1
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
2
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
3
|
Shen Y, Jiang B, Zhang C, Wu Q, Li L, Jiang P. Combined Inhibition of the TGF-β1/Smad Pathway by Prevotella copri and Lactobacillus murinus to Reduce Inflammation and Fibrosis in Primary Sclerosing Cholangitis. Int J Mol Sci 2023; 24:11010. [PMID: 37446187 DOI: 10.3390/ijms241311010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic disease characterized by inflammation and fibrosis of the bile ducts. Cholestasis may lead to hepatic inflammation and fibrosis, and amelioration of cholestasis may allow recovery from inflammatory and fibrotic pathological damage. Prevotella copri (P. copri) interventions have been reported to significantly improve cholestasis and liver fibrosis in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced PSC mouse models. Even though P. copri treatment alone cannot bring about recovery from DDC-induced inflammation, it increases the abundance of Lactobacillus murinus (L. murinus) compared with DDC treatment, which has been reported to have anti-inflammatory effects. The abundance of L. murinus still not recovering to a normal level may underlie hepatic inflammation in P. copri + DDC mice. Separate or combined interventions of P. copri and L. murinus were used to investigate the molecular mechanism underlying the improvement in PSC inflammation and fibrosis. P. copri and L. murinus significantly reduced the hepatic inflammatory cell aggregation and inflammatory factor expression as well as the hepatic collagen content and fibrin factor expression in the PSC mice. Further analysis of phosphorylation and dephosphorylation levels revealed that treating the PSC mice with the P. copri and L. murinus combined intervention inhibited the activity of the DDC-activated TGF-β1/Smad pathway, thereby reducing liver inflammation and fibrosis. The combination of P. copri and L. murinus inhibits the TGF-β1/Smad pathway and reduces inflammation and fibrosis in PSC.
Collapse
Affiliation(s)
- Yu Shen
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Baorong Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Chenchen Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
4
|
You H, Zhang N, Yu T, Ma L, Li Q, Wang X, Yuan D, Kong D, Liu X, Hu W, Liu D, Kong F, Zheng K, Tang R. Hepatitis B virus X protein promotes MAN1B1 expression by enhancing stability of GRP78 via TRIM25 to facilitate hepatocarcinogenesis. Br J Cancer 2023; 128:992-1004. [PMID: 36635499 PMCID: PMC10006172 DOI: 10.1038/s41416-022-02115-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND GRP78 has been implicated in hepatocarcinogenesis. However, the clinical relevance, biological functions and related regulatory mechanisms of GRP78 in hepatitis B virus (HBV)-associated hepatoma carcinoma (HCC) remain elusive. METHODS The association between GRP78 expression and HBV-related HCC was investigated. The effects of HBV X protein (HBX) on GRP78 and MAN1B1 expression, biological functions of GRP78 and MAN1B1 in HBX-mediated HCC cells and mechanisms related to TRIM25 on GRP78 upregulation to induce MAN1B1 expression in HBX-related HCC cells were examined. RESULTS GRP78 expression was correlated with poor prognosis in HBV-positive HCC. HBX increased MAN1B1 protein expression depending on GRP78, and HBX enhanced the levels of MAN1B1 to promote proliferation, migration and PI3-K/mTOR signalling pathway activation in HCC cells. GRP78 activates Smad4 via its interaction with Smad4 to increase MAN1B1 expression in HBX-expressing HCC cells. TRIM25 enhanced the stability of GRP78 by inhibiting its ubiquitination. HBX binds to GRP78 and TRIM25 and accelerates their interaction of GRP78 and TRIM25, leading to an increase in GRP78 expression. CONCLUSIONS HBX enhances the stability of GRP78 through TRIM25 to increase the expression of MAN1B1 to facilitate tumorigenesis, and we provide new insights into the molecular mechanisms underlying HBV-induced malignancy.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ning Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tong Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Laboratory Department, The People's Hospital of Funing, Yancheng, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongchen Yuan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Feitelson MA, Arzumanyan A, Spector I, Medhat A. Hepatitis B x (HBx) as a Component of a Functional Cure for Chronic Hepatitis B. Biomedicines 2022; 10:biomedicines10092210. [PMID: 36140311 PMCID: PMC9496119 DOI: 10.3390/biomedicines10092210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Patients who are carriers of the hepatitis B virus (HBV) are at high risk of chronic liver disease (CLD) which proceeds from hepatitis, to fibrosis, cirrhosis and to hepatocellular carcinoma (HCC). The hepatitis B-encoded X antigen, HBx, promotes virus gene expression and replication, protects infected hepatocytes from immunological destruction, and promotes the development of CLD and HCC. For virus replication, HBx regulates covalently closed circular (ccc) HBV DNA transcription, while for CLD, HBx triggers cellular oxidative stress, in part, by triggering mitochondrial damage that stimulates innate immunity. Constitutive activation of NF-κB by HBx transcriptionally activates pro-inflammatory genes, resulting in hepatocellular destruction, regeneration, and increased integration of the HBx gene into the host genome. NF-κB is also hepatoprotective, which sustains the survival of infected cells. Multiple therapeutic approaches include direct-acting anti-viral compounds and immune-stimulating drugs, but functional cures were not achieved, in part, because none were yet devised to target HBx. In addition, many patients with cirrhosis or HCC have little or no virus replication, but continue to express HBx from integrated templates, suggesting that HBx contributes to the pathogenesis of CLD. Blocking HBx activity will, therefore, impact multiple aspects of the host–virus relationship that are relevant to achieving a functional cure.
Collapse
Affiliation(s)
- Mark A. Feitelson
- Room 409 Biolife Building, Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +1-215-204-8434
| | - Alla Arzumanyan
- Room 409 Biolife Building, Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran 1975933411, Iran
| |
Collapse
|
6
|
Park ES, Dezhbord M, Lee AR, Park BB, Kim KH. Dysregulation of Liver Regeneration by Hepatitis B Virus Infection: Impact on Development of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14153566. [PMID: 35892823 PMCID: PMC9329784 DOI: 10.3390/cancers14153566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The liver is unique in its ability to regenerate in response to damage. The complex process of liver regeneration consists of multiple interactive pathways. About 2 billion people worldwide have been infected with hepatitis B virus (HBV), and HBV causes 686,000 deaths each year due to its complications. Long-term infection with HBV, which causes chronic inflammation, leads to serious liver-related diseases, including cirrhosis and hepatocellular carcinoma. HBV infection has been reported to interfere with the critical mechanisms required for liver regeneration. In this review, the studies on liver tissue characteristics and liver regeneration mechanisms are summarized. Moreover, the inhibitory mechanisms of HBV infection in liver regeneration are investigated. Finally, the association between interrupted liver regeneration and hepatocarcinogenesis, which are both triggered by HBV infection, is outlined. Understanding the fundamental and complex liver regeneration process is expected to provide significant therapeutic advantages for HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eun-Sook Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Ah Ram Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
| | - Bo Bae Park
- Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05029, Korea; (E.-S.P.); (B.B.P.)
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (M.D.); (A.R.L.)
- Correspondence: ; Tel.: +82-31-299-6126
| |
Collapse
|
7
|
Spatiotemporal modulation of SMAD4 by HBx is required for cellular proliferation in hepatitis B-related liver cancer. Cell Oncol (Dordr) 2022; 45:573-589. [PMID: 35716259 DOI: 10.1007/s13402-022-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Hepatitis B virus (HBV) plays a crucial role in the progression of hepatocellular carcinoma (HCC). It is known that HBV-encoded X protein (HBx) can induce genetic alterations in some oncogenes and that SMAD4 is relevant for the development of some cancers, especially HBV-related HCC. Previously, it has been reported that HBx can promote SMAD4 protein expression in liver fibrosis and HCC but, as yet, its regulatory mechanism has not been fully elucidated. Here, we aimed to investigate the correlation between and regulatory mechanism behind HBx and SMAD4 in HCC. METHODS mRNA and protein expression of SMAD4 in HCC tissues was detected by qRT-PCR, Western blotting and IHC. CCK-8 and colony forming assays, as well as xenograft murine models were used to evaluate the effects of HBx and SMAD4 on the proliferation and tumorigenicity of HCC cells. Luciferase reporter, immunofluorescence, Co-IP and truncation assays were performed to assess the regulatory relationship between HBx and SMAD4. RESULTS We found that SMAD4 was highly expressed in HBV-positive HCC patient samples and correlated with a poor prognosis. The proliferation of HCC cells with a high SMAD4 expression was found to be enhanced in vitro and in vivo, and knocking down HBx while replenishing SMAD4 rescued HCC cell proliferation. Mechanically, we found that HBx regulates SMAD4 expression at the transcriptional level via TFII-I and can bind to SMAD4 to repress its ubiquitination. The binding region comprised the MH2 domain of SMAD4. Furthermore, we found that SMAD4 can promote HBx expression through a positive feedback mechanism. CONCLUSIONS From our data we conclude that SMAD4 is modulated spatiotemporally via both transcriptional activation and protein stabilization by HBx in HCC cells. Our data shed light on the molecular mechanism underlying HBx-induced hepatocarcinogenesis.
