1
|
Bardwell L, Thorner J. Mitogen-activated protein kinase (MAPK) cascades-A yeast perspective. Enzymes 2023; 54:137-170. [PMID: 37945169 DOI: 10.1016/bs.enz.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States.
| |
Collapse
|
2
|
The Small Ras Superfamily GTPase Rho4 of the Maize Anthracnose Fungus Colletotrichum graminicola Is Required for β-1,3-glucan Synthesis, Cell Wall Integrity, and Full Virulence. J Fungi (Basel) 2022; 8:jof8100997. [PMID: 36294561 PMCID: PMC9604917 DOI: 10.3390/jof8100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Small Ras superfamily GTPases are highly conserved regulatory factors of fungal cell wall biosynthesis and morphogenesis. Previous experiments have shown that the Rho4-like protein of the maize anthracnose fungus Colletotrichum graminicola, formerly erroneously annotated as a Rho1 protein, physically interacts with the β-1,3-glucan synthase Gls1 (Lange et al., 2014; Curr. Genet. 60:343–350). Here, we show that Rho4 is required for β-1,3-glucan synthesis. Accordingly, Δrho4 strains formed distorted vegetative hyphae with swellings, and exhibited strongly reduced rates of hyphal growth and defects in asexual sporulation. Moreover, on host cuticles, conidia of Δrho4 strains formed long hyphae with hyphopodia, rather than short germ tubes with appressoria. Hyphopodia of Δrho4 strains exhibited penetration defects and often germinated laterally, indicative of cell wall weaknesses. In planta differentiated infection hyphae of Δrho4 strains were fringy, and anthracnose disease symptoms caused by these strains on intact and wounded maize leaf segments were significantly weaker than those caused by the WT strain. A retarded disease symptom development was confirmed by qPCR analyses. Collectively, we identified the Ras GTPase Rho4 as a new virulence factor of C. graminicola.
Collapse
|
3
|
Sartorel E, Barrey E, Lau RK, Thorner J. Plasma membrane aminoglycerolipid flippase function is required for signaling competence in the yeast mating pheromone response pathway. Mol Biol Cell 2015; 26:134-50. [PMID: 25378585 PMCID: PMC4279224 DOI: 10.1091/mbc.e14-07-1193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 12/22/2022] Open
Abstract
The class 4 P-type ATPases ("flippases") maintain membrane asymmetry by translocating phosphatidylethanolamine and phosphatidylserine from the outer leaflet to the cytosolic leaflet of the plasma membrane. In Saccharomyces cerevisiae, five related gene products (Dnf1, Dnf2, Dnf3, Drs2, and Neo1) are implicated in flipping of phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine. In MAT A: cells responding to α-factor, we found that Dnf1, Dnf2, and Dnf3, as well as the flippase-activating protein kinase Fpk1, localize at the projection ("shmoo") tip where polarized growth is occurring and where Ste5 (the central scaffold protein of the pheromone-initiated MAPK cascade) is recruited. Although viable, a MAT A: dnf1∆ dnf2∆ dnf3∆ triple mutant exhibited a marked decrease in its ability to respond to α-factor, which we could attribute to pronounced reduction in Ste5 stability resulting from an elevated rate of its Cln2⋅Cdc28-initiated degradation. Similarly, a MAT A: dnf1∆ dnf3∆ drs2∆ triple mutant also displayed marked reduction in its ability to respond to α-factor, which we could attribute to inefficient recruitment of Ste5 to the plasma membrane due to severe mislocalization of the cellular phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate pools. Thus proper remodeling of plasma membrane aminoglycerolipids and phosphoinositides is necessary for efficient recruitment, stability, and function of the pheromone signaling apparatus.
Collapse
Affiliation(s)
- Elodie Sartorel
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Evelyne Barrey
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Rebecca K Lau
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
4
|
Cdc42p-interacting protein Bem4p regulates the filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 2014; 35:417-36. [PMID: 25384973 DOI: 10.1128/mcb.00850-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response.
Collapse
|
5
|
Muñoz S, Manjón E, García P, Sunnerhagen P, Sánchez Y. The checkpoint-dependent nuclear accumulation of Rho1p exchange factor Rgf1p is important for tolerance to chronic replication stress. Mol Biol Cell 2014; 25:1137-50. [PMID: 24478458 PMCID: PMC3967976 DOI: 10.1091/mbc.e13-11-0689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Guanine nucleotide exchange factors control many aspects of cell morphogenesis by turning on Rho-GTPases. The fission yeast exchange factor Rgf1p (Rho gef1) specifically regulates Rho1p during polarized growth and localizes to cortical sites. Here we report that Rgf1p is relocalized to the cell nucleus during the stalled replication caused by hydroxyurea (HU). Import to the nucleus is mediated by a nuclear localization sequence at the N-terminus of Rgf1p, whereas release into the cytoplasm requires two leucine-rich nuclear export sequences at the C-terminus. Moreover, Rgf1p nuclear accumulation during replication arrest depends on the 14-3-3 chaperone Rad24p and the DNA replication checkpoint kinase Cds1p. Both proteins control the nuclear accumulation of Rgf1p by inhibition of its nuclear export. A mutant, Rgf1p-9A, that substitutes nine serine potential phosphorylation Cds1p sites for alanine fails to accumulate in the nucleus in response to replication stress, and this correlates with a severe defect in survival in the presence of HU. In conclusion, we propose that the regulation of Rgf1p could be part of the mechanism by which Cds1p and Rad24p promote survival in the presence of chronic replication stress. It will be of general interest to understand whether the same is true for homologues of Rgf1p in budding yeast and higher eukaryotes.
Collapse
Affiliation(s)
- Sofía Muñoz
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, 37008 Salamanca, Spain Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
6
|
Chan E, Nance J. Mechanisms of CDC-42 activation during contact-induced cell polarization. J Cell Sci 2013; 126:1692-702. [PMID: 23424200 DOI: 10.1242/jcs.124594] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarization of early embryos provides a foundation to execute essential patterning and morphogenetic events. In Caenorhabditis elegans, cell contacts polarize early embryos along their radial axis by excluding the cortical polarity protein PAR-6 from sites of cell contact, thereby restricting PAR-6 to contact-free cell surfaces. Radial polarization requires the cortically enriched Rho GTPase CDC-42, which in its active form recruits PAR-6 through direct binding. The Rho GTPase activating protein (RhoGAP) PAC-1, which localizes specifically to cell contacts, triggers radial polarization by inactivating CDC-42 at these sites. The mechanisms responsible for activating CDC-42 at contact-free surfaces are unknown. Here, in an overexpression screen of Rho guanine nucleotide exchange factors (RhoGEFs), which can activate Rho GTPases, we identify CGEF-1 and ECT-2 as RhoGEFs that act through CDC-42 to recruit PAR-6 to the cortex. We show that ECT-2 and CGEF-1 localize to the cell surface and that removing their activity causes a reduction in levels of cortical PAR-6. Through a structure-function analysis, we show that the tandem DH-PH domains of CGEF-1 and ECT-2 are sufficient for GEF activity, but that regions outside of these domains target each protein to the cell surface. Finally, we provide evidence suggesting that the N-terminal region of ECT-2 may direct its in vivo preference for CDC-42 over another known target, the Rho GTPase RHO-1. We propose that radial polarization results from a competition between RhoGEFs, which activate CDC-42 throughout the cortex, and the RhoGAP PAC-1, which inactivates CDC-42 at cell contacts.
Collapse
Affiliation(s)
- Emily Chan
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
7
|
Abstract
Cell polarity is crucial for many functions including cell migration, tissue organization and asymmetric cell division. In animal cells, cell polarity is controlled by the highly conserved PAR (PARtitioning defective) proteins. par genes have been identified in Caenorhabditis elegans in screens for maternal lethal mutations that disrupt cytoplasmic partitioning and asymmetric division. Although PAR proteins were identified more than 20 years ago, our understanding on how they regulate polarity and how they are regulated is still incomplete. In this chapter we review our knowledge of the processes of cell polarity establishment and maintenance, and asymmetric cell division in the early C. elegans embryo. We discuss recent findings that highlight new players in cell polarity and/or reveal the molecular details on how PAR proteins regulate polarity processes.
Collapse
|
8
|
Abstract
Members of the Ras superfamily of small guanosine triphosphatases (GTPases) function as key nodes within signaling networks in a remarkable range of cellular processes, including cell proliferation, differentiation, growth, cell-cell adhesion and apoptosis. We recently described a novel role for the Ras-like small GTPases Rap1 and Ral in regulating cortical polarity and spindle orientation during asymmetric neuroblast division in Drosophila. The participation of these proteins in promoting cell polarization seems to be a common theme throughout evolution.
