1
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
2
|
Corchado-Sonera M, Rambani K, Navarro K, Kladney R, Dowdle J, Leone G, Chamberlin HM. Discovery of nonautonomous modulators of activated Ras. G3 GENES|GENOMES|GENETICS 2022; 12:6656354. [PMID: 35929788 PMCID: PMC9526067 DOI: 10.1093/g3journal/jkac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Communication between mesodermal cells and epithelial cells is fundamental to normal animal development and is frequently disrupted in cancer. However, the genes and processes that mediate this communication are incompletely understood. To identify genes that mediate this communication and alter the proliferation of cells with an oncogenic Ras genotype, we carried out a tissue-specific genome-wide RNAi screen in Caenorhabditis elegans animals bearing a let-60(n1046gf) (RasG13E) allele. The screen identifies 24 genes that, when knocked down in adjacent mesodermal tissue, suppress the increased vulval epithelial cell proliferation defect associated with let-60(n1046gf). Importantly, gene knockdown reverts the mutant animals to a wild-type phenotype. Using chimeric animals, we genetically confirm that 2 of the genes function nonautonomously to revert the let-60(n1046gf) phenotype. The effect is genotype restricted, as knockdown does not alter development in a wild type (let-60(+)) or activated EGF receptor (let-23(sa62gf)) background. Although many of the genes identified encode proteins involved in essential cellular processes, including chromatin formation, ribosome function, and mitochondrial ATP metabolism, knockdown does not alter the normal development or function of targeted mesodermal tissues, indicating that the phenotype derives from specific functions performed by these cells. We show that the genes act in a manner distinct from 2 signal ligand classes (EGF and Wnt) known to influence the development of vulval epithelial cells. Altogether, the results identify genes with a novel function in mesodermal cells required for communicating with and promoting the proliferation of adjacent epithelial cells with an activated Ras genotype.
Collapse
Affiliation(s)
| | - Komal Rambani
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, Ohio State University , Columbus, OH 43210, USA
| | - Kristen Navarro
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Raleigh Kladney
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - James Dowdle
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Gustavo Leone
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
- Department of Cancer Biology and Genetics, Ohio State University , Columbus, OH 43210, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, Ohio State University , Columbus, OH 43210, USA
| |
Collapse
|
3
|
Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in spinal muscular atrophy. Proc Natl Acad Sci U S A 2021; 118:2007785118. [PMID: 33931501 DOI: 10.1073/pnas.2007785118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motoneuron disease caused by deletions of the Survival of Motoneuron 1 gene (SMN1) and low SMN protein levels. SMN restoration is the concept behind a number of recently approved drugs which result in impressive yet limited effects. Since SMN has already been enhanced in treated patients, complementary SMN-independent approaches are needed. Previously, a number of altered signaling pathways which regulate motoneuron degeneration have been identified as candidate targets. However, signaling pathways form networks, and their connectivity is still unknown in SMA. Here, we used presymptomatic SMA mice to elucidate the network of altered signaling in SMA. The SMA network is structured in two clusters with AKT and 14-3-3 ζ/δ in their centers. Both clusters are connected by B-Raf as a major signaling hub. The direct interaction of B-Raf with 14-3-3 ζ/δ is important for an efficient neurotrophic activation of the MEK/ERK pathway and crucial for motoneuron survival. Further analyses in SMA mice revealed that both proteins were down-regulated in motoneurons and the spinal cord with B-Raf being reduced at presymptomatic stages. Primary fibroblasts and iPSC-derived motoneurons from SMA patients both showed the same pattern of down-regulation. This mechanism is conserved across species since a Caenorhabditis elegans SMA model showed less expression of the B-Raf homolog lin-45 Accordingly, motoneuron survival was rescued by a cell autonomous lin-45 expression in a C. elegans SMA model resulting in improved motor functions. This rescue was effective even after the onset of motoneuron degeneration and mediated by the MEK/ERK pathway.