Collapse
|
8
|
SMAD proteins: Mediators of diverse outcomes during infection. Eur J Cell Biol 2022; 101:151204. [DOI: 10.1016/j.ejcb.2022.151204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022] Open
|
9
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Zhong S, Zhang T, Tang L, Li Y. Cytokines and Chemokines in HBV Infection. Front Mol Biosci 2021; 8:805625. [PMID: 34926586 PMCID: PMC8674621 DOI: 10.3389/fmolb.2021.805625] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a leading cause of hepatic inflammation and damage. The pathogenesis of chronic hepatitis B (CHB) infection is predominantly mediated by persistent intrahepatic immunopathology. With the characterization of unique anatomical and immunological structure, the liver is also deemed an immunological organ, which gives rise to massive cytokines and chemokines under pathogenesis conditions, having significant implications for the progression of HBV infection. The intrahepatic innate immune system is responsible for the formidable source of cytokines and chemokines, with the latter also derived from hepatic parenchymal cells. In addition, systemic cytokines and chemokines are disturbed along with the disease course. Since HBV is a stealth virus, persistent exposure to HBV-related antigens confers to immune exhaustion, whereby regulatory cells are recruited by intrahepatic chemokines and cytokines, including interleukin-10 and transforming growth factor β, are involved in such series of causal events. Although the considerable value of two types of available approved treatment, interferons and nucleos(t)ide analogues, effectively suppress HBV replication, neither of them is sufficient for optimal restoration of the immunological attrition state to win the battle of the functional or virological cure of CHB infection. Notably, cytokines and chemokines play a crucial role in regulating the immune response. They exert effects by directly acting on HBV or indirectly manipulating target immune cells. As such, specific cytokines and chemokines, with a potential possibility to serve as novel immunological interventions, combined with those that target the virus itself, seem to be promising prospects in curative CHB infection. Here, we systematically review the recent literature that elucidates cytokine and chemokine-mediated pathogenesis and immune exhaustion of HBV infection and their dynamics triggered by current mainstream anti-HBV therapy. The predictive value of disease progression or control and the immunotherapies target of specific major cytokines and chemokines in CHB infection will also be delineated.
Collapse
Affiliation(s)
- Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianling Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Medhat A, Arzumanyan A, Feitelson MA. Hepatitis B x antigen (HBx) is an important therapeutic target in the pathogenesis of hepatocellular carcinoma. Oncotarget 2021; 12:2421-2433. [PMID: 34853663 PMCID: PMC8629409 DOI: 10.18632/oncotarget.28077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is a human pathogen that has infected an estimated two billion people worldwide. Despite the availability of highly efficacious vaccines, universal screening of the blood supply for virus, and potent direct acting anti-viral drugs, there are more than 250 million carriers of HBV who are at risk for the sequential development of hepatitis, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). More than 800,000 deaths per year are attributed to chronic hepatitis B. Many different therapeutic approaches have been developed to block virus replication, and although effective, none are curative. These treatments have little or no impact upon the portions of integrated HBV DNA, which often encode the virus regulatory protein, HBx. Although given little attention, HBx is an important therapeutic target because it contributes importantly to (a) HBV replication, (b) in protecting infected cells from immune mediated destruction during chronic infection, and (c) in the development of HCC. Thus, the development of therapies targeting HBx, combined with other established therapies, will provide a functional cure that will target virus replication and further reduce or eliminate both the morbidity and mortality associated with chronic liver disease and HCC. Simultaneous targeting of all these characteristics underscores the importance of developing therapies against HBx.
Collapse
Affiliation(s)
- Arvin Medhat
- Department of Molecular Cell Biology, Azad University, North Unit, Tehran, Iran
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
13
|
Yao J, Lin C, Jiang J, Zhang X, Li F, Liu T, Diao H. lncRNA-HEIM Facilitated Liver Fibrosis by Up-Regulating TGF- β Expression in Long-Term Outcome of Chronic Hepatitis B. Front Immunol 2021; 12:666370. [PMID: 34168644 PMCID: PMC8217658 DOI: 10.3389/fimmu.2021.666370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background Chronic liver fibrosis is an inevitable stage for the development of patients with chronic hepatitis B (CHB). However, anti-fibrotic therapies have been unsuccessful so far. The biological functions and molecular mechanisms of long non-coding RNAs (lncRNAs) in the host immune system during chronic hepatitis B virus (HBV) infection, especially in fibrosis, are still largely unknown. Method The total RNA of peripheral blood mononuclear cells (PBMCs) from asymptomatic carriers (ASCs) or CHB receiving at least 8 years of anti-viral treatments was analyzed using Arraystar microarray and validated via quantitative real-time PCR (qRT-PCR). Correlation analysis was conducted based on correlation coefficients, Clusterprofile, and RNA Interactome Database (RAID). The functions of lncRNA in monocytes were determined via loss-of-function RNAi or gain-of-function lentivirus assays. The expression levels of mRNAs or proteins were evaluated using qRT-PCR, western blotting assay, or enzyme linked immunosorbent assays (ELISA). Results A total of 1,042 mRNA transcripts (630 up-regulated and 412 down-regulated) were identified being differentially expressed between ASC and CHB patients. Through enrichment analysis we focused on the transforming growth factor beta (TGF-β) signaling pathway and validated their expression in a larger cohort. Moreover, we found that lncRNA ENST00000519726 (lncRNA-HEIM) was highly expressed in monocytes and further up-regulated upon HBV infection. LncRNA-HEIM played an important role in CHB patients with long-term antiviral treatments, and its elevated expression was remarkably correlated with the TGF-β signaling pathway, especially with the two members namely TGF-β and SMAD4. Furthermore, altering the endogenous lncRNA-HEIM level in monocytes significantly affected the production of TGF-β, as well as the fibrosis of hepatic stellate cells by affecting the expression of collagen I and α-smooth muscle actin (α-SMA). Conclusion These findings not only added knowledge to the understanding of the roles of which lncRNA-HEIM played in the activation of HSCs in CHB patients with long-term medication, but also provided a promising therapeutic target in the future treatment for liver fibrosis.
Collapse
Affiliation(s)
- Jian Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fengxia Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianxing Liu
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Zhang Y, Zeng F, Han X, Weng J, Gao Y. Lineage tracing: technology tool for exploring the development, regeneration, and disease of the digestive system. Stem Cell Res Ther 2020; 11:438. [PMID: 33059752 PMCID: PMC7559019 DOI: 10.1186/s13287-020-01941-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Lineage tracing is the most widely used technique to track the migration, proliferation, and differentiation of specific cells in vivo. The currently available gene-targeting technologies have been developing for decades to study organogenesis, tissue injury repairing, and tumor progression by tracing the fates of individual cells. Recently, lineage tracing has expanded the platforms available for disease model establishment, drug screening, cell plasticity research, and personalized medicine development in a molecular and cellular biology perspective. Lineage tracing provides new views for exploring digestive organ development and regeneration and techniques for digestive disease causes and progression. This review focuses on the lineage tracing technology and its application in digestive diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Bridgewater HE, Date KL, O’Neil JD, Hu C, Arrand JR, Dawson CW, Young LS. The Epstein-Barr Virus-Encoded EBNA1 Protein Activates the Bone Morphogenic Protein (BMP) Signalling Pathway to Promote Carcinoma Cell Migration. Pathogens 2020; 9:pathogens9070594. [PMID: 32708289 PMCID: PMC7400503 DOI: 10.3390/pathogens9070594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) protein is expressed in all virus-associated malignancies, where it performs an essential role in the maintenance, replication and transcription of the EBV genome. In recent years, it has become apparent that EBNA1 can also influence cellular gene transcription. Here, we demonstrate that EBNA1 is able to stimulate the expression of the Transforming growth factor-beta (TGFβ) superfamily member, bone morphogenic protein 2 (BMP2), with consequential activation of the BMP signalling pathway in carcinoma cell lines. We show that BMP pathway activation is associated with an increase in the migratory capacity of carcinoma cells, an effect that can be ablated by the BMP antagonist, Noggin. Gene expression profiling of authentic EBV-positive nasopharyngeal carcinoma (NPC) tumours revealed the consistent presence of BMP ligands, established BMP pathway effectors and putative target genes, constituting a prominent BMP “signature” in this virus-associated cancer. Our findings show that EBNA1 is the major viral-encoded protein responsible for activating the BMP signalling pathway in carcinoma cells and supports a role for this pathway in promoting cell migration and possibly, metastatic spread.
