1
|
Chutake YK, Mayo MF, Dumont N, Filiatrault J, Breitkopf SB, Cho P, Chen D, Dixit VS, Proctor WR, Kuhn EW, Bollinger Martinez S, McDonald AA, Qi J, Hu KN, Karnik R, Growney JD, Sharma K, Schalm SS, Gollerkeri AM, Mainolfi N, Williams JA, Weiss MM. KT-253, a Novel MDM2 Degrader and p53 Stabilizer, Has Superior Potency and Efficacy than MDM2 Small-Molecule Inhibitors. Mol Cancer Ther 2025; 24:497-510. [PMID: 39648478 DOI: 10.1158/1535-7163.mct-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Murine double minute 2 (MDM2) is an E3 ligase that inhibits the tumor suppressor protein p53. Clinical trials employing small-molecule MDM2/p53 interaction inhibitors have demonstrated limited activity, underscoring an unmet need for a better approach to target MDM2. KT-253 is a highly potent and selective heterobifunctional degrader that overcomes the MDM2 feedback loop seen with small-molecule MDM2/p53 interaction inhibitors and induces apoptosis in a range of hematologic and solid tumor lines. A single intravenous dose of KT-253 triggered rapid apoptosis and sustained tumor regression in p53 wild-type acute myeloid leukemia and acute lymphoblastic leukemia xenograft models. Additionally, a single intravenous dose of KT-253 in combination with standard-of-care venetoclax overcame venetoclax resistance in an acute myeloid leukemia xenograft model. The data herein define the therapeutic potential of KT-253 and support its clinical development in a range of hematologic and solid p53 wild-type malignancies, as a monotherapy and in combination with standard-of-care agents.
Collapse
Affiliation(s)
- Yogesh K Chutake
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Michele F Mayo
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Nancy Dumont
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Jessica Filiatrault
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Susanne B Breitkopf
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Patricia Cho
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Dapeng Chen
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Vaishali S Dixit
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - William R Proctor
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Eric W Kuhn
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | | | - Alice A McDonald
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Jianfeng Qi
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Kan-Nian Hu
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Rahul Karnik
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Joseph D Growney
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Kirti Sharma
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Stefanie S Schalm
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Ashwin M Gollerkeri
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Nello Mainolfi
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Juliet A Williams
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Matthew M Weiss
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| |
Collapse
|
2
|
Wei L, Yu N, Yao B, Mei Y, Zhao K. FBXO46 negatively regulates p53 activity by stabilizing Mdm2. FEBS Lett 2025; 599:700-712. [PMID: 39548735 DOI: 10.1002/1873-3468.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/18/2024]
Abstract
The tumor suppressor p53 plays a central role in suppressing tumor formation. Mouse double minute 2 homolog (Mdm2) serves as the principal ubiquitin E3 ligase responsible for the ubiquitination and subsequent degradation of p53. However, the regulatory mechanisms governing the Mdm2-p53 pathway are not comprehensively understood. Here, we report that F-box only protein 46 (FBXO46) directly binds to Mdm2 and inhibits its self-ubiquitination and degradation, leading to Mdm2 stabilization and subsequent Mdm2-mediated ubiquitination and degradation of p53. Functionally, FBXO46 promotes cell proliferation, accelerates G1/S cell cycle progression, and increases anchorage-independent cell growth by inhibiting p53. Collectively, these findings reveal a critical role for FBXO46 in controlling Mdm2 stability and establish FBXO46 as an important regulator of the Mdm2-p53 pathway.
Collapse
Affiliation(s)
- Lai Wei
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Ning Yu
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Yao
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yide Mei
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Kailiang Zhao
- Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Kobar K, Tuzi L, Fiene JA, Burnley E, Galpin KJC, Midgen C, Laverty B, Subasri V, Wen TT, Hirst M, Moksa M, Carles A, Cao Q, Shlien A, Malkin D, Prykhozhij SV, Berman JN. tp53 R217H and R242H mutant zebrafish exhibit dysfunctional p53 hallmarks and recapitulate Li-Fraumeni syndrome phenotypes. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167612. [PMID: 39643218 DOI: 10.1016/j.bbadis.2024.167612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with a highly penetrant cancer spectrum characterized by germline TP53 mutations. We characterized the first LFS zebrafish hotspot mutants, tp53 R217H and R242H (human R248H and R273H), and found these mutants exhibit partial-to-no activation of p53 target genes, have defective cell-cycle checkpoints, and display partial-to-full resistance to apoptosis, although the R217H mutation has hypomorphic characteristics. Spontaneous tumor development histologically resembling human sarcomas was observed as early as 6 months. tp53 R242H mutants had a higher lifetime tumor incidence compared to tp53 null and R217H mutants, suggesting it is a more aggressive mutation. We observed mutation-specific tumor phenotypes across tp53 mutants with associated diverse transcriptomic and DNA methylome profiles in tp53 mutant larvae, impacting metabolism, cell signalling, and biomacromolecule synthesis and degradation. These tp53 zebrafish mutants demonstrate fidelity to their human counterparts and provide new insights into underlying tumorigenesis mechanisms and kinetics that suggest metabolic rewiring and cellular signalling changes occur prior to tumor initiation, which will guide targeted therapeutics for LFS.
Collapse
Affiliation(s)
- Kim Kobar
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lissandra Tuzi
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer A Fiene
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Erin Burnley
- Translational and Molecular Medicine Program, University of Ottawa, Ottawa, ON, Canada
| | | | - Craig Midgen
- Department of Pathology, IWK Health Centre, Halifax, NS, Canada
| | - Brianne Laverty
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Vallijah Subasri
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada
| | - Timmy T Wen
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Annaick Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Adam Shlien
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Laboratory of Medicine and Pathobiology, University of Toronto, Canada
| | - David Malkin
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Pediatrics, Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergey V Prykhozhij
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Jason N Berman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Hatletvedt ND, Engebrethsen C, Geisler J, Geisler S, Aas T, Lønning PE, Gansmo LB, Knappskog S. The impact of functional MDM2-polymorphisms on neutrophil counts in breast cancer patients during neoadjuvant chemotherapy. BMC Cancer 2025; 25:308. [PMID: 39979836 PMCID: PMC11843751 DOI: 10.1186/s12885-025-13675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Functional polymorphisms in the MDM2 promoters have been linked to cancer risk and several non-malignant conditions. Their potential role in bone marrow function during chemotherapy is largely unknown. METHODS We investigated the potential associations between genotypes of MDM2 SNP309 (rs2279744), SNP285 (rs117039649) and del1518 (rs3730485) and neutrophil counts in breast cancer patients receiving neoadjuvant sequential epirubicin and docetaxel, with additional G-CSF, in the DDP-trial (NCT00496795). We applied longitudinal ratios, post vs. pre-treatment, of neutrophil counts as our main measure. Differences by genotypes were tested by Jonckheere-Terpstra test for ranked alternatives, while dominant and recessive models were tested by Mann-Whitney U test, and additional sub-analyses were performed for genotype combinations. RESULTS The SNP309 reference T-allele was associated with a better sustained neutrophil count (p = 0.035). A similar association was observed for the alternative del-allele of the del1518 (p = 0.049). Additionally, in combined genotype-analyses, patients with the SNP309 TT genotype and at least one copy of the del1518 del-allele had particularly favorable sustained neutrophil counts during chemotherapy treatment (p = 0.005). CONCLUSIONS Our study provides evidence that MDM2 promoter polymorphisms may be associated with neutrophil counts and bone marrow recovery during chemotherapy treatment in breast cancer patients. TRIAL REGISTRATION The DDP-trial was registered at ClinicalTrials.gov (NCT00496795; registration date 2007-07-04).
Collapse
Affiliation(s)
- Nora D Hatletvedt
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Christina Engebrethsen
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stephanie Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Turid Aas
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Per E Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Liv B Gansmo
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
5
|
Miciak JJ, Petrova L, Sajwan R, Pandya A, Deckard M, Munoz AJ, Bunz F. Robust p53 phenotypes and prospective downstream targets in telomerase-immortalized human cells. Oncotarget 2025; 16:79-100. [PMID: 39969205 PMCID: PMC11837864 DOI: 10.18632/oncotarget.28690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cancers that retain wild type TP53 presumably harbor other clonal alterations that permitted their precursors to bypass p53-mediated growth suppression. Consequently, studies that employ TP53-wild type cancer cells and their isogenic derivatives may systematically fail to appreciate the full scope of p53 functionality. Several TP53 phenotypes are known to be absent in the widely used isogenic HCT116 colorectal cancer (CRC) model, which originated from a tumor that had retained wild type TP53. In contrast, we show that restoration of p53 in the TP53-mutant CRC cell line DLD-1 impeded cell proliferation, increased levels of senescence and sensitized cells to ionizing radiation (IR). To study p53 in a non-cancer context, we disrupted TP53 in hTERT-RPE1 cells. Derived from primary cells that were immortalized in vitro, hTERT-RPE1 expressed striking p53-dependent phenotypes and appeared to select for p53 loss during routine culture. hTERT-RPE1 expressed a p53-responsive transcriptome that was highly representative of diverse experimental systems. We discovered several novel downstream p53 targets of potential clinical relevance including ALDH3A1, which is involved in the detoxification of aldehydes and the metabolism of reactive oxygen species, and nectin cell adhesion molecule 4 (NECTIN4) which encodes a secreted surface protein that is overexpressed in many tumors.
