1
|
He C, Lv X, Liu J, Ruan J, Chen P, Huang C, Angeletti PC, Hua G, Moness ML, Shi D, Dhar A, Yang S, Murphy S, Montoute I, Chen X, Islam KN, George S, Ince TA, Drapkin R, Guda C, Davis JS, Wang C. HPV-YAP1 oncogenic alliance drives malignant transformation of fallopian tube epithelial cells. EMBO Rep 2024; 25:4542-4569. [PMID: 39271776 PMCID: PMC11467260 DOI: 10.1038/s44319-024-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
High grade serous ovarian carcinoma (HGSOC) is the most common and aggressive ovarian malignancy. Accumulating evidence indicates that HGSOC may originate from human fallopian tube epithelial cells (FTECs), although the exact pathogen(s) and/or molecular mechanism underlying the malignant transformation of FTECs is unclear. Here we show that human papillomavirus (HPV), which could reach FTECs via retrograde menstruation or sperm-carrying, interacts with the yes-associated protein 1 (YAP1) to drive the malignant transformation of FTECs. HPV prevents FTECs from natural replicative and YAP1-induced senescence, thereby promoting YAP1-induced malignant transformation of FTECs. HPV also stimulates proliferation and drives metastasis of YAP1-transformed FTECs. YAP1, in turn, stimulates the expression of the putative HPV receptors and suppresses the innate immune system to facilitate HPV acquisition. These findings provide critical clues for developing new strategies to prevent and treat HGSOC.
Collapse
Affiliation(s)
- Chunbo He
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiangmin Lv
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jiyuan Liu
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Jinpeng Ruan
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Peichao Chen
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Cong Huang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Peter C Angeletti
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Guohua Hua
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madelyn Leigh Moness
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Davie Shi
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Anjali Dhar
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Siyi Yang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Savannah Murphy
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Isabelle Montoute
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Xingcheng Chen
- Fred & Pamela Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kazi Nazrul Islam
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sophia George
- Department of Obstetrics & Gynecology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Tan A Ince
- New York Presbyterian Brooklyn Methodist Hospital and Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chittibabu Guda
- Department of Cellular and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Western Iowa and Nebraska Veteran's Affairs Medical Center, Omaha, NE, 68105, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
2
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Guo D, Zhang L, Wang X, Zheng J, Lin S. Establishment methods and research progress of livestock and poultry immortalized cell lines: A review. Front Vet Sci 2022; 9:956357. [PMID: 36118350 PMCID: PMC9478797 DOI: 10.3389/fvets.2022.956357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
An infinite cell line is one of the most favored experimental tools and plays an irreplaceable role in cell-based biological research. Primary cells from normal animal tissues undergo a limited number of divisions and subcultures in vitro before they enter senescence and die. On the contrary, an infinite cell line is a population of non-senescent cells that could proliferate indefinitely in vitro under the stimulation of external factors such as physicochemical stimulation, virus infection, or transfer of immortality genes. Cell immortalization is the basis for establishing an infinite cell line, and previous studies have found that methods to obtain immortalized cells mainly included physical and chemical stimulations, heterologous expression of viral oncogenes, increased telomerase activity, and spontaneous formation. However, some immortalized cells do not necessarily proliferate permanently even though they can extend their lifespan compared with primary cells. An infinite cell line not only avoids the complicated process of collecting primary cell, it also provides a convenient and reliable tool for studying scientific problems in biology. At present, how to establish a stable infinite cell line to maximize the proliferation of cells while maintaining the normal function of cells is a hot issue in the biological community. This review briefly introduces the methods of cell immortalization, discusses the related progress of establishing immortalized cell lines in livestock and poultry, and compares the characteristics of several methods, hoping to provide some ideas for generating new immortalized cell lines.
Collapse
|
4
|
Segatto NV, Bender CB, Seixas FK, Schachtschneider K, Schook L, Robertson N, Qazi A, Carlino M, Jordan L, Bolt C, Collares T. Perspective: Humanized Pig Models of Bladder Cancer. Front Mol Biosci 2021; 8:681044. [PMID: 34079821 PMCID: PMC8165235 DOI: 10.3389/fmolb.2021.681044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/09/2022] Open
Abstract
Bladder cancer (BC) is the 10th most common neoplasia worldwide and holds expensive treatment costs due to its high recurrence rates, resistance to therapy and the need for lifelong surveillance. Thus, it is necessary to improve the current therapy options and identify more effective treatments for BC. Biological models capable of recapitulating the characteristics of human BC pathology are essential in evaluating the effectiveness of new therapies. Currently, the most commonly used BC models are experimentally induced murine models and spontaneous canine models, which are either insufficient due to their small size and inability to translate results to clinical basis (murine models) or rarely spontaneously observed BC (canine models). Pigs represent a potentially useful animal for the development of personalized tumors due to their size, anatomy, physiology, metabolism, immunity, and genetics similar to humans and the ability to experimentally induce tumors. Pigs have emerged as suitable biomedical models for several human diseases. In this sense, the present perspective focuses on the genetic basis for BC; presents current BC animal models available along with their limitations; and proposes the pig as an adequate animal to develop humanized large animal models of BC. Genetic alterations commonly found in human BC can be explored to create genetically defined porcine models, including the BC driver mutations observed in the FGFR3, PIK3CA, PTEN, RB1, HRAS, and TP53 genes. The development of such robust models for BC has great value in the study of pathology and the screening of new therapeutic and diagnostic approaches to the disease.
Collapse
Affiliation(s)
- Natália Vieira Segatto
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Camila Bonemann Bender
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kommling Seixas
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Kyle Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Lawrence Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Aisha Qazi
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Maximillian Carlino
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Luke Jordan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Courtni Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tiago Collares
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
5
|
Pterostilbene Sensitizes Cisplatin-Resistant Human Bladder Cancer Cells with Oncogenic HRAS. Cancers (Basel) 2020; 12:cancers12102869. [PMID: 33036162 PMCID: PMC7650649 DOI: 10.3390/cancers12102869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary RAS oncoproteins are considered undruggable cancer targets. Nearly 15% of cases of bladder cancer have a mutation of HRAS. The active HRAS contributes to the tumor progression and the risk of recurrence. Using our novel gene expression screening platform, pterostilbene was identified to sensitize cisplatin-resistant bladder cancer cells with HRAS alterations via RAS-related autophagy and cell senescence pathways, suggesting a potentially chemotherapeutic role of pterostilbene for cisplatin treatment of human bladder cancer with oncogenic HRAS. Pterostilbene is a safe and readily available food ingredient in edible plants worldwide. Exploiting the principle of combination therapy on pterostilbene-enhanced biosensitivity to identify undruggable molecular targets for cancer therapy may have a great possibility to overcome the cisplatin resistance of bladder cancer. Our data make HRAS a good candidate for modulation by pterostilbene for targeted cancer therapy in combination with conventional chemotherapeutic agents cisplatin plus gemcitabine. Abstract Analysis of various public databases revealed that HRAS gene mutation frequency and mRNA expression are higher in bladder urothelial carcinoma. Further analysis revealed the roles of oncogenic HRAS, autophagy, and cell senescence signaling in bladder cancer cells sensitized to the anticancer drug cisplatin using the phytochemical pterostilbene. A T24 cell line with the oncogenic HRAS was chosen for further experiments. Indeed, coadministration of pterostilbene increased stronger cytotoxicity on T24 cells compared to HRAS wild-type E7 cells, which was paralleled by neither elevated apoptosis nor induced cell cycle arrest, but rather a marked elevation of autophagy and cell senescence in T24 cells. Pterostilbene-induced autophagy in T24 cells was paralleled by inhibition of class I PI3K/mTOR/p70S6K as well as activation of MEK/ERK (a RAS target) and class III PI3K pathways. Pterostilbene-induced cell senescence on T24 cells was paralleled by increased pan-RAS and decreased phospho-RB expression. Coadministration of PI3K class III inhibitor 3-methyladenine or MEK inhibitor U0126 suppressed pterostilbene-induced autophagy and reversed pterostilbene-enhanced cytotoxicity, but did not affect pterostilbene-elevated cell senescence in T24 cells. Animal study data confirmed that pterostilbene enhanced cytotoxicity of cisplatin plus gemcitabine. These results suggest a therapeutic application of pterostilbene in cisplatin-resistant bladder cancer with oncogenic HRAS.