Collapse
|
4
|
Knox J, Joly N, Linossi EM, Carmona-Negrón JA, Jura N, Pintard L, Zuercher W, Roy PJ. A survey of the kinome pharmacopeia reveals multiple scaffolds and targets for the development of novel anthelmintics. Sci Rep 2021; 11:9161. [PMID: 33911106 PMCID: PMC8080662 DOI: 10.1038/s41598-021-88150-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/08/2021] [Indexed: 11/10/2022] Open
Abstract
Over one billion people are currently infected with a parasitic nematode. Symptoms can include anemia, malnutrition, developmental delay, and in severe cases, death. Resistance is emerging to the anthelmintics currently used to treat nematode infection, prompting the need to develop new anthelmintics. Towards this end, we identified a set of kinases that may be targeted in a nematode-selective manner. We first screened 2040 inhibitors of vertebrate kinases for those that impair the model nematode Caenorhabditis elegans. By determining whether the terminal phenotype induced by each kinase inhibitor matched that of the predicted target mutant in C. elegans, we identified 17 druggable nematode kinase targets. Of these, we found that nematode EGFR, MEK1, and PLK1 kinases have diverged from vertebrates within their drug-binding pocket. For each of these targets, we identified small molecule scaffolds that may be further modified to develop nematode-selective inhibitors. Nematode EGFR, MEK1, and PLK1 therefore represent key targets for the development of new anthelmintic medicines.
Collapse
Affiliation(s)
- Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Nicolas Joly
- Programme Équipe Labellisée Ligue Contre Le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - Edmond M Linossi
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - José A Carmona-Negrón
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lionel Pintard
- Programme Équipe Labellisée Ligue Contre Le Cancer, Institut Jacques Monod, UMR7592, Université de Paris, CNRS, Paris, France
| | - William Zuercher
- School of Pharmacy, UNC Eshelman, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans. Mol Genet Genomics 2020; 296:1-20. [PMID: 32888055 DOI: 10.1007/s00438-020-01721-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
Forward genetics is a powerful tool to unravel molecular mechanisms of diverse biological processes. The success of genetic screens primarily relies on the ease of genetic manipulation of an organism and the availability of a plethora of genetic tools. The roundworm Caenorhabditis elegans has been one of the favorite models for genetic studies due to its hermaphroditic lifestyle, ease of maintenance, and availability of various genetic manipulation tools. The strength of C. elegans genetics is highlighted by the leading role of this organism in the discovery of several conserved biological processes. In this review, the principles and strategies for forward genetics in C. elegans are discussed. Further, the recent advancements that have drastically accelerated the otherwise time-consuming process of mutation identification, making forward genetic screens a method of choice for understanding biological functions, are discussed. The emphasis of the review has been on providing practical and conceptual pointers for designing genetic screens that will identify mutations, specifically disrupting the biological processes of interest.
Collapse
|
6
|
Doll MA, Soltanmohammadi N, Schumacher B. ALG-2/AGO-Dependent mir-35 Family Regulates DNA Damage-Induced Apoptosis Through MPK-1/ERK MAPK Signaling Downstream of the Core Apoptotic Machinery in Caenorhabditis elegans. Genetics 2019; 213:173-194. [PMID: 31296532 PMCID: PMC6727803 DOI: 10.1534/genetics.119.302458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) associate with argonaute (AGO) proteins to post-transcriptionally modulate the expression of genes involved in various cellular processes. Herein, we show that loss of the Caenorhabditis elegans AGO gene alg-2 results in rapid and significantly increased germ cell apoptosis in response to DNA damage inflicted by ionizing radiation (IR). We demonstrate that the abnormal apoptosis phenotype in alg-2 mutant animals can be explained by reduced expression of mir-35 miRNA family members. We show that the increased apoptosis levels in IR-treated alg-2 or mir-35 family mutants depend on a transient hyperactivation of the C. elegans ERK1/2 MAPK ortholog MPK-1 in dying germ cells. Unexpectedly, MPK-1 phosphorylation occurs downstream of caspase activation and depends at least in part on a functional cell corpse-engulfment machinery. Therefore, we propose a refined mechanism, in which an initial proapoptotic stimulus by the core apoptotic machinery initiates the engulfment process, which in turn activates MAPK signaling to facilitate the demise of genomically compromised germ cells.
Collapse
Affiliation(s)
- Markus Alexander Doll
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Najmeh Soltanmohammadi
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| |
Collapse
|
7
|
Shin H, Reiner DJ. The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning. J Dev Biol 2018; 6:E30. [PMID: 30544993 PMCID: PMC6316802 DOI: 10.3390/jdb6040030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
EGF, emitted by the Anchor Cell, patterns six equipotent C. elegans vulval precursor cells to assume a precise array of three cell fates with high fidelity. A group of core and modulatory signaling cascades forms a signaling network that demonstrates plasticity during the transition from naïve to terminally differentiated cells. In this review, we summarize the history of classical developmental manipulations and molecular genetics experiments that led to our understanding of the signals governing this process, and discuss principles of signal transduction and developmental biology that have emerged from these studies.