Collapse
Affiliation(s)
- Ana Carmena
- Instituto de Neurociencias, CSIC/UMH, 03550-Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
9
|
Frieser SH, Hlubek A, Sandrock B, Bölker M. Cla4 kinase triggers destruction of the Rac1-GEF Cdc24 during polarized growth in Ustilago maydis. Mol Biol Cell 2011; 22:3253-62. [PMID: 21757543 PMCID: PMC3164470 DOI: 10.1091/mbc.e11-04-0314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the dimorphic fungus Ustilago maydis, Rac1 and its activator Cdc24 are essential for hyphal tip growth. Rac1 is shown to stimulate Cla4 kinase, which in turn triggers destruction of Cdc24. Expression of stabilized Cdc24 interferes with cell polarization, indicating that negative feedback regulation of Cdc24 is critical for tip growth. Dimorphic switching from budding to filamentous growth is a characteristic feature of many pathogenic fungi. In the fungal model organism Ustilago maydis polarized growth is induced by the multiallelic b mating type locus and requires the Rho family GTPase Rac1. Here we show that mating type–induced polarized growth involves negative feedback regulation of the Rac1-specific guanine nucleotide exchange factor (GEF) Cdc24. Although Cdc24 is essential for polarized growth, its concentration is drastically diminished during filament formation. Cdc24 is part of a protein complex that also contains the scaffold protein Bem1 and the PAK kinase Cla4. Activation of Rac1 results in Cla4-dependent degradation of the Rac1-GEF Cdc24, thus creating a regulatory negative feedback loop. We generated mutants of Cdc24 that are resistant to Cla4-dependent destruction. Expression of stable Cdc24 variants interfered with filament formation, indicating that negative feedback regulation of Cdc24 is critical for the establishment of polarized growth.
Collapse
|
10
|
Vuchak LA, Tsygankova OM, Meinkoth JL. Rap1GAP impairs cell-matrix adhesion in the absence of effects on cell-cell adhesion. Cell Adh Migr 2011; 5:323-31. [PMID: 21785277 DOI: 10.4161/cam.5.4.17041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.
Collapse
Affiliation(s)
- Lisa A Vuchak
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
11
|
Hua KT, Tan CT, Johansson G, Lee JM, Yang PW, Lu HY, Chen CK, Su JL, Chen PB, Wu YL, Chi CC, Kao HJ, Shih HJ, Chen MW, Chien MH, Chen PS, Lee WJ, Cheng TY, Rosenberger G, Chai CY, Yang CJ, Huang MS, Lai TC, Chou TY, Hsiao M, Kuo ML. N-α-acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins and inhibiting Cdc42/Rac1 activity. Cancer Cell 2011; 19:218-31. [PMID: 21295525 DOI: 10.1016/j.ccr.2010.11.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 06/03/2010] [Accepted: 11/08/2010] [Indexed: 12/28/2022]
Abstract
N-α-acetyltransferase 10 protein, Naa10p, is an N-acetyltransferase known to be involved in cell cycle control. We found that Naa10p was expressed lower in varieties of malignancies with lymph node metastasis compared with non-lymph node metastasis. Higher Naa10p expression correlates the survival of lung cancer patients. Naa10p significantly suppressed migration, tumor growth, and metastasis independent of its enzymatic activity. Instead, Naa10p binds to the GIT-binding domain of PIX, thereby preventing the formation of the GIT-PIX-Paxillin complex, resulting in reduced intrinsic Cdc42/Rac1 activity and decreased cell migration. Forced expression of PIX in Naa10-transfected tumor cells restored the migration and metastasis ability. We suggest that Naa10p functions as a tumor metastasis suppressor by disrupting the migratory complex, PIX-GIT- Paxillin, in cancer cells.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rac1 modulation of the apical domain is negatively regulated by β (Heavy)-spectrin. Mech Dev 2010; 128:116-28. [PMID: 21111816 DOI: 10.1016/j.mod.2010.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
Abstract
Epithelial polarity and morphogenesis require the careful coordination of signaling and cytoskeletal elements. In this paper, we describe multiple genetic interactions between the apical cytoskeletal protein β(H) and Rac1 signaling in Drosophila: activation of Rac1 signaling by expression of the exchange factor Trio, is strongly enhanced by reducing β(H) levels, and such reductions in β(H) levels alone are shown to cause an increase in GTP-Rac1 levels. In contrast, co-expression of a C-terminal fragment of β(H) (βH33) suppresses the Trio expression phenotype. In addition, sustained expression of βH33 alone in the eye induces a strong dominant phenotype that is similar to the expression of dominant negative Rac1(N17), and this phenotype is also suppressed by the co-expression of Trio or by knockdown of RacGAP50C. We further demonstrate that a loss-of-function allele in pak, a Rac1 effector and negative regulator of β(H)' dominantly suppresses larval lethality arising loss-of-function karst (β(H)) alleles. Furthermore, expression of constitutively active Pak(myr) in the larval salivary gland induces expansion of the apical membrane and destabilization of the apical polarity determinants Crumbs and aPKC. These effects resemble a Rac1 activation phenotype and are suppressed by βH33. Together, our data suggest that apical proteins including β(H) are negatively regulated by Rac1 activation, but that Rac1 signaling is also suppressed by β(H) through its C-terminal domain. Such a system would be bistable with either Rac1 or β(H) predominant. We suggest a model for apical domain maintenance wherein Rac1 down-regulation of β(H) (via Pak) is opposed by β(H)-mediated down-regulation of Rac1 signaling.
Collapse
|
13
|
Watanabe T, Sato K, Kaibuchi K. Cadherin-mediated intercellular adhesion and signaling cascades involving small GTPases. Cold Spring Harb Perspect Biol 2010; 1:a003020. [PMID: 20066109 DOI: 10.1101/cshperspect.a003020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelia form physical barriers that separate the internal milieu of the body from its external environment. The biogenesis of functional epithelia requires the precise coordination of many cellular processes. One of the key events in epithelial biogenesis is the establishment of cadherin-dependent cell-cell contacts, which initiate morphological changes and the formation of other adhesive structures. Cadherin-mediated adhesions generate intracellular signals that control cytoskeletal reorganization, polarity, and vesicle trafficking. Among such signaling pathways, those involving small GTPases play critical roles in epithelial biogenesis. Assembly of E-cadherin activates several small GTPases and, in turn, the activated small GTPases control the effects of E-cadherin-mediated adhesions on epithelial biogenesis. Here, we focus on small GTPase signaling at E-cadherin-mediated epithelial junctions.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
14
|
Rap1, a mercenary among the Ras-like GTPases. Dev Biol 2010; 340:1-9. [PMID: 20060392 DOI: 10.1016/j.ydbio.2009.12.043] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/28/2009] [Accepted: 12/30/2009] [Indexed: 01/07/2023]
Abstract
The small Ras-like GTPase Rap1 is an evolutionary conserved protein that originally gained interest because of its capacity to revert the morphological phenotype of Ras-transformed fibroblasts. Rap1 is regulated by a large number of stimuli that include growth factors and cytokines, but also physical force and osmotic stress. Downstream of Rap1, a plethora of effector molecules has been proposed on the basis of biochemical studies. Here, we present an overview of genetic studies on Rap1 in various model organisms and relate the observed phenotypes to in vitro studies. The picture that emerges is one in which Rap1 is a versatile regulator of morphogenesis, by regulating diverse processes that include establishment of cellular polarity, cell-matrix interactions and cell-cell adhesion. Surprisingly, genetic experiments indicate that in the various model organisms, Rap1 uses distinct effector molecules that impinge upon the actin cytoskeleton and adhesion molecules.