Collapse
|
6
|
Mwapagha LM, Tiffin N, Parker MI. Delineation of the HPV11E6 and HPV18E6 Pathways in Initiating Cellular Transformation. Front Oncol 2017; 7:258. [PMID: 29164058 PMCID: PMC5672010 DOI: 10.3389/fonc.2017.00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022] Open
Abstract
Although high-risk human papillomaviruses (HPVs) are the major risk factors for cervical cancer they have been associated with several other cancers, such as head and neck and oral cancers. Since integration of low-risk HPV11 DNA has been demonstrated in esophageal tumor genomes, this study compared the effects of low-risk HPV11E6 and high-risk HPV18E6 on cellular gene expression. The HPV11E6 and HPV18E6 genes were cloned into an adenoviral vector and expressed in human keratinocytes (HaCaT) in order to investigate early events and to eliminate possible artifacts introduced by selective survival of fast growing cells in stable transfection experiments. HPV11E6 had very little effect on p21 and p53 gene expression, while HPV18E6 resulted in a marked reduction in both these proteins. Both HPV11E6 and HPV18E6 enabled growth of colonies in soft agar, but the level of colony formation was higher in HPV18E6 infected cells. DNA microarray analysis identified significantly differentially regulated genes involved in the cellular transformation signaling pathways. These findings suggest that HPV11E6 and HPV18E6 are important in initiating cellular transformation via deregulation of signaling pathways such as PI3K/AKT and pathways that are directly involved in DNA damage repair, cell survival, and cell proliferation. This study shows that the low-risk HPV11E6 may have similar effects as the high-risk HPV18E6 during the initial stages of infection, but at a much reduced level.
Collapse
Affiliation(s)
- Lamech M. Mwapagha
- Faculty of Health Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| | - Nicki Tiffin
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - M. Iqbal Parker
- Faculty of Health Sciences, Division of Medical Biochemistry and Structural Biology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
| |
Collapse
|
7
|
Kao YT, Wu CH, Wu SY, Lan SH, Liu HS, Tseng YS. Arsenic treatment increase Aurora-A overexpression through E2F1 activation in bladder cells. BMC Cancer 2017; 17:277. [PMID: 28420331 PMCID: PMC5394624 DOI: 10.1186/s12885-017-3253-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/01/2017] [Indexed: 12/17/2022] Open
Abstract
Background Arsenic is a widely distributed metalloid compound that has biphasic effects on cultured cells. In large doses, arsenic can be toxic enough to trigger cell death. In smaller amounts, non-toxic doses may promote cell proliferation and induces carcinogenesis. Aberration of chromosome is frequently detected in epithelial cells and lymphocytes of individuals from arsenic contaminated areas. Overexpression of Aurora-A, a mitotic kinase, results in chromosomal instability and cell transformation. We have reported that low concentration (≦1 μM) of arsenic treatment increases Aurora-A expression in immortalized bladder urothelial E7 cells. However, how arsenic induces carcinogenesis through Aurora-A activation remaining unclear. Methods Bromodeoxyuridine (BrdU) staining, MTT assay, and flow cytometry assay were conducted to determine cell proliferation. Messenger RNA and protein expression levels of Aurora-A were detected by reverse transcriptional-PCR and Western blotting, respectively. Centrosome of cells was observed by immunofluorescent staining. The transcription factor of Aurora-A was investigated by promoter activity, chromosome immunoprecipitation (ChIP), and small interfering RNA (shRNA) assays. Mouse model was utilized to confirm the relationship between arsenic and Aurora-A. Results We reveal that low dosage of arsenic treatment increased cell proliferation is associated with accumulated cell population at S phase. We also detected increased Aurora-A expression at mRNA and protein levels in immortalized bladder urothelial E7 cells exposed to low doses of arsenic. Arsenic-treated cells displayed increased multiple centrosome which is resulted from overexpressed Aurora-A. Furthermore, the transcription factor, E2F1, is responsible for Aurora-A overexpression after arsenic treatment. We further disclosed that Aurora-A expression and cell proliferation were increased in bladder and uterus tissues of the BALB/c mice after long-term arsenic (1 mg/L) exposure for 2 months. Conclusion We reveal that low dose of arsenic induced cell proliferation is through Aurora-A overexpression, which is transcriptionally regulated by E2F1 both in vitro and in vivo. Our findings disclose a new possibility that arsenic at low concentration activates Aurora-A to induce carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ting Kao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Han Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shan-Ying Wu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hui Lan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ya-Shih Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical technology, Tainan, Taiwan.
| |
Collapse
|
8
|
Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 772:23-35. [DOI: 10.1016/j.mrrev.2016.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022]
|
9
|
Ding J, Xu D, Pan C, Ye M, Kang J, Bai Q, Qi J. Current animal models of bladder cancer: Awareness of translatability (Review). Exp Ther Med 2014; 8:691-699. [PMID: 25120584 PMCID: PMC4113637 DOI: 10.3892/etm.2014.1837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
Experimental animal models are crucial in the study of biological behavior and pathological development of cancer, and evaluation of the efficacy of novel therapeutic or preventive agents. A variety of animal models that recapitulate human urothelial cell carcinoma have thus far been established and described, while models generated by novel techniques are emerging. At present a number of reviews on animal models of bladder cancer comprise the introduction of one type of method, as opposed to commenting on and comparing all classifications, with the merits of a certain method being explicit but the shortcomings not fully clarified. Thus the aim of the present study was to provide a summary of the currently available animal models of bladder cancer including transplantable (which could be divided into xenogeneic or syngeneic, heterotopic or orthotopic), carcinogen-induced and genetically engineered models in order to introduce their materials and methods and compare their merits as well as focus on the weaknesses, difficulties in operation, associated problems and translational potential of the respective models. Findings of these models would provide information for authors and clinicians to select an appropriate model or to judge relevant preclinical study findings. Pertinent detection methods are therefore briefly introduced and compared.
Collapse
Affiliation(s)
- Jie Ding
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Ding Xu
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Chunwu Pan
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Min Ye
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Jian Kang
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Qiang Bai
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| | - Jun Qi
- Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu, Shanghai 200092, P.R. China
| |
Collapse
|
10
|
Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 2014; 69-70:1-18. [PMID: 24613390 DOI: 10.1016/j.addr.2014.02.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/18/2022]
Abstract
Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed.
Collapse
|
11
|
Yang GB, Li XY, Yuan GH, Liu H, Fan MW. Immortalization and characterization of human dental papilla cells with odontoblastic differentiation. Int Endod J 2013; 46:565-72. [PMID: 23186070 DOI: 10.1111/iej.12029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 10/09/2012] [Indexed: 01/22/2023]
Abstract
AIM To establish a cell line of immortalized human dental papilla cells (hDPCs). METHODOLOGY Primary hDPCs were cultured and infected with lentivirus containing the hTERT gene. Integration and transcription of the hTERT gene were verified by PCR. The characteristics of the cells, such as morphology, proliferation and mineralization, were analysed. Also, the expression of odontoblastic-related markers including ALP, DMP1, DLX3, OSX, DSP and Nestin, was detected by immunohistochemistry and real-time RT-PCR. RESULTS hTERT gene was integrated into genomic DNA of immortalized cells (hDPC-TERT) and transcribed into mRNA. With long-time culture, hDPC-TERT bypassed senescence and grew over 120 population doublings. hDPC-TERT cells have a higher proliferation rate, but retain the phenotypic characteristics of the primary hDPCs, and so was ALP activity and mineralization activity. Furthermore, the hDPC-TERT cells express no DSP and Nestin with maintenance medium, but highly expressed DSP and Nestin after odontoblastic induction. CONCLUSIONS A line of immortalized human dental papilla cells, which remains in an undifferentiated state and has odontoblastic differentiation potential, was established. This cell line can be used as a cell model for studying the mechanism of the initiation of odontoblast differentiation.
Collapse
Affiliation(s)
- G B Yang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
12
|
DeGraff DJ, Robinson VL, Shah JB, Brandt WD, Sonpavde G, Kang Y, Liebert M, Wu XR, Taylor JA. Current preclinical models for the advancement of translational bladder cancer research. Mol Cancer Ther 2012; 12:121-30. [PMID: 23269072 DOI: 10.1158/1535-7163.mct-12-0508] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States. Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future preclinical discoveries with translational potential will require investigators to take full advantage of recent advances in molecular and animal modeling methodologies. We present an overview of current preclinical models and their potential roles in advancing our understanding of this deadly disease and for advancing care.