Collapse
Affiliation(s)
- Hanna Shin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- College of Medicine, Texas A & M University, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Coleman B, Topalidou I, Ailion M. Modulation of Gq-Rho Signaling by the ERK MAPK Pathway Controls Locomotion in Caenorhabditis elegans. Genetics 2018; 209:523-535. [PMID: 29615470 PMCID: PMC5972424 DOI: 10.1534/genetics.118.300977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
The heterotrimeric G protein Gq regulates neuronal activity through distinct downstream effector pathways. In addition to the canonical Gq effector phospholipase Cβ, the small GTPase Rho was recently identified as a conserved effector of Gq. To identify additional molecules important for Gq signaling in neurons, we performed a forward genetic screen in the nematode Caenorhabditis elegans for suppressors of the hyperactivity and exaggerated waveform of an activated Gq mutant. We isolated two mutations affecting the MAP kinase scaffold protein KSR-1 and found that KSR-1 modulates locomotion downstream of, or in parallel to, the Gq-Rho pathway. Through epistasis experiments, we found that the core ERK MAPK cascade is required for Gq-Rho regulation of locomotion, but that the canonical ERK activator LET-60/Ras may not be required. Through neuron-specific rescue experiments, we found that the ERK pathway functions in head acetylcholine neurons to control Gq-dependent locomotion. Additionally, expression of activated LIN-45/Raf in head acetylcholine neurons is sufficient to cause an exaggerated waveform phenotype and hypersensitivity to the acetylcholinesterase inhibitor aldicarb, similar to an activated Gq mutant. Taken together, our results suggest that the ERK MAPK pathway modulates the output of Gq-Rho signaling to control locomotion behavior in C. elegans.
Collapse
Affiliation(s)
- Brantley Coleman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
9
|
Qu M, Li Y, Wu Q, Xia Y, Wang D. Neuronal ERK signaling in response to graphene oxide in nematode Caenorhabditis elegans. Nanotoxicology 2017; 11:520-533. [PMID: 28368775 DOI: 10.1080/17435390.2017.1315190] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Man Qu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
- School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- School of Public Health, Southeast University, Nanjing, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Gauthier K, Rocheleau CE. C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking. Methods Mol Biol 2017; 1652:43-61. [PMID: 28791633 DOI: 10.1007/978-1-4939-7219-7_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.
Collapse
Affiliation(s)
- Kimberley Gauthier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Christian E Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
- Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Abstract
Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
- Département de Pathologie et de Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
| |
Collapse
|
12
|
Schmid T, Hajnal A. Signal transduction during C. elegans vulval development: a NeverEnding story. Curr Opin Genet Dev 2015; 32:1-9. [DOI: 10.1016/j.gde.2015.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/16/2022]
|
13
|
Hamakawa M, Uozumi T, Ueda N, Iino Y, Hirotsu T. A role for Ras in inhibiting circular foraging behavior as revealed by a new method for time and cell-specific RNAi. BMC Biol 2015; 13:6. [PMID: 25603799 PMCID: PMC4321700 DOI: 10.1186/s12915-015-0114-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The nematode worm Caenorhabditis elegans, in which loss-of-function mutants and RNA interference (RNAi) models are available, is a model organism useful for analyzing effects of genes on various life phenomena, including behavior. In particular, RNAi is a powerful tool that enables time- or cell-specific knockdown via heat shock-inducible RNAi or cell-specific RNAi. However, conventional RNAi is insufficient for investigating pleiotropic genes with various sites of action and life stage-dependent functions. RESULTS Here, we investigated the Ras gene for its role in exploratory behavior in C. elegans. We found that, under poor environmental conditions, mutations in the Ras-MAPK signaling pathway lead to circular locomotion instead of normal exploratory foraging. Spontaneous foraging is regulated by a neural circuit composed of three classes of neurons: IL1, OLQ, and RMD, and we found that Ras functions in this neural circuit to modulate the direction of locomotion. We further observed that Ras plays an essential role in the regulation of GLR-1 glutamate receptor localization in RMD neurons. To investigate the temporal- and cell-specific profiles of the functions of Ras, we developed a new RNAi method that enables simultaneous time- and cell-specific knockdown. In this method, one RNA strand is expressed by a cell-specific promoter and the other by a heat shock promoter, resulting in only expression of double-stranded RNA in the target cell when heat shock is induced. This technique revealed that control of GLR-1 localization in RMD neurons requires Ras at the adult stage. Further, we demonstrated the application of this method to other genes. CONCLUSIONS We have established a new RNAi method that performs simultaneous time- and cell-specific knockdown and have applied this to reveal temporal profiles of the Ras-MAPK pathway in the control of exploratory behavior under poor environmental conditions.