Collapse
|
15
|
Jones L, Tedrick K, Baier A, Logan MR, Eitzen G. Cdc42p is activated during vacuole membrane fusion in a sterol-dependent subreaction of priming. J Biol Chem 2009; 285:4298-306. [PMID: 20007700 DOI: 10.1074/jbc.m109.074609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cdc42p is a Rho GTPase that initiates signaling cascades at spatially defined intracellular sites for many cellular functions. We have previously shown that Cdc42p is localized to the yeast vacuole where it initiates actin polymerization during membrane fusion. Here we examine the activation cycle of Cdc42p during vacuole membrane fusion. Expression of either GTP- or GDP-locked Cdc42p mutants caused several morphological defects including enlarged cells and fragmented vacuoles. Stimulation of multiple rounds of fusion enhanced vacuole fragmentation, suggesting that cycles of Cdc42p activation, involving rounds of GTP binding and hydrolysis, are required to propagate Cdc42p signaling. We developed an assay to directly examine Cdc42p activation based on affinity to a probe derived from the p21-activated kinase effector, Ste20p. Cdc42p was rapidly activated during vacuole membrane fusion, which kinetically coincided with priming subreaction. During priming, Sec18p ATPase activity dissociates SNARE complexes and releases Sec17p, however, priming inhibitors such as Sec17p and Sec18p ligands did not block Cdc42p activation. Therefore, Cdc42p activation seems to be a parallel subreaction of priming, distinct from Sec18p activity. Specific mutants in the ergosterol synthesis pathway block both Sec17p release and Cdc42p activation. Taken together, our results define a novel sterol-dependent subreaction of vacuole priming that activates cycles of Cdc42p activity to facilitate membrane fusion.
Collapse
Affiliation(s)
- Lynden Jones
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
16
|
Vogt N, Seiler S. The RHO1-specific GTPase-activating protein LRG1 regulates polar tip growth in parallel to Ndr kinase signaling in Neurospora. Mol Biol Cell 2008; 19:4554-69. [PMID: 18716060 DOI: 10.1091/mbc.e07-12-1266] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulation of Rho GTPase signaling is critical for cell shape determination and polarity. Here, we investigated the role of LRG1, a novel member of the GTPase-activating proteins (GAPs) of Neurospora crassa. LRG1 is essential for apical tip extension and to restrict excessive branch formation in subapical regions of the hypha and is involved in determining the size of the hyphal compartments. LRG1 localizes to hyphal tips and sites of septation via its three LIM domains. The accumulation of LRG1 as an apical cap is dependent on a functional actin cytoskeleton and active growth, and is influenced by the opposing microtubule-dependent motor proteins dynein and kinesin-1. Genetic evidence and in vitro GTPase assays identify LRG1 as a RHO1-specific GAP affecting several output pathways of RHO1, based on hyposensitivity to the glucan inhibitor caspofungin, synthetic lethality with a hyperactive beta1,3-glucan synthase mutant, altered PKC/MAK1 pathway activities, and hypersensitivity to latrunculin A. The morphological defects of lrg-1 are highly reminiscent to the Ndr kinase/RAM pathway mutants cot-1 and pod-6, and genetic evidence suggests that RHO1/LRG1 function in parallel with COT1 in coordinating apical tip growth.
Collapse
Affiliation(s)
- Nico Vogt
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie, Universität Göttingen, D-37077 Göttingen, Germany
| | | |
Collapse
|
17
|
Hope H, Bogliolo S, Arkowitz RA, Bassilana M. Activation of Rac1 by the guanine nucleotide exchange factor Dck1 is required for invasive filamentous growth in the pathogen Candida albicans. Mol Biol Cell 2008; 19:3638-51. [PMID: 18579689 DOI: 10.1091/mbc.e07-12-1272] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rho G proteins and their regulators are critical for cytoskeleton organization and cell morphology in all eukaryotes. In the opportunistic pathogen Candida albicans, the Rho G proteins Cdc42 and Rac1 are required for the switch from budding to filamentous growth in response to different stimuli. We show that Dck1, a protein with homology to the Ced-5, Dock180, myoblast city family of guanine nucleotide exchange factors, is necessary for filamentous growth in solid media, similar to Rac1. Our results indicate that Dck1 and Rac1 do not function in the same pathway as the transcription factor Czf1, which is also required for embedded filamentous growth. The conserved catalytic region of Dck1 is required for such filamentous growth, and in vitro this region directly binds a Rac1 mutant, which mimics the nucleotide-free state. In vivo overexpression of a constitutively active Rac1 mutant, but not wild-type Rac1, in a dck1 deletion mutant restores filamentous growth. These results indicate that the Dock180 guanine nucleotide exchange factor homologue, Dck1 activates Rac1 during invasive filamentous growth. We conclude that specific exchange factors, together with the G proteins they activate, are required for morphological changes in response to different stimuli.
Collapse
Affiliation(s)
- Hannah Hope
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6543, Université de Nice, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
18
|
Yu L, Qi M, Sheff MA, Elion EA. Counteractive control of polarized morphogenesis during mating by mitogen-activated protein kinase Fus3 and G1 cyclin-dependent kinase. Mol Biol Cell 2008; 19:1739-52. [PMID: 18256288 PMCID: PMC2291402 DOI: 10.1091/mbc.e07-08-0757] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 01/18/2008] [Accepted: 01/29/2008] [Indexed: 01/10/2023] Open
Abstract
Cell polarization in response to external cues is critical to many eukaryotic cells. During pheromone-induced mating in Saccharomyces cerevisiae, the mitogen-activated protein kinase (MAPK) Fus3 induces polarization of the actin cytoskeleton toward a landmark generated by the pheromone receptor. Here, we analyze the role of Fus3 activation and cell cycle arrest in mating morphogenesis. The MAPK scaffold Ste5 is initially recruited to the plasma membrane in random patches that polarize before shmoo emergence. Polarized localization of Ste5 is important for shmooing. In fus3 mutants, Ste5 is recruited to significantly more of the plasma membrane, whereas recruitment of Bni1 formin, Cdc24 guanine exchange factor, and Ste20 p21-activated protein kinase are inhibited. In contrast, polarized recruitment still occurs in a far1 mutant that is also defective in G1 arrest. Remarkably, loss of Cln2 or Cdc28 cyclin-dependent kinase restores polarized localization of Bni1, Ste5, and Ste20 to a fus3 mutant. These and other findings suggest Fus3 induces polarized growth in G1 phase cells by down-regulating Ste5 recruitment and by inhibiting Cln/Cdc28 kinase, which prevents basal recruitment of Ste5, Cdc42-mediated asymmetry, and mating morphogenesis.
Collapse
Affiliation(s)
- Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Maosong Qi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Mark A. Sheff
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| | - Elaine A. Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115-5730
| |
Collapse
|
19
|
Mionnet C, Bogliolo S, Arkowitz RA. Oligomerization regulates the localization of Cdc24, the Cdc42 activator in Saccharomyces cerevisiae. J Biol Chem 2008; 283:17515-30. [PMID: 18378681 DOI: 10.1074/jbc.m800305200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange factor activation of Rho G-proteins is critical for cytoskeletal reorganization. In the yeast Saccharomyces cerevisiae, the sole guanine nucleotide exchange factor for the Rho G-protein Cdc42p, Cdc24p, is essential for its site-specific activation. Several mammalian exchange factors have been shown to oligomerize; however, the function of this homotypic interaction is unclear. Here we show that Cdc24p forms oligomers in yeast via its catalytic Dbl homology domain. Mutation of residues critical for Cdc24p oligomerization also perturbs the localization of this exchange factor yet does not alter its catalytic activity in vitro. Chemically induced oligomerization of one of these oligomerization-defective mutants partially restored its localization to the bud tip and nucleus. Furthermore, chemically induced oligomerization of wild-type Cdc24p does not affect in vitro exchange factor activity, yet it results in a decrease of activated Cdc42p in vivo and the presence of Cdc24p in the nucleus at all cell cycle stages. Together, our results suggest that Cdc24p oligomerization regulates Cdc42p activation via its localization.
Collapse
Affiliation(s)
- Cyril Mionnet
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
20
|
Koizumi M, Nakaseko C, Ohwada C, Takeuchi M, Ozawa S, Shimizu N, Cho R, Nishimura M, Saito Y. Zoledronate has an antitumor effect and induces actin rearrangement in dexamethasone-resistant myeloma cells. Eur J Haematol 2007; 79:382-91. [PMID: 17903213 DOI: 10.1111/j.1600-0609.2007.00957.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
New strategies are needed to overcome the resistance of multiple myeloma (MM) to dexamethasone (Dex). Several recent in vitro studies demonstrated the antitumor effect of nitrogen-containing amino-bisphosphonates (N-BPs) in various tumor cell lines. Inhibition of the prenylation of small G proteins is assumed to be one of the principal mechanisms by which N-BPs exert their effects. There have been few reports on N-BP treatment of MM cells that are resistant to Dex. Additionally, it is not known how small G proteins are altered in N-BP-treated MM cells. In this study, we evaluated the effect of the most potent N-BP, zoledronate (ZOL), on a Dex-resistant human MM cell subline (Dex-R) that we established from the well-documented RPMI8226 cell line. ZOL reduced the viability and induced apoptosis of Dex-R cells. Some of the ZOL-treated RPMI8226 cells and ZOL-treated Dex-R cells were elongated; however, elongated cells were not seen among the Dex-treated RPMI8226 cells. Furthermore, we found that portions of the small G proteins, Rho and Rap1A, were unprenylated in the ZOL-treated MM cells. Geranylgeraniol reduced the above-mentioned ZOL-induced effects. These findings suggest that ZOL may be beneficial for the treatment of Dex-resistant MM by suppressing the processing of RhoA and Rap1A.