Collapse
Affiliation(s)
- David J DeGraff
- 1Vanderbilt University Medical Center, Nashville,Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Morandell D, Kaiser A, Herold S, Rostek U, Lechner S, Mitterberger MC, Jansen-Dürr P, Eilers M, Zwerschke W. The human papillomavirus type 16 E7 oncoprotein targets Myc-interacting zinc-finger protein-1. Virology 2011; 422:242-53. [PMID: 22099967 PMCID: PMC3268862 DOI: 10.1016/j.virol.2011.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/13/2011] [Accepted: 10/28/2011] [Indexed: 12/29/2022]
Abstract
We demonstrate that HPV-16 E7 forms a complex with Miz-1. UV-induced expression of the CDK-inhibitor p21Cip1 and subsequent cell cycle arrest depends upon endogenous Miz-1 in HPV-negative C33A cervical cancer cells containing mutated p53. Transient expression of E7 in C33A inhibits UV-induced expression of p21Cip1 and overcomes Miz-1-induced G1-phase arrest. The C-terminal E7Δ79LEDLL83-mutant with reduced Miz-1-binding capacity was impaired in its capability to repress p21Cip1 expression; whereas the pRB-binding-deficient E7C24G-mutant inhibited p21Cip1 expression similar to wild-type E7. Using ChIP, we demonstrate that endogenous E7 is bound to the endogenous p21Cip1 core-promoter in CaSki cells and RNAi-mediated knock down of Miz-1 abrogates E7-binding to the p21Cip1 promoter. Co-expression of E7 with Miz-1 inhibited Miz-1-induced p21Cip1 expression from the minimal-promoter via Miz-1 DNA-binding sites. Co-expression of E7Δ79LEDLL83 did not inhibit Miz-1-induced p21Cip1 expression. E7C24G retained E7-wild-type capability to inhibit Miz-1-dependent transactivation. These findings suggest that HPV-16 E7 can repress Miz-1-induced p21Cip1 gene expression.
Collapse
Affiliation(s)
- Dieter Morandell
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dreier K, Scheiden R, Lener B, Ehehalt D, Pircher H, Müller-Holzner E, Rostek U, Kaiser A, Fiedler M, Ressler S, Lechner S, Widschwendter A, Even J, Capesius C, Jansen-Dürr P, Zwerschke W. Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ. Virology 2010; 409:54-68. [PMID: 20970819 PMCID: PMC3003157 DOI: 10.1016/j.virol.2010.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/17/2010] [Accepted: 09/22/2010] [Indexed: 11/18/2022]
Abstract
E7 is the major oncoprotein of high-risk human papillomaviruses (HPV) which causes cervical cancer. To date E7 oncoproteins have not been investigated in cervical adenocarcinoma. In this study we generated a rabbit monoclonal anti-HPV-16 E7 antibody, RabMab42-3, which recognizes a conformational epitope in the E7 carboxy-terminal zinc-finger resulting in a strong increase in the sensitivity for the detection of cell-associated HPV-16 E7 protein relative to conventional polyclonal anti-HPV-16 E7 antibodies. Using RabMab42-3, we show that the subcellular localization of endogenous HPV-16 E7 oncoprotein varies during the cell cycle in cervical cancer cells. Moreover, we demonstrate for the first time that the HPV-16 E7 oncoprotein is abundantly expressed in cervical adenocarcinoma in situ and adenocarcinoma, suggesting an important role of HPV-16 E7 for the development of these tumors. Our findings suggest that the HPV-16 E7 oncoprotein could be a useful marker for the detection of cervical adenocarcinoma and their precursors.
Collapse
Affiliation(s)
- Kerstin Dreier
- Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yip YL, Tsang CM, Deng W, Cheung PY, Jin Y, Cheung ALM, Lung ML, Tsao SW. Expression of Epstein-Barr virus-encoded LMP1 and hTERT extends the life span and immortalizes primary cultures of nasopharyngeal epithelial cells. J Med Virol 2010; 82:1711-23. [DOI: 10.1002/jmv.21875] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Momin EN, Vela G, Zaidi HA, Quiñones-Hinojosa A. The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research. ACTA ACUST UNITED AC 2010; 6:137-148. [PMID: 20490366 DOI: 10.2174/157339510791111718] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) represent a promising new approach to the treatment of several diseases that are associated with dismal outcomes. These include myocardial damage, graft versus host disease, and possibly cancer. Although the potential therapeutic aspects of MSCs continue to be well-researched, the possible hazards of MSCs, and in particular their oncogenic capacity are poorly understood. This review addresses the oncogenic and tumor-supporting potential of MSCs within the context of cancer treatment. The risk for malignant transformation is discussed for each stage of the clinical lifecycle of MSCs. This includes malignant transformation in vitro during production phases, during insertion of potentially therapeutic transgenes, and finally in vivo via interactions with tumor stroma. The immunosuppressive qualities of MSCs, which may facilitate evasion of the immune system by a tumor, are also addressed. Limitations of the methods employed in clinical trials to date are reviewed, including the absence of long term follow-up and lack of adequate screening methods to detect formation of new tumors. Through discussions of the possible oncogenic and tumor-supporting mechanisms of MSCs, directions for future research are identified which may eventually facilitate the future clinical translation of MSCs for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Eric N Momin
- Department of Neurosurgery and Oncology, The Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | |
Collapse
|
18
|
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. Human papillomavirus (HPV) infection is necessary but not sufficient for the development of cervical cancer. Genomic instability caused by HPV allows cells to acquire additional mutations required for malignant transformation. Genomic instability in the form of polyploidy has been implicated in a causal role in cervical carcinogenesis. Polyploidy not only occurs as an early event during cervical carcinogenesis but also predisposes cervical cells to aneuploidy, an important hallmark of human cancers. Cell cycle progression is regulated at several checkpoints whose defects contribute to genomic instability.The high-risk HPVs encode two oncogenes, E6 and E7, which are essential for cellular transformation in HPV-positive cells. The ability of high-risk HPV E6 and E7 protein to promote the degradation of p53 and pRb, respectively, has been suggested as a mechanism by which HPV oncogenes induce cellular transformation. E6 and E7 abrogate cell cycle checkpoints and induce genomic instability that leads to malignant conversion.Although the prophylactic HPV vaccine has recently become available, it will not be effective for immunosuppressed individuals or those who are already infected. Therefore, understanding the molecular basis for HPV-associated cancers is still clinically relevant. Studies on genomic instability will shed light on mechanisms by which HPV induces cancer and hold promise for the identification of targets for drug development.
Collapse
Affiliation(s)
- Jason J Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
19
|
Induction of focal epithelial hyperplasia in tongue of young bk6-E6/E7 HPV16 transgenic mice. Transgenic Res 2009; 18:513-27. [PMID: 19165615 DOI: 10.1007/s11248-009-9243-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
Abstract
Squamous cell carcinoma (SCC) of the oral cavity is one of the most common neoplasms in the world. During the past 2 decades, the role of high-risk human papilloma virus (HR-HPV) has been studied and the data supporting HPV as a one of the causative agents in the development and progression of a sub-set of head and neck squamous cell carcinomas (HNSCC) has accumulated. In order to investigate the role of HR-HPV oncogene expression in early epithelial alterations in vivo, we produced transgenic mice expressing HPV16 early region genes from the promoter of the bovine keratin 6 gene (Tg[bK6-E6/E7]). In this article, we demonstrate that E6/E7 transgene was abundantly expressed and cellular proliferation was increased in the middle tongue epithelia of transgenic mice, and that in the same region young (27 weeks old) Tg[bK6-E6/E7] mice spontaneously developed histological alterations, mainly focal epithelial hyperplasia (FEH).
Collapse
|
20
|
Morandell D, Rostek U, Bouvard V, Campo-Fernández B, Fiedler M, Jansen-Dürr P, Zwerschke W. Human papillomavirus type 45 E7 is a transforming protein inducing retinoblastoma protein degradation and anchorage-independent cell cycle progression. Virology 2008; 379:20-9. [PMID: 18649911 DOI: 10.1016/j.virol.2008.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/27/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
High-risk human papillomaviruses (HPV) cause cervical cancer. The biological properties of HPV-45, the third most prevalent high-risk HPV-genotype, are unknown. We demonstrate here that the HPV-45 E7 protein transforms immortalized NIH3T3 fibroblasts, while mutations in either the conserved LXCXE sequence (C28G) or the carboxyl-terminus (Delta87LQQLF91) significantly abolish this activity. To address the mechanisms underlying cell transformation by HPV-45 E7, we investigated its impact on the cell cycle. We show that HPV-45 E7 associates with the hypophosphorylated form of the retinoblastoma protein (pRb) and induces a significant reduction in the pRb half-life which can be blocked by epoxomicin. Moreover, HPV-45 E7 induces anchorage-independent cell cycle progression of NIH3T3 cells and extends the lifespan of primary human keratinocytes. HPV-45 E7C28G did not bind pRb and could neither induce pRb-proteolysis nor promote cell cycle progression. HPV-45 E7Delta87LQQLF91 had intermediate pRb-binding affinity and retained a residual activity to induce the degradation of pRb but lost the capability to promote cell cycle progression in suspension. Another carboxyl-terminal mutant, HPV-45 E7Delta81AEDL84, showed a trend to reduced transforming activity, had reduced pRb-binding activity and lost the capability to induce pRb-degradation; however, this mutant could induce anchorage-independent cell cycle progression with the same efficiency as HPV-45 E7 wild type. In summary, these data suggest that HPV-45 E7 is a transforming protein and that abrogation of cell cycle control contributes to its oncogenic potential.