Collapse
Affiliation(s)
- Jessica J. Miciak
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
- Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally to this work
| | - Lucy Petrova
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
- These authors contributed equally to this work
| | - Rhythm Sajwan
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Aditya Pandya
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Mikayla Deckard
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Andrew J. Munoz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
- Cellular and Molecular Medicine Graduate Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Gungordu S, Aptullahoglu E. Targeting MDM2-mediated suppression of p53 with idasanutlin: a promising therapeutic approach for acute lymphoblastic leukemia. Invest New Drugs 2024; 42:603-611. [PMID: 39305365 DOI: 10.1007/s10637-024-01473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/17/2024] [Indexed: 12/08/2024]
Abstract
Despite available treatments for acute lymphoblastic leukemia (ALL), the disease's high clinical variability necessitates new therapeutic strategies, particularly for patients with high-risk features. The tumor suppressor protein p53, encoded by the TP53 gene and known as the guardian of the genome, plays a crucial role in preventing tumor development. Over 90% of ALL cases initially harbor wild-type TP53. Reactivation of p53, which is encoded from the wild type TP53 but lost its function for several reasons, is an attractive therapeutic approach in cancer treatment. p53 can be activated in a non-genotoxic manner by targeting its primary repressor, the MDM2 protein. Clinical trials involving MDM2 inhibitors are currently being conducted in a growing body of investigation, reflecting of the interest in incorporating these treatments into cancer treatment strategies. Early-phase clinical trials have demonstrated the promise of idasanutlin (RG7388), one of the developed compounds. It is a second-generation MDM2-p53 binding antagonist with enhanced potency, selectivity, and bioavailability. The aim of this study is to evaluate the efficacy of RG7388 as a therapeutic strategy for ALL and to investigate its potential impact on improving treatment outcomes for high-risk patients. RG7388 potently decreased the viability in five out of six ALL cell lines with diverse TP53 mutation profiles, whereas only one cell line exhibited high resistance. RG7388 induced a pro-apoptotic gene expression signature with upregulation of p53-target genes involved in the intrinsic and extrinsic pathways of apoptosis. Consequently, RG7388 led to a concentration-dependent increase in caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase. In this research, RG7388 was investigated with pre-clinical methods in ALL cells as a novel treatment strategy. This study suggests further functional research and in-vivo evaluation, and it highlights the prospect of treating p53-functional ALL with MDM2 inhibitors.
Collapse
Affiliation(s)
- Seyda Gungordu
- Biotechnology Application and Research Centre, Bilecik Şeyh Edebali University, 11100, Bilecik, Turkey
| | - Erhan Aptullahoglu
- Biotechnology Application and Research Centre, Bilecik Şeyh Edebali University, 11100, Bilecik, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, 11100, Bilecik, Turkey.
| |
Collapse
|
7
|
Twarda-Clapa A. An update patent review of MDM2-p53 interaction inhibitors (2019-2023). Expert Opin Ther Pat 2024; 34:1177-1198. [PMID: 39435470 DOI: 10.1080/13543776.2024.2419836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION The activity of the major tumor suppressor protein p53 is disrupted in nearly all human cancer types, either by mutations in TP53 gene or by overexpression of its negative regulator, Mouse Double Minute 2 (MDM2). The release of p53 from MDM2 and its homolog MDM4 with inhibitors based on different chemistries opened up a prospect for a broad, non-genotoxic anticancer therapy. AREAS COVERED This article reviews the patents and patent applications between years 2019 and 2023 in the field of MDM2-p53 interaction inhibitors. The newly reported molecules searched in Espacenet, Google Patents, and PubMed were grouped into five general categories: compounds having single-ring, multi-ring, or spiro-oxindole scaffolds, peptide derivatives, and proteolysis-targeting chimeras (PROTACs). The article also presents the progress of MDM2 antagonists of various structures in recruiting or completed cancer clinical trials. EXPERT OPINION Despite 20 years of intensive studies after the discovery of the first-in-class small-molecule inhibitor, Nutlin-3, no drugs targeting MDM2-p53 interaction have reached the market. Nevertheless, more than 10 compounds are still being evaluated in clinics, both as standalone drugs and in combinations with other targeted therapies or standard chemotherapy agents, including two inhibitors in phase 3 studies and two compounds granted orphan-drug/fast-track designation by the FDA.
Collapse
Affiliation(s)
- Aleksandra Twarda-Clapa
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
8
|
Aguilar A, Yang J, Li Y, McEachern D, Huang L, Razzouk S, Wang S. Discovery of MD-265: A Potent MDM2 Degrader That Achieves Complete Tumor Regression and Improves Long-Term Survival of Mice with Leukemia. J Med Chem 2024; 67:19503-19518. [PMID: 39480241 DOI: 10.1021/acs.jmedchem.4c01818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
MDM2 has been pursued as an attractive therapeutic target for human cancers. Herein, we describe our discovery of MD-265 as a promising PROTAC MDM2 degrader and extensive in vitro and in vivo evaluations of its therapeutic potential and mechanism of action. MD-265 effectively depleted MDM2 protein in cancer cells at concentrations as low as 1 nM, leading to strong activation of p53 in cancer cells carrying wild-type p53. It selectively inhibited the growth of wild-type p53 leukemia cell lines and showed no activity in mutated p53 lines. MD-265 achieved persistent tumor regression in a leukemia xenograft model without causing any signs of toxicity and dramatically improved survival of mice in a disseminated leukemia model even with a weekly administration. MD-265 displayed an excellent intravenous PK profile in mice, rats, and dogs. MD-265 is a promising MDM2 degrader for advanced preclinical development for the treatment of human cancers.
Collapse
Affiliation(s)
- Angelo Aguilar
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jiuling Yang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yangbing Li
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Liyue Huang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stevenchoukry Razzouk
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Wang L, Lin T, Hai Y, Yu K, Bu F, Lu J, Wang X, Li M, Shi X. Primary dedifferentiated liposarcoma of the gallbladder: a case report and literature review. Front Surg 2024; 11:1452144. [PMID: 39606156 PMCID: PMC11599167 DOI: 10.3389/fsurg.2024.1452144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Liposarcoma (LPS) is a kind of malignancy of soft tissue usually found in the retroperitoneal, limb, or neck region, and some may be detected with delayed symptoms (pain or palpable mass), and less frequently occurs in organs of the digestive system. In contrast, Dedifferentiated liposarcoma (DDLPS) is a common histological subtype of LPS. The present study reported a case of dedifferentiated liposarcoma originating in the gallbladder. Differentiated liposarcoma originating from the gallbladder is rarely reported. Case description A 64-year-old female patient presented to our hospital with a painless abdominal mass. Abdominal computed tomography (CT) showed that the gallbladder had lost its normal shape, and a 9.1 cm × 7.1 cm × 12.1 cm mass was seen in the area of the gallbladder fossa and the right upper abdomen below it, which had an irregular morphology, inhomogeneous density, and nodular calcification, with marked inhomogeneous enhancement on enhancement scan. Preoperative tumor markers and liver function indicators were not abnormal. With suspicion of a giant malignant tumor of the gallbladder, she underwent a cholecystectomy combined with abdominal mass resection. After surgery, the tumor and gallbladder, were completely resected, and postoperative pathological results confirmed the diagnosis of dedifferentiated liposarcoma deriving from gallbladder. After surgery, the patient and his family refused to continue treatment. After 15 months follow-up, the patient remains asymptomatic and does not show any signs of recurrence. And she is now under continued follow - up. Conclusions Treatment of dedifferentiated liposarcoma is still at exploratory stage, and a lack of clinical evidence for this condition might hinder access to clinical trials and studies. Currently, the treatment of choice for dedifferentiated liposarcoma remains radical resection. In the available clinical studies, there are no robust data to support clinical use of neoadjuvant and adjuvant radiochemotherapy. As with other diseases, the use of radiotherapy and chemotherapy before and after surgery may be a potential future treatment.
Collapse
Affiliation(s)
- Lan Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tingting Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yubin Hai
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Kai Yu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Fan Bu
- Department of Plastic and Aesthetic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ji Lu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiuli Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Miao Li
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoju Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
11
|
Gu Y, Seong DH, Liu W, Wang Z, Jeong YW, Kim JC, Kang DR, Lee RJE, Koh JH, Kim SH. Exercise improves muscle mitochondrial dysfunction-associated lipid profile under circadian rhythm disturbance. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:515-526. [PMID: 39467715 PMCID: PMC11519723 DOI: 10.4196/kjpp.2024.28.6.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 10/30/2024]
Abstract
We investigated whether endurance exercise training (EXT) ameliorates circadian rhythm (CR)-induced risk factors by improving skeletal muscle (SKM) mitochondrial biogenesis, reducing oxidative stress, and modulating apoptotic protein expression. We distinguished between regular and shift workers using the National Health and Nutrition Examination Survey (NHANES) and investigated the health problems caused by shift work (CR disturbance) and the potential therapeutic effects of exercise. In our animal study, 36 rats underwent 12 weeks of CR disturbance, divided into regular and irregular CR groups. These groups were further split into EXT (n = 12) and sedentary (n = 12) for an additional 8 weeks. We analyzed SKM tissue to understand the molecular changes induced by CR and EXT. NHANES data were analyzed using SAS 9.4 and Prism 8 software, while experimental animal data were analyzed using Prism 8 software. The statistical procedures used in each experiment are indicated in the figure legends. Our studies showed that CR disturbance increases dyslipidemia, alters circadian clock proteins (BMAL1, PER2), raises apoptotic protein levels, and reduces mitochondrial biogenesis in SKM. EXT improved LDL-C and HDLC levels without affecting muscle BMAL1 expression. It also enhanced mitochondrial biogenesis (AMPK, PGC-1α, Tfam, NADH-UO, COX-I), antioxidant levels (Catalase, SOD1, SOD2), and apoptotic protein (p53, Bax/Bcl2) expression or activity in SKM. We demonstrated that shift work-induced CR disturbance leads to dyslipidemia, diminished mitochondrial biogenesis, and reduced antioxidant capacity in SKM. However, EXT can counteract dyslipidemia under CR disturbance, potentially lowering the risk of cardiovascular disorders.