Collapse
Affiliation(s)
- Hannah E. Bridgewater
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
| | - Kathryn L. Date
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - John D. O’Neil
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - Chunfang Hu
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - John R. Arrand
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - Christopher W. Dawson
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
| | - Lawrence S. Young
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
- Correspondence: ; Tel.: +44-2476-752-38
| |
Collapse
|
16
|
DTNA promotes HBV-induced hepatocellular carcinoma progression by activating STAT3 and regulating TGFβ1 and P53 signaling. Life Sci 2020; 258:118029. [PMID: 32619495 DOI: 10.1016/j.lfs.2020.118029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Hepatitis B virus (HBV) infection causes liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC) development, but the underlying mechanism remains poorly understood. This study aimed to investigate the roles and molecular mechanisms of Dystrobrevin-α (DTNA) in HBV-induced liver cirrhosis and HCC pathogenesis. METHODS DTNA expression was bioinformatically analyzed using the GEO database. DTNA expression was silenced by transfection with shRNAs. Cell proliferation and apoptosis were evaluated by MTT and flow cytometry respectively. The expression of genes in mRNA or protein levels was assessed by quantitative RT-PCR and western blotting. The interaction between proteins was predicted with the String and GCBI online softwares, and then confirmed by co-immunoprecipitation. Animal models were established by injecting nude mice with AVV8-HBV1.3 vector. RESULTS Bioinformatics analysis showed a significantly increase in DTNA expression in HBV-positive liver cirrhosis and HCC patients. HBV infection caused a significantly increase in DTNA expression in HCC cell lines HepAD38 and HepG2.2.15. DTNA knockdown suppressed proliferation and promoted apoptosis of HBV-infected HepAD38 and HepG2.2.15 cells. HBV induced elevated expression of fibrosis-related genes Collagen II and TGFβ1 in LO-2 cells, which were suppressed by DTNA knockdown. DTNA directly binded with STAT3 protein to promote STAT3 phosphorylation and TGFβ1 expression and repress P53 expression in HBV-infected HepAD38 and LO-2 cells. The DTNA/STAT3 axis was activated during HBV-induced fibrosis, cirrhosis and HCC development in mouse model. CONCLUSION DTNA binds with and further activates STAT3 to induce TGFβ1 expression and repress P53 expression, thus promoting HBV-induced liver fibrosis, cirrhosis and hepatocellular carcinoma progression.
Collapse
|
17
|
The Regulatory Role of MicroRNA in Hepatitis-B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) Pathogenesis. Cells 2019; 8:cells8121504. [PMID: 31771261 PMCID: PMC6953055 DOI: 10.3390/cells8121504] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) is an intractable public health problem in developing countries that is compounded by limited early detection and therapeutic options. Despite the early promise of utilizing the regulatory role of miRNA in liver cancer, this field remains largely in the work-in-progress phase. This exploratory review paper adopts a broad focus in order to collate evidence of the regulatory role of miRNA in each stage of the HBV-HCC continuum. This includes the regulatory role of miRNA in early HBV infection, chronic inflammation, fibrosis/cirrhosis, and the onset of HCC. The paper specifically investigates HBV dysregulated miRNA that influence the expression of the host/HBV genome in HBV-HCC pathogenesis and fully acknowledges that this does not cover the full spectrum of dysregulated miRNA. The sheer number of dysregulated miRNA in each phase support a hypothesis that future therapeutic interventions will need to consider incorporating multiple miRNA panels.
Collapse
|
18
|
Dong KS, Chen Y, Yang G, Liao ZB, Zhang HW, Liang HF, Chen XP, Dong HH. TGF-β1 accelerates the hepatitis B virus X-induced malignant transformation of hepatic progenitor cells by upregulating miR-199a-3p. Oncogene 2019; 39:1807-1820. [PMID: 31740785 PMCID: PMC7033045 DOI: 10.1038/s41388-019-1107-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
Increasing evidence has suggested that liver cancer arises partially from transformed hepatic progenitor cells (HPCs). However, the detailed mechanisms underlying HPC transformation are poorly understood. In this study, we provide evidence linking the coexistence of hepatitis B virus X protein (HBx) and transforming growth factor beta 1 (TGF-β1) with miR-199a-3p in the malignant transformation of HPCs. The examination of liver cancer specimens demonstrated that HBx and TGF-β1 expression was positively correlated with epithelial cell adhesion molecule (EpCAM) and cluster of differentiation 90 (CD90). Importantly, EpCAM and CD90 expression was much higher in the specimens expressing both high HBx and high TGF-β1 than in those with high HBx or high TGF-β1 and the double-low-expression group. HBx and TGF-β1 double-high expression was significantly associated with poor prognosis in primary liver cancer. We also found that HBx and TGF-β1 induced the transformation of HPCs into hepatic cancer stem cells and promoted epithelial–mesenchymal transformation, which was further enhanced by concomitant HBx and TGF-β1 exposure. Moreover, activation of the c-Jun N-terminal kinase (JNK)/c-Jun pathway was involved in the malignant transformation of HPCs. miR-199a-3p was identified as a significantly upregulated microRNA in HPCs upon HBx and TGF-β1 exposure, which were shown to promote miR-199a-3p expression via c-Jun-mediated activation. Finally, we found that miR-199a-3p was responsible for the malignant transformation of HPCs. In conclusion, our results provide evidence that TGF-β1 cooperates with HBx to promote the malignant transformation of HPCs through a JNK/c-Jun/miR-199a-3p-dependent pathway. This may open new avenues for therapeutic interventions targeting the malignant transformation of HPCs in treating liver cancer.
Collapse
Affiliation(s)
- Ke-Shuai Dong
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital, Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Yan Chen
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Bin Liao
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Wei Zhang
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han-Hua Dong
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Activin-A in the regulation of immunity in health and disease. J Autoimmun 2019; 104:102314. [PMID: 31416681 DOI: 10.1016/j.jaut.2019.102314] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/08/2023]
Abstract
The TGF-β superfamily of cytokines plays pivotal roles in the regulation of immune responses protecting against or contributing to diseases, such as, allergy, autoimmunity and cancer. Activin-A, a member of the TGF-β superfamily, was initially identified as an inducer of follicle-stimulating hormone secretion. Extensive research over the past decades illuminated fundamental roles for activin-A in essential biologic processes, including embryonic development, stem cell maintenance and differentiation, haematopoiesis, cell proliferation and tissue fibrosis. Activin-A signals through two type I and two type II receptors which, upon ligand binding, activate their kinase activity, phosphorylate the SMAD2 and 3 intracellular signaling mediators that form a complex with SMAD4, translocate to the nucleus and activate or silence gene expression. Most immune cell types, including macrophages, dendritic cells (DCs), T and B lymphocytes and natural killer cells have the capacity to produce and respond to activin-A, although not in a similar manner. In innate immune cells, including macrophages, DCs and neutrophils, activin-A exerts a broad range of pro- or anti-inflammatory functions depending on the cell maturation and activation status and the spatiotemporal context. Activin-A also controls the differentiation and effector functions of Th cell subsets, including Th9 cells, TFH cells, Tr1 Treg cells and Foxp3+ Treg cells. Moreover, activin-A affects B cell responses, enhancing mucosal IgA secretion and inhibiting pathogenic autoantibody production. Interestingly, an array of preclinical and clinical studies has highlighted crucial functions of activin-A in the initiation, propagation and resolution of human diseases, including autoimmune diseases, such as, systemic lupus erythematosus, rheumatoid arthritis and pulmonary alveolar proteinosis, in allergic disorders, including allergic asthma and atopic dermatitis, in cancer and in microbial infections. Here, we provide an overview of the biology of activin-A and its signaling pathways, summarize recent studies pertinent to the role of activin-A in the modulation of inflammation and immunity, and discuss the potential of targeting activin-A as a novel therapeutic approach for the control of inflammatory diseases.
