1
|
Emond-Fraser V, Larouche M, Kubiniok P, Bonneil É, Li J, Bourouh M, Frizzi L, Thibault P, Archambault V. Identification of PP2A-B55 targets uncovers regulation of emerin during nuclear envelope reassembly in Drosophila. Open Biol 2023; 13:230104. [PMID: 37463656 PMCID: PMC10353892 DOI: 10.1098/rsob.230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Mitotic exit requires the dephosphorylation of many proteins whose phosphorylation was needed for mitosis. Protein phosphatase 2A with its B55 regulatory subunit (PP2A-B55) promotes this transition. However, the events and substrates that it regulates are incompletely understood. We used proteomic approaches in Drosophila to identify proteins that interact with and are dephosphorylated by PP2A-B55. Among several candidates, we identified emerin (otefin in Drosophila). Emerin resides in the inner nuclear membrane and interacts with the DNA-binding protein barrier-to-autointegration factor (BAF) via a LEM domain. We found that the phosphorylation of emerin at Ser50 and Ser54 near its LEM domain negatively regulates its association with BAF, lamin and additional emerin in mitosis. We show that dephosphorylation of emerin at these sites by PP2A-B55 determines the timing of nuclear envelope reformation. Genetic experiments indicate that this regulation is required during embryonic development. Phosphoregulation of the emerin-BAF complex formation by PP2A-B55 appears as a key event of mitotic exit that is likely conserved across species.
Collapse
Affiliation(s)
- Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Peter Kubiniok
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Laura Frizzi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de chimie, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| |
Collapse
|
2
|
Larouche M, Kachaner D, Wang P, Normandin K, Garrido D, Yao C, Cormier M, Johansen KM, Johansen J, Archambault V. Spatiotemporal coordination of Greatwall-Endos-PP2A promotes mitotic progression. J Cell Biol 2021; 220:211965. [PMID: 33836042 PMCID: PMC8042607 DOI: 10.1083/jcb.202008145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Mitotic entry involves inhibition of protein phosphatase 2A bound to its B55/Tws regulatory subunit (PP2A-B55/Tws), which dephosphorylates substrates of mitotic kinases. This inhibition is induced when Greatwall phosphorylates Endos, turning it into an inhibitor of PP2A-Tws. How this mechanism operates spatiotemporally in the cell is incompletely understood. We previously reported that the nuclear export of Greatwall in prophase promotes mitotic progression. Here, we examine the importance of the localized activities of PP2A-Tws and Endos for mitotic regulation. We find that Tws shuttles through the nucleus via a conserved nuclear localization signal (NLS), but expression of Tws in the cytoplasm and not in the nucleus rescues the development of tws mutants. Moreover, we show that Endos must be in the cytoplasm before nuclear envelope breakdown (NEBD) to be efficiently phosphorylated by Greatwall and to bind and inhibit PP2A-Tws. Disrupting the cytoplasmic function of Endos before NEBD results in subsequent mitotic defects. Evidence suggests that this spatiotemporal regulation is conserved in humans.
Collapse
Affiliation(s)
- Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Peng Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Changfu Yao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Maxime Cormier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Kristen M Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Jørgen Johansen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Wang P, Yang F, Ma Z, Zhang R. Chromosome Unipolar Division and Low Expression of Tws May Cause Parthenogenesis of Rice Water Weevil ( Lissorhoptrus oryzophilus Kuschel). INSECTS 2021; 12:278. [PMID: 33805047 PMCID: PMC8064085 DOI: 10.3390/insects12040278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Rice water weevil (RWW) is divided into two types of population, triploid parthenogenesis and diploid bisexual reproduction. In this study, we explored the meiosis of triploid parthenogenesis RWW (Shangzhuang Town, Haidian District, Beijing, China) by marking the chromosomes and microtubules of parthenogenetic RWW oocytes via immunostaining. The immunostaining results show that there is a canonical meiotic spindle formed in the triploid parthenogenetic RWW oocytes, but chromosomes segregate at only one pole, which means that there is a chromosomal unipolar division during the oogenesis of the parthenogenetic RWW. Furthermore, we cloned the conserved sequences of parthenogenetic RWW REC8 and Tws, and designed primers based on the parthenogenetic RWW sequence to detect expression patterns by quantitative PCR (Q-PCR). Q-PCR results indicate that the expression of REC8 and Tws in ovarian tissue of bisexual Drosophila melanogaster is 0.98 and 10,000.00 times parthenogenetic RWW, respectively (p < 0.01). The results show that Tws had low expression in parthenogenetic RWW ovarian tissue, and REC8 was expressed normally. Our study suggests that the chromosomal unipolar division and deletion of Tws may cause parthenogenesis in RWW.
Collapse
Affiliation(s)
- Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- Department of Entomology, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhuo Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (P.W.); (F.Y.); (Z.M.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Neal SJ, Zhou Q, Pignoni F. STRIPAK-PP2A regulates Hippo-Yorkie signaling to suppress retinal fate in the Drosophila eye disc peripodial epithelium. J Cell Sci 2020; 133:jcs237834. [PMID: 32184260 PMCID: PMC7272332 DOI: 10.1242/jcs.237834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
The specification of organs, tissues and cell types results from cell fate restrictions enacted by nuclear transcription factors under the control of conserved signaling pathways. The progenitor epithelium of the Drosophila compound eye, the eye imaginal disc, is a premier model for the study of such processes. Early in development, apposing cells of the eye disc are established as either retinal progenitors or support cells of the peripodial epithelium (PE), in a process whose genetic and mechanistic determinants are poorly understood. We have identified protein phosphatase 2A (PP2A), and specifically a STRIPAK-PP2A complex that includes the scaffolding and substrate-specificity components Cka, Strip and SLMAP, as a critical player in the retina-PE fate choice. We show that these factors suppress ectopic retina formation in the presumptive PE and do so via the Hippo signaling axis. STRIPAK-PP2A negatively regulates Hippo kinase, and consequently its substrate Warts, to release the transcriptional co-activator Yorkie into the nucleus. Thus, a modular higher-order PP2A complex refines the activity of this general phosphatase to act in a precise specification of cell fate.
Collapse
Affiliation(s)
- Scott J Neal
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Qingxiang Zhou
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| | - Francesca Pignoni
- Department of Ophthalmology and Visual Sciences, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
- Department of Neuroscience and Physiology; Department of Biochemistry and Molecular Biology; Department of Cell and Developmental Biology, Upstate Medical University, 505 Irving Avenue, NRB 4610, Syracuse, NY 13210, USA
| |
Collapse
|
5
|
Rui M, Ng KS, Tang Q, Bu S, Yu F. Protein phosphatase PP2A regulates microtubule orientation and dendrite pruning in Drosophila. EMBO Rep 2020; 21:e48843. [PMID: 32187821 DOI: 10.15252/embr.201948843] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
Pruning that selectively eliminates inappropriate projections is crucial for sculpting neural circuits during development. During Drosophila metamorphosis, ddaC sensory neurons undergo dendrite-specific pruning in response to the steroid hormone ecdysone. However, the understanding of the molecular mechanisms underlying dendrite pruning remains incomplete. Here, we show that protein phosphatase 2A (PP2A) is required for dendrite pruning. The catalytic (Microtubule star/Mts), scaffolding (PP2A-29B), and two regulatory subunits (Widerborst/Wdb and Twins/Tws) play important roles in dendrite pruning. Functional analyses indicate that PP2A, via Wdb, facilitates the expression of Sox14 and Mical prior to dendrite pruning. Furthermore, PP2A, via Tws, governs the minus-end-out orientation of microtubules (MTs) in the dendrites. Moreover, the levels of Klp10A, a MT depolymerase, increase when PP2A is compromised. Attenuation of Klp10A fully rescues the MT orientation defects in mts or pp2a-29b RNAi ddaC neurons, suggesting that PP2A governs dendritic MT orientation by suppressing Klp10A levels and/or function. Taken together, this study sheds light on a novel function of PP2A in regulating dendrite pruning and dendritic MT polarity in sensory neurons.
Collapse
Affiliation(s)
- Menglong Rui
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | - Kay Siong Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore City, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Medical School Singapore, Singapore City, Singapore
| |
Collapse
|
6
|
Mehsen H, Boudreau V, Garrido D, Bourouh M, Larouche M, Maddox PS, Swan A, Archambault V. PP2A-B55 promotes nuclear envelope reformation after mitosis in Drosophila. J Cell Biol 2018; 217:4106-4123. [PMID: 30309980 PMCID: PMC6279390 DOI: 10.1083/jcb.201804018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/17/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
As a dividing cell exits mitosis and daughter cells enter interphase, many proteins must be dephosphorylated. The protein phosphatase 2A (PP2A) with its B55 regulatory subunit plays a crucial role in this transition, but the identity of its substrates and how their dephosphorylation promotes mitotic exit are largely unknown. We conducted a maternal-effect screen in Drosophila melanogaster to identify genes that function with PP2A-B55/Tws in the cell cycle. We found that eggs that receive reduced levels of Tws and of components of the nuclear envelope (NE) often fail development, concomitant with NE defects following meiosis and in syncytial mitoses. Our mechanistic studies using Drosophila cells indicate that PP2A-Tws promotes nuclear envelope reformation (NER) during mitotic exit by dephosphorylating BAF and suggests that PP2A-Tws targets additional NE components, including Lamin and Nup107. This work establishes Drosophila as a powerful model to further dissect the molecular mechanisms of NER and suggests additional roles of PP2A-Tws in the completion of meiosis and mitosis.