Collapse
Affiliation(s)
- Yu Gu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Dong-Hun Seong
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Wenduo Liu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Zilin Wang
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Yong Whi Jeong
- Department of Medical Informatics and Biostatistics, Graduate School, Yonsei University, Wonju 26426, Korea
| | - Jae-Cheol Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Dae Ryong Kang
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Rose Ji Eun Lee
- Department of Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Jin-Ho Koh
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
12
|
Jiménez A, Lucchetti A, Heltberg MS, Moretto L, Sanchez C, Jambhekar A, Jensen MH, Lahav G. Entrainment and multi-stability of the p53 oscillator in human cells. Cell Syst 2024; 15:956-968.e3. [PMID: 39368467 DOI: 10.1016/j.cels.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/25/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
The tumor suppressor p53 responds to cellular stress and activates transcription programs critical for regulating cell fate. DNA damage triggers oscillations in p53 levels with a robust period. Guided by the theory of synchronization and entrainment, we developed a mathematical model and experimental system to test the ability of the p53 oscillator to entrain to external drug pulses of various periods and strengths. We found that the p53 oscillator can be locked and entrained to a wide range of entrainment modes. External periods far from p53's natural oscillations increased the heterogeneity between individual cells whereas stronger inputs reduced it. Single-cell measurements allowed deriving the phase response curves (PRCs) and multiple Arnold tongues of p53. In addition, multi-stability and non-linear behaviors were mathematically predicted and experimentally detected, including mode hopping, period doubling, and chaos. Our work revealed critical dynamical properties of the p53 oscillator and provided insights into understanding and controlling it. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Alba Jiménez
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Lucchetti
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mathias S Heltberg
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Liv Moretto
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carlos Sanchez
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark.
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
14
|
Mabry AR, Gorman J, Delvasto JS, Lavik AR, Layer JH, Mayo LD. Activation of the Snail transcription factor induces Mdm2 gene expression. J Biol Chem 2024; 300:107811. [PMID: 39313097 PMCID: PMC11530585 DOI: 10.1016/j.jbc.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Epithelial-like tumor cells can become metastatic by undergoing molecular and phenotypic reprogramming in a process referred to as epithelial-to-mesenchymal transition (EMT). In response to EMT genes that promote migration and condition the tumor microenvironment to permit intravasation into the bloodstream, dissemination and extravasation into new organs are induced. While the mutant p53 has been implicated in extravasation, one negative regulator of p53, the oncogene murine double minute-2 gene (Mdm2), is required in the early stages of metastasis and the driver of EMT. This activity is independent of Mdm2's role in the p53-Mdm2 autoregulatory feedback loop. Herein, we examine the EMT transcription factor Snail as a downstream effector of kinase signaling pathways. We show that the activation of upstream receptors and KRas signaling increase Snail levels. Snail binds to Ebox DNA motifs, and Mdm2 has two Ebox DNA-binding domains in the second promoter. Snail binds to the second Ebox and induces Mdm2 gene expression. Knockdown of endogenous Snail by shRNA shows a decrease in Mdm2 and is associated with reduced migration. The reintroduction of Mdm2 in shSnail cells restores cellular migration. These data integrate upstream pathways that induce Snail-Mdm2 to promote the metastasis of tumor cells.
Collapse
Affiliation(s)
- Alexander R Mabry
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - James Gorman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Juan S Delvasto
- Department of Biology, Indiana University, Indianapolis, Indiana, USA
| | - Andrew R Lavik
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Justin H Layer
- Department of Hematology and Oncology, Indiana University, Indianapolis, Indiana, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana, USA.
| |
Collapse
|
15
|
Jana S, Mondal M, Mahale S, Gupta B, Prasasvi KR, Kandasami L, Jha N, Chowdhury A, Santosh V, Kanduri C, Somasundaram K. PITAR, a DNA damage-inducible cancer/testis long noncoding RNA, inactivates p53 by binding and stabilizing TRIM28 mRNA. eLife 2024; 12:RP88256. [PMID: 39302097 PMCID: PMC11415074 DOI: 10.7554/elife.88256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
In tumors with WT p53, alternate mechanisms of p53 inactivation are reported. Here, we have identified a long noncoding RNA, PITAR (p53 Inactivating TRIM28 Associated RNA), as an inhibitor of p53. PITAR is an oncogenic Cancer/testis lncRNA and is highly expressed in glioblastoma (GBM) and glioma stem-like cells (GSC). We establish that TRIM28 mRNA, which encodes a p53-specific E3 ubiquitin ligase, is a direct target of PITAR. PITAR interaction with TRIM28 RNA stabilized TRIM28 mRNA, which resulted in increased TRIM28 protein levels and reduced p53 steady-state levels due to enhanced p53 ubiquitination. DNA damage activated PITAR, in addition to p53, in a p53-independent manner, thus creating an incoherent feedforward loop to inhibit the DNA damage response by p53. While PITAR silencing inhibited the growth of WT p53 containing GSCs in vitro and reduced glioma tumor growth in vivo, its overexpression enhanced the tumor growth in a TRIM28-dependent manner and promoted resistance to Temozolomide. Thus, we establish an alternate way of p53 inactivation by PITAR, which maintains low p53 levels in normal cells and attenuates the DNA damage response by p53. Finally, we propose PITAR as a potential GBM therapeutic target.
Collapse
Affiliation(s)
- Samarjit Jana
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Mainak Mondal
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Sagar Mahale
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Bhavana Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Kaval Reddy Prasasvi
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Lekha Kandasami
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Neha Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Abhishek Chowdhury
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and NeurosciencesBangaloreIndia
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of GothenburgGothenburgSweden
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
| |
Collapse
|
16
|
Jansen J, Bohnsack KE, Böhlken-Fascher S, Bohnsack MT, Dobbelstein M. The ribosomal protein L22 binds the MDM4 pre-mRNA and promotes exon skipping to activate p53 upon nucleolar stress. Cell Rep 2024; 43:114610. [PMID: 39116201 DOI: 10.1016/j.celrep.2024.114610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.
Collapse
Affiliation(s)
- Jennifer Jansen
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Susanne Böhlken-Fascher
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
17
|
Ni Y, Chen H, Cheng X, Sun B, Wu Z, Zhan Q, Zhuang Z. Hdm2 disrupts HdmX-mediated nuclear export of p53 by sequestering it in nucleus. Exp Cell Res 2024; 441:114185. [PMID: 39069150 DOI: 10.1016/j.yexcr.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Dysfunction of the tumor suppressor p53 occurs in most human cancers, Hdm2 and HdmX play critical roles in p53 inactivation and degradation. Under unstressed conditions, HdmX binds to p53 like Hdm2, but HdmX cannot directly induce p53 degradation. Moreover, HdmX has been reported to stimulate Hdm2-mediated ubiquitination and degradation of p53. Here we reported that HdmX promoted the nuclear export of p53 independent of Hdm2 in living cells using FRET technology. Whereas, Hdm2 impeded HdmX-mediated nuclear export of p53 by sequestering it in nucleus. Interestingly, the C-terminal RING domain mutant Hdm2C464A formed heterooligomers with p53 in nucleus, which was inhibited by HdmX. The heterooligomers were located near PML-NBs. This study indicate that the nuclear Hdm2-HdmX interaction aborts the HdmX-mediated nuclear export of p53.