Collapse
|
20
|
Sakai S, Ohhata T, Kitagawa K, Uchida C, Aoshima T, Niida H, Suzuki T, Inoue Y, Miyazawa K, Kitagawa M. Long Noncoding RNA ELIT-1 Acts as a Smad3 Cofactor to Facilitate TGFβ/Smad Signaling and Promote Epithelial-Mesenchymal Transition. Cancer Res 2019; 79:2821-2838. [PMID: 30952633 DOI: 10.1158/0008-5472.can-18-3210] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/12/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
TGFβ is involved in various biological processes, including development, differentiation, growth regulation, and epithelial-mesenchymal transition (EMT). In TGFβ/Smad signaling, receptor-activated Smad complexes activate or repress their target gene promoters. Smad cofactors are a group of Smad-binding proteins that promote recruitment of Smad complexes to these promoters. Long noncoding RNAs (lncRNA), which behave as Smad cofactors, have thus far not been identified. Here, we characterize a novel lncRNA EMT-associated lncRNA induced by TGFβ1 (ELIT-1). ELIT-1 was induced by TGFβ stimulation via the TGFβ/Smad pathway in TGFβ-responsive cell lines. ELIT-1 depletion abrogated TGFβ-mediated EMT progression and expression of TGFβ target genes including Snail, a transcription factor critical for EMT. A positive correlation between high expression of ELIT-1 and poor prognosis in patients with lung adenocarcinoma and gastric cancer suggests that ELIT-1 may be useful as a prognostic and therapeutic target. RIP assays revealed that ELIT-1 bound to Smad3, but not Smad2. In conjunction with Smad3, ELIT-1 enhanced Smad-responsive promoter activities by recruiting Smad3 to the promoters of its target genes including Snail, other TGFβ target genes, and ELIT-1 itself. Collectively, these data show that ELIT-1 is a novel trans-acting lncRNA that forms a positive feedback loop to enhance TGFβ/Smad3 signaling and promote EMT progression. SIGNIFICANCE: This study identifies a novel lncRNA ELIT-1 and characterizes its role as a positive regulator of TGFβ/Smad3 signaling and EMT.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2821/F1.large.jpg.
Collapse
Affiliation(s)
- Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kyoko Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takuya Aoshima
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Shizuoka, Japan.
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
21
|
Zhou J, Zhang C, Zhou B, Jiang D. miR-183 modulated cell proliferation and apoptosis in ovarian cancer through the TGF-β/Smad4 signaling pathway. Int J Mol Med 2019; 43:1734-1746. [PMID: 30720057 PMCID: PMC6414177 DOI: 10.3892/ijmm.2019.4082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
An increasing body of evidence has revealed that the aberrant expression of microRNAs (miRNAs/miRs) is involved in the development and progression of ovarian cancer (OC). miR-183 has been demonstrated to act as a tumor suppressor and oncogene in various types of human cancers. However, the biological role of miR-183 in OC still remains unclear. The aim of the present study was to investigate the role of miR-183 and evaluate its underlying mechanism in OC. In the present study, miR-183 was observed to be upregulated in OC tissues and cell lines as determined by reverse transcription-quantitative polymerase chain reaction. The effects of miR-183 on OC were further investigated via western blotting, MTT, wound healing, Transwell and immunofluorescence analyses. Downregulation of miR-183 markedly inhibited cell proliferation, migration and invasion, and promoted apoptosis in OC cells. Furthermore, it was initially confirmed that mothers against decapentaplegic homolog 4 (Smad4) was identified as an efficient target of miR-183 by luciferase activity assay. Finally, the results revealed that miR-183 directly regulated biological function via the transforming growth factor (TGF)-β/Smad4 signaling pathway in OC cells. In conclusion, the results of the present study suggested that miR-183 exerted tumor-promoting roles in OC, at least partially by regulating Smad4 via the TGF-β/Smad4 signaling pathway. Therefore, miR-183 may serve as a potential target for the diagnosis and prognosis of OC.
Collapse
Affiliation(s)
- Junhui Zhou
- Department of Nursing, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Caixia Zhang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bo Zhou
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Daqiong Jiang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
22
|
Pang X, Tang YJ, Ren XH, Chen QM, Tang YL, Liang XH. Microbiota, Epithelium, Inflammation, and TGF-β Signaling: An Intricate Interaction in Oncogenesis. Front Microbiol 2018; 9:1353. [PMID: 29997586 PMCID: PMC6029488 DOI: 10.3389/fmicb.2018.01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/05/2018] [Indexed: 02/05/2023] Open
Abstract
Microbiota has been widely considered to play a critical role in human carcinogenesis. Recent evidence demonstrated that microbiota, epithelial barrier and inflammation has made up a tightly interdependent triangle during the process of carcinogenesis. Hence, we discussed the triangle relationship of microbiota dysbiosis, epithelial barrier dysfunction and dysregulated immune responses to elucidate the mechanisms by which microbiota induces carcinogenesis, especially highlighting the reciprocal crosstalk between transforming growth factor-β signaling and every side of the tumorigenic triangle. This sophisticated interaction will provide insight into the basic mechanisms of carcinogenesis and may bring new hope to cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Xin Pang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xiao-Hua Ren
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Abstract
Memory cytotoxic T lymphocytes (CTLs) are able to provide protections to the host against repeated insults from intracellular pathogens. However, it has not been completely understood how the effector functions of memory CTLs are induced upon antigen challenge, which is directly related to the efficacy of their protection. Third signal cytokines, such as IL-12 and type I interferon, have been suggested to be involved in the protective function of memory CTLs, but direct evidence is warranted. In this report, we found that memory CTLs need to be reactivated to exert effector functions. Infusion of a large population of quiescent memory CTLs did not lead to cancer control in tumor-bearing mice, whereas infusion of a reactivated memory CTL population did. This reactivation of memory CTLs requires cytokines such as IL-12 in addition to antigen but was less dependent upon costimulation and IL-2 compared to naive CTLs. Memory CTLs responded more quickly and with greater strength than their naive counterparts upon stimulation, which is associated with higher upregulation of important transcription factors such as T-bet and phosphorylated STAT4. In addition, memory CTLs underwent less expansion than naive CTLs upon pathogen challenge. In conclusion, effector functions of established memory CTLs may be affected by certain cytokines such as IL-12 and type I IFN. Thus, a pathogen's ability to induce cytokines could contribute to the efficacy of protection of an established memory CTL population.
Collapse
|
24
|
Mirzaei H, Faghihloo E. Viruses as key modulators of the TGF-β pathway; a double-edged sword involved in cancer. Rev Med Virol 2018; 28:e1967. [PMID: 29345394 PMCID: PMC7169117 DOI: 10.1002/rmv.1967] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-β (TGF-β) signaling pathway is a key network in cell signaling that controls vital processes such as proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and migration, thus acting as a double-edged sword in normal development and diseases, in particular organ fibrosis, vascular disorders, and cancer. Early in tumorigenesis, the pathway exerts anti-tumor effects through suppressing cell cycle and inducing apoptosis, while during late stages, it functions as a tumor promoter by enhancing tumor invasiveness and metastasis. This signaling pathway can be perturbed by environmental and genetic factors such as microbial interference and mutation, respectively. In this way, the present review describes the modulation of the TGF-β pathway by oncogenic human viral pathogens and other viruses. The main mechanisms by which viruses interferes with TGF-β signaling seems to be through (1) the alteration of either TGF-β protein expression or activation, (2) the modulation of the TGF-β receptors or SMADs factors (by interfering with their levels and functions), (3) the alteration of none-SMAD pathways, and (4) indirect interaction with the pathway by the modulation of transcriptional co-activator/repressor and regulators of the pathway. Given the axial role of this pathway in tumorigenesis, it can be regarded as an attractive target for cancer therapy. Hence, further investigations on this subject may represent molecular targets among either TGF-β signaling molecules or viral factors for the treatment and management of viral infection consequences such as cancer.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Department of Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
- Hepatitis Research CenterLorestan University of Medical SciencesKhorramabadIRIran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
25
|
Liu Y, Xu Y, Ma H, Wang B, Xu L, Zhang H, Song X, Gao L, Liang X, Ma C. Hepatitis B virus X protein amplifies TGF-β promotion on HCC motility through down-regulating PPM1a. Oncotarget 2018; 7:33125-35. [PMID: 27121309 PMCID: PMC5078080 DOI: 10.18632/oncotarget.8884] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/02/2016] [Indexed: 12/26/2022] Open
Abstract
Over-activation of transforming growth factor-β (TGF-β) signaling pathway promotes cell migration and invasion in hepatocellular carcinoma (HCC). The Hepatitis B virus X protein (HBx) is involved in the enhancement of TGF-β signaling pathway in HCC while the mechanism remains unclear. Protein phosphatase magnesium dependent 1A (PPM1a) functions as a phosphatase essential for terminating the TGF-β signaling pathway by dephosphorylating p-Smad2/3. In this study, we found that HBx dose-dependently downregulated PPM1a protein level in the presence of TGF-β, while having no effect on its mRNA level. Further study showed that HBx increased the ubiquitination of PPM1a and accelerated its proteasomal degradation. Restoration of PPM1a almost completely abrogated HBx mediated promotion on HCC migration and invasion. This involvement of PPM1a in HBx-related HCC was further confirmed with immunohistochemical analysis in HCC tissue. Compared with paired pericarcinous tissue, HCC tissue showed decreased PPM1a level. Besides, PPM1a level is negatively correlated with HBx expression. Taken together, our present study suggests that HBx-induced degradation of PPM1a is a novel mechanism for over-activation of TGF-β pathway in HCC development, which might provide potential candidates for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Yong Xu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Hongxin Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Bo Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Leiqi Xu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Hualin Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Medicine, Jinan, Shandong, 250012 P.R. China
| |
Collapse
|
26
|
de la Fuente C, Pinkham C, Dabbagh D, Beitzel B, Garrison A, Palacios G, Hodge KA, Petricoin EF, Schmaljohn C, Campbell CE, Narayanan A, Kehn-Hall K. Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection. PLoS One 2018; 13:e0191983. [PMID: 29408900 PMCID: PMC5800665 DOI: 10.1371/journal.pone.0191983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Rift Valley fever virus (RVFV) infects both ruminants and humans leading to a wide variance of pathologies dependent on host background and age. Utilizing a targeted reverse phase protein array (RPPA) to define changes in signaling cascades after in vitro infection of human cells with virulent and attenuated RVFV strains, we observed high phosphorylation of Smad transcription factors. This evolutionarily conserved family is phosphorylated by and transduces the activation of TGF-β superfamily receptors. Moreover, we observed that phosphorylation of Smad proteins required active RVFV replication and loss of NSs impaired this activation, further corroborating the RPPA results. Gene promoter analysis of transcripts altered after RVFV infection identified 913 genes that contained a Smad-response element. Functional annotation of these potential Smad-regulated genes clustered in axonal guidance, hepatic fibrosis and cell signaling pathways involved in cellular adhesion/migration, calcium influx, and cytoskeletal reorganization. Furthermore, chromatin immunoprecipitation confirmed the presence of a Smad complex on the interleukin 1 receptor type 2 (IL1R2) promoter, which acts as a decoy receptor for IL-1 activation.
