antisense RNA, or dominant negative constructs. We also establish a control for CRISPR in Xenopus by editing a gene (slc45a2) that when knocked out results in albinism without altering kidney development. This study establishes the feasibility of tissue-specific gene knockout in Xenopus, providing a cost-effective and efficient method for assessing the roles of genes implicated in developmental abnormalities that is amenable to high-throughput gene or drug screening techniques.
Collapse
Affiliation(s)
- Bridget D DeLay
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, Texas 77030
| | - Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, Texas 77030
| | - Hannah L Hanania
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, Texas 77030
- Program in Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| | - Matthew Salanga
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Jian Min Deng
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Norihiro Sudou
- Department of Anatomy, School of Medicine, Tokyo Women's Medical University, 162-8666, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-8654, Japan
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Rachel K Miller
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center McGovern Medical School, Houston, Texas 77030
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, Texas 77030
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center University of Texas Health Science Center Graduate School of Biomedical Sciences, Houston, Texas 77030
| |
Collapse
|
22
|
Hooker LN, Smoczer C, Abbott S, Fakhereddin M, Hudson JW, Crawford MJ. Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression. Dev Dyn 2017; 246:657-669. [PMID: 28598520 DOI: 10.1002/dvdy.24532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/28/2017] [Accepted: 05/25/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Pitx3 plays a well understood role in directing development of lens, muscle fiber, and dopaminergic neurons; however, in Xenopus laevis, it may also play a role in early gastrulation and somitogenesis. Potential downstream targets of pitx3 possess multiple binding motifs that would not be readily accessible by conventional promoter analysis. RESULTS We isolated and characterized pitx3 target genes lhx1 and xnr5 using a novel three-fluor flow cytometry tool that was designed to dissect promoters with multiple binding sites for the same transcription factor. This approach was calibrated using a known pitx3 target gene, Tyrosine hydroxylase. CONCLUSIONS We demonstrate how flow cytometry can be used to detect gene regulatory changes with exquisite precision on a cell-by-cell basis, and establish that in HEK293 cells, pitx3 directly activates lhx1 and represses xnr5. Developmental Dynamics 246:657-669, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Cristine Smoczer
- Biochemistry and Genetics, University of Detroit Mercy School of Dentistry, Detroit, Michigan
| | - Samuel Abbott
- Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | - John W Hudson
- Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | | |
Collapse
|
23
|
Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T. Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Dev Biol 2017; 426:301-324. [DOI: 10.1016/j.ydbio.2016.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/27/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
|
24
|
Toro-Tapia G, Villaseca S, Leal JI, Beyer A, Fuentealba J, Torrejón M. Xenopus as a model organism to study heterotrimeric G-protein pathway during collective cell migration of neural crest. Genesis 2017; 55. [PMID: 28095644 DOI: 10.1002/dvg.23008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/03/2023]
Abstract
Collective cell migration is essential in many fundamental aspects of normal development, like morphogenesis, organ formation, wound healing, and immune responses, as well as in the etiology of severe pathologies, like cancer metastasis. In spite of the huge amount of data accumulated on cell migration, such a complex process involves many molecular actors, some of which still remain to be functionally characterized. One of these signals is the heterotrimeric G-protein pathway that has been studied mainly in gastrulation movements. Recently we have reported that Ric-8A, a GEF for Gα proteins, plays an important role in neural crest migration in Xenopus development. Xenopus neural crest cells, a highly migratory embryonic cell population induced at the border of the neural plate that migrates extensively in order to differentiate in other tissues during development, have become a good model to understand the dynamics that regulate cell migration. In this review, we aim to provide sufficient evidence supporting how useful Xenopus model with its different tools, such as explants and transplants, paired with improved in vivo imaging techniques, will allow us to tackle the multiple signaling mechanisms involved in neural crest cell migration.
Collapse
Affiliation(s)
- G Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - S Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J I Leal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - A Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J Fuentealba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - M Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
25
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
26
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
27
|
Gao Y, Cao Q, Lu L, Zhang X, Zhang Z, Dong X, Jia W, Cao Y. Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. Dev Dyn 2015. [PMID: 26198170 DOI: 10.1002/dvdy.24310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Kruppel-like factors (Klfs) are a family of transcription factors consisting of 17 members in mammals, Klf1-Klf17, which are involved in fundamental cellular physiological procedures, such as cell proliferation, differentiation, and apoptosis. However, their functions in embryonic development have been poorly understood. Our previous study has demonstrated that the pluripotency factor Klf4 participates in germ layer formation and axis patterning of Xenopus embryos by means of the regulation of key developmental signals. In the present study, we further investigated comprehensively the expression and functions of the klf family genes, klf2, klf5, klf6, klf7, klf8, klf11, klf15, and klf17, during the embryogenesis of Xenopus laevis. RESULTS Spatio-temporal expression analyses demonstrate that these genes are transcribed both maternally and zygotically in Xenopus embryos, and during organogenesis and tissue differentiation, they are localized to a variety of placodes and tissues. Gain and loss of function studies manifest that Klf factors play different roles in germ layer formation and body axis patterning. Moreover, each Klf factor exhibits distinct regulatory effects on the expression of genes that are essential for germ layer formation and body axis patterning. CONCLUSIONS These results suggest that Klf factors are involved in the fine-tuning of these genes during early embryogenesis.