Collapse
Affiliation(s)
- Yue Ni
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China; Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510631, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Xuecheng Cheng
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Zhirui Wu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Qiuqiang Zhan
- Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510631, China
| | - Zhengfei Zhuang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
18
|
Mabry AR, Singh A, Mulrooney B, Gorman J, Thielbar AR, Wolf ER, Mayo LD. Induction of the Mdm2 gene and protein by kinase signaling pathways is repressed by the pVHL tumor suppressor. Proc Natl Acad Sci U S A 2024; 121:e2400935121. [PMID: 39047034 PMCID: PMC11295014 DOI: 10.1073/pnas.2400935121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The tumor suppressor von Hippel-Lindau, pVHL, is a multifaceted protein. One function is to dock to the hypoxia-inducible transcription factor (HIF) and recruit a larger protein complex that destabilizes HIF via ubiquitination, preventing angiogenesis and tumor development. pVHL also binds to the tumor suppressor p53 to activate specific p53 target genes. The oncogene Mdm2 impairs the formation of the p53-pVHL complex and activation of downstream genes by conjugating nedd8 to pVHL. While Mdm2 can impact p53 and pVHL, how pVHL may impact Mdm2 is unclear. Like p53 somatic mutations, point mutations are evident in pVHL that are common in renal clear cell carcinomas (RCC). In patients with RCC, Mdm2 levels are elevated, and we examined whether there was a relationship between Mdm2 and pVHL. TCGA and DepMap analysis revealed that mdm2 gene expression was elevated in RCC with vhl point mutations or copy number loss. In pVHL reconstituted or deleted isogenetically match RCC or MEF cell lines, Mdm2 was decreased in the presence of pVHL. Furthermore, through analysis using genetic and pharmacological approaches, we show that pVHL represses Mdm2 gene expression by blocking the MAPK-Ets signaling pathway and blocks Akt-mediated phosphorylation and stabilization of Mdm2. Mdm2 inhibition results in an increase in the p53-p21 pathway to impede cell growth. This finding shows how pVHL can indirectly impact the function of Mdm2 by regulating signaling pathways to restrict cell growth.
Collapse
Affiliation(s)
- Alexander R. Mabry
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Arnima Singh
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Brianna Mulrooney
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - James Gorman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Abigail R. Thielbar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Eric R. Wolf
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN46022
| | - Lindsey D. Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN46022
| |
Collapse
|
19
|
Fischer M, Sammons MA. Determinants of p53 DNA binding, gene regulation, and cell fate decisions. Cell Death Differ 2024; 31:836-843. [PMID: 38951700 PMCID: PMC11239874 DOI: 10.1038/s41418-024-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
The extent to which transcription factors read and respond to specific information content within short DNA sequences remains an important question that the tumor suppressor p53 is helping us answer. We discuss recent insights into how local information content at p53 binding sites might control modes of p53 target gene activation and cell fate decisions. Significant prior work has yielded data supporting two potential models of how p53 determines cell fate through its target genes: a selective target gene binding and activation model and a p53 level threshold model. Both of these models largely revolve around an analogy of whether p53 is acting in a "smart" or "dumb" manner. Here, we synthesize recent and past studies on p53 decoding of DNA sequence, chromatin context, and cellular signaling cascades to elicit variable cell fates critical in human development, homeostasis, and disease.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, The State University of New York at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
20
|
Li Z, Wang Z, Zhong C, Zhang H, Liu R, An P, Ma Z, Lu J, Pan C, Zhang Z, Cao Z, Hu J, Xing D, Fei Y, Ding Y, Lu B. P53 upregulation by USP7-engaging molecular glues. Sci Bull (Beijing) 2024; 69:1936-1953. [PMID: 38734583 DOI: 10.1016/j.scib.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 05/13/2024]
Abstract
Molecular glues are typically small chemical molecules that act at the interface between a target protein and degradation machinery to trigger ternary complex formation. Identifying molecular glues is challenging. There is a scarcity of target-specific upregulating molecular glues, which are highly anticipated for numerous targets, including P53. P53 is degraded in proteasomes through polyubiquitination by specific E3 ligases, whereas deubiquitinases (DUBs) remove polyubiquitination conjugates to counteract these E3 ligases. Thus, small-molecular glues that enhance P53 anchoring to DUBs may stabilize P53 through deubiquitination. Here, using small-molecule microarray-based technology and unbiased screening, we identified three potential molecular glues that may tether P53 to the DUB, USP7, and elevate the P53 level. Among the molecular glues, bromocriptine (BC) is an FDA-approved drug with the most robust effects. BC was further verified to increase P53 stability via the predicted molecular glue mechanism engaging USP7. Consistent with P53 upregulation in cancer cells, BC was shown to inhibit the proliferation of cancer cells in vitro and suppress tumor growth in a xenograft model. In summary, we established a potential screening platform and identified potential molecular glues upregulating P53. Similar strategies could be applied to the identification of other types of molecular glues that may benefit drug discovery and chemical biology studies.
Collapse
Affiliation(s)
- Zhaoyang Li
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Ziying Wang
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chao Zhong
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hang Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Rui Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ping An
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiqiang Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junmei Lu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chengfang Pan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhaolin Zhang
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiyuan Cao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianyi Hu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China.
| | - Yu Ding
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Boxun Lu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
21
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
22
|
Li H, Cai X, Yang X, Zhang X. An overview of PROTACs targeting MDM2 as a novel approach for cancer therapy. Eur J Med Chem 2024; 272:116506. [PMID: 38761584 DOI: 10.1016/j.ejmech.2024.116506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
MDM2 genes amplification or altered expression is commonly observed in various cancers bearing wild-type TP53. Directly targeting the p53-binding pocket of MDM2 to activate the p53 pathway represents a promising therapeutic approach. Despite the development of numerous potent MDM2 inhibitors that have advanced into clinical trials, their utility is frequently hampered by drug resistance and hematologic toxicity such as neutropenia and thrombocytopenia. The emergence of PROTAC technology has revolutionized drug discovery and development, with applications in both preclinical and clinical research. Harnessing the power of PROTAC molecules to achieve MDM2 targeted degradation and p53 reactivation holds significant promise for cancer therapy. In this review, we summarize representative MDM2 PROTAC degraders and provide insights for researchers investigating MDM2 proteins and the p53 pathway.
Collapse
Affiliation(s)
- Huiwen Li
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhui Cai
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyu Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
23
|
Chasov V, Davletshin D, Gilyazova E, Mirgayazova R, Kudriaeva A, Khadiullina R, Yuan Y, Bulatov E. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res 2024; 38:222-232. [PMID: 38738269 PMCID: PMC11144932 DOI: 10.7555/jbr.37.20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 05/14/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
24
|
O’Brien NLV, Holland B, Engelstädter J, Ortiz-Barrientos D. The distribution of fitness effects during adaptive walks using a simple genetic network. PLoS Genet 2024; 20:e1011289. [PMID: 38787919 PMCID: PMC11156440 DOI: 10.1371/journal.pgen.1011289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The tempo and mode of adaptation depends on the availability of beneficial alleles. Genetic interactions arising from gene networks can restrict this availability. However, the extent to which networks affect adaptation remains largely unknown. Current models of evolution consider additive genotype-phenotype relationships while often ignoring the contribution of gene interactions to phenotypic variance. In this study, we model a quantitative trait as the product of a simple gene regulatory network, the negative autoregulation motif. Using forward-time genetic simulations, we measure adaptive walks towards a phenotypic optimum in both additive and network models. A key expectation from adaptive walk theory is that the distribution of fitness effects of new beneficial mutations is exponential. We found that both models instead harbored distributions with fewer large-effect beneficial alleles than expected. The network model also had a complex and bimodal distribution of fitness effects among all mutations, with a considerable density at deleterious selection coefficients. This behavior is reminiscent of the cost of complexity, where correlations among traits constrain adaptation. Our results suggest that the interactions emerging from genetic networks can generate complex and multimodal distributions of fitness effects.