Collapse
Affiliation(s)
- Masayuki Hamakawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Takayuki Uozumi
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Naoko Ueda
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takaaki Hirotsu
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan. .,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan. .,Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan. .,Division of Applied Medical Sensing, Research and Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
14
|
Conversion of the LIN-1 ETS protein of Caenorhabditis elegans from a SUMOylated transcriptional repressor to a phosphorylated transcriptional activator. Genetics 2015; 199:761-75. [PMID: 25567989 DOI: 10.1534/genetics.114.172668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The LIN-1 ETS transcription factor plays a pivotal role in controlling cell fate decisions during development of the Caenorhabditis elegans vulva. Prior to activation of the RTK/Ras/ERK-signaling pathway, LIN-1 functions as a SUMOylated transcriptional repressor that inhibits vulval cell fate. Here we demonstrate using the yeast two-hybrid system that SUMOylation of LIN-1 mediates interactions with a protein predicted to be involved in transcriptional repression: the RAD-26 Mi-2β/CHD4 component of the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies indicated that rad-26 functions to inhibit vulval cell fates in worms. Using the yeast two-hybrid system, we showed that the EGL-27/MTA1 component of the NuRD complex binds the carboxy-terminus of LIN-1 independently of LIN-1 SUMOylation. EGL-27 also binds UBC-9, an enzyme involved in SUMOylation, and MEP-1, a zinc-finger protein previously shown to bind LIN-1. Genetic studies indicate that egl-27 inhibits vulval cell fates in worms. These results suggest that LIN-1 recruits multiple proteins that repress transcription via both the SUMOylated amino-terminus and the unSUMOylated carboxy-terminus. Assays in cultured cells showed that the carboxy-terminus of LIN-1 was converted to a potent transcriptional activator in response to active ERK. We propose a model in which LIN-1 recruits multiple transcriptional repressors to inhibit the 1° vulval cell fate, and phosphorylation by ERK converts LIN-1 to a transcriptional activator that promotes the 1° vulval cell fate.
Collapse
|
15
|
LIN-3/EGF promotes the programmed cell death of specific cells in Caenorhabditis elegans by transcriptional activation of the pro-apoptotic gene egl-1. PLoS Genet 2014; 10:e1004513. [PMID: 25144461 PMCID: PMC4140636 DOI: 10.1371/journal.pgen.1004513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/05/2014] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death (PCD) is the physiological death of a cell mediated by an intracellular suicide program. Although key components of the PCD execution pathway have been identified, how PCD is regulated during development is poorly understood. Here, we report that the epidermal growth factor (EGF)-like ligand LIN-3 acts as an extrinsic signal to promote the death of specific cells in Caenorhabditis elegans. The loss of LIN-3 or its receptor, LET-23, reduced the death of these cells, while excess LIN-3 or LET-23 signaling resulted in an increase in cell deaths. Our molecular and genetic data support the model that the LIN-3 signal is transduced through LET-23 to activate the LET-60/RAS-MPK-1/ERK MAPK pathway and the downstream ETS domain-containing transcription factor LIN-1. LIN-1 binds to, and activates transcription of, the key pro-apoptotic gene egl-1, which leads to the death of specific cells. Our results provide the first evidence that EGF induces PCD at the whole organism level and reveal the molecular basis for the death-promoting function of LIN-3/EGF. In addition, the level of LIN-3/EGF signaling is important for the precise fine-tuning of the life-versus-death fate. Our data and the previous cell culture studies that say EGF triggers apoptosis in some cell lines suggest that the EGF-mediated modulation of PCD is likely conserved in C. elegans and humans. Programmed cell death (PCD) is an evolutionarily conserved cellular process that is important for metazoan development and homeostasis. The epidermal growth factor (EGF) promotes cell proliferation, differentiation and survival during animal development. Surprisingly, we found that the EGF-like ligand LIN-3 also promotes the death of specific cells in Caenorhabditis elegans. We found that the LIN-3/EGF signal can be secreted from a cell to facilitate the demise of cells at a distance by activating the transcription of the PCD-promoting gene egl-1 in the doomed cells through the transcription factor LIN-1. LIN-1 binds to the egl-1 promoter in vitro and is positively regulated by the LIN-3/EGF, LET-23/EGF receptor, and the downstream MAPK signaling pathway. To our knowledge, LIN-3/EGF is the first extrinsic signal that has been shown to regulate the intrinsic PCD machinery during C. elegans development. In addition, the transcription factor LIN-31, which binds to LIN-1 and acts downstream of LIN-3/EGF, LET-23/EGF receptor, and the MAPK signaling pathway during vulval development, is dispensable for PCD. Thus, LIN-3/EGF promotes cell proliferation, differentiation, and PCD through common downstream signaling molecules but acts via distinct sets of transcription factors for different target gene expression.