Collapse
Affiliation(s)
- Dieter Morandell
- Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, Murty VV. Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: Potential role in progression. Genes Chromosomes Cancer 2008; 47:755-65. [DOI: 10.1002/gcc.20577] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
DeVries S, Gray JW, Pinkel D, Waldman FM, Sudar D. Comparative genomic hybridization. ACTA ACUST UNITED AC 2008; Chapter 4:Unit4.6. [PMID: 18428281 DOI: 10.1002/0471142905.hg0406s06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Comparative Genomic Hybridization (CGH) is a powerful molecular cytogenetic technique that permits assessment of DNA copy number on a genome-wide scale. Of note, this methodology uses tumor DNA as a probe for fluorescence in situ hybridization (FISH) to normal metaphase chromosomes and does not require dividing cells from the tumor specimen. This unit provides protocols for CGH, for preparation of metaphase chromosomes, tumor and normal DNAs for FISH and for the microscopy and image analysis of CGH experiments.
Collapse
Affiliation(s)
- S DeVries
- University of California at San Francisco, San Francisco, USA
| | | | | | | | | |
Collapse
|
23
|
Villadsen R, Fridriksdottir AJ, Rønnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW. Evidence for a stem cell hierarchy in the adult human breast. ACTA ACUST UNITED AC 2007; 177:87-101. [PMID: 17420292 PMCID: PMC2064114 DOI: 10.1083/jcb.200611114] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cellular pathways that contribute to adult human mammary gland architecture and lineages have not been previously described. In this study, we identify a candidate stem cell niche in ducts and zones containing progenitor cells in lobules. Putative stem cells residing in ducts were essentially quiescent, whereas the progenitor cells in the lobules were more likely to be actively dividing. Cells from ducts and lobules collected under the microscope were functionally characterized by colony formation on tissue culture plastic, mammosphere formation in suspension culture, and morphogenesis in laminin-rich extracellular matrix gels. Staining for the lineage markers keratins K14 and K19 further revealed multipotent cells in the stem cell zone and three lineage-restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites in situ confirmed this pattern. The proposal that the four cell types are indeed constituents of an as of yet undescribed stem cell hierarchy was assessed in long-term cultures in which senescence was bypassed. These findings identify an adult human breast ductal stem cell activity and its earliest descendants.
Collapse
Affiliation(s)
- René Villadsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, and Zoophysiological Laboratory, University of Copenhagen, and Department of Pathology, State University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Clinically, superficial tumors (stages Ta, Tis, and T1) account for 75% to 85% of bladder neoplasms, while the remaining 15% to 25% are invasive (T2, T3, T4) or metastatic lesions at the time of initial presentation. More than 70% of patients with superficial tumors will have one or more recurrences after initial treatment, and about one third of those patients will progress and eventually die of the disease. New methods are needed to identify and monitor patients presenting with "high-risk" superficial tumors likely to develop into invasive carcinoma. Once invasive into muscle, the natural history is quite variable but highly lethal. Despite aggressive surgical resection, radiotherapy, and/or chemotherapy, the overall cure rate remains in the range of 20% to 50%. New biological determinants are needed both for proper selection of therapy and monitoring. In this review, we describe and update molecular alterations reportedly associated with bladder tumorigenesis and cancer progression. We also review novel genes and "signaling networks" identified by the use of high-throughput technologies. The concept of alterations affecting "genetic pathways" is becoming more than just a molecular biology exercise. The challenge is to evaluate such targets for therapeutic development, as well as to translate progression and outcome biomarkers into improved clinical management. Integration of data generated from in-depth clinical evaluation, histologic tumor characteristics, and validated biomarkers could provide highly accurate, predictive tools for management of the bladder cancer patient.
Collapse
|
25
|
Carmean N, Kosman JW, Leaf EM, Hudson AE, Opheim KE, Bassuk JA. Immortalization of human urothelial cells by human papillomavirus type 16 E6 and E7 genes in a defined serum-free system. Cell Prolif 2007; 40:166-84. [PMID: 17472725 PMCID: PMC6495660 DOI: 10.1111/j.1365-2184.2007.00428.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 11/15/2006] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Normal human epithelial cell cultures exhibit a limited (although different between tissues) lifespan in vitro. In previous studies, urothelial cell cultures were immortalized using retroviral transformation with human papillomavirus type 16 E6 and E7 genes, in undefined culture systems containing serum or bovine pituitary extract. OBJECTIVE Due to the variability of results in such systems, we instead developed a procedure for the immortalization of urothelial cells using a defined, serum-free culture system. METHOD AND RESULTS Immortalization through retroviral transformation with human papillomavirus type 16 E6 and E7 was successful, and transformation of urothelial cells conferred an extended over normal lifespan and restored telomerase activity. Transformed cells retained typical morphology and exhibited a similar growth rate, cytokeratin immunoreactivity pattern, and response to growth factors as observed in untransformed cells. Karyotype analysis revealed a gradual accumulation of genetic mutations that are consistent with previously reported mutations in epithelial cells transformed with human papillomavirus type 16 E6 and E7. CONCLUSION The ability to extend the in vitro lifespan of cells holds the potential to reduce the continuous need for tissue samples and to enable complete investigations with one cell line.
Collapse
Affiliation(s)
- N Carmean
- Program in Human Urothelial Biology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | |
Collapse
|
26
|
Shim JH, Kim KH, Cho YS, Choi HS, Song EY, Myung PK, Kang JS, Suh SK, Park SN, Yoon DY. Protective effect of oxidative stress in HaCaT keratinocytes expressing E7 oncogene. Amino Acids 2007; 34:135-41. [PMID: 17334903 DOI: 10.1007/s00726-007-0499-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 11/01/2006] [Indexed: 12/22/2022]
Abstract
In a previous study, we established a stable cell line which constitutively expresses E7 in HaCaT human keratinocyte cell line and identified various relevant factors including oxygen modulators affected by the E7 oncogene. E7-expressing HaCaT cells (HaCaT/E7) appeared to be more resistant to H2O2-induced cell death. Here, we demonstrate how E7 oncogene would modulate oxidative stress-induced cell death. In addition, we verified the increased expression of catalase in the HaCaT/E7 by Western blot analysis. The results suggest that the E7 oncogene would induce higher resistance to ROS-induced cell injury in the E7-infected cells via the upregulation of catalase. To investigate these paradoxical effects of high concentrations of H2O2 (500 microM-1 mM), we examined their effects on receptor mediated apoptosis, cell death via the mitochondrial pathway and modulation of apoptosis related factors. Our results revealed that HaCaT keratinocytes infected with HPV 16 E7 oncogene modulated expressions of catalase, Bcl-xL, IL-18, Fas, Bad, and cytochrome c as well as NF-kappaB, resulting in the resistance to oxidative stress-induced cell death.
Collapse
Affiliation(s)
- J-H Shim
- Laboratory of Cell and Immunobiochemistry, Division of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Crallan RA, Georgopoulos NT, Southgate J. Experimental models of human bladder carcinogenesis. Carcinogenesis 2005; 27:374-81. [PMID: 16287878 DOI: 10.1093/carcin/bgi266] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is the fifth most common cancer in the UK, yet human bladder carcinogenesis remains poorly understood and the response of bladder tumours to radio- and chemo-therapy is unpredictable. The aims of this article are to review human bladder carcinogenesis and appraise the different in vitro and in vivo approaches that have been developed to study the process. The review considers how in vitro models based on normal human urothelial (NHU) cells can be applied to human bladder cancer research. We conclude that recent advances in NHU cell culture offer novel approaches for defining urothelial tissue-specific responses to genotoxic and non-genotoxic carcinogens and elucidating the role of specific genes involved in the mechanisms of bladder carcinogenesis and malignant progression.
Collapse
Affiliation(s)
- R A Crallan
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, YO10 5YW, UK
| | | | | |
Collapse
|
28
|
Balsitis S, Dick F, Lee D, Farrell L, Hyde RK, Griep AE, Dyson N, Lambert PF. Examination of the pRb-dependent and pRb-independent functions of E7 in vivo. J Virol 2005; 79:11392-402. [PMID: 16103190 PMCID: PMC1193607 DOI: 10.1128/jvi.79.17.11392-11402.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomaviruses encode two oncogenes, E6 and E7, expressed in nearly all cervical cancers. Although E7 protein is best known for its ability to inactivate the retinoblastoma tumor suppressor protein, pRb, many other activities for E7 have been proposed in in vitro studies. Herein, we describe studies that allowed us to define unambiguously the pRb-dependent and -independent activities of E7 for the first time in vivo. In these studies, we crossed mice transgenic for human papillomavirus 16 E7 to knock-in mice genetically engineered to express a mutant form of pRb (pRb(DeltaLXCXE)) that is selectively defective for binding E7. pRb inactivation was necessary for E7 to induce DNA synthesis and to overcome differentiation-dependent cell cycle withdrawal and DNA damage-induced cell cycle arrest. While most of E7's effects on epidermal differentiation were found to require pRb inactivation, a modest delay in terminal differentiation with resulting hyperplasia was observed in E7 mice on the Rb(DeltaLXCXE) mutant background. E7-induced p21 upregulation was also pRb dependent, and genetic Rb inactivation was sufficient to reproduce this effect. While E7-mediated p21 induction was partially p53 dependent, neither p53 nor p21 induction by E7 required p19(ARF). These data show that E7 upregulates the expression of p53 and p21 via pRb-dependent mechanisms distinct from the proposed p19-Mdm2 pathway. These results extend our appreciation of the importance of pRb as a relevant target for high-risk E7 oncoproteins.