Collapse
Affiliation(s)
- Nicholas L. V. O’Brien
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Barbara Holland
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Jan Engelstädter
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Ortiz-Barrientos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Göttig L, Jummer S, Staehler L, Groitl P, Karimi M, Blanchette P, Kosulin K, Branton PE, Schreiner S. The human adenovirus PI3K-Akt activator E4orf1 is targeted by the tumor suppressor p53. J Virol 2024; 98:e0170123. [PMID: 38451084 PMCID: PMC11019960 DOI: 10.1128/jvi.01701-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/13/2024] [Indexed: 03/08/2024] Open
Abstract
Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Jummer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Staehler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maryam Karimi
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paola Blanchette
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Karin Kosulin
- Molecular Microbiology, Children’s Cancer Research Institute, Vienna, Austria
| | - Philip E. Branton
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Freiburg, Germany
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Li Y, Li G, Zuo C, Wang X, Han F, Jia Y, Shang H, Tian Y. Discovery of ganoderic acid A (GAA) PROTACs as MDM2 protein degraders for the treatment of breast cancer. Eur J Med Chem 2024; 270:116367. [PMID: 38581732 DOI: 10.1016/j.ejmech.2024.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Breast cancer is one of the most common female malignant tumors, with triple-negative breast cancer (TNBC) being the most specific, highly invasive, metastatic and associated with a poor prognosis. Our previous study showed that the natural product ganoderic acid A (GAA) has a certain affinity for MDM2. In this study, two series of novel GAA PROTACs C1-C10 and V1-V10 were designed and synthesized for the treatment of breast cancer. The antitumor activity of these compounds was evaluated against four human tumor cell lines (MCF-7, MDA-MB-231, SJSA-1, and HepG2). Among them, V9 and V10 showed stronger anti-proliferative effects against breast cancer cells, and V10 showed the best selectivity in MDA-MB-231 cells (TNBC), which was 5-fold higher than that of the lead compound GAA. Preliminary structure-activity analysis revealed that V-series GAA PROTACs had better effects than C-series, and the introduction of 2O-4O PEG linkers could significantly improve the antitumor activity. Molecular docking, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and Western blot researches showed that both V9 and V10 could bind with MDM2, and degrade the protein through the ubiquitin-proteasome system. Molecular dynamics simulation (MD) revealed that V10 is a bifunctional molecule that can bind to von Hippel-Lindau (VHL) at one end and target MDM2 at the other. In addition, V10 promoted the upregulation of p21 in p53-mutant MDA-MB-231 cells, and induced apoptosis via down-regulation of the bcl-2/bax ratio and the expression of cyclin B1. Finally, in vivo experiments showed that, V10 also exhibited good tumor inhibitory activity in xenografted TNBC zebrafish models, with an inhibition rate of 27.2% at 50 μg/mL. In conclusion, our results suggested that V10 has anti-tumor effects on p53-mutant breast cancer in vitro and in vivo, and may be used as a novel lead compound for the future development of TNBC.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Guangyu Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chenwei Zuo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xiaolin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fang Han
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yi Jia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hai Shang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Yu Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
27
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Ren B, Li Y, DI L, Cheng R, Liu L, Li H, Li Y, Tang Z, Yan Y, Lu T, Fu R, Cheng Y, Wu Z. A naturally derived small molecule compound suppresses tumor growth and metastasis in mice by relieving p53-dependent repression of CDK2/Rb signaling and the Snail-driven EMT. Chin J Nat Med 2024; 22:112-126. [PMID: 38342564 DOI: 10.1016/s1875-5364(24)60550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Indexed: 02/13/2024]
Abstract
The tumor suppressor protein p53 is central to cancer biology, with its pathway reactivation emerging as a promising therapeutic strategy in oncology. This study introduced LZ22, a novel compound that selectively inhibits the growth, migration, and metastasis of tumor cells expressing wild-type p53, demonstrating ineffectiveness in cells devoid of p53 or those expressing mutant p53. LZ22's mechanism of action involves a high-affinity interaction with the histidine-96 pocket of the MDM2 protein. This interaction disrupted the MDM2-p53 binding, consequently stabilizing p53 by shielding it from proteasomal degradation. LZ22 impeded cell cycle progression and diminished cell proliferation by reinstating the p53-dependent suppression of the CDK2/Rb signaling pathway. Moreover, LZ22 alleviated the p53-dependent repression of Snail transcription factor expression and its consequent EMT, effectively reducing tumor cell migration and distal metastasis. Importantly, LZ22 administration in tumor-bearing mice did not manifest notable side effects. The findings position LZ22 as a structurally unique reactivator of p53, offering therapeutic promise for the management of human cancers with wild-type TP53.
Collapse
Affiliation(s)
- Boxue Ren
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lei DI
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ranran Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lijuan Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hongmei Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhangrui Tang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yongxian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Zhaoqiu Wu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
29
|
Lin W, Yan Y, Huang Q, Zheng D. MDMX in Cancer: A Partner of p53 and a p53-Independent Effector. Biologics 2024; 18:61-78. [PMID: 38318098 PMCID: PMC10839028 DOI: 10.2147/btt.s436629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
The p53 tumor suppressor protein plays an important role in physiological and pathological processes. MDM2 and its homolog MDMX are the most important negative regulators of p53. Many studies have shown that MDMX promotes the growth of cancer cells by influencing the regulation of the downstream target gene of tumor suppressor p53. Studies have found that inhibiting the MDMX-p53 interaction can effectively restore the tumor suppressor activity of p53. MDMX has growth-promoting activities without p53 or in the presence of mutant p53. Therefore, it is extremely important to study the function of MDMX in tumorigenesis, progression and prognosis. This article mainly reviews the current research progress and mechanism on MDMX function, summarizes known MDMX inhibitors and provides new ideas for the development of more specific and effective MDMX inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Wu Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuxiang Yan
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Qingling Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
30
|
Ochoa TA, Rossi A, Woodle ES, Hildeman D, Allman D. The Proteasome Inhibitor Bortezomib Induces p53-Dependent Apoptosis in Activated B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:154-164. [PMID: 37966267 PMCID: PMC10872551 DOI: 10.4049/jimmunol.2300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
The proteasome inhibitor bortezomib (BTZ) is proposed to deplete activated B cells and plasma cells. However, a complete picture of the mechanisms underlying BTZ-induced apoptosis in B lineage cells remains to be established. In this study, using a direct in vitro approach, we show that deletion of the tumor suppressor and cell cycle regulator p53 rescues recently activated mouse B cells from BTZ-induced apoptosis. Furthermore, BTZ treatment elevated intracellular p53 levels, and p53 deletion constrained apoptosis, as recently stimulated cells first transitioned from the G1 to S phase of the cell cycle. Moreover, combined inhibition of the p53-associated cell cycle regulators and E3 ligases MDM2 and anaphase-promoting complex/cyclosome induced cell death in postdivision B cells. Our results reveal that efficient cell cycle progression of activated B cells requires proteasome-driven inhibition of p53. Consequently, BTZ-mediated interference of proteostasis unleashes a p53-dependent cell cycle-associated death mechanism in recently activated B cells.
Collapse
Affiliation(s)
- Trini A. Ochoa
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy Rossi
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center
| | - E. Steve Woodle
- Division of Transplant Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45229 USA
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center
| | - David Allman
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Li F, He HY, Fan ZH, Li CM, Gong Y, Wang XJ, Xiong HJ, Xie CM, Bie P. Silencing of FAM111B inhibited proliferation, migration and invasion of hepatoma cells through activating p53 pathway. Dig Liver Dis 2023; 55:1679-1689. [PMID: 37270349 DOI: 10.1016/j.dld.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND The function of Family with sequence similarity 111 member B (FAM111B) has been reported in multiple malignancies, but its involvement in occurrence and development of hepatocellular carcinoma (HCC) is still unclear. PURPOSE To investigate the role of FAM111B in HCC and explore the potential molecular mechanism. METHODS We examined the mRNA level of FAM111B via qPCR and protein level via immunohistochemistry in human HCC tissues. siRNA was used to construct a FAM111B-knockdown model in HCC cell lines. CCK-8, colony formation, transwell, and wound healing assays were performed to investigate the effect of FAM111B on proliferation, migration and invasion of HCC cell. Gene Set Enrichment Analysis, western blotting, and flow cytometry were carried out to find the related molecular mechanism. RESULTS Human HCC tumor tissues exhibited higher expression of FAM111B, and high FAM111B expression was associated with poor prognosis. Vitro assays demonstrated that knockdown of FAM111B greatly repressed proliferation, migration and invasion of HCC cells. Furthermore, silencing of FAM111B significantly resulted in cell cycle arrest at G0/G1 and downregulation of epithelial-mesenchymal transition (EMT)-related proteins MMP7 and MMP9 via activation of p53 pathway. CONCLUSION FAM111B played an essential role in promoting HCC development by regulation of p53 pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, PR China
| | - Hong-Ye He
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing 400010, PR China
| | - Zhi-Hao Fan
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, PR China
| | - Chun-Ming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yi Gong
- Department of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Xiao-Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Hao-Jun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China.
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China.
| | - Ping Bie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, PR China.
| |
Collapse
|
32
|
Sauerer T, Velázquez GF, Schmid C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: immune escape mechanisms and current implications for therapy. Mol Cancer 2023; 22:180. [PMID: 37951964 PMCID: PMC10640763 DOI: 10.1186/s12943-023-01889-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with curative potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, representing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the therapy for these patients, and elucidate potential new treatment options.
Collapse
Affiliation(s)
- Tatjana Sauerer
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Giuliano Filippini Velázquez
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| |
Collapse
|
33
|
Shoaib TH, Abdelmoniem N, Mukhtar RM, Alqhtani AT, Alalawi AL, Alawaji R, Althubyani MS, Mohamed SGA, Mohamed GA, Ibrahim SRM, Hussein HGA, Alzain AA. Molecular Docking and Molecular Dynamics Studies Reveal the Anticancer Potential of Medicinal-Plant-Derived Lignans as MDM2-P53 Interaction Inhibitors. Molecules 2023; 28:6665. [PMID: 37764441 PMCID: PMC10536213 DOI: 10.3390/molecules28186665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the tumor suppressor protein p53 and its negative regulator, the MDM2 oncogenic protein, has gained significant attention in cancer drug discovery. In this study, 120 lignans reported from Ferula sinkiangensis and Justicia procumbens were assessed for docking simulations on the active pocket of the MDM2 crystal structure bound to Nutlin-3a. The docking analysis identified nine compounds with higher docking scores than the co-crystallized reference. Subsequent AMDET profiling revealed satisfactory pharmacokinetic and safety parameters for these natural products. Three compounds, namely, justin A, 6-hydroxy justicidin A, and 6'-hydroxy justicidin B, were selected for further investigation due to their strong binding affinities of -7.526 kcal/mol, -7.438 kcal/mol, and -7.240 kcal/mol, respectively, which surpassed the binding affinity of the reference inhibitor Nutlin-3a (-6.830 kcal/mol). To assess the stability and reliability of the binding of the candidate hits, a molecular dynamics simulation was performed over a duration of 100 ns. Remarkably, the thorough analysis demonstrated that all the hits exhibited stable molecular dynamics profiles. Based on their effective binding to MDM2, favorable pharmacokinetic properties, and molecular dynamics behavior, these compounds represent a promising starting point for further refinement. Nevertheless, it is essential to synthesize the suggested compounds and evaluate their activity through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Tagyedeen H. Shoaib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Nihal Abdelmoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Rua M. Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Amal Th. Alqhtani
- Pharmaceutical Care Services, Madinah Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (A.T.A.); (M.S.A.)
| | - Abdullah L. Alalawi
- Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Razan Alawaji
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
| | - Mashael S. Althubyani
- Pharmaceutical Care Services, Madinah Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (A.T.A.); (M.S.A.)