Collapse
Affiliation(s)
- Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Vincent Boudreau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Mohammed Bourouh
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Paul S Maddox
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Andrew Swan
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada .,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Yeh PA, Chang CJ. A novel function of twins, B subunit of protein phosphatase 2A, in regulating actin polymerization. PLoS One 2017; 12:e0186037. [PMID: 28977036 PMCID: PMC5627941 DOI: 10.1371/journal.pone.0186037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/22/2017] [Indexed: 11/18/2022] Open
Abstract
Actin is an important component of the cytoskeleton and its polymerization is delicately regulated by several kinases and phosphatases. Heterotrimeric protein phosphatase 2A (PP2A) is a potent phosphatase that is crucial for cell proliferation, apoptosis, tumorigenesis, signal transduction, cytoskeleton arrangement, and neurodegeneration. To facilitate these varied functions, different regulators determine the different targets of PP2A. Among these regulators of PP2A, the B subunits in particular may be involved in cytoskeleton arrangement. However, little is known about the role of PP2A in actin polymerization in vivo. Using sophisticated fly genetics, we demonstrated a novel function for the fly B subunit, twins, to promote actin polymerization in varied tissue types, suggesting a broad and conserved effect. Furthermore, our genetic data suggest that twins may act upstream of the actin-polymerized-proteins, Moesin and Myosin-light-chain, and downstream of Rho to promote actin polymerization. This work opens a new avenue for exploring the biological functions of a PP2A regulator, twins, in cytoskeleton regulation.
Collapse
Affiliation(s)
- Po-An Yeh
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li, Taiwan
- * E-mail:
| | - Ching-Jin Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|
8
|
Merigliano C, Marzio A, Renda F, Somma MP, Gatti M, Vernì F. A Role for the Twins Protein Phosphatase (PP2A-B55) in the Maintenance of Drosophila Genome Integrity. Genetics 2017; 205:1151-1167. [PMID: 28040742 PMCID: PMC5340330 DOI: 10.1534/genetics.116.192781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023] Open
Abstract
The protein phosphatase 2A (PP2A) is a conserved heterotrimeric enzyme that regulates several cellular processes including the DNA damage response and mitosis. Consistent with these functions, PP2A is mutated in many types of cancer and acts as a tumor suppressor. In mammalian cells, PP2A inhibition results in DNA double strand breaks (DSBs) and chromosome aberrations (CABs). However, the mechanisms through which PP2A prevents DNA damage are still unclear. Here, we focus on the role of the Drosophila twins (tws) gene in the maintenance of chromosome integrity; tws encodes the B regulatory subunit (B/B55) of PP2A. Mutations in tws cause high frequencies of CABs (0.5 CABs/cell) in Drosophila larval brain cells and lead to an abnormal persistence of γ-H2Av repair foci. However, mutations that disrupt the PP4 phosphatase activity impair foci dissolution but do not cause CABs, suggesting that a delayed foci regression is not clastogenic. We also show that Tws is required for activation of the G2/M DNA damage checkpoint while PP4 is required for checkpoint recovery, a result that points to a conserved function of these phosphatases from flies to humans. Mutations in the ATM-coding gene tefu are strictly epistatic to tws mutations for the CAB phenotype, suggesting that failure to dephosphorylate an ATM substrate(s) impairs DNA DSBs repair. In addition, mutations in the Ku70 gene, which do not cause CABs, completely suppress CAB formation in tws Ku70 double mutants. These results suggest the hypothesis that an improperly phosphorylated Ku70 protein can lead to DNA damage and CABs.
Collapse
Affiliation(s)
- Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Antonio Marzio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| |
Collapse
|
9
|
Williams BC, Filter JJ, Blake-Hodek KA, Wadzinski BE, Fuda NJ, Shalloway D, Goldberg ML. Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers. eLife 2014; 3:e01695. [PMID: 24618897 PMCID: PMC3949306 DOI: 10.7554/elife.01695] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
During M phase, Endosulfine (Endos) family proteins are phosphorylated by Greatwall kinase (Gwl), and the resultant pEndos inhibits the phosphatase PP2A-B55, which would otherwise prematurely reverse many CDK-driven phosphorylations. We show here that PP2A-B55 is the enzyme responsible for dephosphorylating pEndos during M phase exit. The kinetic parameters for PP2A-B55's action on pEndos are orders of magnitude lower than those for CDK-phosphorylated substrates, suggesting a simple model for PP2A-B55 regulation that we call inhibition by unfair competition. As the name suggests, during M phase PP2A-B55's attention is diverted to pEndos, which binds much more avidly and is dephosphorylated more slowly than other substrates. When Gwl is inactivated during the M phase-to-interphase transition, the dynamic balance changes: pEndos dephosphorylated by PP2A-B55 cannot be replaced, so the phosphatase can refocus its attention on CDK-phosphorylated substrates. This mechanism explains simultaneously how PP2A-B55 and Gwl together regulate pEndos, and how pEndos controls PP2A-B55. DOI: http://dx.doi.org/10.7554/eLife.01695.001.
Collapse
Affiliation(s)
- Byron C Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Joshua J Filter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | | | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, United States
| | - Nicholas J Fuda
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Michael L Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
10
|
Bypassing the Greatwall-Endosulfine pathway: plasticity of a pivotal cell-cycle regulatory module in Drosophila melanogaster and Caenorhabditis elegans. Genetics 2012; 191:1181-97. [PMID: 22649080 DOI: 10.1534/genetics.112.140574] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In vertebrates, mitotic and meiotic M phase is facilitated by the kinase Greatwall (Gwl), which phosphorylates a conserved sequence in the effector Endosulfine (Endos). Phosphorylated Endos inactivates the phosphatase PP2A/B55 to stabilize M-phase-specific phosphorylations added to many proteins by cyclin-dependent kinases (CDKs). We show here that this module functions essentially identically in Drosophila melanogaster and is necessary for proper mitotic and meiotic cell division in a wide variety of tissues. Despite the importance and evolutionary conservation of this pathway between insects and vertebrates, it can be bypassed in at least two situations. First, heterozygosity for loss-of-function mutations of twins, which encodes the Drosophila B55 protein, suppresses the effects of endos or gwl mutations. Several types of cell division occur normally in twins heterozygotes in the complete absence of Endos or the near absence of Gwl. Second, this module is nonessential in the nematode Caenorhaditis elegans. The worm genome does not contain an obvious ortholog of gwl, although it encodes a single Endos protein with a surprisingly well-conserved Gwl target site. Deletion of this site from worm Endos has no obvious effects on cell divisions involved in viability or reproduction under normal laboratory conditions. In contrast to these situations, removal of one copy of twins does not completely bypass the requirement for endos or gwl for Drosophila female fertility, although reducing twins dosage reverses the meiotic maturation defects of hypomorphic gwl mutants. These results have interesting implications for the function and evolution of the mechanisms modulating removal of CDK-directed phosphorylations.
Collapse
|
11
|
Brownlee CW, Klebba JE, Buster DW, Rogers GC. The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification. ACTA ACUST UNITED AC 2011; 195:231-43. [PMID: 21987638 PMCID: PMC3198173 DOI: 10.1083/jcb.201107086] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The PP2A subunit Twins and the SV40 small T antigen, a functional mimic of Twins, counteract Plk4 autophosphorylation, leading to its stabilization and to subsequent centriole amplification. Centriole duplication is a tightly regulated process that must occur only once per cell cycle; otherwise, supernumerary centrioles can induce aneuploidy and tumorigenesis. Plk4 (Polo-like kinase 4) activity initiates centriole duplication and is regulated by ubiquitin-mediated proteolysis. Throughout interphase, Plk4 autophosphorylation triggers its degradation, thus preventing centriole amplification. However, Plk4 activity is required during mitosis for proper centriole duplication, but the mechanism stabilizing mitotic Plk4 is unknown. In this paper, we show that PP2A (Protein Phosphatase 2ATwins) counteracts Plk4 autophosphorylation, thus stabilizing Plk4 and promoting centriole duplication. Like Plk4, the protein level of PP2A’s regulatory subunit, Twins (Tws), peaks during mitosis and is required for centriole duplication. However, untimely Tws expression stabilizes Plk4 inappropriately, inducing centriole amplification. Paradoxically, expression of tumor-promoting simian virus 40 small tumor antigen (ST), a reported PP2A inhibitor, promotes centrosome amplification by an unknown mechanism. We demonstrate that ST actually mimics Tws function in stabilizing Plk4 and inducing centriole amplification.