Collapse
Affiliation(s)
- Scott Balsitis
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shim JH, Cho KJ, Lee KA, Kim SH, Myung PK, Choe YK, Yoon DY. E7-expressing HaCaT keratinocyte cells are resistant to oxidative stress-induced cell death via the induction of catalase. Proteomics 2005; 5:2112-22. [PMID: 15852342 DOI: 10.1002/pmic.200401106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cervical carcinoma is one of the most prevalent cancers in women worldwide, and human papillomavirus (HPV) type 16 is the most common agent linked to human cervical carcinoma. In order to identify various relevant factors affected by the E7 oncogene, we established a stable cell line, which constitutively expressed E7 using the HaCaT human keratinocyte cell line. The increased expression and activity of catalase in the E7-expressing HaCaT cells (HaCaT/E7) were verified via matrix-assisted laser desorption/ionization-time of flight, Western blot, and reverse transcription-polymerase chain reaction analyses. The regulation of catalase by E7 was investigated by the detection of catalase promoter activity. E7 enhanced the activities of both the catalase promoter and nuclear factor-kappaB, one of the major transcription factors regulating the expression of the catalase gene. HaCaT/E7 cells produced lower quantities of intracellular reactive oxygen species (ROS), and appeared to be more resistant to H(2)O(2)-induced cell death. Moreover, in order to test the specific effects of E7 on catalase induction, the HaCaT/E7 cells were transiently transfected with E7 antisense vector, resulting in reductions in both the expression and activity of catalase, and a recovery of intracellular ROS levels, thus resulting in recovered sensitivity to H(2)O(2)-induced cell death. These results suggest that the HPV 16 E7 oncogene induces higher resistance to ROS-induced cell injury in the E7-infected cells, probably via the modulation of several anti-oxidant enzymes, including catalase.
Collapse
Affiliation(s)
- Jung-Hyun Shim
- Laboratory of Cell Biology, Korea Research Institute of Bioscience and Biotechnology, Daejeon
| | | | | | | | | | | | | |
Collapse
|
30
|
Shaw NJ, Georgopoulos NT, Southgate J, Trejdosiewicz LK. Effects of loss of p53 and p16 function on life span and survival of human urothelial cells. Int J Cancer 2005; 116:634-9. [PMID: 15825166 DOI: 10.1002/ijc.21114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human urothelial cell carcinoma evolves via the accumulation of numerous genetic alterations, with loss of p53 and p16 function representing important stages in the development of superficial lesions and their progression to malignant disease. To investigate the effects of disabling either or both proteins in otherwise normal human urothelial cells, we performed retroviral transductions with a dominant negative p53 miniprotein and/or mutant cyclin-dependent kinase 4 (CDK4R24C) in 3 independent cell lines. Although cells with disabled p53 function showed a higher proliferation rate, inactivation of neither p53 nor p16 function resulted in any extension of life span and the double-transductants failed to flourish, demonstrating that further genetic alterations are required to attain an immortalised phenotype. However, CDK4R24C transductants showed a marked increase in apoptotic susceptibility to membrane-presented CD40 ligand, being intermediate between normal cells (nonsusceptible) and transformed cells (highly susceptible). By contrast, loss of p53 function alone only slightly increased the apoptotic susceptibility of urothelial cells. These results demonstrate that loss of p16 function, while insufficient to immortalise urothelial cells, nevertheless renders the cells more vulnerable to apoptosis induced by CD40 ligation.
Collapse
Affiliation(s)
- Nicola J Shaw
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, United Kingdom
| | | | | | | |
Collapse
|
31
|
Walen KH. Spontaneous cell transformation: karyoplasts derived from multinucleated cells produce new cell growth in senescent human epithelial cell cultures. In Vitro Cell Dev Biol Anim 2004; 40:150-8. [PMID: 15479119 DOI: 10.1290/1543-706x(2004)40<150:sctkdf>2.0.co;2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, it was shown that SV40-induced cell transformation of human diploid (2N), epithelial cells was a dynamic process of nuclear and cellular events. In this process, nuclei of polyploid (above 2N) cells broke down into multinucleated cells (MNCs) by amitotic division. An induced mass karyoplast (i.e., small cell with reduced amount of cytoplasm) budding process from the MNCs produced transformed cells with extended life span (EL) and altered morphology. In this study, without the use of SV40 and no induction of karyoplast budding, the same sequence of cellular events was found to occur spontaneously for the same type of cells at replicative senescence (no mitosis). These cell transformation events were followed by phase-contrast photography of living cell cultures. Primary, diploid, epithelial cell cultures grew for two to three passages and then entered senescence. Cells remaining in the cultures after widespread cell death (mortality stage 1; M1) developed the typical large, flat-cell morphology of senescence with increased cytoplasmic volume. Some of these cells were MNCs, mostly with two to four nuclei. Cytokinesis in MNCs and spontaneous karyoplast budding from MNCs were observed, and new, limited EL cell growth was present either in foci of cells or as prolonged cell growth over one to two passages. At the end of their replicative phase, the EL cells entered another death crisis (M2) from which no cells survived. In M2-crisis, rarely transformed cells appear with immortal cell growth characteristics (i.e., cell lines). Numerous examples of fragmentation or amitosis of polyploid nuclei in the production of multinucleated cells (MNCs) are presented. Such nuclear divisions produced nuclei with unequal sizes, which suggest unbalanced chromosomal segregations. The nuclear and cellular events in cell transformation are compared with a natural (no induction) occurrence of MNC-offspring cells in mammalian placentas. The possibility of a connection between these two processes is discussed. And finally the difference in the duration of EL cell growth from SV40-MNCs versus from senescent-MNCs is ascribed to increased mutational load in SV40-induced MNCs as compared with that in senescence MNCs.
Collapse
Affiliation(s)
- Kirsten H Walen
- Viral and Rickettsial Disease Laboratory, California Department of Health Services, 850 Marina Bay Parkway, Richmond, California 94804, USA.
| |
Collapse
|
32
|
Su SJ, Yeh TM, Chuang WJ, Ho CL, Chang KL, Cheng HL, Liu HS, Cheng HL, Hsu PY, Chow NH. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem Pharmacol 2004; 69:307-18. [PMID: 15627483 DOI: 10.1016/j.bcp.2004.09.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
Genistein has been reported to be a natural chemopreventive in several types of human cancer. In our prior study, soy isoflavones were shown to induce cell cycle arrest and apoptosis of bladder cancer cells in the range of human urine excretion. This study was designed to identify the novel molecular basis underlying anti-angiogenic activities of soy isoflavones. An immortalized E6 and five human bladder cancer cell lines were studied by immunoassay, flow cytometry, functional activity, reverse transcription-polymerase chain reaction, immunoblotting, and transwell co-culture in vitro. The efficacy of soy isoflavones on angiogenesis inhibition in vivo was examined by nude mice xenograft and chick chorioallantoic membrane bioassay. Factors analyzed included angiogenic factors, matrix-degrading enzymes, and angiogenesis inhibitors. Genistein was the most potent inhibitor of angiogenesis in vitro and in vivo among the isoflavone compounds tested. It may also account for most of the reduced microvessel density of xenografts observed and the suppressed endothelial migration by soy isoflavones. Genistein exhibited a dose-dependent inhibition of expression/excretion of vascular endothelial growth factor165, platelet-derived growth factor, tissue factor, urokinase plasminogen activator, and matrix metalloprotease-2 and 9, respectively. On the other hand, there was an up-regulation of angiogenesis inhibitors-plasminogen activator inhibitor-1, endostatin, angiostatin, and thrombospondin-1. In addition, a differential inhibitory effect between immortalized uroepithelial cells and most cancer cell lines was also observed. Altogether, we discovered that tissue factor, endostatin, and angiostatin are novel molecular targets of genistein. The current investigation provides further evidence in support of soy-based foods as natural dietary inhibitors of tumor angiogenesis.