Collapse
Affiliation(s)
- Masayuki Koizumi
- Division of Hematology, Department of Clinical Cell Biology, Chiba University Graduate School of Medicine, Inohana, Chuo-ku, Chiba City, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nichols CB, Perfect ZH, Alspaugh JA. A Ras1-Cdc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 2007; 63:1118-30. [PMID: 17233829 DOI: 10.1111/j.1365-2958.2006.05566.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathogenic microorganisms must precisely regulate morphogenesis to survive and proliferate within an infected host. This regulation is often controlled by conserved signal transduction pathways that direct morphological changes in varied species. One such pathway, whose components include Ras proteins and the PAK kinase Ste20, allows the human fungal pathogen Cryptococcus neoformans to grow at high temperature. Previously, we found that Ras1 signalling is required for differentiation, thermotolerance and pathogenesis in C. neoformans. We show here that the guanine nucleotide exchange factor Cdc24 is a Ras1 effector in C. neoformans to mediate the ability of this fungus to grow at high temperature and to cause disease. In addition, we provide evidence that the Ras1-Cdc24 signalling cascade functions specifically through one of the three Cdc42/Rac1 homologues in C. neoformans. In conclusion, our studies illustrate how components of conserved signalling cascades can be specialized for different downstream functions, such as pathogenesis.
Collapse
Affiliation(s)
- Connie B Nichols
- Department of Medicine, Duke University Medical CenterDurham, NC 27710, USA
| | | | | |
Collapse
|
22
|
García P, Tajadura V, García I, Sánchez Y. Role of Rho GTPases and Rho-GEFs in the regulation of cell shape and integrity in fission yeast. Yeast 2007; 23:1031-43. [PMID: 17072882 DOI: 10.1002/yea.1409] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Rho family of GTPases are highly conserved molecular switches that control some of the most fundamental processes of cell biology, including morphogenesis, vesicular transport, cell division and motility. Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to extracellular stimuli. In fission yeast, there are seven Dbl-related GEFs and they activate six Rho-type GTPases within a particular spatio-temporal context. The failure to do so might have consequences reflected in aberrant phenotypes and in some cases lead to cell death. In this review, we briefly summarize the role of Rho GTPases and Rho-GEFs in the establishment and maintenance of cell polarity and cell integrity in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
23
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
24
|
Arias-Romero LE, de la Rosa CHG, Almaráz-Barrera MDJ, Diaz-Valencia JD, Sosa-Peinado A, Vargas M. EhGEF3, a novel Dbl family member, regulates EhRacA activation during chemotaxis and capping inEntamoeba histolytica. ACTA ACUST UNITED AC 2007; 64:390-404. [PMID: 17323375 DOI: 10.1002/cm.20191] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rho GTPases are critical elements involved in the regulation of signal transduction cascades from extracellular stimuli to cytoskeleton. The Rho guanine nucleotide exchange factors (RhoGEFs) have been implicated in direct activation of these GTPases. Here, we describe a novel RhoGEF, denominated EhGEF3 from the parasite Entamoeba histolytica, which encodes a 110 kDa protein containing the domain arrangement of a Dbl homology domain in tandem with a pleckstrin homology domain, the DH domain of EhGEF3 is closely related with the one of the Vav3 protein. Biochemical analysis revealed that EhGEF3 is capable of stimulating nucleotide exchange on the E. histolytica EhRacA and EhRho1 GTPases in vitro, however only a partial GEF activity toward Cdc42 was observed. Conserved residue analysis showed that the N816 and L817 residues are critical for EhGEF3 activity. Cellular studies revealed that EhGEF3 colocalises with EhRacA in the rear of migrating cells, probably regulating the retraction of the uroid and promoting the activation of these GTPase during the chemotactic response toward fibronectin, and that EhGEF3 also regulates EhRacA activation during the capping of cell receptors. These results suggest that EhGEF3 should have a direct role in activating EhRacA, and in bringing the activated GTPase to specific target sites such as the uroid.
Collapse
|
25
|
Slomiany P, Baker T, Elliott ER, Grossel MJ. Changes in motility, gene expression and actin dynamics: Cdk6-induced cytoskeletal changes associated with differentiation in mouse astrocytes. J Cell Biochem 2006; 99:635-46. [PMID: 16767702 DOI: 10.1002/jcb.20966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclin dependent kinase (cdk) 4 and cdk6 have historically been understood to be D-cyclin kinases that phosphorylate pRb in the nucleus to regulate G1 phase of the cell cycle. In conflict with this understood redundancy are several studies that have demonstrated a novel role for cdk6 in differentiation. Cdk6 expression must be reduced to allow proper osteoblast and osteoclast differentiation, enforced cdk6 expression blocked differentiation of mouse embryo fibroblasts, and cdk6 expression in primary astrocytes favored the expression of progenitor cell markers (Ericson et al. [2003] Mol Cancer Res 1:654-664; Matushansky et al. [2003] Oncogene 22:4143-4149; Ogasawara et al. [2004a] J Bone Miner Res 19:1128-1136; Ogasawara et al. [2004b] Mol Cell Biol 24:6560-6568). Experiments shown here investigate novel cytoplasmic and nuclear functions of cdk6. These data demonstrate that cdk6 expression in mouse astrocytes results in changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility. These changes in cdk6-infected cells are associated with the process of cellular differentiation.
Collapse
Affiliation(s)
- Peter Slomiany
- Department of Biology, Connecticut College, New London, Connecticut, USA
| | | | | | | |
Collapse
|
26
|
De Clercq A, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 2006; 41:293-313. [PMID: 16911957 DOI: 10.1080/10409230600856685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell cycle is remarkably conserved in yeast, animals, and plants and is controlled by cyclin-dependent kinases (CDKs). CDK activity can be inhibited by binding of CDK inhibitory proteins, designated CKIs. Numerous studies show that CKIs are essential in orchestrating eukaryotic cell proliferation and differentiation. In yeast, animals, and plants, CKIs act as regulators of the G1 checkpoint in response to environmental and developmental cues and assist during mitotic cell cycles by inhibiting CDK activity required to arrest mitosis. Furthermore, CKIs play an important role in regulating cell cycle exit that precedes differentiation and in promoting differentiation in cooperation with transcription factors. Moreover, CKIs are essential to control CDK activity in endocycling cells. So, in yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.
Collapse
Affiliation(s)
- Annelies De Clercq
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | | |
Collapse
|
27
|
Katagiri K, Imamura M, Kinashi T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol 2006; 7:919-28. [PMID: 16892067 DOI: 10.1038/ni1374] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 07/12/2006] [Indexed: 12/16/2022]
Abstract
RAPL, a protein that binds the small GTPase Rap1, is required for efficient immune cell trafficking. Here we have identified the kinase Mst1 as a critical effector of RAPL. RAPL regulated the localization and kinase activity of Mst1. 'Knockdown' of the gene encoding Mst1 demonstrated its requirement for the induction of both a polarized morphology and integrin LFA-1 clustering and adhesion triggered by chemokines and T cell receptor ligation. RAPL and Mst1 localized to vesicular compartments and dynamically translocated with LFA-1 to the leading edge upon Rap1 activation, suggesting a regulatory function for the RAPL-Mst1 complex in intracellular transport of LFA-1. Our study demonstrates a previously unknown function for Mst1 of relaying the Rap1-RAPL signal to induce cell polarity and adhesion of lymphocytes.