Collapse
Affiliation(s)
- Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Qing Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Lei Lu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Xiaohua Dong
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Wenshuang Jia
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| |
Collapse
|
28
|
Klein SL, Moody SA. Early neural ectodermal genes are activated by Siamois and Twin during blastula stages. Genesis 2015; 53:308-20. [PMID: 25892704 PMCID: PMC8943805 DOI: 10.1002/dvg.22854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
BMP signaling distinguishes between neural and non-neural fates by activating epidermis-specific transcription and repressing neural-specific transcription. The neural ectoderm forms after the Organizer secrets antagonists that prevent these BMP-mediated activities. However, it is not known whether neural genes also are transcriptionally activated. Therefore, we tested the ability of nine Organizer transcription factors to ectopically induce the expression of four neural ectodermal genes in epidermal precursors. We found evidence for two pathways: Foxd4 and Sox11 were only induced by Sia and Twn, whereas Gmnn and Zic2 were induced by Sia, Twn, as well as seven other Organizer transcription factors. The induction of Foxd4, Gmnn and Zic2 by Sia/Twn was both non-cell autonomous (requiring an intermediate protein) and cell autonomous (direct), whereas the induction of Sox11 required Foxd4 activity. Because direct induction by Sia/Twn could occur endogenously in the dorsal-equatorial blastula cells that give rise to both the Organizer mesoderm and the neural ectoderm, we knocked down Sia/Twn in those cells. This prevented the blastula expression of Foxd4 and Sox11, demonstrating that Sia/Twn directly activate some neural genes before the separation of the Organizer mesoderm and neural ectoderm lineages.
Collapse
Affiliation(s)
- Steven L. Klein
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, Northwest, Washington, DC
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, Northwest, Washington, DC
| |
Collapse
|
29
|
Shi W, Xu G, Wang C, Sperber SM, Chen Y, Zhou Q, Deng Y, Zhao H. Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. J Biol Chem 2015; 290:577-89. [PMID: 25398881 PMCID: PMC4281759 DOI: 10.1074/jbc.m114.591628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/09/2014] [Indexed: 12/17/2022] Open
Abstract
Heat shock 70-kDa protein 5 (Hspa5), also known as binding immunoglobulin protein (Bip) or glucose-regulated protein 78 (Grp78), belongs to the heat shock protein 70 kDa family. As a multifunctional protein, it participates in protein folding and calcium homeostasis and serves as an essential regulator of the endoplasmic reticulum (ER) stress response. It has also been implicated in signal transduction by acting as a receptor or co-receptor residing at the plasma membrane. Its function during embryonic development, however, remains largely elusive. In this study, we used morpholino antisense oligonucleotides (MOs) to knock down Hspa5 activity in Xenopus embryos. In Hspa5 morphants, pronephros formation was strongly inhibited with the reduction of pronephric marker genes Lim homeobox protein 1 (lhx1), pax2, and β1 subunit of Na/K-ATPase (atp1b1). Pronephros tissue was induced in vitro by treating animal caps with all-trans-retinoic acid and activin. Depletion of Hspa5 in animal caps, however, blocked the induction of pronephros as well as reduced the expression of retinoic acid (RA)-responsive genes, suggesting that knockdown of Hspa5 attenuated RA signaling. Knockdown of Hspa5 in animal caps resulted in decreased expression of lhx1, a transcription factor directly regulated by RA signaling and essential for pronephros specification. Co-injection of Hspa5MO with lhx1 mRNA partially rescued the phenotype induced by Hspa5MO. These results suggest that the RA-Lhx1 signaling cascade is involved in Hspa5MO-induced pronephros malformation. This study shows that Hspa5, a key regulator of the unfolded protein response, plays an essential role in pronephros formation, which is mediated in part through RA signaling during early embryonic development.