Collapse
Affiliation(s)
- Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Deemah Dabbagh
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Brett Beitzel
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Aura Garrison
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kimberley Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Connie Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | | | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
27
|
Pan X, Zhu F, Li G, Cao H, Liu J. HBx induces expression of CTGF in the transfected hepatoma cell line HepG2. Future Virol 2018. [DOI: 10.2217/fvl-2017-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To investigate the effect of HBx on CTGF expression by hepatocytes. Materials & methods: HepG2 cells were transfected with the full-length gene of HBV, HBV protein-expressing plasmids, rhTGFβ1, LY2109761 or Smad2 siRNA, respectively, using Lipofectamine 3000. CTGF expression was detected by real-time PCR, ELISA, respectively. Then the effect of IL-32 on CTGF promoter was assayed by the Dual Luciferase® Reporter Assay System. Results: We found that HBx could induce CTGF expression by HepG2 cells in a concentration-dependent manner. CTGF expression induced by HBx employed the activation of TGFβ1-Smad2 signal pathway. Inhibition of TGFβ1 or Smad2 decreased CTGF expression induced by HBx. Conclusion: HBV might be involved in the pathogenesis of liver fibrosis through the HBx-induced CTGF expression.
Collapse
Affiliation(s)
- Xingfei Pan
- Department of Infectious Diseases, the 3rd Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Fengqin Zhu
- Department of Gastroenterology, the Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Gang Li
- Department of Infectious Diseases, the 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hong Cao
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Bowel Disease, Wuhan 430071, China
| |
Collapse
|
28
|
Guo P, Wang Y, Dai C, Tao C, Wu F, Xie X, Yu H, Zhu Q, Li J, Ye L, Yu F, Shan Y, Yu Z, Dhanasekaran R, Zheng R, Chen G. Ribosomal protein S15a promotes tumor angiogenesis via enhancing Wnt/β-catenin-induced FGF18 expression in hepatocellular carcinoma. Oncogene 2017; 37:1220-1236. [DOI: 10.1038/s41388-017-0017-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
|
29
|
Thabet K, Chan HLY, Petta S, Mangia A, Berg T, Boonstra A, Brouwer WP, Abate ML, Wong VWS, Nazmy M, Fischer J, Liddle C, George J, Eslam M. The membrane-bound O-acyltransferase domain-containing 7 variant rs641738 increases inflammation and fibrosis in chronic hepatitis B. Hepatology 2017; 65:1840-1850. [PMID: 28109005 DOI: 10.1002/hep.29064] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/18/2016] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
UNLABELLED Chronic hepatitis B (CHB) is characterized by hepatic inflammation that promotes progression to cirrhosis and predisposes to the development of hepatocellular carcinoma (HCC). Subtle interindividual genetic variation as well as viral and environmental factors interact to determine disease progression between individuals. Recently, the rs641738 membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) polymorphism was demonstrated to influence histological liver damage in alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C, but no data are available for CHB. We evaluated rs641738 influence on disease severity in a cohort of 1,101 patients with CHB. Forty-two patients underwent gene expression analysis to assess the functional consequences of rs641738 on hepatic MBOAT7 expression. The minor allele (T) of rs641738 was associated with greater inflammation (odds ratio [OR], 1.45; 95% confidence interval [CI], 1.06-1.95; P = 0.001) and fibrosis (OR = 1.31; 95% CI, 1.19-1.92; P = 0.01). Risk allele frequency in whites (0.43) was greater than in Chinese (0.24), translating to a larger size effect in the former. The rs641738 (T) allele was associated with lower hepatic MBOAT7 expression (P = 0.008), and the latter was associated with serum liver enzymes and inflammation. Neither patatin-like phospholipase domain-containing protein 3 rs738409 nor transmembrane 6 superfamily member 2 rs58542926 polymorphisms influenced disease severity. CONCLUSION In patients with CHB, MBOAT7 rs641738 influences hepatic inflammation and fibrosis stage. (Hepatology 2017;65:1840-1850).
Collapse
Affiliation(s)
- Khaled Thabet
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Henry Lik Yuen Chan
- Department of Medicine and Therapeutics, Institute of Digestive Disease and State Key Laboratory of Digestive Disease, the Chinese University of Hong Kong
| | - Salvatore Petta
- Sezione di Gastroenterologia, DiBiMIS, University of Palermo, Palermo, Italy
| | - Alessandra Mangia
- Division of Hepatology, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem P Brouwer
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maria Lorena Abate
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Turin, Turin, Italy
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease and State Key Laboratory of Digestive Disease, the Chinese University of Hong Kong
| | - Maiiada Nazmy
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| |
Collapse
|
30
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 427] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
31
|
Zhou L, Wen J, Huang Z, Nice EC, Huang C, Zhang H, Li Q. Redox proteomics screening cellular factors associated with oxidative stress in hepatocarcinogenesis. Proteomics Clin Appl 2016; 11. [PMID: 27763721 DOI: 10.1002/prca.201600089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
Abstract
Liver cancer is a major global health problem being the sixth most common cancer and the third cause of cancer-related death, with hepatocellular carcinoma (HCC) representing more than 90% of primary liver cancers. Mounting evidence suggests that, compared with their normal counterparts, many types of cancer cell have increased levels of ROS. Therefore, cancer cells need to combat high levels of ROS, especially at early stages of tumor development. Recent studies have revealed that ROS-mediated regulation of redox-sensitive proteins (redox sensors) is involved in the pathogenesis and/or progression of many human diseases, including cancer. Unraveling the altered functions of redox sensors and the underlying mechanisms in hepatocarcinogenesis is critical for the development of novel cancer therapeutics. For this reason, redox proteomics has been developed for the high-throughput screening of redox sensors, which will benefit the development of novel therapeutic strategies for the treatment of HCC. In this review, we will briefly introduce several novel redox proteomics techniques that are currently available to study various oxidative modifications in hepatocarcinogenesis and summarize the most important discoveries in the study of redox processes related to the development and progression of HCC.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, P. R. China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.,Visiting professor, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Haiyuan Zhang
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| | - Qifu Li
- Key Laboratory of Tropical Diseases and Translational Medicine of Ministry of Education & Department of Neurology, the First Affiliated Hospital of Hainan Medical University, Haikou, P. R. China
| |
Collapse
|
32
|
Yu M, Lin Y, Zhou Y, Jin H, Hou B, Wu Z, Li Z, Jian Z, Sun J. MiR-144 suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SMAD4. Onco Targets Ther 2016; 9:4705-14. [PMID: 27536132 PMCID: PMC4973778 DOI: 10.2147/ott.s88233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background/aim Increasing evidence show microRNAs (miRNAs) are engaged in hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of miR-144 in HCC, as well as to identify its underlying mechanism. Methods The expression levels of miR-144 were assessed in multiple HCC cell lines, as well as in liver tissues from patients with HCC. We further examined the effects of miR-144 on HCC. The molecular target of miR-144 was identified using a computer algorithm and confirmed experimentally. Results We found that the levels of miR-144 were frequently downregulated in human HCC tissues and cell lines, and overexpression of miR-144 dramatically inhibited HCC metastasis, invasion, cell cycle, epithelial–mesenchymal transition, and chemoresistance. We further verified the SMAD4 as a novel and direct target of miR-144 in HCCs. Conclusion Taken together, overexpression of miR-144 or downregulation of SMAD4 may prove beneficial as therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ye Lin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Yu Zhou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Haosheng Jin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Baohua Hou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhongshi Wu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhide Li
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jian Sun
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
33
|
Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 2016; 64:S84-S101. [PMID: 27084040 DOI: 10.1016/j.jhep.2016.02.021] [Citation(s) in RCA: 696] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) contributes to hepatocellular carcinoma (HCC) development through direct and indirect mechanisms. HBV DNA integration into the host genome occurs at early steps of clonal tumor expansion and induces both genomic instability and direct insertional mutagenesis of diverse cancer-related genes. Prolonged expression of the viral regulatory protein HBx and/or altered versions of the preS/S envelope proteins dysregulates cell transcription and proliferation control and sensitizes liver cells to carcinogenic factors. Accumulation of preS1 large envelope proteins and/or preS2/S mutant proteins activates the unfold proteins response, that can contribute to hepatocyte transformation. Epigenetic changes targeting the expression of tumor suppressor genes occur early in the development of HCC. A major role is played by the HBV protein, HBx, which is recruited on cellular chromatin and modulates chromatin dynamics at specific gene loci. Compared with tumors associated with other risk factors, HBV-related tumors have a higher rate of chromosomal alterations, p53 inactivation by mutations and overexpression of fetal liver/hepatic progenitor cells genes. The WNT/β-catenin pathway is also often activated but HBV-related tumors display a low rate of activating β-catenin mutations. HBV-related HCCs may arise on non-cirrhotic livers, further supporting the notion that HBV plays a direct role in liver transformation by triggering both common and etiology specific oncogenic pathways in addition to stimulating the host immune response and driving liver chronic necro-inflammation.