Collapse
Affiliation(s)
- Christopher W Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
12
|
Suppression of scant identifies Endos as a substrate of greatwall kinase and a negative regulator of protein phosphatase 2A in mitosis. PLoS Genet 2011; 7:e1002225. [PMID: 21852956 PMCID: PMC3154957 DOI: 10.1371/journal.pgen.1002225] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/18/2011] [Indexed: 12/02/2022] Open
Abstract
Protein phosphatase 2A (PP2A) plays a major role in dephosphorylating the targets of the major mitotic kinase Cdk1 at mitotic exit, yet how it is regulated in mitotic progression is poorly understood. Here we show that mutations in either the catalytic or regulatory twins/B55 subunit of PP2A act as enhancers of gwlScant, a gain-of-function allele of the Greatwall kinase gene that leads to embryonic lethality in Drosophila when the maternal dosage of the mitotic kinase Polo is reduced. We also show that heterozygous mutant endos alleles suppress heterozygous gwlScant; many more embryos survive. Furthermore, heterozygous PP2A mutations make females heterozygous for the strong mutation polo11 partially sterile, even in the absence of gwlScant. Heterozygosity for an endos mutation suppresses this PP2A/polo11 sterility. Homozygous mutation or knockdown of endos leads to phenotypes suggestive of defects in maintaining the mitotic state. In accord with the genetic interactions shown by the gwlScant dominant mutant, the mitotic defects of Endos knockdown in cultured cells can be suppressed by knockdown of either the catalytic or the Twins/B55 regulatory subunits of PP2A but not by the other three regulatory B subunits of Drosophila PP2A. Greatwall phosphorylates Endos at a single site, Ser68, and this is essential for Endos function. Together these interactions suggest that Greatwall and Endos act to promote the inactivation of PP2A-Twins/B55 in Drosophila. We discuss the involvement of Polo kinase in such a regulatory loop. Progression through mitosis requires the addition of phosphate groups onto specific proteins by enzymes collectively known as mitotic protein kinases. At the end of mitosis, these phosphates are removed by protein phosphatases. Whereas we know quite a lot about the mitotic protein kinases, we know much less about the phosphatases. Here we used the fruit fly Drosophila as a model organism to identify a pathway regulating a phosphatase required for mitotic exit. Using mutations in genes for this pathway in the fly and by depleting levels of corresponding proteins from cultured cells, we established the relationships between the gene products. This has revealed that Greatwall mitotic kinase works in concert with the protein Endos to antagonise Protein Phosphatase 2A (PP2A). Specifically, Greatwall and Endos affect the activity of a particular form of PP2A that is associated with only one of the four different regulatory subunits found in Drosophila. We found that phosphorylation of Endos at a defined position by Greatwall kinase is required for its function. Together this provides genetic evidence that the Greatwall mitotic kinase inhibits the PP2A phosphatase required for mitotic exit thus complementing biochemical experiments using frog eggs and indicating the universality of this mechanism.
Collapse
|
13
|
Kawamori A, Yamaguchi M. DREF is critical for Drosophila bristle development by regulating endoreplication in shaft cells. Cell Struct Funct 2011; 36:103-19. [PMID: 21478632 DOI: 10.1247/csf.11004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DREF (DNA replication-related element-binding factor) plays important roles in replication and proliferation in vivo by regulating transcription of various genes. However, due to a lack of appropriate cell biological studies in vivo, roles of DREF during a single cell development are poorly understood. To address this question, we focused our attention on macrochaetes bristle development system. Utilizing cell lineage analysis focusing on a single posterior scutellar (PSC) macrochaete sensory organ precursor (SOP) lineages in combination with GAL4/UAS targeted expression system for DREF double strand RNA, we revealed that DREF plays no apparent role in differentiation process during SOP formation. Rather, DREF regulates the timing of asymmetric cell division but perhaps plays no direct role in differentiation during asymmetric cell division. Most importantly, DREF affected replication and growth in shaft cells and/or socket cells. Further analysis revealed that DREF is necessary but not sufficient for nuclear growth and protein synthesis in shaft cells. Finally, it could be demonstrated that DREF plays a critical role in regulating pcna transcription in endocycling shaft cells. All these results provide evidence that DREF plays critical roles, especially in endoreplication process of bristle development, at least in part by regulating the pcna gene expression.
Collapse
Affiliation(s)
- Akihito Kawamori
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan
| | | |
Collapse
|
14
|
Wang YC, Lee CM, Lee LC, Tung LC, Hsieh-Li HM, Lee-Chen GJ, Su MT. Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (SCA12). J Biol Chem 2011; 286:21742-54. [PMID: 21471219 DOI: 10.1074/jbc.m110.160697] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cerebellar ataxia type 12 (SCA12) has been attributed to the elevated expression of ppp2r2b. To better elucidate the pathomechanism of the neuronal disorder and to search for a pharmacological treatment, Drosophila models of SCA12 were generated by overexpression of a human ppp2r2b and its Drosophila homolog tws. Ectopic expression of ppp2r2b or tws caused various pathological features, including neurodegeneration, apoptosis, and shortened life span. More detailed analysis revealed that elevated ppp2r2b and tws induced fission of mitochondria accompanied by increases in cytosolic reactive oxygen species (ROS), cytochrome c, and caspase 3 activity. Transmission electron microscopy revealed that fragmented mitochondria with disrupted cristae were engulfed by autophagosomes in photoreceptor neurons of flies overexpressing tws. Additionally, transgenic flies were more susceptible to oxidative injury induced by paraquat. By contrast, ectopic Drosophila Sod2 expression and antioxidant treatment reduced ROS and caspase 3 activity and extended the life span of the SCA12 fly model. In summary, our study demonstrates that oxidative stress induced by mitochondrial dysfunction plays a causal role in SCA12, and reduction of ROS is a potential therapeutic intervention for this neuropathy.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhao JQ, Xie SS, Liu WB, Xiao YM, Zeng XM, Deng M, Gong L, Liu JP, Chen PC, Zhou J, Hu XH, Lv JH, Yu XQ, Wang D, Li C, Peng YL, Liao GP, Liu Y, Li DWC. Molecular Cloning of the Genes Encoding the PR55/Bβ/δ Regulatory Subunits for PP-2A and Analysis of Their Functions in Regulating Development of Goldfish, Carassius auratus. GENE REGULATION AND SYSTEMS BIOLOGY 2010; 4:135-48. [PMID: 21245947 PMCID: PMC3020040 DOI: 10.4137/grsb.s6065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The protein phosphatase-2A (PP-2A), one of the major phosphatases in eukaryotes, is a heterotrimer, consisting of a scaffold A subunit, a catalytic C subunit and a regulatory B subunit. Previous studies have shown that besides regulating specific PP-2A activity, various B subunits encoded by more than 16 different genes, may have other functions. To explore the possible roles of the regulatory subunits of PP-2A in vertebrate development, we have cloned the PR55/B family regulatory subunits: β and δ, analyzed their tissue specific and developmental expression patterns in Goldfish ( Carassius auratus). Our results revealed that the full-length cDNA for PR55/Bβ consists of 1940 bp with an open reading frame of 1332 nucleotides coding for a deduced protein of 443 amino acids. The full length PR55/Bδ cDNA is 2163 bp containing an open reading frame of 1347 nucleotides encoding a deduced protein of 448 amino acids. The two isoforms of PR55/B display high levels of sequence identity with their counterparts in other species. The PR55/Bβ mRNA and protein are detected in brain and heart. In contrast, the PR55/Bδ is expressed in all 9 tissues examined at both mRNA and protein levels. During development of goldfish, the mRNAs for PR55/Bβ and PR55/Bδ show distinct patterns. At the protein level, PR55/Bδ is expressed at all developmental stages examined, suggesting its important role in regulating goldfish development. Expression of the PR55/Bδ anti-sense RNA leads to significant downregulation of PR55/Bδ proteins and caused severe abnormality in goldfish trunk and eye development. Together, our results suggested that PR55/Bδ plays an important role in governing normal trunk and eye formation during goldfish development.
Collapse
Affiliation(s)
- Jun-Qiong Zhao
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Si-Si Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Wen-Bin Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ya-Mei Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiao-Ming Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mi Deng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | - Lili Gong
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | - Jin-Ping Liu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | - Pei-Chao Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jie Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiao-Hui Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jia-Han Lv
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiang-Qian Yu
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Dao Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Chi Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun-Lei Peng
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Gao-Peng Liao
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - David Wan-Cheng Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Educational Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| |
Collapse
|
16
|
Gharbi-Ayachi A, Labbé JC, Burgess A, Vigneron S, Strub JM, Brioudes E, Van-Dorsselaer A, Castro A, Lorca T. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 2010; 330:1673-1677. [PMID: 21164014 DOI: 10.1016/b978-0-12-374145-5.00168-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Initiation and maintenance of mitosis require the activation of protein kinase cyclin B-Cdc2 and the inhibition of protein phosphatase 2A (PP2A), which, respectively, phosphorylate and dephosphorylate mitotic substrates. The protein kinase Greatwall (Gwl) is required to maintain mitosis through PP2A inhibition. We describe how Gwl activation results in PP2A inhibition. We identified cyclic adenosine monophosphate-regulated phosphoprotein 19 (Arpp19) and α-Endosulfine as two substrates of Gwl that, when phosphorylated by this kinase, associate with and inhibit PP2A, thus promoting mitotic entry. Conversely, in the absence of Gwl activity, Arpp19 and α-Endosulfine are dephosphorylated and lose their capacity to bind and inhibit PP2A. Although both proteins can inhibit PP2A, endogenous Arpp19, but not α-Endosulfine, is responsible for PP2A inhibition at mitotic entry in Xenopus egg extracts.