Collapse
Affiliation(s)
- Weili Shi
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Gang Xu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, China
| | - Chengdong Wang
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Steven M Sperber
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574
| | - Yonglong Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Qin Zhou
- Division of Molecular Nephrology and Creative Training Center for Undergraduates, Ministry of Education Key Laboratory of Laboratory Medicine Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Deng
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China,
| | - Hui Zhao
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China,
| |
Collapse
|
30
|
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. Nat Commun 2014; 5:4322. [PMID: 25005894 DOI: 10.1038/ncomms5322] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 06/06/2014] [Indexed: 12/11/2022] Open
Abstract
Head specification by the head-selector gene, orthodenticle (otx), is highly conserved among bilaterian lineages. However, the molecular mechanisms by which Otx and other transcription factors (TFs) interact with the genome to direct head formation are largely unknown. Here we employ ChIP-seq and RNA-seq approaches in Xenopus tropicalis gastrulae and find that occupancy of the corepressor, TLE/Groucho, is a better indicator of tissue-specific cis-regulatory modules (CRMs) than the coactivator p300, during early embryonic stages. On the basis of TLE binding and comprehensive CRM profiling, we define two distinct types of Otx2- and TLE-occupied CRMs. Using these devices, Otx2 and other head organizer TFs (for example, Lim1/Lhx1 (activator) or Goosecoid (repressor)) are able to upregulate or downregulate a large battery of target genes in the head organizer. An underlying principle is that Otx marks target genes for head specification to be regulated positively or negatively by partner TFs through specific types of CRMs.
Collapse
|
31
|
Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril 2014; 102:213-222.e4. [PMID: 24794309 DOI: 10.1016/j.fertnstert.2014.03.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize the microRNA (miRNA) expression profile in spermatozoa from human fertile individuals and their implications in human fertility. DESIGN The expression levels of 736 miRNAs were evaluated using TaqMan arrays. Ontologic analyses were performed to determine the presence of enriched biological processes among their targets. SETTING University research and clinical institutes. PATIENT(S) Ten individuals with normal seminogram, standard karyotype, and proven fertility. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Expression levels of 736 miRNAs, presence of enriched metabolic routes among their targets, homogeneity of the population, influence of demographic features in the results, presence of miRNA stable pairs, and best miRNA normalizing candidates. RESULT(S) A total of 221 miRNAs were consistently present in all individuals, 452 were only detected in some individuals, and 63 did not appear in any sample. The ontologic analysis of the 2,356 potential targets of the ubiquitous miRNAs showed an enrichment of processes related to cell differentiation, development, morphogenesis, and embryogenesis. None of the miRNAs were significantly correlated with age, semen volume, sperm concentration, motility, or morphology. Correlations between samples were statistically significant, indicating a high homogeneity of the population. A set of 48 miRNA pairs displayed a stable expression, a particular behavior that is discussed in relationship to their usefulness as fertility biomarkers. Hsa-miR-532-5p, hsa-miR-374b-5p, and hsa-miR-564 seemed to be the best normalizing miRNA candidates. CONCLUSION(S) Human sperm contain a stable population of miRNAs potentially related to embryogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Joan Blanco
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesca Vidal
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Josep M Mercader
- Joint Institution for Research in Biomedicine-Barcelona Supercomputing Center Program on Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Nicolás Garrido
- Laboratorio de Andrología y Banco de Semen, Instituto Valenciano de Infertilidad Valencia, Valencia, Spain
| | - Ester Anton
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
32
|
Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 2014; 29:553-64. [PMID: 24005792 PMCID: PMC3944192 DOI: 10.1007/s00467-013-2597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eric D. de Groh
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
33
|
Gene regulatory network of renal primordium development. Pediatr Nephrol 2014; 29:637-44. [PMID: 24104595 DOI: 10.1007/s00467-013-2635-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022]
Abstract
Animal development progresses through the stepwise deployment of gene regulatory networks (GRN) encoded in the genome. Comparative analyses in different species and organ systems have revealed that GRN blueprints are composed of subcircuits with stereotypical architectures that are often reused as modular units. In this review, we report the evidence for the GRN underlying renal primordium development. In vertebrates, renal development is initiated by the induction of a field of intermediate mesoderm cells competent to undergo lineage specification and nephric (Wolffian) duct formation. Definition of the renal field leads to the activation of a core regulatory subcircuit composed of the transcription factors Pax2/8, Gata3 and Lim1. These transcription factors turn on a second layer of transcriptional regulators while also activating effectors of tissue morphogenesis and cellular specialization. Elongation and connection of the nephric duct to the cloaca (bladder/urethra primordium) is followed by metanephric kidney induction through signals emanating from the metanephric mesenchyme. Central to this process is the activation and positioning of the glial cell line-derived neurotrophic factor (Gdnf)-Ret signaling pathway by network subcircuits located in the mesenchyme and epithelial tissues of the caudal trunk. Evidence shows that each step of the renal primordium developmental program is regulated by structured GRN subunits organized in a hierarchical manner. Understanding the structure and dynamics of the renal GRN will help us understand the intrinsic phenotypical variability of congenital anomalies of the kidney and urinary tract and guide our approaches to regenerative medicine.