Collapse
Affiliation(s)
- Massimo Levrero
- Cancer Research Center of Lyon (CRCL) - INSERM U1052, Lyon, France; IIT Centre for Life Nanoscience (CLNS), Rome, Italy; Dept of Internal Medicine (DMISM), Sapienza University, Rome, Italy.
| | - Jessica Zucman-Rossi
- Inserm, UMR-1162, Génomique Fonctionnelle des Tumeurs Solides, Equipe Labellisée Ligue Contre le Cancer, Institut Universitaire d'Hematologie, Paris, France; Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Université Paris 13, Sorbonne Paris Cité, Unité de Formation et de Recherche Santé, Médecine, Biologie Humaine, Bobigny, France; Université Paris Diderot, Paris, France.
| |
Collapse
|
34
|
Shi Y, Zhang H, Han Z, Mi X, Zhang W, Lv M. HBx interacted with Smad4 to deprive activin a growth inhibition function in hepatocyte HL7702 on CRM1 manner. Tumour Biol 2016; 37:3405-15. [PMID: 26449823 DOI: 10.1007/s13277-015-4076-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/13/2015] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) is implicated in the pathogenesis of hepatocellular carcinoma, which has been found to be associated with TGF-beta signaling. Activin A is a TGF-β family cytokine that exhibits cell proliferation inhibition on normal hepatocyte. How HBV-encoded X oncoprotein play in activin's activity on hepatocyte has not been developed. In this study, a nontumor hepatic cell line HL7702 with HBX ectogenic expression has been established. MTT and BrdU assays showed that HBx promoted growth of HL7702 cells in vitro and downregulated activin signaling. Deregulated activin signaling pathway by HBX failed to activate target gene p21/waf1 and p15 transcription. In addition, mammalian two-hybrid and coimmunoprecipitation assays revealed that HBX could directly interact with activin signaling transduction protein Smad4, making activated Smad2/3/4 nucleus translocation suppressed. Furthermore, we detected that leptomycin B, the inhibitor of CRM1 protein, could recover nuclear translocation of endogenous Smads complex in HL7702 with HBX expression, indicating that HBX antagonized Smads nucleus translocation, at least partially, on CRM1-dependent manner. Leptomycin B was found to have antigrowth activity on HBX-expressed HL7702, according to its antitumor function in previous study. Above all, HBX antagonized activin signaling in normal human liver cells by interacting with Smad4 might one of the considerable causes of HBX-induced hepatocyte transformation, which deprived activin's cell growth inhibition function at an early stage of tumorigenesis.
Collapse
Affiliation(s)
- Ying Shi
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Haipeng Zhang
- The First Clinical Medical College of Jilin University, Changchun, People's Republic of China
| | - Zhu Han
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuguang Mi
- Tumor Biological Treatment Center of Jilin Province People's Hospital, Changchun, People's Republic of China
| | - Wenyan Zhang
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China.
| | - Mingyu Lv
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
35
|
TGF-β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment. Inflamm Res 2016; 65:355-65. [PMID: 26856334 DOI: 10.1007/s00011-016-0921-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/07/2015] [Accepted: 01/27/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Although animal studies demonstrated that Smad7 induction ameliorates TGF-β/SMAD-mediated fibrogenesis, its role in human hepatic diseases is rather obscure. Our study explored the activation status of TGF-β/activin pathway in patients with chronic liver diseases, and how it is affected by successful antiviral treatment in chronic HBV hepatitis (CHB). METHODS Thirty-seven CHB patients (19 with active disease, 14 completely remitted on long-term antiviral treatment and 4 with relapse after treatment withdrawal), 18 patients with chronic HCV hepatitis, 12 with non-alcoholic fatty liver disease (NAFLD), and 3 controls were enrolled in the study. Liver mRNA levels of CTGF, all TGF-β/activin isoforms, their receptors and intracellular mediators (SMADs) were evaluated using qRT-PCR and were correlated with the grade of liver inflammation and fibrosis staging. The expression and localization of pSMAD2 and pSMAD3 were assessed by immunohistochemistry. RESULTS TGF-β signalling is activated in CHB patients with active disease, while SMAD7 is up-regulated during the resolution of inflammation after successful treatment. SMAD7 overexpression was also observed in NAFLD patients exhibiting no or minimal fibrosis, despite the activation of TGF-β/activin signaling. CONCLUSIONS SMAD7 overexpression might represent a mechanism limiting TGF-β-mediated fibrogenesis in human hepatic diseases; therefore, SMAD7 induction likely represents a candidate for novel therapeutic approaches.
Collapse
|
36
|
Zhao T. The Role of HBZ in HTLV-1-Induced Oncogenesis. Viruses 2016; 8:v8020034. [PMID: 26848677 PMCID: PMC4776189 DOI: 10.3390/v8020034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and chronic inflammatory diseases. HTLV-1 bZIP factor (HBZ) is transcribed as an antisense transcript of the HTLV-1 provirus. Among the HTLV-1-encoded viral genes, HBZ is the only gene that is constitutively expressed in all ATL cases. Recent studies have demonstrated that HBZ plays an essential role in oncogenesis by regulating viral transcription and modulating multiple host factors, as well as cellular signaling pathways, that contribute to the development and continued growth of cancer. In this article, I summarize the current knowledge of the oncogenic function of HBZ in cell proliferation, apoptosis, T-cell differentiation, immune escape, and HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
37
|
Lee WP, Lan KH, Li CP, Chao Y, Lin HC, Lee SD. Oncogenic circuit constituted by Ser31-HBx and Akt increases risks of chronic hepatitis and hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2016; 1862:837-849. [PMID: 26791804 DOI: 10.1016/j.bbadis.2015.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/29/2015] [Accepted: 12/16/2015] [Indexed: 01/27/2023]
Abstract
The X protein of hepatitis B virus (HBx) has been specifically implicated in the development of hepatocellular carcinoma (HCC). Clinical associations of HBx isoforms with chronic hepatitis and HCC have not been well studied. HBx has two roles in liver cells, namely pro-apoptotic and anti-apoptotic. In this report, we examined the role of Ser31-HBx in HCC and chronic hepatitis. Using the case-control study, we determined risks of chronic hepatitis and HCC conferred by hepatitis B virus (HBV) containing Ser31-HBx that was phosphorylated by Akt. Ser31-HBx isoforms conferred 3.23-fold risk of HCC in male and 3.36-fold risk in female. Ser31 isoforms were associated with 3.12-fold risk of chronic hepatitis and 3.43-fold risk of cirrhosis and also associated with higher HBV viral load and replication efficiency and lower rate of HBe loss. To determine the mechanism, we found that Ser31-HBx constituted an oncogenic circuit with Akt and cooperated with ras to transform NIH3T3 cells in contrast to non-Ser31-HBxs that did not transduce oncogenic signals. Our results give a clue to account for an underlying cause of HBx-mediated hepatocarcinogenesis. It appears that Ser31 phosphorylation of HBx by Akt plays an important role. The current study provides an example of association of HBV genome variations with risks of HCC and chronic hepatitis.