Collapse
Affiliation(s)
- Aicha Gharbi-Ayachi
- Universités Montpellier 2 et 1, Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ogawa H, Ohta N, Moon W, Matsuzaki F. Protein phosphatase 2A negatively regulates aPKC signaling by modulating phosphorylation of Par-6 in Drosophila neuroblast asymmetric divisions. J Cell Sci 2009; 122:3242-9. [PMID: 19690050 DOI: 10.1242/jcs.050955] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Drosophila neural stem cells or neuroblasts undergo typical asymmetric cell division. An evolutionally conserved protein complex, comprising atypical protein kinase C (aPKC), Bazooka (Par-3) and Par-6, organizes cell polarity to direct these asymmetric divisions. Aurora-A (AurA) is a key molecule that links the divisions to the cell cycle. Upon its activation in metaphase, AurA phosphorylates Par-6 and activates aPKC signaling, triggering the asymmetric organization of neuroblasts. Little is known, however, about how such a positive regulatory cue is counteracted to coordinate aPKC signaling with other cellular processes. During a mutational screen using the Drosophila compound eye, we identified microtubule star (mts), which encodes a catalytic subunit of protein phosphatase 2A (PP2A), as a negative regulator for aPKC signaling. Impairment of mts function causes defects in neuroblast divisions, as observed in lethal (2) giant larvae (lgl) mutants. mts genetically interacts with par-6 and lgl in a cooperative manner in asymmetric neuroblast division. Furthermore, Mts tightly associates with Par-6 and dephosphorylates AurA-phosphorylated Par-6. Our genetic and biochemical evidence indicates that PP2A suppresses aPKC signaling by promoting Par-6 dephosphorylation in neuroblasts, which uncovers a novel balancing mechanism for aPKC signaling in the regulation of asymmetric cell division.
Collapse
Affiliation(s)
- Hironori Ogawa
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
18
|
Moazzen H, Rosenfeld R, Percival-Smith A. Non-requirement of a regulatory subunit of Protein Phosphatase 2A, PP2A-B′, for activation of Sex comb reduced activity in Drosophila melanogaster. Mech Dev 2009; 126:605-10. [DOI: 10.1016/j.mod.2009.06.1084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/12/2009] [Accepted: 06/19/2009] [Indexed: 01/17/2023]
|
19
|
Krahn MP, Egger-Adam D, Wodarz A. PP2A antagonizes phosphorylation of Bazooka by PAR-1 to control apical-basal polarity in dividing embryonic neuroblasts. Dev Cell 2009; 16:901-8. [PMID: 19531360 DOI: 10.1016/j.devcel.2009.04.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/18/2009] [Accepted: 04/24/2009] [Indexed: 01/07/2023]
Abstract
Bazooka/Par-3 (Baz) is a key regulator of cell polarity in epithelial cells and neuroblasts (NBs). Phosphorylation of Baz by PAR-1 and aPKC is required for its function in epithelia, but little is known about the dephosphorylation mechanisms that antagonize the activities of these kinases or about the relevance of Baz phosphorylation for NB polarity. We found that protein phosphatase 2A (PP2A) binds to Baz via its structural A subunit. By using phospho-specific antibodies, we show that PP2A dephosphorylates Baz at the conserved serine residue 1085 and thereby antagonizes the kinase activity of PAR-1. Loss of PP2A function leads to complete reversal of polarity in NBs, giving rise to an "upside-down" polarity phenotype. Overexpression of PAR-1 or Baz, or mutation of 14-3-3 proteins that bind phosphorylated Baz, causes essentially the same phenotype, indicating that the balance of PAR-1 and PP2A effects on Baz phosphorylation determines NB polarity.
Collapse
Affiliation(s)
- Michael P Krahn
- Abteilung Stammzellbiologie, DFG Research Center for Molecular Physiology of the Brain, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | | |
Collapse
|
20
|
Chabu C, Doe CQ. Twins/PP2A regulates aPKC to control neuroblast cell polarity and self-renewal. Dev Biol 2009; 330:399-405. [PMID: 19374896 DOI: 10.1016/j.ydbio.2009.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/25/2009] [Accepted: 04/07/2009] [Indexed: 12/12/2022]
Abstract
Asymmetric cell division is a mechanism for generating cell diversity as well as maintaining stem cell homeostasis in both Drosophila and mammals. In Drosophila, larval neuroblasts are stem cell-like progenitors that divide asymmetrically to generate neurons of the adult brain. Mitotic neuroblasts localize atypical protein kinase C (aPKC) to their apical cortex. Cortical aPKC excludes cortical localization of Miranda and its cargo proteins Prospero and Brain tumor, resulting in their partitioning into the differentiating, smaller ganglion mother cell (GMC) where they are required for neuronal differentiation. In addition to aPKC, the kinases Aurora-A and Polo also regulate neuroblast self-renewal, but the phosphatases involved in neuroblast self-renewal have not been identified. Here we report that aPKC is in a protein complex in vivo with Twins, a Drosophila B-type protein phosphatase 2A (PP2A) subunit, and that Twins and the catalytic subunit of PP2A, called Microtubule star (Mts), are detected in larval neuroblasts. Both Twins and Mts are required to exclude aPKC from the basal neuroblast cortex: twins mutant brains, twins mutant single neuroblast mutant clones, or mts dominant negative single neuroblast clones all show ectopic basal cortical localization of aPKC. Consistent with ectopic basal aPKC is the appearance of supernumerary neuroblasts in twins mutant brains or twins mutant clones. We conclude that Twins/PP2A is required to maintain aPKC at the apical cortex of mitotic neuroblasts, keeping it out of the differentiating GMC, and thereby maintaining neuroblast homeostasis.
Collapse
Affiliation(s)
- Chiswili Chabu
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
21
|
Hunter WB, Smith MT, Hunnicutt LE. Analysis and functional annotation of expressed sequence tags from the Asian longhorned beetle, Anoplophora glabripennis. JOURNAL OF INSECT SCIENCE (ONLINE) 2009; 9:21. [PMID: 19619025 PMCID: PMC3011843 DOI: 10.1673/031.009.2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 03/08/2008] [Indexed: 05/28/2023]
Abstract
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is one of the most economically and ecologically devastating forest insects to invade North America in recent years. Despite its substantial impact, limited effort has been expended to define the genetic and molecular make-up of this species. Considering the significant role played by late-stadia larvae in host tree decimation, a small-scale EST sequencing project was done using a cDNA library constructed from 5(th) -instar A. glabripennis. The resultant dataset consisted of 599 high quality ESTs that, upon assembly, yielded 381 potentially unique transcripts. Each of these transcripts was catalogued as to putative molecular function, biological process, and associated cellular component according to the Gene Ontology classification system. Using this annotated dataset, a subset of assembled sequences was identified that are putatively associated with A. glabnpennis development and metamorphosis. This work will contribute to understanding of the diverse molecular mechanisms that underlie coleopteran morphogenesis and enable the future development of novel control strategies for management of this insect pest.
Collapse
Affiliation(s)
- Wayne B. Hunter
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Ft. Pierce, Florida 34945
| | - Michael T. Smith
- U.S. Department of Agriculture, Agricultural Research Service, Beneficial Insects Introduction Research Unit, Newark, Delaware 19713
| | - Laura E. Hunnicutt
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, Ft. Pierce, Florida 34945
- Current address: North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
22
|
Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M. Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Development 2008; 135:2927-37. [PMID: 18697906 DOI: 10.1242/dev.020842] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We identify Balpha (PPP2R2A) and Bdelta (PPP2R2D), two highly related members of the B family of regulatory subunits of the protein phosphatase PP2A, as important modulators of TGF-beta/Activin/Nodal signalling that affect the pathway in opposite ways. Knockdown of Balpha in Xenopus embryos or mammalian tissue culture cells suppresses TGF-beta/Activin/Nodal-dependent responses, whereas knockdown of Bdelta enhances these responses. Moreover, in Drosophila, overexpression of Smad2 rescues a severe wing phenotype caused by overexpression of the single Drosophila PP2A B subunit Twins. We show that, in vertebrates, Balpha enhances TGF-beta/Activin/Nodal signalling by stabilising the basal levels of type I receptor, whereas Bdelta negatively modulates these pathways by restricting receptor activity. Thus, these highly related members of the same subfamily of PP2A regulatory subunits differentially regulate TGF-beta/Activin/Nodal signalling to elicit opposing biological outcomes.