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hazem G. A. Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| |
Collapse
|
34
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
35
|
Fang D, Hu H, Zhao K, Xu A, Yu C, Zhu Y, Yu N, Yao B, Tang S, Wu X, Mei Y. MLF2 Negatively Regulates P53 and Promotes Colorectal Carcinogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303336. [PMID: 37438558 PMCID: PMC10502657 DOI: 10.1002/advs.202303336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Inactivation of the p53 pathway is linked to a variety of human cancers. As a critical component of the p53 pathway, ubiquitin-specific protease 7 (USP7) acts as a deubiquitinase for both p53 and its ubiquitin E3 ligase mouse double minute 2 homolog. Here, myeloid leukemia factor 2 (MLF2) is reported as a new negative regulator of p53. MLF2 interacts with both p53 and USP7. Via these interactions, MLF2 inhibits the binding of USP7 to p53 and antagonizes USP7-mediated deubiquitination of p53, thereby leading to p53 destabilization. Functionally, MLF2 plays an oncogenic role in colorectal cancer, at least partially, via the negative regulation of p53. Clinically, MLF2 is elevated in colorectal cancer and its high expression is associated with poor prognosis in patients with colorectal cancer. In wild-type-p53-containing colorectal cancer, MLF2 and p53 expressions are inversely correlated. These findings establish MLF2 as an important suppressor of p53 function. The study also reveals a critical role for the MLF2-p53 axis in promoting colorectal carcinogenesis.
Collapse
Affiliation(s)
- Debao Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Hao Hu
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Kailiang Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Aman Xu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Changjun Yu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Yong Zhu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
| | - Ning Yu
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Bo Yao
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Suyun Tang
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xianning Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Yide Mei
- Department of Thoracic Surgery, The First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- The CAS Key Laboratory of Innate Immunity and Chronic DiseaseDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHMDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
36
|
Zhai F, Wang J, Luo X, Ye M, Jin X. Roles of NOLC1 in cancers and viral infection. J Cancer Res Clin Oncol 2023; 149:10593-10608. [PMID: 37296317 DOI: 10.1007/s00432-023-04934-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nucleolus is considered the center of metabolic control and an important organelle for the biogenesis of ribosomal RNA (rRNA). Nucleolar and coiled-body phosphoprotein 1(NOLC1), which was originally identified as a nuclear localization signal-binding protein is a nucleolar protein responsible for nucleolus construction and rRNA synthesis, as well as chaperone shuttling between the nucleolus and cytoplasm. NOLC1 plays an important role in a variety of cellular life activities, including ribosome biosynthesis, DNA replication, transcription regulation, RNA processing, cell cycle regulation, apoptosis, and cell regeneration. PURPOSE In this review, we introduce the structure and function of NOLC1. Then we elaborate its upstream post-translational modification and downstream regulation. Meanwhile, we describe its role in cancer development and viral infection which provide a direction for future clinical applications. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION NOLC1 plays an important role in the progression of multiple cancers and viral infection. In-depth study of NOLC1 provides a new perspective for accurate diagnosis of patients and selection of therapeutic targets.
Collapse
Affiliation(s)
- Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
37
|
Bevill SM, Casaní-Galdón S, El Farran CA, Cytrynbaum EG, Macias KA, Oldeman SE, Oliveira KJ, Moore MM, Hegazi E, Adriaens C, Najm FJ, Demetri GD, Cohen S, Mullen JT, Riggi N, Johnstone SE, Bernstein BE. Impact of supraphysiologic MDM2 expression on chromatin networks and therapeutic responses in sarcoma. CELL GENOMICS 2023; 3:100321. [PMID: 37492096 PMCID: PMC10363746 DOI: 10.1016/j.xgen.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 07/27/2023]
Abstract
Amplification of MDM2 on supernumerary chromosomes is a common mechanism of P53 inactivation across tumors. Here, we investigated the impact of MDM2 overexpression on chromatin, gene expression, and cellular phenotypes in liposarcoma. Three independent regulatory circuits predominate in aggressive, dedifferentiated tumors. RUNX and AP-1 family transcription factors bind mesenchymal gene enhancers. P53 and MDM2 co-occupy enhancers and promoters associated with P53 signaling. When highly expressed, MDM2 also binds thousands of P53-independent growth and stress response genes, whose promoters engage in multi-way topological interactions. Overexpressed MDM2 concentrates within nuclear foci that co-localize with PML and YY1 and could also contribute to P53-independent phenotypes associated with supraphysiologic MDM2. Importantly, we observe striking cell-to-cell variability in MDM2 copy number and expression in tumors and models. Whereas liposarcoma cells are generally sensitive to MDM2 inhibitors and their combination with pro-apoptotic drugs, MDM2-high cells tolerate them and may underlie the poor clinical efficacy of these agents.
Collapse
Affiliation(s)
- Samantha M. Bevill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Chadi A. El Farran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Eli G. Cytrynbaum
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin A. Macias
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvie E. Oldeman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kayla J. Oliveira
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Molly M. Moore
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Esmat Hegazi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Carmen Adriaens
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Fadi J. Najm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - George D. Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sonia Cohen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John T. Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicolò Riggi
- Department of Cell and Tissue Genomics (CTG), Genentech Inc, South San Francisco, CA 94080, USA
| | - Sarah E. Johnstone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bradley E. Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Albadari N, Xie Y, Liu T, Wang R, Gu L, Zhou M, Wu Z, Li W. Synthesis and biological evaluation of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold. Eur J Med Chem 2023; 255:115423. [PMID: 37130471 PMCID: PMC10246915 DOI: 10.1016/j.ejmech.2023.115423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Overexpression of both human murine double minute 2 (MDM2) and X-linked inhibitor of apoptosis protein (XIAP) is detected in tumor cells from several cancer types, including childhood acute leukemia lymphoma (ALL), neuroblastoma (NB), and prostate cancer, and is associated with disease progression and treatment resistance. In this report, we described the design and syntheses of a series of dual MDM2/XIAP inhibitors based on the tetrahydroquinoline scaffold from our previously reported lead compound JW-2-107 and tested their cytotoxicity in a panel of human cancer cell lines. The best compound identified in this study is compound 3e. Western blot analyses demonstrated that treatments with 3e decreased MDM2 and XIAP protein levels and increased expression of p53, resulting in cancer cell growth inhibition and cell death. Furthermore, compound 3e effectively inhibited tumor growth in vivo when tested using a human 22Rv1 prostate cancer xenograft model. Collectively, results in this study strongly suggest that the tetrahydroquinoline scaffold, represented by 3e and our earlier lead compound JW-2-107, has abilities to dual target MDM2 and XIAP and is promising for further preclinical development.