Collapse
|
34
|
Kam RKT, Shi W, Chan SO, Chen Y, Xu G, Lau CBS, Fung KP, Chan WY, Zhao H. Dhrs3 protein attenuates retinoic acid signaling and is required for early embryonic patterning. J Biol Chem 2013; 288:31477-87. [PMID: 24045938 DOI: 10.1074/jbc.m113.514984] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (atRA) is an important morphogen involved in many developmental processes, including neural differentiation, body axis formation, and organogenesis. During early embryonic development, atRA is synthesized from all-trans-retinal (atRAL) in an irreversible reaction mainly catalyzed by retinal dehydrogenase 2 (aldh1a2), whereas atRAL is converted from all-trans-retinol via reversible oxidation by retinol dehydrogenases, members of the short-chain dehydrogenase/reductase family. atRA is degraded by cytochrome P450, family 26 (cyp26). We have previously identified a short-chain dehydrogenase/reductase 3 (dhrs3), which showed differential expression patterns in Xenopus embryos. We show here that the expression of dhrs3 was induced by atRA treatment and overexpression of Xenopus nodal related 1 (xnr1) in animal cap assay. Overexpression of dhrs3 enhanced the phenotype of excessive cyp26a1. In embryos overexpressing aldh1a2 or retinol dehydrogenase 10 (rdh10) in the presence of their respective substrates, Dhrs3 counteracted the action of Aldh1a2 or Rdh10, indicating that retinoic acid signaling is attenuated. Knockdown of Dhrs3 by antisense morpholino oligonucleotides resulted in a phenotype of shortened anteroposterior axis, reduced head structure, and perturbed somitogenesis, which were also found in embryos treated with an excess of atRA. Examination of the expression of brachyury, not, goosecoid, and papc indicated that convergent extension movement was defective in Dhrs3 morphants. Taken together, these studies suggest that dhrs3 participates in atRA metabolism by reducing atRAL levels and is required for proper anteroposterior axis formation, neuroectoderm patterning, and somitogenesis.
Collapse
|
35
|
Abstract
The timing of notochord, somite, and neural development was analyzed in the embryos of six different frog species, which have been divided into two groups, according to their developmental speed. Rapid developing species investigated were Xenopus laevis (Pipidae), Engystomops coloradorum, and Engystomops randi (Leiuperidae). The slow developers were Epipedobates machalilla and Epipedobates tricolor (Dendrobatidae) and Gastrotheca riobambae (Hemiphractidae). Blastopore closure, notochord formation, somite development, neural tube closure, and the formation of cranial neural crest cell-streams were detected by light and scanning electron microscopy and by immuno-histochemical detection of somite and neural crest marker proteins. The data were analyzed using event pairing to determine common developmental aspects and their relationship to life-history traits. In embryos of rapidly developing frogs, elongation of the notochord occurred earlier relative to the time point of blastopore closure in comparison with slowly developing species. The development of cranial neural crest cell-streams relative to somite formation is accelerated in rapidly developing frogs, and it is delayed in slowly developing frogs. The timing of neural tube closure seemed to be temporally uncoupled with somite formation. We propose that these changes are achieved through differential timing of developmental modules that begin with the elongation of the notochord during gastrulation in the rapidly developing species. The differences might be related to the necessity of developing a free-living tadpole quickly in rapid developers.