Collapse
Affiliation(s)
- Julie Batut
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
23
|
Bosch M, Cayla X, Hoof C, Hemmings BA, Ozon R, Merlevede W, Goris J. The PR55 and PR65 Subunits of Protein Phosphatase 2A from Xenopus laevis. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.1037g.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Kaplow ME, Mannava LJ, Pimentel AC, Fermin HA, Hyatt VJ, Lee JJ, Venkatesh TR. A genetic modifier screen identifies multiple genes that interact with Drosophila Rap/Fzr and suggests novel cellular roles. J Neurogenet 2008; 21:105-51. [PMID: 17849284 DOI: 10.1080/01677060701503140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the developing Drosophila eye, Rap/Fzr plays a critical role in neural patterning by regulating the timely exit of precursor cells. Rap/Fzr (Retina aberrant in pattern/Fizzy related) is an activator of the E3 Ubiquitin ligase, the APC (Anaphase Promoting Complex-cyclosome) that facilitates the stage specific proteolytic destruction of mitotic regulators, such as cyclins and cyclin-dependent kinases. To identify novel functional roles of Rap/Fzr, we conducted an F(1) genetic modifier screen to identify genes which interact with the partial-loss-function mutations in rap/fzr. We screened 2741 single P-element, lethal insertion lines and piggyBac lines on the second and third chromosome for dominant enhancers and suppressors of the rough eye phenotype of rap/fzr. From this screen, we have identified 40 genes that exhibit dosage-sensitive interactions with rap/fzr; of these, 31 have previously characterized cellular functions. Seven of the modifiers identified in this study are regulators of cell cycle progression with previously known interactions with rap/fzr. Among the remaining modifiers, 27 encode proteins involved in other cellular functions not directly related to cell-cycle progression. The newly identified variants fall into at least three groups based on their previously known cellular functions: transcriptional regulation, regulated proteolysis, and signal transduction. These results suggest that, in addition to cell cycle regulation, rap/fzr regulates ubiquitin-ligase-mediated protein degradation in the developing nervous system as well as in other tissues.
Collapse
Affiliation(s)
- Margarita E Kaplow
- Department of Biology, City College and The Graduate Center, City University of New York, New York, NY 10031, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts. Genetics 2008; 178:1399-413. [PMID: 18245841 DOI: 10.1534/genetics.107.081638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway-patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn(+) finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity.
Collapse
|
26
|
Viquez NM, Li CR, Wairkar YP, DiAntonio A. The B' protein phosphatase 2A regulatory subunit well-rounded regulates synaptic growth and cytoskeletal stability at the Drosophila neuromuscular junction. J Neurosci 2006; 26:9293-303. [PMID: 16957085 PMCID: PMC6674517 DOI: 10.1523/jneurosci.1740-06.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Synaptic growth is essential for the development and plasticity of neural circuits. To identify molecular mechanisms regulating synaptic growth, we performed a gain-of-function screen for synapse morphology mutants at the Drosophila neuromuscular junction (NMJ). We isolated a B' regulatory subunit of protein phosphatase 2A (PP2A) that we have named well-rounded (wrd). Neuronal overexpression of wrd leads to overgrowth of the synaptic terminal. Endogenous Wrd protein is present in the larval nervous system and muscle and is enriched at central and neuromuscular synapses. wrd is required for normal synaptic development; in its absence, there are fewer synaptic boutons and there is a decrease in synaptic strength. wrd functions presynaptically to promote normal synaptic growth and postsynaptically to maintain normal levels of evoked transmitter release. In the absence of wrd, the presynaptic cytoskeleton is abnormal, with an increased proportion of unbundled microtubules. Reducing PP2A enzymatic activity also leads to an increase in unbundled microtubules, an effect enhanced by reducing wrd levels. Hence, wrd promotes the function of PP2A and is required for normal cytoskeletal organization, synaptic growth, and synaptic function at the Drosophila NMJ.
Collapse
Affiliation(s)
- Natasha M. Viquez
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Caroline R. Li
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yogesh P. Wairkar
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Aaron DiAntonio
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
27
|
Viallet J, Garcia A, Weydert A. Protein phosphatase 2A as a new target for morphogenetic studies in the chick limb. Biochimie 2004; 85:753-62. [PMID: 14585542 DOI: 10.1016/j.biochi.2003.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The family of ser/thr protein phosphatases 2A (PP2A) is a major regulator of cell proliferation and cell death and is critically involved in the maintenance of homeostasis. In order to analyse the importance of PP2A proteins in apoptotic and developmental processes, this review focuses on previous studies concerning the role of PP2A in morphogenesis. We first analyse wing formation in Drosophila, a model for invertebrates, then chick limb bud, a model for vertebrates. We also present a pioneer experiment to illustrate the potential relevance of PP2A studies in BMP signalling during chicken development and we finally discuss the BMP downstream signalling pathways.
Collapse
Affiliation(s)
- Jean Viallet
- Faculté de Médecine, LEDAC UMR 5538 Institut Albert Bonniot, Rond Point de la Chantourne, 38706 La Tronche cedex, France
| | | | | |
Collapse
|
28
|
Sathyanarayanan S, Zheng X, Xiao R, Sehgal A. Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 2004; 116:603-15. [PMID: 14980226 DOI: 10.1016/s0092-8674(04)00128-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 01/09/2004] [Accepted: 01/12/2004] [Indexed: 01/04/2023]
Abstract
The posttranscriptional mechanisms that control the cycling of circadian clock protein levels are not known. Here we demonstrate a role for protein phosphatase 2A (PP2A) in the cyclic expression of the PER protein. PP2A regulatory subunits TWS and WDB target PER and stabilize it in S2 cells. In adult fly heads, expression of tws cycles robustly under control of the circadian clock. Hypomorphic tws mutants show delayed accumulation of PER, while overexpression of tws in clock neurons produces shorter, weaker rhythms. Reduction of PP2A activity reduces PER expression in central clock neurons and results in long periods and arrhythmia. In addition, overexpression of the PP2A catalytic subunit results in loss of behavioral rhythms and constitutive nuclear expression of PER. PP2A also affects PER phosphorylation in vitro and in vivo. We propose that the posttranslational mechanisms that drive cycling of PER require the rhythmic expression of PP2A.
Collapse
Affiliation(s)
- Sriram Sathyanarayanan
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
29
|
Bajpai R, Makhijani K, Rao PR, Shashidhara LS. DrosophilaTwins regulates Armadillo levels in response to Wg/Wnt signal. Development 2004; 131:1007-16. [PMID: 14973271 DOI: 10.1242/dev.00980] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein Phosphatase 2A (PP2A) has a heterotrimeric-subunit structure,consisting of a core dimer of ∼36 kDa catalytic and ∼65 kDa scaffold subunits complexed to a third variable regulatory subunit. Several studies have implicated PP2A in Wg/Wnt signaling. However, reports on the precise nature of PP2A role in Wg/Wnt pathway in different organisms are conflicting. We show that twins (tws), which codes for the B/PR55 regulatory subunit of PP2A in Drosophila, is a positive regulator of Wg/Wnt signaling. In tws- wing discs both short- and long-range targets of Wingless morphogen are downregulated. Analyses of tws- mitotic clones suggest that requirement of Tws in Wingless pathway is cell-autonomous. Epistatic genetic studies indicate that Tws functions downstream of Dishevelled and upstream of Sgg and Armadillo. Our results suggest that Tws is required for the stabilization of Armadillo/β-catenin in response to Wg/Wnt signaling. Interestingly,overexpression of, otherwise normal, Tws protein induce dominant-negative phenotypes. The conflicting reports on the role of PP2A in Wg/Wnt signaling could be due to the dominant-negative effect caused by the overexpression of one of the subunits.
Collapse
Affiliation(s)
- Ruchi Bajpai
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
30
|
Rintelen F, Hafen E, Nairz K. The Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER. Development 2003; 130:3479-90. [PMID: 12810595 DOI: 10.1242/dev.00568] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ERK MAP kinase plays a key role in relaying extracellular signals to transcriptional regulation. As different activity levels or the different duration of ERK activity can elicit distinct responses in one and the same cell, ERK has to be under strict positive and negative control. Although numerous genes acting positively in the ERK signaling pathway have been recovered in genetic screens, mutations in genes encoding negative ERK regulators appear underrepresented. We therefore sought to genetically characterize the dual-specificity phosphatase DMKP3. First, we established a novel assay to elucidate the substrate preferences of eukaryotic phosphatases in vivo and thereby confirmed the specificity of DMKP3 as an ERK phosphatase. The Dmkp3 overexpression phenotype characterized in this assay permitted us to isolate Dmkp3 null mutations. By genetic analysis we show that DMKP3 and the tyrosine phosphatase PTP-ER perform partially redundant functions on the same substrate, ERK. DMKP3 functions autonomously in a subset of photoreceptor progenitor cells in eye imaginal discs. In addition, DMKP3 function appears to be required in surrounding non-neuronal cells for ommatidial patterning and photoreceptor differentiation.
Collapse
Affiliation(s)
- Felix Rintelen
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Lankoff A, Banasik A, Obe G, Deperas M, Kuzminski K, Tarczynska M, Jurczak T, Wojcik A. Effect of microcystin-LR and cyanobacterial extract from Polish reservoir of drinking water on cell cycle progression, mitotic spindle, and apoptosis in CHO-K1 cells. Toxicol Appl Pharmacol 2003; 189:204-13. [PMID: 12791305 DOI: 10.1016/s0041-008x(03)00094-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcystin-LR is a cyanobacterial toxin possessing a potent tumor-promoting activity mediated through inhibition of protein phosphatases PP1 and PP2A. Because these enzymes are involved in fundamental cell processes, we decided to examine the influence of microcystin-LR on cell cycle progression, onset of anaphase, segregation of chromosomes by the mitotic spindle, and apoptosis in Chinese hamster ovary (CHO-K1) cells. Cells were incubated with 25, 50, and 100 microM of pure microcystin-LR and a cyanobacterial extract for 14, 18, and 22 h. Giemsa staining of cells treated with these toxins revealed a dose- and time-dependent increase of mitotic indices, accumulation of abnormal G(2)/M figures with hypercondensed chromosomes, abnormal anaphases with defective chromosome separation, and polyploid cells. Because spindle checkpoint is a fundamental regulatory mechanism that assures the onset of anaphase and subsequent exit from mitosis, we examined the spindle organization in microcystin-treated cells. The majority of the mitotic cells showed monopolar and multipolar mitotic spindles (multiple asters). Microtubule bundles were present in interphase cells. Our results indicate that microcystin-LR induces apoptosis and necrosis in a dose- and time-dependent manner and that the frequency of dead cells cells is positively correlated with the frequency of polyploid cells.