Collapse
Affiliation(s)
- Shu-Jem Su
- Department of Medical Technology, Fooyin University, Kaohsiung Hsien 831, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Grm HS, Banks L. Hpv Proteins as Targets for Therapeutic Intervention. Antivir Ther 2004. [DOI: 10.1177/135965350400900518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human papillomaviruses (HPV) are the aetiological agents of several types of anogenital tumours, particularly cervical carcinoma. Recent evidence also suggests a role for HPV in the development of squamous cell carcinomas of the skin, especially in immunocompromised individuals. HPV infection also produces a number of non-malignant, but nonetheless cosmetically unpleasant lesions. Therefore, any effective therapeutic treatment for HPV-induced diseases would be extremely beneficial both on humanitarian grounds as well as being economically very attractive. In this review, we will discuss the functions of the viral proteins that appear to be the most appropriate for the development of therapeutics aimed at the treatment of viral infection and virus-induced cancers.
Collapse
Affiliation(s)
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
34
|
Balsitis SJ, Sage J, Duensing S, Münger K, Jacks T, Lambert PF. Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo. Mol Cell Biol 2004; 23:9094-103. [PMID: 14645521 PMCID: PMC309665 DOI: 10.1128/mcb.23.24.9094-9103.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the human papillomavirus (HPV) E7 oncogene is known to contribute to the development of human cervical cancer, the mechanisms of its carcinogenesis are poorly understood. The first identified and most recognized function of E7 is its binding to and inactivation of the retinoblastoma tumor suppressor (pRb), but at least 18 other biological activities have also been reported for E7. Thus, it remains unclear which of these many activities contribute to the oncogenic potential of E7. We used a Cre-lox system to abolish pRb expression in the epidermis of transgenic mice and compared the outcome with the effects of E7 expression in the same tissue at early ages. Mice lacking pRb in epidermis showed epithelial hyperplasia, aberrant DNA synthesis, and improper differentiation. In addition, Rb-deleted epidermis (i.e., epidermis composed of cells with Rb deleted) exhibited centrosomal abnormalities and failed to arrest the cell cycle in response to ionizing radiation. Transgenic mice expressing E7 in skin display the same range of phenotypes. In sum, few differences were detected between Rb-deleted epidermis and E7-expressing epidermis in young mice. However, when both E7 was expressed and Rb was deleted in the same tissue, increased hyperplasia and dysplasia were observed. These findings indicate that inactivation of the Rb pathway can largely account for E7's phenotypes at an early age, but that pRb-independent activities of E7 are detectable in vivo.
Collapse
Affiliation(s)
- Scott J Balsitis
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, 1400 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
35
|
Arias-Pulido H, Joste N, Wheeler CM. Loss of heterozygosity on chromosome 6 in HPV-16 positive cervical carcinomas carrying the DRB1*1501-DQB1*0602 haplotype. Genes Chromosomes Cancer 2004; 40:277-84. [PMID: 15188450 DOI: 10.1002/gcc.20048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
High-risk human papillomaviruses (HPVs), specifically HPV-16 and -18, have been associated with the development of carcinoma in situ (CIS) and of invasive cervical cancer (CC). However, only a small fraction of HPV-infected women will show signs of disease progression, suggesting that other factors in the carcinogenic pathway are needed. We previously demonstrated that human leukocyte antigen (HLA) DRB1*1501-DQB1*0602 (high risk) was associated with the development of CIS and CC tumors in HPV-16-positive patients. To characterize the molecular changes that could be relevant to tumor progression, we compared the extent of loss of heterozygosity (LOH) on chromosome 6 in HPV-16-positive CIS patients who were carriers of high-risk and neutral HLA haplotypes. CIS and CC cases demonstrated similar LOH patterns. A wide range of LOH frequencies was found at 6p (10-53%) and 6q (5-28%) in CIS cases, suggesting that LOH is an early event in the carcinogenic process. A comparative analysis of LOH frequencies in the high-risk versus the neutral HLA haplotypes showed a statistically significant difference in the extent of LOH at 6p24-p25 (58.6% versus 25.8%; P = 0.018) and at 6p21.3 (79.3% versus 35.5%; P = 0.001), a region that contains the HLA complex. LOH at this region could affect genes encoding HLA class I-II molecules, as well as factors responsible for the assembly, transport, and stable expression of HLA molecules. These losses may be a reflection of both an abnormal immune response and a general genome-wide instability resulting from virus persistence.
Collapse
Affiliation(s)
- Hugo Arias-Pulido
- Department of Molecular Genetics and Microbiology, University of New Mexico, Health Sciences Center, School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
36
|
Kang HT, Lee CJ, Seo EJ, Bahn YJ, Kim HJ, Hwang ES. Transition to an irreversible state of senescence in HeLa cells arrested by repression of HPV E6 and E7 genes. Mech Ageing Dev 2004; 125:31-40. [PMID: 14706235 DOI: 10.1016/j.mad.2003.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inhibition of human papillomavirus (HPV) E6 and E7 transcription by means of the E2 protein of bovine papillomavirus 1 (BPV1) has been shown to induce acute growth arrest in HPV-positive cervical carcinoma cells. This state of arrest is marked by the expression of senescence phenotypes including SA beta-Gal activity and lipofuscin accumulation. In this study, we examined the reversibility of these phenotypes by exogenously expressing the E6 and E7 genes into HeLa cells growth-arrested by the depletion of E6/E7. Re-expression of E7 (but not E6) in 2 days following E2 transduction induced the cells to resume growth. The proliferating cells manifested the phenotype of untreated HeLa cells, suggesting that E7 is the major factor responsible for the continued proliferation and the suppression of the senescence phenotype in cervical carcinoma cells. However, E7 in 5 days following E2 transduction did not prevent HeLa cells from entering the senescent state, indicating that the arrested state becomes irreversible. Our results suggest that, upon depletion of the viral oncoproteins, a senescent state is irreversibly induced in HeLa cells after a period of commitment. The status and cellular location of certain factors involved in signal transduction and cell cycle control was altered as well along with this irreversibility transition.
Collapse
Affiliation(s)
- Hyun Tae Kang
- Department of Life Science, University of Seoul, Dongdaemungu, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Sanchez-Carbayo M, Schwarz K, Charytonowicz E, Cordon-Cardo C, Mundel P. Tumor suppressor role for myopodin in bladder cancer: loss of nuclear expression of myopodin is cell-cycle dependent and predicts clinical outcome. Oncogene 2003; 22:5298-305. [PMID: 12917631 DOI: 10.1038/sj.onc.1206616] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myopodin is a dual compartment protein that displays actin-bundling activity and redistributes between the nucleus and the cytoplasm in a differentiation-dependent and stress-induced fashion. We evaluated myopodin expression in initiation and progression of bladder cancer. Normal urothelium expresses myopodin in the cytoplasm and nuclei. Invasive bladder tumors showed decreased nuclear myopodin expression as compared to superficial lesions. This loss of nuclear myopodin expression was significantly associated with histopathological stage, tumor grade and overall patient survival in bladder tumors contained in tissue microarrays. We identified a differential nuclear expression for myopodin among bladder cancer cell lines during cell-cycle. Myopodin was present in the nucleus during G1/S in cells derived from superficial and low-grade lesions but not in those derived from invasive tumors. Loss of nuclear myopodin expression could classify bladder tumors and bladder cancer cell lines based on their histopathology. Most importantly, patients with preserved nuclear myopodin expression showed a longer survival. Nuclear myopodin expression in the context of cell-cycle progression may prove useful for staging bladder tumors and suggest a tumor suppressor role of myopodin in bladder cancer.
Collapse
Affiliation(s)
- Marta Sanchez-Carbayo
- Division of Molecular Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, NY 10021, USA.
| | | | | | | | | |
Collapse
|
38
|
Dowen SE, Neutze DM, Pett MR, Cottage A, Stern P, Coleman N, Stanley MA. Amplification of chromosome 5p correlates with increased expression of Skp2 in HPV-immortalized keratinocytes. Oncogene 2003; 22:2531-40. [PMID: 12717429 DOI: 10.1038/sj.onc.1206296] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The oncogenic HPVs immortalize primary genital keratinocytes in vitro and there is evidence that such lines represent suitable models to examine HPV-induced carcinogenesis. Early in vivo studies and more recent CGH analyses have revealed amplification of chromosome 5p in advanced stage carcinoma of the uterine cervix (CaCx). In the present study, a panel of established CaCx-derived cell lines were analysed by M-FISH to identify recurrent karyotypic abnormalities. Amplification of 5p was observed in 11 of 13 CaCx cell lines harbouring HR (high-risk) HPV. The region of 5p undergoing amplification was confirmed using human band-specific paints. The F-box protein Skp2 is present at 5p13 and its protein is present at increased levels in many cancers of an advanced stage. The HPV16-harbouring cell line W12 shows progressive morphological abnormality with in vitro passage, culminating in an invasive phenotype. The expression of Skp2 at different stages of this progression was investigated utilizing Western blot and TaqMan quantitative PCR. At medium to late passage, gain of 5p as an isochromosome was observed. Increased expression of Skp2 and a reduction in the expression of its target p27 correlated with increasing passage in this line.