Collapse
Affiliation(s)
- Najah Albadari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Yang Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Tao Liu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Rui Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Lubing Gu
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Muxiang Zhou
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| |
Collapse
|
39
|
Oyedele AQK, Adelusi TI, Ogunlana AT, Ayoola MA, Adeyemi RO, Babalola MO, Ayorinde JB, Isong JA, Ajasa TO, Boyenle ID. Promising disruptors of p53-MDM2 dimerization from some medicinal plant phytochemicals: a molecular modeling study. J Biomol Struct Dyn 2023; 41:5817-5826. [PMID: 35822492 DOI: 10.1080/07391102.2022.2097313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/28/2022] [Indexed: 01/18/2023]
Abstract
Cancer is a major global health issue that has a high mortality rate. p53, which functions as a tumor suppressor, is critical in preventing tumor development by regulating the cell cycle and inducing apoptosis in damaged cells. However, the tumor suppressor function of p53 is effectively inhibited by its direct interaction with the hydrophobic cleft of MDM2 protein via multiple mechanisms As a result, restoring p53 activity by blocking the p53-MDM2 protein-protein interaction has been proposed as a compelling therapeutic strategy for cancer treatment. The use of molecular docking and phytochemical screening procedures are appraised to inhibit MDM2's hydrophobic cleft and disrupt the p53-MDM2 interaction. For this purpose, a library of 51 bioactive compounds from 10 medicinal plants was compiled and subjected to structure-based virtual screening. Out of these, only 3 compounds (Atalantoflavone, Cudraxanthone 1, and Ursolic acid) emerged as promising inhibitors of MDM2-p53 based on their binding affinities (-9.1 kcal/mol, -8.8 kcal/mol, and -8.8 kcal/mol respectively) when compared to the standard (-8.8 kcal/mol). Moreover, these compounds showed better pharmacokinetic and drug-like profiling than the standard inhibitor (Chromonotriazolopyrimidine 1). Finally, the 100 ns MD simulation analysis confirmed no significant perturbation in the conformational dynamics of the simulated binary complexes when compared to the standard. In particular, Ursolic acid was found to satisfy the molecular enumeration the most compared to the other inhibitors. Our overall molecular modeling finding shows why these compounds may emerge as potent arsenals for cancer therapeutics. Nonetheless, extensive experimental and clinical research is needed to augment their use in clinics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul-Quddus Kehinde Oyedele
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Temitope Isaac Adelusi
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Abdeen Tunde Ogunlana
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Mojeed Ashiru Ayoola
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Science, Fountain University, Osogbo, Nigeria
| | - Rofiat Oluwabusola Adeyemi
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | | | - James Babatunde Ayorinde
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Josiah Ayoola Isong
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Toheeb Olakunle Ajasa
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Ibrahim Damilare Boyenle
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| |
Collapse
|
40
|
Choudhary HB, Mandlik SK, Mandlik DS. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World J Gastrointest Pathophysiol 2023; 14:46-70. [PMID: 37304923 PMCID: PMC10251250 DOI: 10.4291/wjgp.v14.i3.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023] Open
Abstract
In the world, hepatocellular carcinoma (HCC) is among the top 10 most prevalent malignancies. HCC formation has indeed been linked to numerous etiological factors, including alcohol usage, hepatitis viruses and liver cirrhosis. Among the most prevalent defects in a wide range of tumours, notably HCC, is the silencing of the p53 tumour suppressor gene. The control of the cell cycle and the preservation of gene function are both critically important functions of p53. In order to pinpoint the core mechanisms of HCC and find more efficient treatments, molecular research employing HCC tissues has been the main focus. Stimulated p53 triggers necessary reactions that achieve cell cycle arrest, genetic stability, DNA repair and the elimination of DNA-damaged cells’ responses to biological stressors (like oncogenes or DNA damage). To the contrary hand, the oncogene protein of the murine double minute 2 (MDM2) is a significant biological inhibitor of p53. MDM2 causes p53 protein degradation, which in turn adversely controls p53 function. Despite carrying wt-p53, the majority of HCCs show abnormalities in the p53-expressed apoptotic pathway. High p53 in-vivo expression might have two clinical impacts on HCC: (1) Increased levels of exogenous p53 protein cause tumour cells to undergo apoptosis by preventing cell growth through a number of biological pathways; and (2) Exogenous p53 makes HCC susceptible to various anticancer drugs. This review describes the functions and primary mechanisms of p53 in pathological mechanism, chemoresistance and therapeutic mechanisms of HCC.
Collapse
Affiliation(s)
- Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
41
|
Premnath N, Madanat YF. Novel Investigational Agents and Pathways That May Influence the Future Management of Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:2958. [PMID: 37296920 PMCID: PMC10252053 DOI: 10.3390/cancers15112958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Acute Myeloid leukemia (AML) is a clinically heterogeneous disease with a 5-year overall survival of 32% between 2012 to 2018. The above number severely dwindles with age and adverse risk of disease, presenting opportunities for new drug development and is an area of dire unmet need. Basic science and clinical investigators across the world have been working on many new and old molecule formulations and combination strategies to improve outcomes in this disease. In this review, we discuss select promising novel agents in various stages of clinical development for patients with AML.
Collapse
Affiliation(s)
- Naveen Premnath
- Division of Hematology and Medical Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA;
| | - Yazan F. Madanat
- Division of Hematology and Medical Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA;
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
42
|
Alfadul SM, Matnurov EM, Varakutin AE, Babak MV. Metal-Based Anticancer Complexes and p53: How Much Do We Know? Cancers (Basel) 2023; 15:2834. [PMID: 37345171 DOI: 10.3390/cancers15102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
P53 plays a key role in protecting the human genome from DNA-related mutations; however, it is one of the most frequently mutated genes in cancer. The P53 family members p63 and p73 were also shown to play important roles in cancer development and progression. Currently, there are various organic molecules from different structural classes of compounds that could reactivate the function of wild-type p53, degrade or inhibit mutant p53, etc. It was shown that: (1) the function of the wild-type p53 protein was dependent on the presence of Zn atoms, and (2) Zn supplementation restored the altered conformation of the mutant p53 protein. This prompted us to question whether the dependence of p53 on Zn and other metals might be used as a cancer vulnerability. This review article focuses on the role of different metals in the structure and function of p53, as well as discusses the effects of metal complexes based on Zn, Cu, Fe, Ru, Au, Ag, Pd, Pt, Ir, V, Mo, Bi and Sn on the p53 protein and p53-associated signaling.
Collapse
Affiliation(s)
- Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Egor M Matnurov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Alexander E Varakutin
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| |
Collapse
|
43
|
Hu H, Zhao K, Fang D, Wang Z, Yu N, Yao B, Liu K, Wang F, Mei Y. The RNA binding protein RALY suppresses p53 activity and promotes lung tumorigenesis. Cell Rep 2023; 42:112288. [PMID: 36952348 DOI: 10.1016/j.celrep.2023.112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
The tumor suppressor p53 plays a pivotal role in tumor prevention. The activity of p53 is mainly restrained by the ubiquitin E3 ligase Mdm2. However, it is not well understood how the Mdm2-p53 pathway is intricately regulated. Here we report that the RNA binding protein RALY functions as an oncogenic factor in lung cancer. RALY simultaneously binds to Mdm2 and the deubiquitinating enzyme USP7. Via these interactions, RALY not only stabilizes Mdm2 by stimulating the deubiquitinating activity of USP7 toward Mdm2 but also increases the trans-E3 ligase activity of Mdm2 toward p53. Consequently, RALY enhances Mdm2-mediated ubiquitination and degradation of p53. Functionally, RALY promotes lung tumorigenesis, at least partially, via negative regulation of p53. These findings suggest that RALY destabilizes p53 by modulating the function of Mdm2 at multiple levels. Our study also indicates a critical role for RALY in promoting lung tumorigenesis via p53 inhibition.
Collapse
Affiliation(s)
- Hao Hu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Kailiang Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Debao Fang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhongyu Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Ning Yu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Bo Yao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Kaiyue Liu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Fang Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
44
|
Pant V, Sun C, Lozano G. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Cell Death Differ 2023; 30:897-905. [PMID: 36755072 PMCID: PMC10070629 DOI: 10.1038/s41418-023-01123-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 02/10/2023] Open
Abstract
Transcription factors regulate hundreds of genes and p53 is no exception. As a stress responsive protein, p53 transactivates an array of downstream targets which define its role in maintaining physiological functions of cells/tissues. Despite decades of studies, our understanding of the p53 in vivo transcriptional program is still incomplete. Here we discuss some of the physiological stressors that activate p53, the pathological and physiological implications of p53 activation and the molecular profiling of the p53 transcriptional program in maintaining tissue homeostasis. We argue that the p53 transcriptional program is spatiotemporally regulated in a tissue-specific manner and define a p53 target signature that faithfully depicts p53 activity. We further emphasize that additional in vivo studies are needed to refine the p53 transactivation profile to harness it for therapeutic purposes.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chang Sun
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guillermina Lozano
- Department of Genetics, 1515 Holcombe Blvd, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Resnick-Silverman L, Zhou R, Campbell MJ, Leibling I, Parsons R, Manfredi JJ. In vivo RNA-seq and ChIP-seq analyses show an obligatory role for the C terminus of p53 in conferring tissue-specific radiation sensitivity. Cell Rep 2023; 42:112216. [PMID: 36924496 DOI: 10.1016/j.celrep.2023.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/27/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
Thymus and spleen, in contrast to liver, are radiosensitive tissues in which p53-dependent apoptosis is triggered after whole-body radiation in vivo. Combined RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses of radiation-treated mouse organs identifies both shared and tissue-specific p53 transcriptional responses. As expected, the p53 targets shared among thymus and spleen are enriched in apoptotic targets. The inability to upregulate these genes in the liver is not due to reduced gene occupancy. Use of an engineered mouse model shows that deletion of the C terminus of p53 can confer radiation-induced expression of p53 apoptotic targets in the liver with concomitant increased cell death. Global RNA-seq analysis reveals that an additional role of the C terminus is also needed for transcriptional activation of liver-specific p53 targets. It is hypothesized that both suppression of apoptotic gene expression combined with enhanced activation of liver-specific targets confers tissue-specific radio-resistance.
Collapse
Affiliation(s)
- Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Royce Zhou
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Moray J Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy at The Ohio State University, Columbus, OH 43210, USA
| | - Ian Leibling
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
46
|
Luo J, Zhao H, Chen L, Liu M. Multifaceted functions of RPS27a: An unconventional ribosomal protein. J Cell Physiol 2023; 238:485-497. [PMID: 36580426 DOI: 10.1002/jcp.30941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
The ribosomal protein S27a (RPS27a) is cleaved from the fusion protein ubiquitin-RPS27a (Ub-RPS27a). Generally, Ub and RPS27a are coexpressed as a fusion protein but function independently after Ub is cleaved from RPS27a by a deubiquitinating enzyme. As an RP, RPS27a assembles into ribosomes, but it also functions independently of ribosomes. RPS27a is involved in the development and poor prognosis of various cancers, such as colorectal cancer, liver cancer, chronic myeloid leukemia, and renal carcinoma, and is associated with poor prognosis. Notably, the murine double minute 2/P53 axis is a major pathway through which RPS27a regulates cancer development. Moreover, RPS27a maintains sperm motility, regulates winged aphid indirect flight muscle degeneration, and facilitates plant growth. Additionally, RPS27a is a metalloprotein and mercury (Hg) biomarker. In the present review, we described the origin, structure, and biological functions of RPS27a.