Collapse
Affiliation(s)
- Anna Lankoff
- Department of Radiobiology and Immunology, Institute of Biology, Swietokrzyska Academy, Kielce, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chihara T, Kato K, Taniguchi M, Ng J, Hayashi S. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development 2003; 130:1419-28. [PMID: 12588856 DOI: 10.1242/dev.00361] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell rearrangement, accompanied by the rapid assembly and disassembly of cadherin-mediated cell adhesions, plays essential roles in epithelial morphogenesis. Various in vitro and cell culture studies on the small GTPase Rac have suggested it to be a key regulator of cell adhesion, but this notion needs to be verified in the context of embryonic development. We used the tracheal system of Drosophila to investigate the function of Rac in the epithelial cell rearrangement, with a special attention to its role in regulating epithelial cadherin activity. We found that a reduced Rac activity led to an expansion of cell junctions in the embryonic epidermis and tracheal epithelia, which was accompanied by an increase in the amount of Drosophila E-Cadherin-Catenin complexes by a post-transcriptional mechanism. Reduced Rac activity inhibited dynamic epithelial cell rearrangement. Hyperactivation of Rac, on the other hand, inhibited assembly of newly synthesized E-Cadherin into cell junctions and caused loss of tracheal cell adhesion, resulting in cell detachment from the epithelia. Thus, in the context of Drosophila tracheal development, Rac activity must be maintained at a level necessary to balance the assembly and disassembly of E-Cadherin at cell junctions. Together with its role in cell motility, Rac regulates plasticity of cell adhesion and thus ensures smooth remodeling of epithelial sheets into tubules.
Collapse
Affiliation(s)
- Takahiro Chihara
- Department of Genetics, Graduate University for Advanced Studies, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka-ken 411-8540 Japan
| | | | | | | | | |
Collapse
|
33
|
Schmidt K, Kins S, Schild A, Nitsch RM, Hemmings BA, Götz J. Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. Eur J Neurosci 2002; 16:2039-48. [PMID: 12473071 DOI: 10.1046/j.1460-9568.2002.02274.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatase (PP2A) 2A is a hetero-trimeric holoenzyme that consists of a core dimer composed of a catalytic subunit that is tightly complexed with the scaffolding subunit PR65/A. This core dimer associates with variable regulatory subunits of the PR55/B, PR61/B', PR72/B" and PR93/PR110/B"' families. As PP2A holoenzymes containing PR55/B have been shown to be involved in the pathogenesis of Alzheimer's disease, we characterized the PR55/B family with particular emphasis on its distribution and expression in the brain. We determined the genomic organization of all members of the PR55/B family and cloned their murine cDNAs. Thereby, two novel splice variants of PR55/Bbeta were identified. In addition, Northern blot analysis revealed multiple transcripts for the different PR55 subunits, suggesting a higher variability within the PR55 family. In situ hybridization analysis revealed that all PR55/B subunits were widely expressed in the brain. PR55/Balpha and Bbeta protein expression varies significantly in areas of the brain affected by neurodegenerative diseases such as the hippocampus or cerebellum. At the cellular level, PR55/Bbeta protein expression was confined to neurons, whereas PR55/Balpha was also expressed in activated astrocytes indicating that the PR55 isoforms confer a different function to the holoenzyme complex. As PP2A dysfunction has been demonstrated to contribute to various human diseases, dissecting the PP2A holoenzyme and its particular function in different cell types will assist in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Karsten Schmidt
- Friedrich Miescher Institute, Maul beerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Stempfl T, Vogel M, Szabo G, Wülbeck C, Liu J, Hall JC, Stanewsky R. Identification of circadian-clock-regulated enhancers and genes of Drosophila melanogaster by transposon mobilization and luciferase reporting of cyclical gene expression. Genetics 2002; 160:571-93. [PMID: 11861563 PMCID: PMC1461973 DOI: 10.1093/genetics/160.2.571] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new way was developed to isolate rhythmically expressed genes in Drosophila by modifying the classic enhancer-trap method. We constructed a P element containing sequences that encode firefly luciferase as a reporter for oscillating gene expression in live flies. After generation of 1176 autosomal insertion lines, bioluminescence screening revealed rhythmic reporter-gene activity in 6% of these strains. Rhythmically fluctuating reporter levels were shown to be altered by clock mutations in genes that specify various circadian transcription factors or repressors. Intriguingly, rhythmic luminescence in certain lines was affected by only a subset of the pacemaker mutations. By isolating genes near 13 of the transposon insertions and determining their temporal mRNA expression pattern, we found that four of the loci adjacent to the trapped enhancers are rhythmically expressed. Therefore, this approach is suitable for identifying genetic loci regulated by the circadian clock. One transposon insert caused a mutation in the rhythmically expressed gene numb. This novel numb allele, as well as previously described ones, was shown to affect the fly's rhythm of locomotor activity. In addition to its known role in cell fate determination, this gene and the phosphotyrosine-binding protein it encodes are likely to function in the circadian system.
Collapse
Affiliation(s)
- Thomas Stempfl
- Institut für Zoologie, Universität Regensburg, Lehrstuhl für Entwicklungsbiologie, 93040 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Li X, Virshup DM. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:546-52. [PMID: 11856313 DOI: 10.1046/j.0014-2956.2001.02680.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein phosphatase 2A (PP2A) is an abundant heterotrimeric serine/threonine phosphatase containing highly conserved structural (A) and catalytic (C) subunits. Its diverse functions in the cell are determined by its association with a highly variable regulatory and targeting B subunit. At least three distinct gene families encoding B subunits are known: B/B55/CDC55, B'/B56/RTS1 and B"/PR72/130. No homology has been identified among the B families, and little is known about how these B subunits interact with the PP2A A and C subunits. In vitro expression of a series of B56alpha fragments identified two distinct domains that bound independently to the A subunit. Sequence alignment of these A subunit binding domains (ASBD) identified conserved residues in B/B55 and PR72 family members. The alignment successfully predicted domains in B55 and PR72 subunits that similarly bound to the PP2A A subunit. These results suggest that these B subunits share a common core structure and mode of interaction with the PP2A holoenzyme.
Collapse
Affiliation(s)
- Xinghai Li
- Department of Oncological Sciences, Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
36
|
Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, Schneider R, Schweiger S. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet 2001; 29:287-94. [PMID: 11685209 DOI: 10.1038/ng762] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Accepted: 09/05/2001] [Indexed: 11/08/2022]
Abstract
The gene MID1, the mutation of which causes X-linked Opitz G/BBB syndrome (OS, MIM 300000), encodes a microtubule-associated protein (MAP). We show that mutation of MID1 leads to a marked accumulation of the catalytic subunit of protein phosphatase 2A (PP2Ac), a central cellular regulator. PP2Ac accumulation is caused by an impairment of a newly identified E3 ubiquitin ligase activity of the MID1 protein that normally targets PP2Ac for degradation through binding to its alpha4 regulatory subunit in an embryonic fibroblast line derived from a fetus with OS. Elevated PP2Ac causes hypophosphorylation of MAPs, a pathological mechanism that is consistent with the OS phenotype.
Collapse
Affiliation(s)
- A Trockenbacher
- Institute of Biochemistry, Peter-Mayr-Strasse 1a, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001; 353:417-39. [PMID: 11171037 PMCID: PMC1221586 DOI: 10.1042/0264-6021:3530417] [Citation(s) in RCA: 924] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon.
Collapse
Affiliation(s)
- V Janssens
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
38
|
Abstract
Dynamic phosphorylation and dephosphorylation of proteins are fundamental mechanisms utilized by cells to transduce signals. Whereas transduction by protein kinases has been a major focus of studies in the last decade, protein phosphatase 2A (PP2A) enzymes emerge in this millenium as the most fashionable players in cellular signaling. Viral proteins target specific PP2A enzymes in order to deregulate chosen cellular pathways in the host and promote viral progeny. The observation that a variety of viruses utilize PP2A to alienate cellular behavior emphasizes the fundamental importance of PP2A in signal transduction. This review will primarily focus on discussing the uniqueness of PP2A regulation and uncovering the critical role played by protein-protein interactions in the modulation of PP2A signaling. Moreover, the place of PP2A in signaling pathways and its functional significance for human diseases will be discussed.