Collapse
|
16
|
Abstract
Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway.
Collapse
Affiliation(s)
- Meera V Sundaram
- Dept. of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6145, USA.
| |
Collapse
|
17
|
Choi HJ, Sanders TA, Tormos KV, Ameri K, Tsai JD, Park AM, Gonzalez J, Rajah AM, Liu X, Quinonez DM, Rinaudo PF, Maltepe E. ECM-dependent HIF induction directs trophoblast stem cell fate via LIMK1-mediated cytoskeletal rearrangement. PLoS One 2013; 8:e56949. [PMID: 23437279 PMCID: PMC3578927 DOI: 10.1371/journal.pone.0056949] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/16/2013] [Indexed: 01/24/2023] Open
Abstract
The Hypoxia-inducible Factor (HIF) family of transcriptional regulators coordinates the expression of dozens of genes in response to oxygen deprivation. Mammalian development occurs in a hypoxic environment and HIF-null mice therefore die in utero due to multiple embryonic and placental defects. Mouse embryonic stem cells do not differentiate into placental cells; therefore, trophoblast stem cells (TSCs) are used to study mouse placental development. Consistent with a requirement for HIF activity during placental development in utero, TSCs derived from HIF-null mice exhibit severe differentiation defects and fail to form trophoblast giant cells (TGCs) in vitro. Interestingly, differentiating TSCs induce HIF activity independent of oxygen tension via unclear mechanisms. Here, we show that altering the extracellular matrix (ECM) composition upon which TSCs are cultured changes their differentiation potential from TGCs to multinucleated syncytiotropholasts (SynTs) and blocks oxygen-independent HIF induction. We further find that modulation of Mitogen Activated Protein Kinase Kinase-1/2 (MAP2K1/2, MEK-1/2) signaling by ECM composition is responsible for this effect. In the absence of ECM-dependent cues, hypoxia-signaling pathways activate this MAPK cascade to drive HIF induction and redirect TSC fate along the TGC lineage. In addition, we show that integrity of the microtubule and actin cytoskeleton is critical for TGC fate determination. HIF-2α ensures TSC cytoskeletal integrity and promotes invasive TGC formation by interacting with c-MYC to induce non-canonical expression of Lim domain kinase 1-an enzyme that regulates microtubule and actin stability, as well as cell invasion. Thus, we find that HIF can integrate positional and metabolic cues from within the TSC niche to regulate placental development by modulating the cellular cytoskeleton via non-canonical gene expression.
Collapse
Affiliation(s)
- Hwa J. Choi
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Timothy A. Sanders
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Kathryn V. Tormos
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Kurosh Ameri
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Justin D. Tsai
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Angela M. Park
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Julissa Gonzalez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Anthony M. Rajah
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Xiaowei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Diana M. Quinonez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Paolo F. Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, United States of America
- Developmental and Stem Cell Biology Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Bromberg-White JL, Andersen NJ, Duesbery NS. MEK genomics in development and disease. Brief Funct Genomics 2012; 11:300-10. [PMID: 22753777 PMCID: PMC3398258 DOI: 10.1093/bfgp/els022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mitogen-activated protein kinase kinases (the MAPK/ERK kinases; MKKs or MEKs) and their downstream substrates, the extracellular-regulated kinases have been intensively studied for their roles in development and disease. Until recently, it had been assumed any mutation affecting their function would have lethal consequences. However, the identification of MEK1 and MEK2 mutations in developmental syndromes as well as chemotherapy-resistant tumors, and the discovery of genomic variants in MEK1 and MEK2 have led to the realization the extent of genomic variation associated with MEKs is much greater than had been appreciated. In this review, we will discuss these recent advances, relating them to what is currently understood about the structure and function of MEKs, and describe how they change our understanding of the role of MEKs in development and disease.