Collapse
Affiliation(s)
- S E Dowen
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sanchez-Carbayo M, Capodieci P, Cordon-Cardo C. Tumor suppressor role of KiSS-1 in bladder cancer: loss of KiSS-1 expression is associated with bladder cancer progression and clinical outcome. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:609-17. [PMID: 12547718 PMCID: PMC1851149 DOI: 10.1016/s0002-9440(10)63854-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression profiles of nine bladder cancer cell lines were compared against a pool containing equal total RNA quantities of each of them. Lower expression of KiSS-1 was revealed in cells derived from the most advanced bladder tumors. When comparing 15 primary bladder tumors versus a pool of four bladder cancer cell lines, lower transcript levels of KiSS-1 were observed in the invasive bladder carcinomas as compared to superficial tumors. KiSS-1 expression ratios provided prognostic information. The expression pattern of KiSS-1 transcripts was analyzed using in situ hybridization in nine bladder cancer cells, paired normal urothelium and bladder tumor samples (n = 25), and tissue microarrays of bladder tumors (n = 173). We observed complete loss of KiSS-1 in all invasive tumors under study as compared to their respective normal urothelium. The expression of KiSS-1 was found to be significantly associated with histopathological stage. Patients with lower KiSS-1 expression showed a direct correlation with overall survival in a subset of bladder tumors whose follow-up was available (n = 69). We did not observe any significant differential KiSS-1 expression along cell cycle by sorting analysis. A potential tumor suppressor role in bladder cancer was revealed for KiSS-1. Moreover, it showed predictive value by identifying patients with poor outcome.
Collapse
Affiliation(s)
- Marta Sanchez-Carbayo
- Division of Molecular Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
40
|
Nakahara T, Nishimura A, Tanaka M, Ueno T, Ishimoto A, Sakai H. Modulation of the cell division cycle by human papillomavirus type 18 E4. J Virol 2002; 76:10914-20. [PMID: 12368334 PMCID: PMC136601 DOI: 10.1128/jvi.76.21.10914-10920.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly coupled to the differentiation program of their host epithelial cells. HPV E4 gene expression is first observed in the parabasal layers of squamous epithelia, suggesting that the E4 gene product contributes to the mechanism of differentiation-dependent virus replication, although its biological function remains unclear. We analyzed the effect of HPV type 18 E4 on cell proliferation and found that E4 expression induced cell cycle arrest at the G(2)/M boundary. The functional region of E4 necessary for the growth arrest activity was located in the central portion of the molecule, and this activity was independent of the E4-mediated collapse of cytokeratin intermediate filament structures.
Collapse
Affiliation(s)
- Tomomi Nakahara
- Laboratory of Gene Analysis, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-Ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Lee CJ, Suh EJ, Kang HT, Im JS, Um SJ, Park JS, Hwang ES. Induction of senescence-like state and suppression of telomerase activity through inhibition of HPV E6/E7 gene expression in cells immortalized by HPV16 DNA. Exp Cell Res 2002; 277:173-82. [PMID: 12083799 DOI: 10.1006/excr.2002.5554] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The E6 and E7 oncoproteins of human papillomavirus (HPV) play a major role in the development of cervical carcinoma. In this study, a recombinant adenovirus that expresses the bovine papillomavirus (BPV) E2, which has been shown to inhibit HPV early gene expression, was delivered to two HPV-immortalized cell lines as well as CaSki, a cervical carcinoma cell line. We tested whether the carcinoma and the immortal cells were equally affected by the expression of BPV E2. In all cell lines, BPV E2-mediated inhibition of HPV E6/E7 expression caused a dramatic suppression of cell growth, being preceded by the activation of the p53-Rb growth-inhibitory pathway, and a decrease in hTERT mRNA expression and telomerase activity. This suggests that the HPV E6 and E7 proteins are required not only for induction of the proliferative phenotype and telomerase activity, but also for their maintenance. In both the carcinoma and the immortal lines, the number of cells with enlarged cytoplasm and senescence-associated beta-galactosidase activity, which are markers for cellular senescence, was significantly increased. These results suggest that a senescence program exists in cells immortalized by HPV DNA as well as in cervical carcinoma cells.
Collapse
Affiliation(s)
- Chan Jae Lee
- Department of Life Science, University of Seoul, 90 Jeonnongdong, Dongdaemungu, Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Steenbergen RDM, OudeEngberink VE, Kramer D, Schrijnemakers HFJ, Verheijen RHM, Meijer CJLM, Snijders PJF. Down-regulation of GATA-3 expression during human papillomavirus-mediated immortalization and cervical carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:1945-51. [PMID: 12057898 PMCID: PMC1850837 DOI: 10.1016/s0002-9440(10)61143-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To identify cellular genes that may be involved in human papillomavirus (HPV)-mediated immortalization mRNA differential display analysis was performed on preimmortal and subsequent immortal stages of four human keratinocyte cell lines transformed by HPV type 16 or 18 DNA. This yielded a cDNA fragment encoding the transcription factor GATA-3 that was strongly reduced in intensity in all immortal stages of the four cell lines. A marked reduction in both GATA-3 mRNA and protein expression in HPV-immortalized cell lines was confirmed by reverse transcriptase-polymerase chain reaction, Western blot analysis, and immunohistochemistry and was also shown to be apparent in cervical carcinoma cell lines. Immunohistochemical analysis of cervical tissue specimens showed a clear nuclear staining for GATA-3 in normal cervical squamous epithelium (n = 14) and all cervical intraepithelial neoplasia (CIN) I (n = 6) and CIN II lesions (n = 2). In contrast, 11% (1 of 9) of CIN III lesions and 67% (8 of 12) of cervical squamous cell carcinomas revealed a complete absence of GATA-3 immunostaining. Hence, complete down-regulation of GATA-3 expression represents a rather late event during cervical carcinogenesis. Whether GATA-3 down-regulation is etiologically involved in HPV-mediated immortalization and cervical carcinogenesis remains to be examined.
Collapse
Affiliation(s)
- Renske D M Steenbergen
- Department of Pathology, Unit of Molecular Pathology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Links between human papillomaviruses (HPVs) and cervical cancer were first suspected almost 30 years ago. DNA of specific HPV types has since been found in almost all cervical cancer biopsies. HPV oncogenes that are expressed in these cells are involved in their transformation and immortalization, and are required for the progression towards malignancy. Epidemiological studies have underlined that HPVs are the main aetiological factor for cervical cancer. But how has this knowledge been translated into the clinic to allow the prevention, screening and treatment of cervical cancer?
Collapse
|
44
|
Schwarze SR, DePrimo SE, Grabert LM, Fu VX, Brooks JD, Jarrard DF. Novel pathways associated with bypassing cellular senescence in human prostate epithelial cells. J Biol Chem 2002; 277:14877-83. [PMID: 11836256 DOI: 10.1074/jbc.m200373200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular senescence forms a barrier that inhibits the acquisition of an immortal phenotype, a critical feature in tumorigenesis. The inactivation of multiple pathways that positively regulate senescence are required for immortalization. To identify these pathways in an unbiased manner, we performed DNA microarray analyses to assess the expression of 20,000 genes in human prostate epithelial cells (HPECs) passaged to senescence. These gene expression patterns were then compared with those of HPECs immortalized with the human Papillomavirus 16 E7 oncoprotein. Senescent cells display gene expression patterns that reflect their nonproliferative, differentiated phenotype and express secretory proteases and extracellular matrix components. A comparison of genes transcriptionally up-regulated in senescence to those in which expression is significantly down-regulated in immortalized HPECs identified three genes: the chemokine BRAK, DOC1, and a member of the insulin-like growth factor axis, IGFBP-3. Expression of these genes is found to be uniformly lost in human prostate cancer cell lines and xenografts, and previously, their inactivation was documented in tumor samples. Thus, these genes may function in novel pathways that regulate senescence and are inactivated during immortalization. These changes may be critical not only in allowing cells to bypass senescence in vitro but in the progression of prostate cancer in vivo.