Collapse
|
36
|
mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and Activin/nodal signaling in Xenopus ectodermal cells. PLoS One 2012; 7:e46630. [PMID: 23071603 PMCID: PMC3469649 DOI: 10.1371/journal.pone.0046630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/06/2012] [Indexed: 11/19/2022] Open
Abstract
Background In Xenopus early embryogenesis, various genes are involved with mesoderm formation. In particular, dorsal mesoderm contains the organizer region and induces neural tissues through the inhibition of bone morphogenetic protein (BMP) signaling. In our initial study to identify novel genes necessary for maintaining the undifferentiated state, we unexpectedly revealed mesoderm-inducing activity for mNanog in Xenopus. Methodology/Principal Findings The present series of experiments investigated the effect of mNanog gene expression on Xenopus embryo. Ectopic expression of mNanog induced dorsal mesoderm gene activity, secondary axis formation, and weakly upregulated Activin/nodal signaling. The injection of mNanog also effectively inhibited the target genes of BMP signaling, while Xvent2 injection downregulated the dorsal mesoderm gene expression induced by mNanog injection. Conclusions/Significance These results suggested that mNanog expression induces dorsal mesoderm by regulating both Activin/nodal signaling and BMP signaling in Xenopus. This finding highlights the possibly novel function for mNanog in stimulating the endogenous gene network in Xenopus mesoderm formation.
Collapse
|
37
|
Sudou N, Yamamoto S, Ogino H, Taira M. Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. Development 2012; 139:1651-61. [PMID: 22492356 DOI: 10.1242/dev.068395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How multiple developmental cues are integrated on cis-regulatory modules (CRMs) for cell fate decisions remains uncertain. The Spemann-Mangold organizer in Xenopus embryos expresses the transcription factors Lim1/Lhx1, Otx2, Mix1, Siamois (Sia) and VegT. Reporter analyses using sperm nuclear transplantation and DNA injection showed that cerberus (cer) and goosecoid (gsc) are activated by the aforementioned transcription factors through CRMs conserved between X. laevis and X. tropicalis. ChIP-qPCR analysis for the five transcription factors revealed that cer and gsc CRMs are initially bound by both Sia and VegT at the late blastula stage, and subsequently bound by all five factors at the gastrula stage. At the neurula stage, only binding of Lim1 and Otx2 to the gsc CRM, among others, persists, which corresponds to their co-expression in the prechordal plate. Based on these data, together with detailed expression pattern analysis, we propose a new model of stepwise formation of the organizer, in which (1) maternal VegT and Wnt-induced Sia first bind to CRMs at the blastula stage; then (2) Nodal-inducible Lim1, Otx2, Mix1 and zygotic VegT are bound to CRMs in the dorsal endodermal and mesodermal regions where all these genes are co-expressed; and (3) these two regions are combined at the gastrula stage to form the organizer. Thus, the in vivo dynamics of multiple transcription factors highlight their roles in the initiation and maintenance of gene expression, and also reveal the stepwise integration of maternal, Nodal and Wnt signaling on CRMs of organizer genes to generate the organizer.
Collapse
Affiliation(s)
- Norihiro Sudou
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
38
|
Elinson RP, del Pino EM. Developmental diversity of amphibians. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:345-69. [PMID: 22662314 PMCID: PMC3364608 DOI: 10.1002/wdev.23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother's back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes.
Collapse
Affiliation(s)
- Richard P Elinson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| | | |
Collapse
|
39
|
Affiliation(s)
- Nori Satoh
- Marine Genomics Unit; Okinawa Institute of Science and Technology; Onna Okinawa 904-0495 Japan
| | - Kuni Tagawa
- Marine Biological Laboratory; Graduate School of Science; Hiroshima University; Mukaishima Hiroshima 722-0073 Japan
| | - Hiroki Takahashi
- Division of Developmental Biology; National Institute of Basic Biology; Okagaki Aichi 445-8585 Japan
| |
Collapse
|
40
|
Miller RK, Canny SGDLT, Jang CW, Cho K, Ji H, Wagner DS, Jones EA, Habas R, McCrea PD. Pronephric tubulogenesis requires Daam1-mediated planar cell polarity signaling. J Am Soc Nephrol 2011; 22:1654-64. [PMID: 21804089 DOI: 10.1681/asn.2010101086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Canonical β-catenin-mediated Wnt signaling is essential for the induction of nephron development. Noncanonical Wnt/planar cell polarity (PCP) pathways contribute to processes such as cell polarization and cytoskeletal modulation in several tissues. Although PCP components likely establish the plane of polarization in kidney tubulogenesis, whether PCP effectors directly modulate the actin cytoskeleton in tubulogenesis is unknown. Here, we investigated the roles of Wnt PCP components in cytoskeletal assembly during kidney tubule morphogenesis in Xenopus laevis and zebrafish. We found that during tubulogenesis, the developing pronephric anlagen expresses Daam1 and its interacting Rho-GEF (WGEF), which compose one PCP/noncanonical Wnt pathway branch. Knockdown of Daam1 resulted in reduced expression of late pronephric epithelial markers with no apparent effect upon early markers of patterning and determination. Inhibiting various points in the Daam1 signaling pathway significantly reduced pronephric tubulogenesis. These data indicate that pronephric tubulogenesis requires the Daam1/WGEF/Rho PCP pathway.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Silva AC, Filipe M, Steinbeisser H, Belo JA. Characterization of Cer-1 cis-regulatory region during early Xenopus development. Dev Genes Evol 2011; 221:29-41. [PMID: 21509535 DOI: 10.1007/s00427-011-0357-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/08/2011] [Indexed: 01/07/2023]
Abstract
Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.