Collapse
Affiliation(s)
- E Sontag
- Department of Pathology/Neuropathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9073, USA.
| |
Collapse
|
39
|
Ayaydin F, Vissi E, Mészáros T, Miskolczi P, Kovács I, Fehér A, Dombrádi V, Erdödi F, Gergely P, Dudits D. Inhibition of serine/threonine-specific protein phosphatases causes premature activation of cdc2MsF kinase at G2/M transition and early mitotic microtubule organisation in alfalfa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:85-96. [PMID: 10929104 DOI: 10.1046/j.1365-313x.2000.00798.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reversible phosphorylation of serine/threonine residues of cell cycle-regulatory proteins is one of the key molecular mechanisms controlling eukaryotic cell division. In plants, the protein kinase partners (i.e. p34cdc2/CDC28-related kinases) have been extensively studied, while the role of counter-acting protein phosphatases is less well understood. We used endothall (ET) as a cell-permeable inhibitor of serine/threonine-specific protein phosphatases to alter cytological and biochemical characteristics of cell division in cultured alfalfa cells. A high concentration of ET (10 and 50 microM) inhibited both protein phosphatases 1 and 2 (PP1 and PP2A), while a low concentration (1 microM) of ET-treatment primarily reduced the PP2A activity. High concentrations of the inhibitor increased the frequency of hypercondensed early and late prophase chromosomes that could not enter metaphase. In contrast, a low concentration of ET did not interfere with chromosomal events but caused significant alterations in the organisation of microtubules. Exposure of cells to 1 microM ET resulted in disturbance of preprophase band formation, increase in the number of nuclei with prophase microtubule assembly, premature polarisation of the spindle, and abnormal phragmoplast maturation. Under the same conditions, the ET-treated cells exhibited an early increase in cdc2MsF kinase activity. These results suggest that PP2A contributes to the control of mitotic kinase activities and microtubule organisation. Normal chromosome condensation and mitotic progression are dependent on both PP1 and PP2A activities. The presented data support the functional role of protein phosphatases in the co-ordination of chromosomal and microtubule events in dividing plant cells.
Collapse
Affiliation(s)
- F Ayaydin
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, PO Box 521, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maixner A, Hecker TP, Phan QN, Wassarman DA. A screen for mutations that prevent lethality caused by expression of activated sevenless and Ras1 in the Drosophila embryo. DEVELOPMENTAL GENETICS 2000; 23:347-61. [PMID: 9883586 DOI: 10.1002/(sici)1520-6408(1998)23:4<347::aid-dvg9>3.0.co;2-c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ras1 plays a critical role in receptor tyrosine kinase (RTK) signal transduction pathways that function during Drosophila development. We demonstrate that mis-expression of constitutively active forms of Ras1 (Ras1V12) and the Sevenless (Sev) RTK (SevS11) during embryogenesis causes lethality due to inappropriate activation of RTK/Ras1 signaling pathways. Genetic and molecular data indicate that the rate of SevS11/sev-Ras1V12 lethality is sensitive to the expression level of both transgenes. To identify genes that encode components of RTK/Ras1 signaling pathways or modulators of RNA polymerase II transcription, we took advantage of the dose-sensitivity of the system and screened for second site mutations that would dominantly suppress the lethality. The collection of identified suppressors includes the PR55 subunit of Protein Phosphatase 2A indicating that downstream of Sev and Ras1 this subunit acts as a negative regulator of phosphatase activity. The isolation of mutations in the histone deacetylase RPD3 suggests that it functions as positive regulator of sev enhancer-driven transcription. Finally, the isolation of mutations in the Trithorax group gene devenir and the characterized allelism with the Breathless RTK encoding gene provides evidence for Ras1-mediated regulation of homeotic genes.
Collapse
Affiliation(s)
- A Maixner
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
41
|
Abdelilah-Seyfried S, Chan YM, Zeng C, Justice NJ, Younger-Shepherd S, Sharp LE, Barbel S, Meadows SA, Jan LY, Jan YN. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ. Genetics 2000; 155:733-52. [PMID: 10835395 PMCID: PMC1461115 DOI: 10.1093/genetics/155.2.733] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Drosophila adult external sensory organ, comprising a neuron and its support cells, is derived from a single precursor cell via several asymmetric cell divisions. To identify molecules involved in sensory organ development, we conducted a tissue-specific gain-of-function screen. We screened 2293 independent P-element lines established by P. Rorth and identified 105 lines, carrying insertions at 78 distinct loci, that produced misexpression phenotypes with changes in number, fate, or morphology of cells of the adult external sensory organ. On the basis of the gain-of-function phenotypes of both internal and external support cells, we subdivided the candidate lines into three classes. The first class (52 lines, 40 loci) exhibits partial or complete loss of adult external sensory organs. The second class (38 lines, 28 loci) is associated with increased numbers of entire adult external sensory organs or subsets of sensory organ cells. The third class (15 lines, 10 loci) results in potential cell fate transformations. Genetic and molecular characterization of these candidate lines reveals that some loci identified in this screen correspond to genes known to function in the formation of the peripheral nervous system, such as big brain, extra macrochaetae, and numb. Also emerging from the screen are a large group of previously uncharacterized genes and several known genes that have not yet been implicated in the development of the peripheral nervous system.
Collapse
Affiliation(s)
- S Abdelilah-Seyfried
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143-0725, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Harzsch S, Benton J, Beltz BS. An unusual case of a mutant lobster embryo with double brain and double ventral nerve cord. ARTHROPOD STRUCTURE & DEVELOPMENT 2000; 29:95-99. [PMID: 18088917 DOI: 10.1016/s1467-8039(00)00016-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/1999] [Accepted: 01/19/2000] [Indexed: 05/25/2023]
Abstract
We report the rare finding of a Siamese twin embryo of the American lobster Homarus americanus. Immunohistochemical labeling of this mutant with an antibody directed against Drosophila synaptic proteins revealed that the embryo had a structurally normal visual system with two compound eyes and eyestalk Anlagen but twin brains and twin ventral nerve cords. We have analyzed the patterns of connectivity of the components of the nervous system and have concluded that the wiring pattern in this nervous system provides a logical and elegant way of connecting the parts of the twin system in this unusual mutation.
Collapse
Affiliation(s)
- S Harzsch
- Universität Bielefeld, Fakultät für Biologie, Neuroanatomie, D-33615Bielefeld, Germany
| | | | | |
Collapse
|
43
|
Greaves S, Sanson B, White P, Vincent JP. A screen for identifying genes interacting with armadillo, the Drosophila homolog of beta-catenin. Genetics 1999; 153:1753-66. [PMID: 10581282 PMCID: PMC1460857 DOI: 10.1093/genetics/153.4.1753] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Drosophila Armadillo is a multifunctional protein implicated in both cell adhesion, as a catenin, and cell signaling, as part of the Wingless signal transduction pathway. We have generated viable fly stocks with alterations in the level of Armadillo available for signaling. Flies from one stock overexpress Armadillo and, as a result, have increased vein material and bristles in the wings. Flies from the other stock have reduced cytoplasmic Armadillo following overexpression of the intracellular domain of DE-cadherin. These flies display a wing-notching phenotype typical of wingless mutations. Both misexpression phenotypes can be dominantly modified by removing one copy of genes known to encode members of the wingless pathway. Here we describe the identification of further mutations that dominantly modify the Armadillo misexpression phenotypes. These mutations are in genes encoding three different functions: establishment and maintenance of adherens junctions, cell cycle control, and Egfr signaling.
Collapse
Affiliation(s)
- S Greaves
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
44
|
Sieburth DS, Sundaram M, Howard RM, Han M. A PP2A regulatory subunit positively regulates Ras-mediated signaling during Caenorhabditis elegans vulval induction. Genes Dev 1999; 13:2562-9. [PMID: 10521400 PMCID: PMC317062 DOI: 10.1101/gad.13.19.2562] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We describe evidence that a regulatory B subunit of protein phosphatase 2A (PP2A) positively regulates an RTK-Ras-MAP kinase signaling cascade during Caenorhabditis elegans vulval induction. Although reduction of sur-6 PP2A-B function causes few vulval induction defects in an otherwise wild-type background, sur-6 PP2A-B mutations suppress the Multivulva phenotype of an activated ras mutation and enhance the Vulvaless phenotype of mutations in lin-45 raf, sur-8, or mpk-1. Double mutant analysis suggests that sur-6 PP2A-B acts downstream or in parallel to ras, but likely upstream of raf, and functions with ksr-1 in a common pathway to positively regulate Ras signaling.
Collapse
Affiliation(s)
- D S Sieburth
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|
45
|
Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 1999; 153:135-77. [PMID: 10471706 PMCID: PMC1460730 DOI: 10.1093/genetics/153.1.135] [Citation(s) in RCA: 614] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control.