Collapse
Affiliation(s)
- Koko Katagiri
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka 570-8506, Japan
| | | | | |
Collapse
|
28
|
Kozminski KG, Alfaro G, Dighe S, Beh CT. Homologues of Oxysterol-Binding Proteins Affect Cdc42p- and Rho1p-Mediated Cell Polarization in Saccharomyces cerevisiae. Traffic 2006; 7:1224-42. [PMID: 17004323 DOI: 10.1111/j.1600-0854.2006.00467.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polarized cell growth requires the establishment of an axis of growth along which secretion can be targeted to a specific site on the cell cortex. How polarity establishment and secretion are choreographed is not fully understood, though Rho GTPase- and Rab GTPase-mediated signaling is required. Superimposed on this regulation are the functions of specific lipids and their cognate binding proteins. In a screen for Saccharomyces cerevisiae genes that interact with Rho family CDC42 to promote polarity establishment, we identified KES1/OSH4, which encodes a homologue of mammalian oxysterol-binding protein (OSBP). Other yeast OSH genes (OSBP homologues) had comparable genetic interactions with CDC42, implicating OSH genes in the regulation of CDC42-dependent polarity establishment. We found that the OSH gene family (OSH1-OSH7) promotes cell polarization by maintaining the proper localization of septins, the Rho GTPases Cdc42p and Rho1p, and the Rab GTPase Sec4p. Disruption of all OSH gene function caused specific defects in polarized exocytosis, indicating that the Osh proteins are collectively required for a secretory pathway implicated in the maintenance of polarized growth.
Collapse
Affiliation(s)
- Keith G Kozminski
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
29
|
Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1117-25. [PMID: 16624255 DOI: 10.1016/j.bbamem.2006.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/14/2006] [Accepted: 03/07/2006] [Indexed: 12/19/2022]
Abstract
Trafficking of water channel aquaporin-2 (AQP2) to the apical membrane is critical to water reabsorption in renal collecting ducts and its regulation maintains body water homeostasis. However, exact molecular mechanisms which recruit AQP2 are unknown. Recent studies highlighted a key role for spatial and temporal regulation of actin dynamics in AQP2 trafficking. We have recently identified AQP2-binding proteins which directly regulate this trafficking: SPA-1, a GTPase-activating protein (GAP) for Rap1, and cytoskeletal protein actin. In addition, a multiprotein "force generator" complex which directly binds to AQP2 has been discovered. This review summarizes recent advances related to the mechanism for AQP2 trafficking.
Collapse
Affiliation(s)
- Yumi Noda
- Department of Nephrology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8519, Japan.
| | | |
Collapse
|
30
|
García P, Tajadura V, García I, Sánchez Y. Rgf1p is a specific Rho1-GEF that coordinates cell polarization with cell wall biogenesis in fission yeast. Mol Biol Cell 2006; 17:1620-31. [PMID: 16421249 PMCID: PMC1415308 DOI: 10.1091/mbc.e05-10-0933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rho1p regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. We have identified a new GEF, designated Rgf1p, which specifically regulates Rho1p during polarized growth. The phenotype of rgf1 null cells was very similar to that seen after depletion of Rho1p, 30% of cells being lysed. In addition, rgf1(+) deletion caused hypersensitivity to the antifungal drug Caspofungin and defects in the establishment of bipolar growth. rho1(+), but none of the other GTPases of the Rho-family, suppressed the rgf1Delta phenotypes. Moreover, deletion of rgf1(+) suppressed the severe growth defect in rga1(+) null mutants (a Rho1-GAP, negative regulator). Rgf1p and Rho1p coimmunoprecipitated and overexpression of rgf1(+) specifically increased the GTP-bound Rho1p; it caused changes in cell morphology, and a large increase in beta(1,3)-glucan synthase activity. These effects were similar to those elicited when the hyperactive rho1-G15V allele was expressed. A genetic relationship was observed between Rgf1p, Bgs4p (beta[1,3]-glucan synthase), and Pck1p (protein kinase C [PKC] homologue); Bgs4p and Pck1p suppressed the hypersensitivity to Caspofungin in rgf1Delta mutants. Rgf1p localized to the growing ends and the septum, where Rho1, Pck1p, and Bgs4p are known to function. Our results suggest that Rgf1p probably activates the Rho functions necessary for coordinating actin deposition with cell wall biosynthesis during bipolar growth, allowing the cells to remodel their wall without risk of rupture.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca and Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
31
|
Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K. IQGAP1: a key regulator of adhesion and migration. J Cell Sci 2006; 118:2085-92. [PMID: 15890984 DOI: 10.1242/jcs.02379] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The dynamic rearrangement of cell-cell adhesion is one of the major physiological events in tissue development and tumor metastasis. Polarized cell migration, another key event, is a tightly regulated process that occurs during tissue development, chemotaxis and wound healing. Rho-family small GTPases, especially Rac1 and Cdc42, play pivotal roles in these processes through one of their effectors, IQGAP1. Recent studies reveal that IQGAP1 regulates cadherin-mediated cell-cell adhesion both positively and negatively. It captures and stabilizes microtubules through the microtubule-binding protein CLIP-170 near the cell cortex, leading to establishment of polarized cell morphology and directional cell migration. Furthermore, Rac1 and Cdc42 link the adenomatous polyposis coli (APC) protein to actin filaments through IQGAP1 at the leading edge and thereby regulate polarization and directional migration.
Collapse
Affiliation(s)
- Jun Noritake
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | | | | | | | | |
Collapse
|
32
|
Chan AY, Coniglio SJ, Chuang YY, Michaelson D, Knaus UG, Philips MR, Symons M. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 2005; 24:7821-9. [PMID: 16027728 DOI: 10.1038/sj.onc.1208909] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Members of the Rho family of small GTPases have been shown to be involved in tumorigenesis and metastasis. Currently, most of the available information on the function of Rho proteins in malignant transformation is based on the use of dominant-negative mutants of these GTPases. The specificity of these dominant-negative mutants is limited however. In this study, we used small interfering RNA directed against either Rac1 or Rac3 to reduce their expression specifically. In line with observations using dominant-negative Rac1 in other cell types, we show that RNA interference-mediated depletion of Rac1 strongly inhibits lamellipodia formation, cell migration and invasion in SNB19 glioblastoma cells. Surprisingly however, Rac1 depletion has a much smaller inhibitory effect on SNB19 cell proliferation and survival. Interestingly, whereas depletion of Rac3 strongly inhibits SNB19 cell invasion, it does not affect lamellipodia formation and has only minor effects on cell migration and proliferation. Similar results were obtained in BT549 breast carcinoma cells. Thus, functional analysis of Rac1 and Rac3 using RNA interference reveals a critical role for these GTPases in the invasive behavior of glioma and breast carcinoma cells.
Collapse
Affiliation(s)
- Amanda Y Chan
- Institute for Medical Research at North Shore-LIJ, Manhasset, NY 11030, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, Small JV, Retta SF. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci 2005; 118:4765-83. [PMID: 16219685 DOI: 10.1242/jcs.02584] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The coordinate modulation of cadherin and integrin functions plays an essential role in fundamental physiological and pathological processes, including morphogenesis and cancer. However, the molecular mechanisms underlying the functional crosstalk between cadherins and integrins are still elusive.Here, we demonstrate that the small GTPase Rap1, a crucial regulator of the inside-out activation of integrins, is a target for E-cadherin-mediated outside-in signaling. In particular, we show that a strong activation of Rap1 occurs upon adherens junction disassembly that is triggered by E-cadherin internalization and trafficking along the endocytic pathway. By contrast, Rap1 activity is not influenced by integrin outside-in signaling. Furthermore, we demonstrate that the E-cadherin endocytosis-dependent activation of Rap1 is associated with and controlled by an increased Src kinase activity, and is paralleled by the colocalization of Rap1 and E-cadherin at the perinuclear Rab11-positive recycling endosome compartment, and the association of Rap1 with a subset of E-cadherin-catenin complexes that does not contain p120ctn. Conversely, Rap1 activity is suppressed by the formation of E-cadherin-dependent cell-cell junctions as well as by agents that inhibit either Src activity or E-cadherin internalization and intracellular trafficking. Finally, we demonstrate that the E-cadherin endocytosis-dependent activation of Rap1 is associated with and is required for the formation of integrin-based focal adhesions.Our findings provide the first evidence of an E-cadherin-modulated endosomal signaling pathway involving Rap1, and suggest that cadherins may have a novel modulatory role in integrin adhesive functions by fine-tuning Rap1 activation.