Collapse
|
42
|
Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, Hong SK, Dawid IB, Hukriede NA. Lhx1 is required for specification of the renal progenitor cell field. PLoS One 2011; 6:e18858. [PMID: 21526205 PMCID: PMC3078140 DOI: 10.1371/journal.pone.0018858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/22/2011] [Indexed: 11/18/2022] Open
Abstract
In the vertebrate embryo, the kidney is derived from the intermediate mesoderm. The LIM-class homeobox transcription factor lhx1 is expressed early in the intermediate mesoderm and is one of the first genes to be expressed in the nephric mesenchyme. In this study, we investigated the role of Lhx1 in specification of the kidney field by either overexpressing or depleting lhx1 in Xenopus embryos or depleting lhx1 in an explant culture system. By overexpressing a constitutively-active form of Lhx1, we established its capacity to expand the kidney field during the specification stage of kidney organogenesis. In addition, the ability of Lhx1 to expand the kidney field diminishes as kidney organogenesis transitions to the morphogenesis stage. In a complimentary set of experiments, we determined that embryos depleted of lhx1, show an almost complete loss of the kidney field. Using an explant culture system to induce kidney tissue, we confirmed that expression of genes from both proximal and distal kidney structures is affected by the absence of lhx1. Taken together our results demonstrate an essential role for Lhx1 in driving specification of the entire kidney field from the intermediate mesoderm.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zhao Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Caroline E. Haldin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chiara Cianciolo Cosentino
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carsten Stuckenholz
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xiongfong Chen
- Unit on Biologic Computation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
43
|
Drews C, Senkel S, Ryffel GU. The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps. BMC DEVELOPMENTAL BIOLOGY 2011; 11:5. [PMID: 21281489 PMCID: PMC3042965 DOI: 10.1186/1471-213x-11-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The three distinct types of kidneys, pronephros, mesonephros and metanephros, develop consecutively in vertebrates. The earliest form of embryonic kidney, the pronephros, is derived from intermediate mesoderm and the first expressed genes localized in the pronephros anlage are the transcription factors osr1, osr2, hnf1b, lhx1 and pax8, here referred to as the early nephrogenic transcription factors. However, the pathway inducing nephrogenesis and the network of theses factors are poorly understood. Treatment of the undifferentiated animal pole explant (animal cap) of Xenopus with activin A and retinoic acid induces pronephros formation providing a powerful tool to analyze key molecular events in nephrogenesis. RESULTS We have investigated the expression kinetics of the early nephrogenic transcription factors in activin A and retinoic acid treated animal caps and their potential to induce pronephric differentiation. In treated animal caps, expression of osr1, osr2, hnf1b and lhx1 are induced early, whereas pax8 expression occurs later implying an indirect activation. Activin A alone is able to induce osr2 and lhx1 after three hours treatment in animal caps while retinoic acid fails to induce any of these nephrogenic transcription factors. The early expression of the five transcription factors and their interference with pronephros development when overexpressed in embryos suggest that these factors potentially induce nephrogenesis upon expression in animal caps. But no pronephros development is achieved by either overexpression of OSR1, by HNF1B injection with activin A treatment, or the combined application of LHX1 and PAX8, although they influenced the expression of several early nephrogenic transcription factors in some cases. In an additional approach we could show that HNF1B induces several genes important in nephrogenesis and regulates lhx1 expression by an HNF1 binding site in the lhx1 promoter. CONCLUSIONS The early nephrogenic transcription factors play an important role in nephrogenesis, but have no pronephros induction potential upon overexpression in animal caps. They activate transcriptional cascades that partially reflect the gene activation initiated by activin A and retinoic acid. Significantly, HNF1B activates the lhx1 promoter directly, thus extending the known activin A regulation of the lhx1 gene via an activin A responsive element.