Collapse
Affiliation(s)
- Wei-Ping Lee
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Keng-Hsin Lan
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Pin Li
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shou-Dong Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Slagle BL, Bouchard MJ. Hepatitis B Virus X and Regulation of Viral Gene Expression. Cold Spring Harb Perspect Med 2016; 6:a021402. [PMID: 26747833 DOI: 10.1101/cshperspect.a021402] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficient replication of hepatitis B virus (HBV) requires the HBV regulatory hepatitis B virus X (HBx) protein. The exact contributions of HBx are not fully understood, in part because of the limitations of the assays used for its study. When HBV replication is driven from a plasmid DNA, the contribution of HBx is modest. However, there is an absolute requirement for HBx in assays that recapitulate the infectious virus life cycle. There is much evidence that HBx can contribute directly to HBV replication by acting on viral promoters embedded within protein coding sequences. In addition, HBx may also contribute indirectly by modulating cellular pathways to benefit virus replication. Understanding the mechanism(s) of HBx action during virus replication may provide insight into novel ways to disrupt chronic HBV replication.
Collapse
Affiliation(s)
- Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
39
|
Guerrieri F, Belloni L, Pediconi N, Levrero M. Pathobiology of Hepatitis B Virus-Induced Carcinogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-22330-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases 2015; 3:325-340. [PMID: 28943628 PMCID: PMC5548255 DOI: 10.3390/diseases3040325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, arising from neoplastic transformation of hepatocytes or liver precursor/stem cells. HCC is often associated with pre-existing chronic liver pathologies of different origin (mainly subsequent to HBV and HCV infections), such as fibrosis or cirrhosis. Current therapies are essentially still ineffective, due both to the tumor heterogeneity and the frequent late diagnosis, making necessary the creation of new therapeutic strategies to inhibit tumor onset and progression and improve the survival of patients. A promising strategy for treatment of HCC is the targeted molecular therapy based on the restoration of tumor suppressor proteins lost during neoplastic transformation. In particular, the delivery of master genes of epithelial/hepatocyte differentiation, able to trigger an extensive reprogramming of gene expression, could allow the induction of an efficient antitumor response through the simultaneous adjustment of multiple genetic/epigenetic alterations contributing to tumor development. Here, we report recent literature data supporting the use of members of the liver enriched transcription factor (LETF) family, in particular HNF4α, as tools for gene therapy of HCC.
Collapse
|
41
|
Bak Y, Shin HJ, Bak IS, Yoon DY, Yu DY. Hepatitis B virus X promotes hepatocellular carcinoma development via nuclear protein 1 pathway. Biochem Biophys Res Commun 2015; 466:676-81. [PMID: 26392315 DOI: 10.1016/j.bbrc.2015.09.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and chronic hepatitis B virus (HBV) infection is a major risk factor for HCC. Hepatitis B virus X (HBx) protein relates to trigger oncogenesis. HBx has oncogenic properties with a hyperproliferative response to HCC. Nuclear protein 1 (NUPR1) is a stress-response protein, frequently upregulated in several cancers. Recent data revealed that NUPR1 is involved in tumor progression, but its function in HCC is not revealed yet. Here we report HBx can induce NUPR1 in patients, mice, and HCC cell lines. In an HBx transgenic mouse model, we found that HBx overexpression upregulates NUPR1 expression consistently with tumor progression. Further, in cultured HBV positive cells, HBx knockdown induces downregulation of NUPR1. Smad4 is a representative transcription factor, regulated by HBx, and we showed that HBx upregulates NUPR1 by Smad4 dependent way. We found that NUPR1 can inhibit cell death and induce vasculogenic mimicry in HCC cell lines. Moreover, NUPR1 silencing in HepG2-HBx showed reduced cell motility. These results suggest that HBx can modulate NUPR1 expression through the Smad4 pathway and NUPR1 has a role in hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Yesol Bak
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Hye-jun Shin
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - In seon Bak
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Do-young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| |
Collapse
|
42
|
Schinzari V, Barnaba V, Piconese S. Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clin Microbiol Infect 2015; 21:969-74. [PMID: 26163104 DOI: 10.1016/j.cmi.2015.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) or hepatitis C virus (HCV) infections represent major causes of chronic liver disease and hepatocellular carcinoma. Despite inducing shared pathological events leading to oncogenic transformation, these two viruses present profound differences in their molecular features, life cycle and interplay with host factors, which significantly differentiate the prognostic and therapeutic approach to the related diseases. In the present review, we report the main mechanisms involved in the multistep process leading from HCV/HBV infection and cancer development, discussing side-by-side the analogies and differences between the two viruses. Such events can be broadly categorized into (a) direct oncogenic effects, involving integration in the host genome (in the case of HBV) and chromosomal instability, interference with oncosuppressor pathways, induction of oxidative stress, promotion of angiogenesis, epithelial-mesenchymal transition, alterations in the epigenetic asset and interaction with non-coding RNAs; and (b) indirect activities mostly mediated by host events, including chronic inflammation sustained by peculiar cytokine networks (such as interleukin-6 and lymphotoxins), metabolic dysfunctions promoted by steatohepatitis, interplay with gut microbiota and fibrotic events (mainly in HCV infection). This scenario suggests that the integrated study of viral and host factors may lead to the successful development of novel biomarkers and targets for therapy.
Collapse
Affiliation(s)
- V Schinzari
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - V Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy.
| | - S Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
43
|
Zhu R, Mok MTS, Kang W, Lau SSK, Yip WK, Chen Y, Lai PBS, Wong VWS, To KF, Sung JJY, Cheng ASL, Chan HLY. Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. J Pathol 2015; 237:38-49. [PMID: 25925944 DOI: 10.1002/path.4554] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a worldwide threat to public health, especially in China, where chronic hepatitis B virus (HBV) infection is found in 80-90% of all HCCs. The HBV-encoded X antigen (HBx) is a trans-regulatory protein involved in virus-induced hepatocarcinogenesis. Although the carboxyl-terminus-truncated HBx, rather than the full-length counterpart, is frequently overexpressed in human HCCs, its functional mechanisms are not fully defined. We investigated the molecular function of a naturally occurring HBx variant which has 35 amino acids deleted at the C-terminus (HBxΔ35). Genome-wide scanning analysis and PCR validation identified growth arrest-specific 2 (GAS2) as a direct target of HBxΔ35 at transcriptional level in human immortalized liver cells. HBxΔ35 was found to bind the promoter region of GAS2 and attenuate its expression to promote hepatocellular proliferation and tumourigenicity. Further functional assays demonstrated that GAS2 induces p53-dependent apoptosis and senescence to counteract HBxΔ35-mediated tumourigenesis. Notably, GAS2 expression was significantly down-regulated in HCCs compared with the corresponding normal tissues. In conclusion, our integrated study uncovered a novel viral mechanism in hepatocarcinogenesis, wherein HBxΔ35 deregulates cell growth via direct silencing of GAS2 and thereby provides a survival advantage for pre-neoplastic hepatocytes to facilitate cancer development.
Collapse
Affiliation(s)
- Ranxu Zhu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Gastroenterology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Myth T S Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Suki S K Lau
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wing-Kit Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yangchao Chen
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Paul B S Lai
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Vincent W S Wong
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka-Fai To
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Alfred S L Cheng
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Henry L Y Chan
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
44
|
Liang G, Liu G, Kitamura K, Wang Z, Chowdhury S, Monjurul AM, Wakae K, Koura M, Shimadu M, Kinoshita K, Muramatsu M. TGF-β suppression of HBV RNA through AID-dependent recruitment of an RNA exosome complex. PLoS Pathog 2015; 11:e1004780. [PMID: 25836330 PMCID: PMC4383551 DOI: 10.1371/journal.ppat.1004780] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/03/2015] [Indexed: 01/15/2023] Open
Abstract
Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner.