Collapse
Affiliation(s)
- Fiorella Balzac
- Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena 5/bis, Torino, 10126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Retta SF, Balzac F, Avolio M. Rap1: a turnabout for the crosstalk between cadherins and integrins. Eur J Cell Biol 2005; 85:283-93. [PMID: 16546572 DOI: 10.1016/j.ejcb.2005.09.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumour progression, and metastasis. However, the molecular mechanisms underlying the fine-balanced relationship between cadherin and integrin functions are still elusive. This review focuses on recent findings on the involvement of the small GTPase Rap1 in the regulation of cadherin- and integrin-dependent cell adhesion and signal transduction. In particular, it highlights some of the novel results recently obtained that raise the possibility of a pivotal role for Rap1 in the functional crosstalk between cadherins and integrins, suggesting interesting new regulatory mechanisms.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Genetics, Biology and Biochemistry, University of Torino, Via Santena 5/bis, I-10126 Torino, Italy.
| | | | | |
Collapse
|
35
|
Queralt E, Igual JC. Functional connection between the Clb5 cyclin, the protein kinase C pathway and the Swi4 transcription factor in Saccharomyces cerevisiae. Genetics 2005; 171:1485-98. [PMID: 16118191 PMCID: PMC1456078 DOI: 10.1534/genetics.105.045005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rsf12 mutation was isolated in a synthetic lethal screen for genes functionally interacting with Swi4. RSF12 is CLB5. The clb5 swi4 mutant cells arrest at G(2)/M due to the activation of the DNA-damage checkpoint. Defects in DNA integrity was confirmed by the increased rates of chromosome loss and mitotic recombination. Other results suggest the presence of additional defects related to morphogenesis. Interestingly, genes of the PKC pathway rescue the growth defect of clb5 swi4, and pkc1 and slt2 mutations are synthetic lethal with clb5, pointing to a connection between Clb5, the PKC pathway, and Swi4. Different observations suggest that like Clb5, the PKC pathway and Swi4 are involved in the control of DNA integrity: there is a synthetic interaction between pkc1 and slt2 with rad9; the pkc1, slt2, and swi4 mutants are hypersensitive to hydroxyurea; and the Slt2 kinase is activated by hydroxyurea. Reciprocally, we found that clb5 mutant is hypersensitive to SDS, CFW, latrunculin B, or zymolyase, which suggests that, like the PKC pathway and Swi4, Clb5 is related to cell integrity. In summary, we report numerous genetic interactions and phenotypic descriptions supporting a close functional relationship between the Clb5 cyclin, the PKC pathway, and the Swi4 transcription factor.
Collapse
Affiliation(s)
- Ethel Queralt
- Departament de Bioquímica i Biologia Molecular, Universitat de València, C/Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain
| | | |
Collapse
|
36
|
Qi M, Elion EA. Formin-induced actin cables are required for polarized recruitment of the Ste5 scaffold and high level activation of MAPK Fus3. J Cell Sci 2005; 118:2837-48. [PMID: 15961405 DOI: 10.1242/jcs.02418] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about how a mitogen-activated protein kinase (MAPK) cascade is targeted to specific sites at the plasma membrane during receptor stimulation. In budding yeast, the Ste5 scaffold is recruited to a receptor-coupled G protein during mating pheromone stimulation, allowing the tethered MAPK cascade to be activated by Ste20, a Cdc42-anchored kinase. Here we show that stable recruitment of Ste5 at cortical sites requires the formin Bni1, Bni1-induced actin cables, Rho1 and Myo2. Rho1 directs recruitment of Bni1 via the Rho-binding domain, and Bni1 mediates localization of Ste5 through actin cables and Myo2, which co-immunoprecipitates with Ste5 during receptor stimulation. Bni1 is also required for polarized recruitment and full activation of MAPK Fus3, which must bind Ste5 to be activated, and polarized recruitment of Cdc24, the guanine exchange factor that binds Ste5 and promotes its recruitment to the G protein. In contrast, Bni1 is not important for activation of MAPK Kss1, which can be activated while not bound to Ste5 and does not accumulate at cortical sites. These findings reveal that Bni1 mediates the formation of a Ste5 scaffold/Fus3 MAPK signaling complex at polarized sites, and suggests that a pool of Ste5 may translocate along formin-induced actin cables to the cell cortex.
Collapse
Affiliation(s)
- Maosong Qi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, MA 02115, USA
| | | |
Collapse
|
37
|
Callow MG, Zozulya S, Gishizky ML, Jallal B, Smeal T. PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci 2005; 118:1861-72. [PMID: 15827085 DOI: 10.1242/jcs.02313] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Precise spatial and temporal regulation of Rho GTPases is required in controlling F-actin-based changes in cell morphology. The molecular mechanisms through which microtubules (MTs) modulate the activity of RhoGTPases and regulate the actin cytoskeleton are unclear. Here we show that p21-activated-kinase 4 (PAK4) mediates morphological changes through its association with the Rho-family guanine nucleotide exchange factor (GEF), GEF-H1. We show that this association is dependent upon a novel GEF-H1 interaction domain (GID) within PAK4. Further, we show that PAK4-mediated phosphorylation of Ser810 acts as a switch to block GEF-H1-dependent stress fiber formation while promoting the formation of lamellipodia in NIH-3T3 cells. We found that the endogenous PAK4-GEF-H1 complex associates with MTs and that PAK4 phosphorylation of MT-bound GEF-H1 releases it into the cytoplasm of NIH-3T3 cells, which coincides with the dissolution of stress fibers. Our observations propose a novel role for PAK4 in GEF-H1-dependent crosstalk between MTs and the actin cytoskeleton.
Collapse
Affiliation(s)
- Marinella G Callow
- SUGEN Incorporated, 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
38
|
van Galen EJM, Ramakers GJA. Rho proteins, mental retardation and the neurobiological basis of intelligence. PROGRESS IN BRAIN RESEARCH 2005; 147:295-317. [PMID: 15581714 DOI: 10.1016/s0079-6123(04)47022-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For several decades it has been known that mental retardation is associated with abnormalities in dendrites and dendritic spines. The recent cloning of eight genes which cause nonspecific mental retardation when mutated, provides an important insight into the cellular mechanisms that result in the dendritic abnormalities underlying mental retardation. Three of the encoded proteins, oligophrenin1, PAK3 and alphaPix, interact directly with Rho GTPases. Rho GTPases are key signaling proteins which integrate extracellular and intracellular signals to orchestrate coordinated changes in the actin cytoskeleton, essential for directed neurite outgrowth and the generation/rearrangement of synaptic connectivity. Although many details of the cell biology of Rho signaling in the CNS are as yet unclear, a picture is unfolding showing how mutations that cause abnormal Rho signaling result in abnormal neuronal connectivity which gives rise to deficient cognitive functioning in humans.
Collapse
Affiliation(s)
- Elly J M van Galen
- Neurons and Networks Research Group, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| | | |
Collapse
|
39
|
Fukuyama T, Ogita H, Kawakatsu T, Fukuhara T, Yamada T, Sato T, Shimizu K, Nakamura T, Matsuda M, Takai Y. Involvement of the c-Src-Crk-C3G-Rap1 Signaling in the Nectin-induced Activation of Cdc42 and Formation of Adherens Junctions. J Biol Chem 2005; 280:815-25. [PMID: 15504743 DOI: 10.1074/jbc.m411099200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nectins, Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules, induce the activation of Cdc42 and Rac small G proteins, enhancing the formation of cadherin-based adherens junctions (AJs) and claudin-based tight junctions. Nectins recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then activates Cdc42 through FRG, a Cdc42-GDP/GTP exchange factor. We showed here that Rap1 small G protein was involved in the nectin-induced activation of Cdc42 and formation of AJs. Rap1 was recruited to the nectin-based cell-cell contact sites and locally activated through the c-Src-Crk-C3G signaling there. The activation of either c-Src or Rap1 alone was insufficient for and the activation of both molecules was essential for the activation of FRG. The activation of Rap1 was not necessary for the c-Src-mediated phosphorylation or recruitment of FRG. The inhibition of the Crk, C3G, or Rap1 signaling reduced the formation of AJs. These results indicate that Rap1 is activated by nectins through the c-Src-Crk-C3G signaling and involved in the nectin-induced, c-Src- and FRG-mediated activation of Cdc42 and formation of AJs.