Collapse
Affiliation(s)
- Christiane Drews
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Sabine Senkel
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Gerhart U Ryffel
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
44
|
Swanhart LM, Takahashi N, Jackson RL, Gibson GA, Watkins SC, Dawid IB, Hukriede NA. Characterization of an lhx1a transgenic reporter in zebrafish. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:731-6. [PMID: 20209443 DOI: 10.1387/ijdb.092969ls] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The LIM-domain containing transcription factor, Lhx1, is involved in the regulation of early gastrulation cell movements, kidney organogenesis and other processes in vertebrate model organisms. To follow the expression of this gene in live embryos, we created transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) under the control of lhx1a regulatory regions. Tg(lhx1a:EGFP)(pt303) recapitulates the expression of endogenous lhx1a beginning at early gastrula stages through 72 hours of development with only few exceptions. In addition, over-expression of the Nodal ligand, ndr1, results in the concomitant expansion of the transgene and endogenous lhx1a expression. Treatment of Tg(lhx1a:EGFP)(pt303) embryos with the small molecule SB-431542, an inhibitor of Nodal signaling, results in the loss of both transgene and endogenous lhx1a expression. These experiments suggest that Tg(lhx1a:EGFP)(pt303) is regulated in a manner similar to endogenous lhx1a. Therefore, this reporter can be utilized not only for monitoring lhx1a expression, but also for numerous applications, including chemical genetics screening.
Collapse
Affiliation(s)
- Lisa M Swanhart
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The kidney is a model developmental system for understanding mesodermal patterning and organogenesis, a process that requires regional specification along multiple body axes, the proliferation and differentiation of progenitor cells, and integration with other tissues. Recent progress in the field has highlighted the essential roles of intrinsic nuclear factors and secreted signaling molecules in specifying renal epithelial stem cells and their self-renewal, in driving the complex dynamics of epithelial cell branching morphogenesis, and in nephron patterning. How these developments influence and advance our understanding of kidney development is discussed.
Collapse
Affiliation(s)
- Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Agrawal R, Tran U, Wessely O. The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 2009; 136:3927-36. [PMID: 19906860 DOI: 10.1242/dev.037432] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They are involved in diverse biological processes, such as development, differentiation, cell proliferation and apoptosis. To study the role of miRNAs during pronephric kidney development of Xenopus, global miRNA biogenesis was eliminated by knockdown of two key components: Dicer and Dgcr8. These embryos developed a range of kidney defects, including edema formation, delayed renal epithelial differentiation and abnormal patterning. To identify a causative miRNA, mouse and frog kidneys were screened for putative candidates. Among these, the miR-30 family showed the most prominent kidney-restricted expression. Moreover, knockdown of miR-30a-5p phenocopied most of the pronephric defects observed upon global inhibition of miRNA biogenesis. Molecular analyses revealed that miR-30 regulates the LIM-class homeobox factor Xlim1/Lhx1, a major transcriptional regulator of kidney development. miR-30 targeted Xlim1/Lhx1 via two previously unrecognized binding sites in its 3'UTR and thereby restricted its activity. During kidney development, Xlim1/Lhx1 is required in the early stages, but is downregulated subsequently. However, in the absence of miR-30 activity, Xlim1/Lhx1 is maintained at high levels and, therefore, may contribute to the delayed terminal differentiation of the amphibian pronephros.
Collapse
Affiliation(s)
- Raman Agrawal
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
47
|
De Robertis EM. Spemann's organizer and the self-regulation of embryonic fields. Mech Dev 2009; 126:925-41. [PMID: 19733655 PMCID: PMC2803698 DOI: 10.1016/j.mod.2009.08.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 02/05/2023]
Abstract
Embryos and developing organs have the remarkable ability of self-regenerating after experimental manipulations. In the Xenopus blastula half-embryos can regenerate the missing part, producing identical twins. Studies on the molecular nature of Spemann's organizer have revealed that self-regulation results from the battle between two signaling centers under reciprocal transcriptional control. Long-range communication between the dorsal and ventral sides is mediated by the action of growth factor antagonists - such as the BMP antagonist Chordin - that regulate the flow of BMPs within the embryonic morphogenetic field. BMPs secreted by the dorsal Spemann organizer tissue are released by metalloproteinases of the Tolloid family, which cleave Chordin at a distance of where they were produced. The dorsal center secretes Chordin, Noggin, BMP2 and ADMP. The ventral center of the embryo secretes BMP4, BMP7, Sizzled, Crossveinless-2 and Tolloid-related. Crossveinless-2 binds Chordin/BMP complexes, facilitating their flow towards the ventral side, where BMPs are released by Tolloid allowing peak BMP signaling. Self-regulation occurs because transcription of ventral genes is induced by BMP while transcription of dorsal genes is repressed by BMP signals. This assures that for each action of Spemann's organizer there is a reaction in the ventral side of the embryo. Because both dorsal and ventral centers express proteins of similar biochemical activities, they can compensate for each other. A novel biochemical pathway of extracellular growth factor signaling regulation has emerged from these studies in Xenopus. This remarkable dorsal-ventral positional information network has been conserved in evolution and is ancestral to all bilateral animals.