Collapse
Affiliation(s)
- Jingshun Luo
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Nursing College, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Meiqing Liu
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
47
|
Kaller M, Shi W, Hermeking H. c-MYC-Induced AP4 Attenuates DREAM-Mediated Repression by p53. Cancers (Basel) 2023; 15:cancers15041162. [PMID: 36831504 PMCID: PMC9954515 DOI: 10.3390/cancers15041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The deregulated expression of the c-MYC oncogene activates p53, which is presumably mediated by ARF/INK4, as well as replication-stress-induced DNA damage. Here, we aimed to determine whether the c-MYC-inducible AP4 transcription factor plays a role in this context using a genetic approach. METHODS We used a CRISPR/Cas9 approach to generate AP4- and/or p53-deficient derivatives of MCF-7 breast cancer cells harboring an ectopic, inducible c-MYC allele. Cell proliferation, senescence, DNA damage, and comprehensive RNA expression profiles were determined after activation of c-MYC. In addition, we analyzed the expression data from primary breast cancer samples. RESULTS Loss of AP4 resulted in elevated levels of both spontaneous and c-MYC-induced DNA damage, senescence, and diminished cell proliferation. Deletion of p53 in AP4-deficient cells reverted senescence and proliferation defects without affecting DNA damage levels. RNA-Seq analyses showed that loss of AP4 enhanced repression of DREAM and E2F target genes after p53 activation by c-MYC. Depletion of p21 or the DREAM complex component LIN37 abrogated this effect. These p53-dependent effects were conserved on the level of clinical and gene expression associations found in primary breast cancer tumors. CONCLUSIONS Our results establish AP4 as a pivotal factor at the crossroads of c-MYC, E2F, and p53 target gene regulation.
Collapse
Affiliation(s)
- Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
| | - Wenjing Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, D-80336 Munich, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-89-2180-73685; Fax: +49-89-2180-73697
| |
Collapse
|
48
|
Li SY, Yoshida Y, Kubota M, Zhang BS, Matsutani T, Ito M, Yajima S, Yoshida K, Mine S, Machida T, Hayashi A, Takemoto M, Yokote K, Ohno M, Nishi E, Kitamura K, Kamitsukasa I, Takizawa H, Sata M, Yamagishi K, Iso H, Sawada N, Tsugane S, Iwase K, Shimada H, Iwadate Y, Hiwasa T. Utility of atherosclerosis-associated serum antibodies against colony-stimulating factor 2 in predicting the onset of acute ischemic stroke and prognosis of colorectal cancer. Front Cardiovasc Med 2023; 10:1042272. [PMID: 36844744 PMCID: PMC9954151 DOI: 10.3389/fcvm.2023.1042272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Autoantibodies against inflammatory cytokines may be used for the prevention of atherosclerosis. Preclinical studies consider colony-stimulating factor 2 (CSF2) as an essential cytokine with a causal relationship to atherosclerosis and cancer. We examined the serum anti-CSF2 antibody levels in patients with atherosclerosis or solid cancer. Methods We measured the serum anti-CSF2 antibody levels via amplified luminescent proximity homogeneous assay-linked immunosorbent assay based on the recognition of recombinant glutathione S-transferase-fused CSF2 protein or a CSF2-derived peptide as the antigen. Results The serum anti-CSF2 antibody (s-CSF2-Ab) levels were significantly higher in patients with acute ischemic stroke (AIS), acute myocardial infarction (AMI), diabetes mellitus (DM), and chronic kidney disease (CKD) compared with healthy donors (HDs). In addition, the s-CSF2-Ab levels were associated with intima-media thickness and hypertension. The analyzes of samples obtained from a Japan Public Health Center-based prospective study suggested the utility of s-CSF2-Ab as a risk factor for AIS. Furthermore, the s-CSF2-Ab levels were higher in patients with esophageal, colorectal, gastric, and lung cancer than in HDs but not in those with mammary cancer. In addition, the s-CSF2-Ab levels were associated with unfavorable postoperative prognosis in colorectal cancer (CRC). In CRC, the s-CSF2-Ab levels were more closely associated with poor prognosis in patients with p53-Ab-negative CRC despite the lack of significant association of the anti-p53 antibody (p53-Ab) levels with the overall survival. Conclusion S-CSF2-Ab was useful for the diagnosis of atherosclerosis-related AIS, AMI, DM, and CKD and could discriminate poor prognosis, especially in p53-Ab-negative CRC.
Collapse
Affiliation(s)
- Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Comprehensive Stroke Center, Chiba University Hospital, Chiba, Japan
| | - Masaaki Kubota
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bo-Shi Zhang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kimihiko Yoshida
- Department of Gastroenterological Surgery, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
- Department of Neurosurgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, Japan
| | - Mizuki Sata
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Katsuro Iwase
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterological Surgery, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Comprehensive Stroke Center, Chiba University Hospital, Chiba, Japan
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Comprehensive Stroke Center, Chiba University Hospital, Chiba, Japan
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
49
|
Wu HH, Leng S, Abuetabh Y, Sergi C, Eisenstat DD, Leng R. The SWIB/MDM2 motif of UBE4B activates the p53 pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:466-481. [PMID: 36865087 PMCID: PMC9971181 DOI: 10.1016/j.omtn.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The tumor suppressor p53 plays a critical role in cancer pathogenesis, and regulation of p53 expression is essential for maintaining normal cell growth. UBE4B is an E3/E4 ubiquitin ligase involved in a negative-feedback loop with p53. UBE4B is required for Hdm2-mediated p53 polyubiquitination and degradation. Thus, targeting the p53-UBE4B interactions is a promising anticancer strategy for cancer therapy. In this study, we confirm that while the UBE4B U box does not bind to p53, it is essential for the degradation of p53 and acts in a dominant-negative manner, thereby stabilizing p53. C-terminal UBE4B mutants lose their ability to degrade p53. Notably, we identified one SWIB/Hdm2 motif of UBE4B that is vital for p53 binding. Furthermore, the novel UBE4B peptide activates p53 functions, including p53-dependent transactivation and growth inhibition, by blocking the p53-UBE4B interactions. Our findings indicate that targeting the p53-UBE4B interaction presents a novel approach for p53 activation therapy in cancer.
Collapse
Affiliation(s)
- H. Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada,Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - David D. Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Avenue, University of Alberta, Edmonton, AB T6G 1Z2, Canada,Department of Pediatrics, University of Alberta, 11405 - 87 Avenue, Edmonton, AB T6G 1C9, Canada,Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, AB T6G 2H7, Canada,Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada,Corresponding author: Roger Leng, 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
50
|
Breault NM, Wu D, Dasgupta A, Chen KH, Archer SL. Acquired disorders of mitochondrial metabolism and dynamics in pulmonary arterial hypertension. Front Cell Dev Biol 2023; 11:1105565. [PMID: 36819102 PMCID: PMC9933518 DOI: 10.3389/fcell.2023.1105565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an orphan disease of the cardiopulmonary unit that reflects an obstructive pulmonary vasculopathy and presents with hypertrophy, inflammation, fibrosis, and ultimately failure of the right ventricle (RVF). Despite treatment using pulmonary hypertension (PH)-targeted therapies, persistent functional impairment reduces the quality of life for people with PAH and death from RVF occurs in approximately 40% of patients within 5 years of diagnosis. PH-targeted therapeutics are primarily vasodilators and none, alone or in combination, are curative. This highlights a need to therapeutically explore molecular targets in other pathways that are involved in the pathogenesis of PAH. Several candidate pathways in PAH involve acquired mitochondrial dysfunction. These mitochondrial disorders include: 1) a shift in metabolism related to increased expression of pyruvate dehydrogenase kinase and pyruvate kinase, which together increase uncoupled glycolysis (Warburg metabolism); 2) disruption of oxygen-sensing related to increased expression of hypoxia-inducible factor 1α, resulting in a state of pseudohypoxia; 3) altered mitochondrial calcium homeostasis related to impaired function of the mitochondrial calcium uniporter complex, which elevates cytosolic calcium and reduces intramitochondrial calcium; and 4) abnormal mitochondrial dynamics related to increased expression of dynamin-related protein 1 and its binding partners, such as mitochondrial dynamics proteins of 49 kDa and 51 kDa, and depressed expression of mitofusin 2, resulting in increased mitotic fission. These acquired mitochondrial abnormalities increase proliferation and impair apoptosis in most pulmonary vascular cells (including endothelial cells, smooth muscle cells and fibroblasts). In the RV, Warburg metabolism and induction of glutaminolysis impairs bioenergetics and promotes hypokinesis, hypertrophy, and fibrosis. This review will explore our current knowledge of the causes and consequences of disordered mitochondrial function in PAH.
Collapse
Affiliation(s)
- Nolan M. Breault
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Danchen Wu
- Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| | - Asish Dasgupta
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Stephen L. Archer
- Department of Medicine, Queen’s University, Kingston, ON, Canada,Queen’s Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Danchen Wu, ; Stephen L. Archer,
| |
Collapse
|