Collapse
Affiliation(s)
- Taihei Fukuyama
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Arthur WT, Quilliam LA, Cooper JA. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. ACTA ACUST UNITED AC 2004; 167:111-22. [PMID: 15479739 PMCID: PMC2172522 DOI: 10.1083/jcb.200404068] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Ras-related GTPase Rap1 stimulates integrin-mediated adhesion and spreading in various mammalian cell types. Here, we demonstrate that Rap1 regulates cell spreading by localizing guanine nucleotide exchange factors (GEFs) that act via the Rho family GTPase Rac1. Rap1a activates Rac1 and requires Rac1 to enhance spreading, whereas Rac1 induces spreading independently of Rap1. Active Rap1a binds to a subset of Rac GEFs, including VAV2 and Tiam1 but not others such as SWAP-70 or COOL-1. Overexpressed VAV2 and Tiam1 specifically require Rap1 to promote spreading, even though Rac1 is activated independently of Rap1. Rap1 is necessary for the accumulation of VAV2 in membrane protrusions at the cell periphery. In addition, if VAV2 is artificially localized to the cell edge with the subcellular targeting domain of Rap1a, it increases cell spreading independently of Rap1. These results lead us to propose that Rap1 promotes cell spreading by localizing a subset of Rac GEFs to sites of active lamellipodia extension.
Collapse
|
41
|
Archambault V, Chang EJ, Drapkin BJ, Cross FR, Chait BT, Rout MP. Targeted Proteomic Study of the Cyclin-Cdk Module. Mol Cell 2004; 14:699-711. [PMID: 15200949 DOI: 10.1016/j.molcel.2004.05.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/29/2004] [Accepted: 05/18/2004] [Indexed: 01/27/2023]
Abstract
The cell division cycle of the yeast S. cerevisiae is driven by one Cdk (cyclin-dependent kinase), which becomes active when bound to one of nine cyclin subunits. Elucidation of Cdk substrates and other Cdk-associated proteins is essential for a full understanding of the cell cycle. Here, we report the results of a targeted proteomics study using affinity purification coupled to mass spectrometry. Our study identified numerous proteins in association with particular cyclin-Cdk complexes. These included phosphorylation substrates, ubiquitination-degradation proteins, adaptors, and inhibitors. Some associations were previously known, and for others, we confirmed their specificity and biological relevance. Using a hypothesis-driven mass spectrometric approach, we also mapped in vivo phosphorylation at Cdk consensus motif-containing peptides within several cyclin-associated candidate Cdk substrates. Our results demonstrate that this approach can be used to detect a host of transient and dynamic protein associations within a biological module.
Collapse
|
42
|
Wiget P, Shimada Y, Butty AC, Bi E, Peter M. Site-specific regulation of the GEF Cdc24p by the scaffold protein Far1p during yeast mating. EMBO J 2004; 23:1063-74. [PMID: 14988725 PMCID: PMC380978 DOI: 10.1038/sj.emboj.7600123] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022] Open
Abstract
Receptor-mediated cell polarization via heterotrimeric G-proteins induces cytoskeletal rearrangements in a variety of organisms. In yeast, Far1p is required for orienting cell growth towards the mating partner by linking activated Gbetagamma to the guanine-nucleotide exchange factor (GEF) Cdc24p, which activates the Rho-type GTPase Cdc42p. Here we investigated the role of Far1p in the regulation of Cdc24p in vivo. Using time-lapse microscopy of mating cells and artificial membrane targeting of Far1p, we show that Far1p is necessary and sufficient to recruit Cdc24p to the plasma membrane. Wild-type Far1p contains a PH-like domain, which is required for its membrane localization in vivo. Interestingly, expression of membrane-targeted Far1p causes toxicity, most likely by activating Cdc42p uniformly at the cell cortex. The ability of full-length Far1p to function as an activator of Cdc24p in vivo requires its interaction with Cdc24p and Gbetagamma. Our results imply that Gbetagamma not only targets Far1p to the correct site but may also trigger a conformational change in Far1p that is required for its ability to activate Cdc24p in vivo.
Collapse
Affiliation(s)
- Philippe Wiget
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, Zurich, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, Switzerland
| | - Yukiko Shimada
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, Switzerland
| | - Anne-Christine Butty
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, Switzerland
| | - Efrei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Matthias Peter
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, Zurich, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, Switzerland
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, ETH Hoenggerberg HPM G 6.2, CH-8093 Zurich, Switzerland. Tel.: +41 1 633 6586; Fax: +41 1 633 1228; E-mail:
| |
Collapse
|
43
|
Shimada Y, Wiget P, Gulli MP, Bi E, Peter M. The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J 2004; 23:1051-62. [PMID: 14988726 PMCID: PMC380979 DOI: 10.1038/sj.emboj.7600124] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022] Open
Abstract
Site-specific activation of the Rho-type GTPase Cdc42p by its guanine-nucleotide exchange factor (GEF) Cdc24p is critical for the establishment of cell polarity. Here we show that binding of Cdc24p to the small GTPase Rsr1p/Bud1p is required for its recruitment to the incipient bud site. Rsr1p/Bud1p binds to the CH-domain of Cdc24p, which is essential for its function in vivo. We have identified a cdc24-mutant allele, which is specifically defective for bud-site selection. Our results suggest that Cdc24p is auto-inhibited by an intramolecular interaction with its carboxy-terminal PB1-domain. Rsr1p/Bud1p appears to activate the GEF activity of Cdc24p in vivo, possibly by triggering a conformational change that dissociates the PB1-domain from its intramolecular binding site. Genetic experiments suggest that Bem1p functions as a positive regulator of Cdc24p by binding to the PB1-domain of Cdc24p, thereby preventing its re-binding to the intramolecular inhibitory site. Taken together, our results support a two-step molecular mechanism for the site-specific activation of Cdc24p, which involves Rsr1p/Bud1p and the adaptor protein Bem1p.
Collapse
Affiliation(s)
- Yukiko Shimada
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges/VD, Switzerland
| | - Philippe Wiget
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges/VD, Switzerland
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, Zurich, Switzerland
| | - Marie-Pierre Gulli
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges/VD, Switzerland
| | - Efrei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthias Peter
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, Zurich, Switzerland
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, ETH Hoenggerberg HPM G 6.2, 8093 Zurich, Switzerland. Tel.: +41 1 632 3134; Fax: +41 1 632 1269; E-mail:
| |
Collapse
|
44
|
Toenjes KA, Simpson D, Johnson DI. Separate membrane targeting and anchoring domains function in the localization of the S. cerevisiae Cdc24p guanine nucleotide exchange factor. Curr Genet 2004; 45:257-64. [PMID: 14872283 DOI: 10.1007/s00294-004-0485-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/18/2003] [Accepted: 12/20/2003] [Indexed: 11/27/2022]
Abstract
The Saccharomyces cerevisiae Cdc24p guanine nucleotide exchange factor (GEF) activates the Cdc42p GTPase to a GTP-bound state. Cdc42p and Cdc24p co-localize at polarized growth sites during the cell cycle; and analysis of Cdc24p carboxyl-terminal truncation and site-specific mutations identified a 56-amino-acid domain as being necessary and sufficient for localization to these sites. This domain, however, was unable to anchor Cdc24p at these sites. Anchoring was restored by fusing the targeting domain to either the Cdc24p carboxyl-terminal PC domain that interacts with the Bem1p scaffold protein or the Cdc42p KKSKKCTIL membrane-anchoring domain. Mutant analysis and protein solubilization data indicated that anchoring required Bem1p, the Rsr1p/Bud1p GTPase, and the potential transmembrane protein YGR221Cp/Tos2p. These data are consistent with Cdc24p localization being a function of both membrane-specific targeting and subsequent anchoring within a multi-protein complex. Given the highly conserved roles of GEFs in Cdc42p signaling pathways, it is likely that similar targeting and anchoring mechanisms exist for Rho GEFs in other eukaryotes.
Collapse
Affiliation(s)
- Kurt A Toenjes
- Department of Microbiology and Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
45
|
Moffat J, Andrews B. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Nat Cell Biol 2003; 6:59-66. [PMID: 14688790 DOI: 10.1038/ncb1078] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 11/10/2003] [Indexed: 11/09/2022]
Abstract
The accurate spatial and temporal coordination of cell polarization with DNA replication and segregation guarantees the fidelity of genetic transmission. Here we report that in Saccharomyces cerevisiae, a build-up or burst of G1 cyclin-dependent kinase (CDK) activity through activation of the cyclin genes CLN1,2 and PCL1,2 is essential for cell morphogenesis, but not for other events associated with the G1-S-phase transition, including DNA replication. Strains lacking a burst of late-G1 cyclin-CDK activity (LG1C(-)) undergo a catastrophic morphogenesis and halt the nuclear cycle at the morphogenesis checkpoint in G2 phase. Consistent with a role in morphogenesis, the Pho85 G1 cyclins Pcl1 and Pcl2 show a unique pattern of localization to sites of polarized cell growth, and strains lacking PCL1 and PCL2 show genetic interactions with the cell polarity GTPase Cdc42, its regulators and downstream effectors. Our data suggest that inability to assemble a septin ring and localize the GTP exchange factor Cdc24 at the incipient bud site may be the primary morphogenetic defects in LG1C-depleted cells. We conclude that a burst of late G1 cyclin-CDK activity is essential for establishing cell polarity and development of the cleavage apparatus.