Collapse
Affiliation(s)
- Guoxin Liang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
| | - Guangyan Liu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouichi Kitamura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Zhe Wang
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Division of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Sajeda Chowdhury
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ahasan Md Monjurul
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miki Koura
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Miyuki Shimadu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
45
|
Wong CCL, Tse APW, Huang YP, Zhu YT, Chiu DKC, Lai RKH, Au SLK, Kai AKL, Lee JMF, Wei LL, Tsang FHC, Lo RCL, Shi J, Zheng YP, Wong CM, Ng IOL. Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology 2014; 60:1645-58. [PMID: 25048396 DOI: 10.1002/hep.27320] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Poor prognosis of cancers, including hepatocellular carcinoma (HCC), is mainly associated with metastasis; however, the underlying mechanisms remain poorly understood. This article investigates the role of lysyl oxidase-like 2 (LOXL-2) in the biology of HCC metastasis. First, we showed that HCC metastasis relies on a collagen-modifying enzyme, LOXL2, which was significantly overexpressed in tumorous tissues and sera of HCC patients, indicating that LOXL2 may be a good diagnostic marker for HCC patients. Second, we delineated a complex, interlinked signaling network that involves multiple regulators, including hypoxia, transforming growth factor beta (TGF-β), and microRNAs (miRNAs), converging to control the expression of LOXL2. We found not only that LOXL2 was regulated by hypoxia/hypoxia-inducible factor 1 alpha (HIF-1α), but also that TGF-β activated LOXL2 transcription through mothers against decapentaplegic homolog 4 (Smad4), whereas two frequently underexpressed miRNA families, miR-26 and miR-29, cooperatively suppressed LOXL2 transcription through interacting with the 3' untranslated region of LOXL2. Third, we demonstrated the imperative roles of LOXL2 in modifying the extracellular matrix components in the tumor microenvironment and metastatic niche of HCC. LOXL2 promoted intrahepatic metastasis by increasing tissue stiffness, thereby enhancing the cytoskeletal reorganization of HCC cells. Furthermore, LOXL2 facilitated extrahepatic metastasis by enhancing recruitment of bone-marrow-derived cells to the metastatic site. CONCLUSION These findings integrate the clinical relevance, molecular regulation, and functional implications of LOXL2 in HCC metastasis.
Collapse
Affiliation(s)
- Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li CH, Xu F, Chow S, Feng L, Yin D, Ng TB, Chen Y. Hepatitis B virus X protein promotes hepatocellular carcinoma transformation through interleukin-6 activation of microRNA-21 expression. Eur J Cancer 2014; 50:2560-9. [PMID: 25087183 DOI: 10.1016/j.ejca.2014.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and chronic hepatitis B virus (HBV) infection is the major risk factor of HCC. The virus encodes HBV X (HBx) protein that plays a critical role in the development of HCC. Studies have revealed numerous HBx-altered genes and signalling pathways that heavily contribute to tumourigenesis of non-tumour hepatocytes. However, the role of HBx in regulating other critical gene regulators such as microRNAs is poorly understood, which impedes the exploration of a complete HBx-associated carcinogenic network. Besides, critical microRNAs that drive the transformation of non-tumour hepatocytes are yet to be identified. Here, we overexpressed C-terminal truncated HBx protein in a non-tumour hepatocyte cell line MIHA, and measured a panel of cancer-associated miRNAs. We observed that oncogenic miR-21 was upregulated upon ectopic expression of this viral protein variant. HBx-miR-21 pathway was prevalent in HCC cells as inhibition of HBx in Hep3B and PLC/PRF/5 cells significantly suppressed miR-21 expression. Subsequently, we showed that the upregulation of miR-21 was mediated by HBx-induced interleukin-6 pathway followed by activation of STAT3 transcriptional factor. The high dependency of miR-21 expression to HBx protein suggested a unique viral oncogenic pathway that could aberrantly affect a network of gene expression. Importantly, miR-21 was essential in the HBx-induced transformation of non-tumour hepatocytes. Inhibition of miR-21 effectively attenuated anchorage-independent colony formation and subcutaneous tumour growth of MIHA cells. Our study suggested that overexpression of miR-21 was critical to promote early carcinogenesis of hepatocytes upon HBV infection.
Collapse
Affiliation(s)
- Chi Han Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Feiyue Xu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Sheungching Chow
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Lu Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37604, USA
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
47
|
Kim MS, Kim S, Myung H. Degradation of AIMP1/p43 induced by hepatitis C virus E2 leads to upregulation of TGF-β signaling and increase in surface expression of gp96. PLoS One 2014; 9:e96302. [PMID: 24816397 PMCID: PMC4015952 DOI: 10.1371/journal.pone.0096302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/05/2014] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis leading to liver fibrosis and autoimmune diseases. AIMP1/p43 is a multifunctional protein initially known as a cofactor of aminoacyl tRNA synthetase complex. Its function includes negative regulation of TGF-β signaling and suppression of Lupus-like autoimmune disease by inhibition of surface expression of gp96. HCV E2 was shown to directly interact with AIMP1/p43 by GST pulldown assay and coimmunoprecipitation. Their subcellular colocalization was observed in an immunofluorescence confocal microscopy. We showed that HCV E2 led to degradation of AIMP1/p43 in two ways. First, in the presence of HCV E2, endogenous AIMP1/p43 was shown to be degraded in an ubiquitin-dependent proteasome pathway. Second, grp78, an ER chaperone, was shown to interact with and stabilize AIMP1/p43. And HCV E2 inhibited this interaction leading to reduction of cellular AIMP1/p43. The degradation of AIMP1/p43 by HCV E2 resulted in increase of TGF-β signaling and cell surface expression of gp96. Thus we suggest that these are novel mechanisms responsible for liver fibrosis and autoimmune diseases caused by HCV.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyung-Gi Do, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, Gyung-Gi Do, Korea
- * E-mail:
| |
Collapse
|
48
|
Feitelson MA, Bonamassa B, Arzumanyan A. The roles of hepatitis B virus-encoded X protein in virus replication and the pathogenesis of chronic liver disease. Expert Opin Ther Targets 2014; 18:293-306. [PMID: 24387282 DOI: 10.1517/14728222.2014.867947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hepatitis B virus (HBV) is a major cause of chronic liver disease (CLD) and hepatocellular carcinoma (HCC) worldwide. More than 350 million people are at risk for HCC, and with few treatment options available, therapeutic approaches to targets other than the virus polymerase will be needed. This review suggests that the HBV-encoded X protein, HBx, would be an outstanding target because it contributes to the biology and pathogenesis of HBV in three fundamental ways. AREAS COVERED First, HBx is a trans-activating protein that stimulates virus gene expression and replication, thereby promoting the development and persistence of the carrier state. Second, HBx partially blocks the development of immune responses that would otherwise clear the virus, and protects infected hepatocytes from immune-mediated destruction. Thus, HBx contributes to the development of CLD without virus clearance. Third, HBx alters patterns of host gene expression that make possible the emergence of HCC. The selected literature cited is from the National Library of Medicine (Pubmed and Medline). EXPERT OPINION Understanding the mechanisms, whereby HBx supports virus replication and promotes pathogenesis, suggests that HBx will be an important therapeutic target against both virus replication and CLD aimed at the chemoprevention of HCC.
Collapse
Affiliation(s)
- Mark A Feitelson
- Temple University, College of Science and Technology, Department of Biology , Room 409 BioLife Science Building, 1900 N. 12th Street, Philadelphia, PA 19122 , USA +1 215 204 8434 ; +1 215 204 8359 ;
| | | | | |
Collapse
|
49
|
Xu M, Wang Y, Chen L, Pan B, Chen F, Fang Y, Yu Z, Chen G. Down-regulation of ribosomal protein S15A mRNA with a short hairpin RNA inhibits human hepatic cancer cell growth in vitro. Gene 2013; 536:84-9. [PMID: 24334120 DOI: 10.1016/j.gene.2013.11.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 11/24/2022]
Abstract
Ribosomal protein s15a (RPS15A) is a highly conserved protein that promotes mRNA/ribosome interactions early in translation. Recent evidence showed that RPS15A could stimulate growth in yeast, plant and human lung carcinoma. Here we report that RPS15A knockdown could inhibit hepatic cancer cell growth in vitro. When transduced with shRPS15A-containing lentivirus, we observed inhibited cell proliferation and impaired colony formation in both HepG2 and Bel7404 cells. Furthermore, cell cycle analysis showed that HepG2 cells were arrested at the G0/G1 phase when transduced with Lv-shRPS15A. In conclusion, our findings provide for the first time the biological effects of RPS15A in hepatic cancer cell growth. RPS15A may play a prominent role in heptocarcinogenesis and serve as a potential therapeutic target in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Maiyu Xu
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Yi Wang
- Environmental and Public Health School of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Chen
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Bujian Pan
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Feng Chen
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, Wenzhou 325000, China
| | - Yang Fang
- Department of Anus & Intestine Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
50
|
Xie N, Chen X, Zhang T, Liu B, Huang C. Using proteomics to identify the HBx interactome in hepatitis B virus: how can this inform the clinic? Expert Rev Proteomics 2013; 11:59-74. [PMID: 24308553 DOI: 10.1586/14789450.2014.861745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is a small and enveloped DNA virus, of which chronic infection is the main risk factor of liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus X protein (HBx) is a multifunctional protein encoded by HBV genome, which have significant effects on HBV replication and pathogenesis. Through directly interacting with cellular proteins, HBx is capable to promote HBV replication, regulate transcription of host genes, disrupt protein degradation, modulate signaling pathway, manipulate cell death and deregulate cell cycle. In this review, we briefly discuss the diversified effects of HBx-interactome and their potential clinical significances.
Collapse
Affiliation(s)
- Na Xie
- The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, P.R. China
| | | | | | | | | |
Collapse
|