Collapse
Affiliation(s)
- A C Spradling
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Everett AD, Xue C, Stoops T. Developmental expression of protein phosphatase 2A in the kidney. J Am Soc Nephrol 1999; 10:1737-45. [PMID: 10446941 DOI: 10.1681/asn.v1081737] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Although a number of growth and transcription factors are known to regulate renal growth and development, the signal transduction molecules necessary to mediate these developmental signals are relatively unknown. Therefore, the activity and mRNA and protein expression of the signal transduction molecule protein phosphatase 2A (PP2A) were examined during rat kidney development. Northern analysis of total kidney RNA or Western analysis of kidney protein homogenates from embryonic day 15 to 90-d-old adults demonstrated developmental regulation of the catalytic, major 55-kD B regulatory subunit and A structural subunit with the highest levels of expression in late embryonic and newborn kidneys. Similarly, okadaic acid-inhibitable phosphatase enzyme activity was highest in the embryonic and newborn kidney. To map cell-specific expression of PP2A in the developing kidney, in situ hybridization with a catalytic subunit digoxigenin-labeled cRNA was performed on embryonic day 20 and newborn kidneys. PP2A was found predominately in the nephrogenic cortex and particularly in the developing glomeruli and non-brush border tubules in the embryonic day 20 and newborn kidneys. Similarly, immunocytochemistry with a specific PP2A catalytic subunit polyclonal anti-peptide antibody demonstrated catalytic subunit protein particularly concentrated in the podocytes of glomeruli in the newborn kidney. In the adult kidney, PP2A protein was no longer detectable except in the nuclei of distal tubular cells. Therefore, the developmental regulation of PP2A activity and protein during kidney development and its mapping to the nephrogenic cortex, developing glomeruli, and tubules suggests a role for PP2A in the regulation of nephron growth and differentiation.
Collapse
Affiliation(s)
- A D Everett
- Department of Pediatrics, University of Virginia Health Sciences Center, Charlottesville 22908, USA.
| | | | | |
Collapse
|
47
|
Turowski P, Myles T, Hemmings BA, Fernandez A, Lamb NJ. Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol Biol Cell 1999; 10:1997-2015. [PMID: 10359611 PMCID: PMC25403 DOI: 10.1091/mbc.10.6.1997] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The intermediate filament protein vimentin is a major phosphoprotein in mammalian fibroblasts, and reversible phosphorylation plays a key role in its dynamic rearrangement. Selective inhibition of type 2A but not type 1 protein phosphatases led to hyperphosphorylation and concomitant disassembly of vimentin, characterized by a collapse into bundles around the nucleus. We have analyzed the potential role of one of the major protein phosphatase 2A (PP2A) regulatory subunits, B55, in vimentin dephosphorylation. In mammalian fibroblasts, B55 protein was distributed ubiquitously throughout the cytoplasm with a fraction associated to vimentin. Specific depletion of B55 in living cells by antisense B55 RNA was accompanied by disassembly and increased phosphorylation of vimentin, as when type 2A phosphatases were inhibited using okadaic acid. The presence of B55 was a prerequisite for PP2A to efficiently dephosphorylate vimentin in vitro or to induce filament reassembly in situ. Both biochemical fractionation and immunofluorescence analysis of detergent-extracted cells revealed that fractions of PP2Ac, PR65, and B55 were tightly associated with vimentin. Furthermore, vimentin-associated PP2A catalytic subunit was displaced in B55-depleted cells. Taken together these data show that, in mammalian fibroblasts, the intermediate filament protein vimentin is dephosphorylated by PP2A, an event targeted by B55.
Collapse
Affiliation(s)
- P Turowski
- Cell Biology Unit, Institut de Genetique Humaine, Centre National de la Recherche Scientifique UPR 1142, F-34396 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
48
|
Yamada S, Shima H, Toyota M, Ushijima T, Kuramoto T, Serikawa T, Okada K, Sato K, Sugimura T, Nagao M, Nakagama H. Linkage mapping of the Bra, Brb and Brg genes for rat protein phosphatase 2A 55 kDa B-regulatory subunit isotypes. Jpn J Cancer Res 1998; 89:1014-9. [PMID: 9849579 PMCID: PMC5921709 DOI: 10.1111/j.1349-7006.1998.tb00490.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We previously identified the rat Bra, Brb and Brg genes, which encode alpha, beta and gamma isotypes of the 55 kDa B-regulatory subunit of protein phosphatase 2A. Polymerase chain reaction-single strand conformation polymorphism analysis in the present study identified polymorphisms in Bra, Brb and Brg between the ACI and BUF, ZI and TM, and BN and WTC strains, respectively. Linkage analysis using mapping panels composed of F2 or back-crosses of these strains allowed Bra, Brb and Brg to be assigned to chromosomes 15, 18 and 14, respectively. Furthermore, it was revealed that Bra is located close to the Rb1 locus. Using polymorphism in Bra, loss of heterozygosity (LOH) was analyzed for rat mammary tumors induced in (SD x F344) F1 female rats by a food-borne carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, and a typical mammary carcinogen, 7,12-dimethylbenz[a]anthracene. No LOH was detected at the Bra locus.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Amino Acid Sequence
- Animal Feed
- Animals
- Base Sequence
- Carcinogens
- Chromosome Mapping
- Crosses, Genetic
- DNA Primers
- Female
- Gene Library
- Genetic Markers
- Imidazoles
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Loss of Heterozygosity
- Macromolecular Substances
- Male
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/genetics
- Molecular Sequence Data
- Polymorphism, Genetic
- Protein Phosphatase 2
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/genetics
- Rats
- Rats, Inbred ACI
- Rats, Inbred BN
- Rats, Inbred BUF
- Rats, Inbred F344
- Rats, Inbred Strains/genetics
- Rats, Sprague-Dawley/genetics
- Testis/enzymology
Collapse
Affiliation(s)
- S Yamada
- Carcinogenesis Division, National Cancer Center Research Institute, Tokyo
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Protein phosphatase 2A (PP2A) is a second messenger involved in cell cycle regulation, cell transformation, and cell fate determination. We previously identified a gene encoding the alpha catalytic subunit of PP2A in the embryonic rat heart, but its role in cardiac morphogenesis was unknown. In this study, we examined the developmental expression of PP2A alpha mRNA and protein in the heart using Northern and Western analysis, in situ hybridization, and immumohistochemical staining. We found two major PP2A alpha transcripts in the rat heart (1.8 and 2.4 kb), at all stages examined. By Western blotting, PP2A alpha protein levels were twice as high in the embryonic rat heart compared with the adult. In situ hybridization on embryonic d 12 showed that PP2A alpha mRNA was expressed in the heart, brain, tail, and limb buds. Cardiac PP2A alpha expression was regionally restricted to the atrium, ventricle, and truncus arteriosus. PP2A alpha expression did not extend into the more distal aortic sac or aortic arches. Cross-sectional hybridization revealed PP2A alpha mRNA in the epicardium, pericardium, and endothelium. Later in development, mRNA expression was also detected at high levels in mesenchymal cells populating the endocardial cushions and in myocardium. At term, PP2A alpha was highly expressed in endothelial cells, but not in the underlying myocardium. PP2A alpha protein had a similar distribution at all embryonic stages examined. These results show that there is transcriptional, translational, and cell-specific regulation of PP2A alpha during heart development. We speculate on the role of PP2A alpha-mediated dephosphorylation in cardiac morphogenesis and suggest a number of possible molecular targets.
Collapse
Affiliation(s)
- F A Heller
- Department of Pediatrics, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
50
|
Xue C, Heller F, Johns RA, Everett AD. Developmental expression and localization of the catalytic subunit of protein phosphatase 2A in rat lung. Dev Dyn 1998; 211:1-10. [PMID: 9438419 DOI: 10.1002/(sici)1097-0177(199801)211:1<1::aid-aja1>3.0.co;2-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein phosphatase type-2A (PP2A) is a highly conserved serine/threonine phosphatase known to play a key role in cell proliferation and differentiation in vitro, but the role of PP2A in mammalian embryogenesis remains unexplored. No particular information exists as to the tissue or cell specific expression of PP2A or the relevance of PP2A expression to mammalian development in vivo. To examine expression of PP2A during mammalian lung development, we studied fetal rats from day 14 of gestation (the lung bud is formed on day 12 of gestation) to parturition. Western analysis with a specific PP2A catalytic subunit antibody identified a single 36 kDa protein, with protein levels two-fold higher in the 17 and 19 day embryonic lung as compared to the adult. With in situ hybridization and immunohistochemistry, both mRNA and protein for PP2A were localized equally to the epithelial lining of the embryonic lung airway and the surrounding mesenchyme in the 14 day embryonic lung. With maturation of the lung, PP2A becomes highly expressed in respiratory epithelium. The highest level of expression was in the earliest developing airways with columnar epithelium (the pseudoglandular stage, 15-18 days of gestation). There was a decrease in expression with the transformation to cuboidal epithelium by day 20 of gestation. This was most noticeable in the developing bronchial epithelium of the 19 and 20 day gestation lungs where only an occasional cell continues to express PP2A. Mesenchymal hybridization was most obvious in early endothelial cells of forming vascular channels at 17-19 days of gestation. PP2A respiratory epithelial expression mimicked the centrifugal development of the respiratory tree where the highest expression was in the peripheral columnar epithelium (15-18 days gestation) with only an occasional central bronchiolar cell continuing to express PP2A at 19 and 20 days gestation. Endothelial hybridization decreased with muscularization of large pulmonary arteries with low levels of expression detected in bronchial or vascular smooth muscle. In the newborn lung PP2A expression was decreased, but detectable in alveolar epithelium and vascular endothelium. In summary; 1) PP2A mRNA and protein exhibit cell specific expression during rat lung development; 2) PP2A is highly expressed in the respiratory epithelium of the fetal rat lung and is temporally related to the maturation of the bronchial epithelium; 3) and the PP2A subunit is highly expressed in early vascular endothelium, but not smooth muscle of the rat lung.
Collapse
Affiliation(s)
- C Xue
- Department of Anesthesiology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | |
Collapse
|