Collapse
Affiliation(s)
- Jason Moffat
- Department of Medical Genetics & Microbiology, University of Toronto, 1 Kings College Circle, Rm. 4287, Medical Sciences Building, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
46
|
Kozminski KG, Beven L, Angerman E, Tong AHY, Boone C, Park HO. Interaction between a Ras and a Rho GTPase couples selection of a growth site to the development of cell polarity in yeast. Mol Biol Cell 2003; 14:4958-70. [PMID: 12960420 PMCID: PMC284798 DOI: 10.1091/mbc.e03-06-0426] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Polarized cell growth requires the coupling of a defined spatial site on the cell cortex to the apparatus that directs the establishment of cell polarity. In the budding yeast Saccharomyces cerevisiae, the Ras-family GTPase Rsr1p/Bud1p and its regulators select the proper site for bud emergence on the cell cortex. The Rho-family GTPase Cdc42p and its associated proteins then establish an axis of polarized growth by triggering an asymmetric organization of the actin cytoskeleton and secretory apparatus at the selected bud site. We explored whether a direct linkage exists between the Rsr1p/Bud1p and Cdc42p GTPases. Here we show specific genetic interactions between RSR1/BUD1 and particular cdc42 mutants defective in polarity establishment. We also show that Cdc42p coimmunoprecipitated with Rsr1p/Bud1p from yeast extracts. In vitro studies indicated a direct interaction between Rsr1p/Bud1p and Cdc42p, which was enhanced by Cdc24p, a guanine nucleotide exchange factor for Cdc42p. Our findings suggest that Cdc42p interacts directly with Rsr1p/Bud1p in vivo, providing a novel mechanism by which direct contact between a Ras-family GTPase and a Rho-family GTPase links the selection of a growth site to polarity establishment.
Collapse
Affiliation(s)
- Keith G Kozminski
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lee S, Helfman DM. Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 2003; 279:1885-91. [PMID: 14559914 DOI: 10.1074/jbc.m306968200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence suggests that p21(Cip1) located in the cytoplasm might play a role in promoting transformation and tumor progression. Here we show that oncogenic H-RasV12 contributes to the loss of actin stress fibers by inducing cytoplasmic localization of p21(Cip1), which uncouples Rho-GTP from stress fiber formation by inhibiting Rho kinase (ROCK). Concomitant with the loss of stress fibers in Ras-transformed cells, there is a decrease in the phosphorylation level of cofilin, which is indicative of a compromised ROCK/LIMK/cofilin pathway. Inhibition of MEK in Ras-transformed NIH3T3 results in restoration of actin stress fibers accompanied by a loss of cytoplasmic p21(Cip1), and increased phosphorylation of cofilin. Ectopic expression of cytoplasmic but not nuclear p21(Cip1) in Ras-transformed cells was effective in preventing stress fibers from being restored upon MEK inhibition and inhibited phosphorylation of cofilin. p21(Cip1) was also found to form a complex with ROCK in Ras-transformed cells in vivo. Furthermore, inhibition of the PI 3-kinase pathway resulted in loss of p21(Cip1) expression accompanied by restoration of phosphocofilin, which was not accompanied by stress fiber formation. These results suggest that restoration of cofilin phosphorylation in Ras-transformed cells is necessary but not sufficient for stress fiber formation. Our findings define a novel mechanism for coupling cytoplasmic p21(Cip1) to the control of actin polymerization by compromising the Rho/ROCK/LIMK/cofilin pathway by oncogenic Ras. These studies suggest that localization of p21(Cip1) to the cytoplasm in transformed cells contributes to pathways that favor not only cell proliferation, but also cell motility thereby contributing to invasion and metastasis.
Collapse
Affiliation(s)
- Sungwoo Lee
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
48
|
Kubiseski TJ, Culotti J, Pawson T. Functional analysis of the Caenorhabditis elegans UNC-73B PH domain demonstrates a role in activation of the Rac GTPase in vitro and axon guidance in vivo. Mol Cell Biol 2003; 23:6823-35. [PMID: 12972602 PMCID: PMC193939 DOI: 10.1128/mcb.23.19.6823-6835.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Caenorhabditis elegans UNC-73B protein regulates axon guidance through its ability to act as a guanine nucleotide exchange factor (GEF) for the CeRAC/MIG-2 GTPases. Like other GEFs for Rho family GTPases, UNC-73B has a Dbl homology (DH) catalytic domain, followed by a C-terminal pleckstrin homology (PH) domain. We have explored whether the PH domain cooperates with the adjacent DH domain to promote UNC-73B GEF activity and axonal pathfinding. We show that the UNC-73B PH domain binds preferentially to monophosphorylated phosphatidylinositides in vitro. Replacement of residues Lys1420 and Arg1422 with Glu residues within the PH domain impaired this phospholipid binding but did not affect the in vitro catalytic activity of the DH domain. In contrast, a mutant UNC-73B protein with a Trp1502-to-Ala substitution in the PH domain still interacted with phosphorylated phosphatidylinositides but had lost its GEF activity. UNC-73B minigenes containing these mutations were microinjected into C. elegans and transferred to unc-73(e936) mutant worms. Unlike the wild-type protein, neither PH domain mutant was able to rescue the unc-73 axon guidance defect. These results suggest that the UNC-73B PH domain plays distinct roles in targeting and promoting GEF activity towards the Rac GTPase, both of which are important for the directed movements of motorneurons in vivo.
Collapse
Affiliation(s)
- Terrance J Kubiseski
- Samuel Lunenfeld Research Institute of Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | |
Collapse
|
49
|
Eisenhaure TM, Francis SA, Willison LD, Coughlin SR, Lerner DJ. The Rho guanine nucleotide exchange factor Lsc homo-oligomerizes and is negatively regulated through domains in its carboxyl terminus that are absent in novel splenic isoforms. J Biol Chem 2003; 278:30975-84. [PMID: 12773540 DOI: 10.1074/jbc.m303277200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases control fundamental cellular processes, including cytoskeletal reorganization and transcription. Rho guanine nucleotide exchange factors (GEFs) compose a large (>65) and diverse family of related proteins that activate Rho GTPases. Lsc/p115-RhoGEF is a Rho-specific GEF required for normal B and T lymphocyte function. Despite its essential role in lymphocytes, Lsc/p115-RhoGEF signaling in vivo is not well understood. To define Lsc/p115-RhoGEF signaling pathways in vivo, we set out to identify proteins that interact with regulatory regions of Lsc. The 146-amino acid C terminus of Lsc contains a predicted coiled-coil domain, and we demonstrated that deletion of this C terminus confers a gain of function in vivo. Surprisingly, a yeast two-hybrid screen for proteins that interact with this regulatory C terminus isolated a larger C-terminal fragment of Lsc itself. Co-immunoprecipitation experiments in mammalian cells demonstrated that Lsc specifically homo-oligomerizes and that the coiled-coil domain in the C terminus is required for homo-oligomerization. Mutagenesis experiments revealed that homo-oligomerization and negative regulation are distinct functions of the C terminus. Two novel isoforms of Lsc found in the spleen lack portions of this C terminus, including the coiled-coil domain. Importantly, the C termini of both isoforms confer a gain of function and eliminate homo-oligomerization. These results define two important features of Lsc signaling. First, Lsc homo-oligomerizes and is negatively regulated through domains in its C terminus; and second, functionally distinct isoforms of Lsc lacking these domains are present in the spleen.
Collapse
Affiliation(s)
- Thomas M Eisenhaure
- Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Rho GTPases control fundamental aspects of neutrophil chemotaxis: establishment of front and back and orientation toward the chemoattractant. Two reports in this issue show that activated Cdc42 at the leading edge helps orient the cell's axis in a signaling complex with G beta gamma, PAK1, and PIX alpha; while Rho, activated via G alpha 13, mediates formation of the uropod, which then interacts by mutual negative feedback with the front to reinforce polarization (Li et al., 2003 [this issue of Cell]; Xu et al., [this issue of Cell]).
Collapse
Affiliation(s)
- Ruedi Meili
- Section of Cell and Developmental Biology, Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|