Collapse
Affiliation(s)
- E M De Robertis
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
48
|
Lee SJ, Kim S, Choi SC, Han JK. XPteg (Xenopus proximal tubules-expressed gene) is essential for pronephric mesoderm specification and tubulogenesis. Mech Dev 2009; 127:49-61. [PMID: 19909807 DOI: 10.1016/j.mod.2009.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 11/02/2009] [Accepted: 11/05/2009] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA) signaling is important for the early steps of nephrogenic cell fate specification. Here, we report a novel target gene of RA signaling named XPteg (Xenopus proximal tubules-expressed gene) which is critical for pronephric development. XPteg starts to be expressed at the earliest stage of embryonic kidney specification and was restricted to the pronephric proximal tubules during kidney development. Anti-sense morpholino (MO)-mediated knockdown of XPteg perturbed formation of pronephros as demonstrated by reduced expression of pronephric tubule markers. Conversely, overexpression of XPteg promoted endogenous and ectopic expression of those markers and expanded pronephric tubules. Treatment of retinoic acid induced the expression of XPteg in the pronephric field without protein synthesis. Furthermore, we found that the pronephric defects caused by a dominant negative RA receptor could be rescued by coexpression of XPteg. Taken together, these results suggest that XPteg functions as a direct transcriptional target of RA signaling to regulate pronephric tubulogenesis in Xenopus early development.
Collapse
Affiliation(s)
- Seung Joon Lee
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | | | | | | |
Collapse
|
49
|
Takada H, Kawana T, Ito Y, Kikuno RF, Mamada H, Araki T, Koga H, Asashima M, Taira M. The RNA-binding protein Mex3b has a fine-tuning system for mRNA regulation in early Xenopus development. Development 2009; 136:2413-22. [PMID: 19542354 DOI: 10.1242/dev.029165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Post-transcriptional control by RNA-binding proteins is a precise way to assure appropriate levels of gene expression. Here, we identify a novel mRNA regulatory system involving Mex3b (RKHD3) and demonstrate its role in FGF signaling. mex3b mRNA has a 3' long conserved UTR, named 3'LCU, which contains multiple elements for both mRNA destabilization and translational enhancement. Notably, Mex3b promotes destabilization of its own mRNA by binding to the 3'LCU, thereby forming a negative autoregulatory loop. The combination of positive regulation and negative autoregulation constitutes a fine-tuning system for post-transcriptional control. In early embryogenesis, Mex3b is involved in anteroposterior patterning of the neural plate. Consistent with this, Mex3b can attenuate FGF signaling and destabilize mRNAs for the FGF signaling components Syndecan 2 and Ets1b through their 3' UTRs. These data suggest that the 3'LCU-mediated fine-tuning system determines the appropriate level of mex3b expression, which in turn contributes to neural patterning through regulating FGF signaling.
Collapse
Affiliation(s)
- Hitomi Takada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Romero-Carvajal A, Sáenz-Ponce N, Venegas-Ferrín M, Almeida-Reinoso D, Lee C, Bond J, Ryan MJ, Wallingford JB, Del Pino EM. Embryogenesis and laboratory maintenance of the foam-nesting túngara frogs, genus Engystomops (= Physalaemus). Dev Dyn 2009; 238:1444-54. [PMID: 19384855 DOI: 10.1002/dvdy.21952] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The vast majority of embryological research on amphibians focuses on just a single genus of frogs, Xenopus. To attain a more comprehensive understanding of amphibian development, experimentation on non-model frogs will be essential. Here, we report on the early development, rearing, and embryological analysis of túngara frogs (genus Engystomops, also called Physalaemus). The frogs Engystomops pustulosus, Engystomops coloradorum, and Engystomops randi construct floating foam-nests with small eggs. We define a table of 23 stages for the developmental period in the foam-nest. Embryos were immunostained against Lim1, neural, and somite-specific proteins and the expression pattern of RetinoBlastoma Binding Protein 6 (RBBP6) was analyzed by in situ hybridization. Due to their brief life-cycle, frogs belonging to the genus Engystomops are attractive for comparative and genetic studies of development. Developmental Dynamics 238:1444-1454, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Andrés Romero-Carvajal
- Laboratorio de Biología del Desarrollo, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | | | | | | | | | | | | | | |
Collapse
|