Collapse
Affiliation(s)
- Steven R Schwarze
- Department of Surgery, Division of Urology, University of Wisconsin Medical School, Molecular and Environmental Toxicology, Madison, Wisconsin 53972, USA
| | | | | | | | | | | |
Collapse
|
45
|
Schwarze SR, Shi Y, Fu VX, Watson PA, Jarrard DF. Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells. Oncogene 2001; 20:8184-92. [PMID: 11781834 DOI: 10.1038/sj.onc.1205049] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2001] [Revised: 09/19/2001] [Accepted: 10/09/2001] [Indexed: 02/07/2023]
Abstract
Cellular senescence has been proposed to be an in vitro and in vivo block that cells must overcome in order to immortalize and become tumorigenic. To characterize these pathways, we focused on changes in the cyclin-dependent kinase inhibitors and their binding partners that underlie the cell cycle arrest at senescence. As a model, we utilized normal human prostate epithelial cell (HPEC) and human uroepithelial cell (HUC) cultures. After 30-40 population doublings cells became growth-arrested in G0/1 with a threefold decrease in Cdk2-associated activity, a point defined as pre-senescence. Temporally following this growth arrest, the cells develop a senescence morphology and express senescence-associated beta-galactosidase (SA-beta-gal). Levels of p16(INK4a) and p57(KIP2) rise in HUCs during progressive passages, whereas only p16 increases in HPEC cultures. The induced expression of p57, similar to p16, produces a senescent-like phenotype. pRB, cyclin D, p19(INK4d) and p27(KIP1) decrease in both cell types. We find that p53, p21(CIP1) and p15(INK4b) are transiently elevated in HPECs and HUCs at the pre-senescent growth arrest, then return to low proliferating levels at terminal senescence. Analysis of p53, p21(CIP1), p15(INK4b), p16(INK4a), and p57(KIP2) reveals altered expression in immortalized, non-tumorigenic HPV16 E6 and E7 prostate lines and in tumorigenic prostate cancer cells. These results indicate: (i) the existence of a subset of growth inhibiting genes elevated at the onset of the senescence, (ii) a distinct class of genes involved in the maintenance of senescence, and (iii) the frequent inactivation of these pathways during immortalization.
Collapse
Affiliation(s)
- S R Schwarze
- Department of Surgery, University of Wisconsin Comprehensive Cancer Center and the University of Wisconsin Medical School, Madison, WI 53972, USA
| | | | | | | | | |
Collapse
|
46
|
Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 2001; 20:7874-87. [PMID: 11753670 DOI: 10.1038/sj.onc.1204869] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The human papillomavirus (HPV) E6 protein is one of three oncoproteins encoded by the virus. It has long been recognized as a potent oncogene and is intimately associated with the events that result in the malignant conversion of virally infected cells. In order to understand the mechanisms by which E6 contributes to the development of human malignancy many laboratories have focused their attention on identifying the cellular proteins with which E6 interacts. In this review we discuss these interactions in the light of their respective contributions to the malignant progression of HPV transformed cells.
Collapse
Affiliation(s)
- F Mantovani
- International Centre for Genetic Engineering and Biotechnology Padriciano 99, I-34012 Trieste, Italy
| | | |
Collapse
|
47
|
Tsao SW, Wong N, Wang X, Liu Y, Wan TS, Fung LF, Lancaster WD, Gregoire L, Wong YC. Nonrandom chromosomal imbalances in human ovarian surface epithelial cells immortalized by HPV16-E6E7 viral oncogenes. CANCER GENETICS AND CYTOGENETICS 2001; 130:141-9. [PMID: 11675135 DOI: 10.1016/s0165-4608(01)00473-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We had previously immortalized human ovarian surface epithelial (HOSE) cells using HPV16E6E7 ORFs. In order to identify crucial genetic events involved during cell immortalization, the genomic profile of immortalization of five HOSE cell lines was analyzed by comparative genomic hybridization. Our results showed that chromosomal imbalance was common in HOSE cells after immortalization. The common chromosomal imbalances identified in immortal HOSE cells are: +19q13.1 (5/5 lines), -13q12 approximately qter (4/5 lines), +5q15 approximately q33 (3/5 lines), +20q11.2 approximately q13.2 (3/5 lines) and -22q11.2 approximately qter (3/5 lines). Other chromosomal imbalances, which were detected in two of the five immortal HOSE cell lines, included gains on chromosome 1 and 11q12 approximately q13, and losses on 2p, 4q, 8p, 10p and 11q14 approximately qter. The chromosomal imbalances observed in HOSE cells before immortalization include -8pter approximately p11.2, -11q23 approximately qter, -13q12 approximately qter and +19 which may represent early genetic events during cell immortalization. The genomic profile was examined in one HOSE cell line (HOSE 6-3) at various stages of immortalization. The genomic profiles of HOSE 6-3 cells after crisis were largely stable. A few additional chromosomal imbalances were detected in the immortalized HOSE cells after an extensive culture period including +11pter approximately q23, -15q23 approximately qter, and +17q12 approximately qter. Identification of nonrandom chromosomal imbalance in immortalized HOSE cells may facilitate the identification of specific chromosomes harboring genes involved in the immortalization of human ovarian surface epithelial cells.
Collapse
MESH Headings
- Cell Line
- Cell Transformation, Viral
- Cells, Cultured
- Chromosome Aberrations
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 20
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 5
- Epithelial Cells/pathology
- Female
- Genetic Techniques
- Humans
- Nucleic Acid Hybridization
- Oncogene Proteins, Viral/genetics
- Open Reading Frames
- Ovarian Neoplasms/genetics
- Ovary/pathology
- Papillomavirus E7 Proteins
- Repressor Proteins
Collapse
Affiliation(s)
- S W Tsao
- Department of Anatomy, Faculty of Medicine, University of Hong Kong, SAR, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
This article explores the possibilities of understanding the natural history of human cancers. In particular it attempts to understand precancer in cell biological or molecular rather than clinical or pathological terms. The questions discussed on the relevance of precancer in the neoplastic development are: are all cancers preceded by precancer? Is a precancer in the cell lineage characterised by hypermutability? Is there a direct DNA lineage from precancer to cancer? How many mutations have been added as a function of a number of DNA generations in the process to neoplastic transformation? Is precancer reversible? Can analysis of precancer provide a short cut to assessment of carcinogenic risk? The present data addressing these questions are discussed and the still unexplained phenomena are highlighted.
Collapse
Affiliation(s)
- J Pontén
- Department of Pathology, University of Uppsala, S-751 85 Uppsala, Sweden.
| |
Collapse
|
49
|
Vogt BL, Rossman TG. Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts -- a possible mechanism for arsenite's comutagenicity. Mutat Res 2001; 478:159-68. [PMID: 11406180 DOI: 10.1016/s0027-5107(01)00137-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenite, the most likely environmental carcinogenic form of arsenic, is not significantly mutagenic at non-toxic concentrations, but is able to enhance the mutagenicity of other agents. Evidence suggests that this comutagenic effect of arsenite is due to inhibition of DNA repair, but no specific repair enzyme has been found to be sensitive to low (<1 microM) concentrations of arsenite. To determine whether arsenite affects signaling which might alter DNA repair, this study assesses the effect of arsenite on p53-related signal transduction pathways after ionizing radiation. Long-term (14 day) low dose (0.1 microM) arsenite caused a modest increase in p53 expression in WI38 normal human fibroblasts, while only toxic (50 microM) concentrations increased p53 levels after short-term (18 h) exposure. When cells were irradiated (6 Gy), p53 and p21 protein concentrations were increased after 4h, as expected. Both long-term, low dose and short-term, high dose exposure to arsenite greatly suppressed the radiation-induced increase in p21 abundance. In addition, long-term, low dose (but not short-term, high dose) exposure to arsenite resulted in increased expression of cyclin D1. These results show that in cells treated with arsenite, p53-dependent increase in p21 expression, normally a block to cell cycle progression after DNA damage, is deficient. At the same time, low (non-toxic) exposure to arsenite enhances positive growth signaling. We suggest that the absence of normal p53 functioning, along with increased positive growth signaling in the presence of DNA damage may result in defective DNA repair and account for the comutagenic effects of arsenite.
Collapse
Affiliation(s)
- B L Vogt
- Nelson Institute of Environmental Medicine and Kaplan Cancer Center, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | |
Collapse
|
50
|
Duensing S, Münger K. Centrosome abnormalities, genomic instability and carcinogenic progression. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1471:M81-8. [PMID: 11342187 DOI: 10.1016/s0304-419x(00)00025-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Centrosome abnormalities are a frequent finding in various malignant tumors. Since centrosomes form the poles of the mitotic spindle, these abnormalities have been implicated in chromosome missegregation and the generation of aneuploid cells which is commonly found in many human neoplasms. It is a matter of debate, however, whether centrosome alterations can drive cells into aneuploidy or simply reflect loss of genomic integrity by other mechanisms. Since these two models have fundamentally different implications for the diagnostic and prognostic value of centrosome abnormalities, we will discuss the relevance of abnormal centrosomes in the context of different oncogenic events as exemplified by high-risk human papillomavirus-associated carcinogenesis.
Collapse
Affiliation(s)
- S Duensing
- Department of Pathology and Center for Cancer Biology, Harvard Medical School, Armenise Research Building, D2 544A, 200 Longwood Avenue, Boston, MA 02115-5701, USA
| | | |
Collapse
|