Collapse
Affiliation(s)
- Jennifer L Bromberg-White
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
19
|
Charron J, Bissonauth V, Nadeau V. Implication of MEK1 and MEK2 in the establishment of the blood-placenta barrier during placentogenesis in mouse. Reprod Biomed Online 2012; 25:58-67. [PMID: 22561024 DOI: 10.1016/j.rbmo.2012.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 02/07/2023]
Abstract
The ERK/MAPK signalling cascade is involved in many cellular functions. In mice, the targeted ablation of genes coding for members of this pathway is often associated with embryonic death due to the abnormal development of the placenta. The placenta is essential for nutritional and gaseous exchanges between maternal and embryonic circulations, as well as for the elimination of metabolic waste. These exchanges occur without direct contact between the two circulations. In mice, the blood-placenta barrier consists of a triple layer of trophoblast cells adjacent to endothelial cells from the embryo. In the ERK/MAPK cascade, MEK1 and MEK2 are dual-specificity kinases responsible for the activation of the ERK1 and ERK2 kinases. Inactivation of Mek1 causes placental malformations resulting from defective proliferation and differentiation of the labyrinthine trophoblast cells and leading to a severe delay in the development and the vascularization of the placenta, which explains the embryonic death. Although Mek2(-/-) mutants survive without any apparent phenotype, a large proportion of Mek1(+/-)Mek2(+/-) double heterozygous mutants die during gestation from placenta anomalies affecting the establishment of the blood-placenta barrier. Together, these data reveal how crucial is the role of the ERK/MAPK pathway during the formation of the placenta.
Collapse
Affiliation(s)
- Jean Charron
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Canada.
| | | | | |
Collapse
|
20
|
Molecular characterization and expression profile of MAP2K1ip1/MP1 gene from tiger shrimp, Penaeus monodon. Mol Biol Rep 2011; 39:5811-8. [DOI: 10.1007/s11033-011-1391-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 12/17/2011] [Indexed: 01/03/2023]
|
21
|
Abstract
With unique genetic and cell biological strengths, C. elegans has emerged as a powerful model system for studying many biological processes. These processes are typically regulated by complex genetic networks consisting of genes. Identifying those genes and organizing them into genetic pathways are two major steps toward understanding the mechanisms that regulate biological events. Forward genetic screens with various designs are a traditional approach for identifying candidate genes. The completion of the genome sequencing in C. elegans and the advent of high-throughput experimental techniques have led to the development of two additional powerful approaches: functional genomics and systems biology. Genes that are discovered by these approaches can be ordered into interacting pathways through a variety of strategies, involving genetics, cell biology, biochemistry, and functional genomics, to gain a more complete understanding of how gene regulatory networks control a particular biological process. The aim of this review is to provide an overview of the approaches available to identify and construct the genetic pathways using C. elegans.
Collapse
Affiliation(s)
- Zheng Wang
- Dept. of Biology, Duke University, Durham NC
| | | |
Collapse
|
22
|
The LIN-15A and LIN-56 transcriptional regulators interact to negatively regulate EGF/Ras signaling in Caenorhabditis elegans vulval cell-fate determination. Genetics 2010; 187:803-15. [PMID: 21196525 DOI: 10.1534/genetics.110.124487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The restricted expression of epidermal growth factor (EGF) family ligands is important for proper development and for preventing cancerous growth in mammals. In Caenorhabditis elegans, the class A and B synthetic multivulva (synMuv) genes redundantly repress expression of lin-3 EGF to negatively regulate Ras-mediated vulval development. The class B synMuv genes encode proteins homologous to components of the NuRD and Myb-MuvB/dREAM transcriptional repressor complexes, indicating that they likely silence lin-3 EGF through chromatin remodeling. The two class A synMuv genes cloned thus far, lin-8 and lin-15A, both encode novel proteins. The LIN-8 protein is nuclear. We have characterized the class A synMuv gene lin-56 and found it to encode a novel protein that shares a THAP-like C(2)CH motif with LIN-15A. Both the LIN-56 and LIN-15A proteins localize to nuclei. Wild-type levels of LIN-56 require LIN-15A, and wild-type levels and/or localization of LIN-15A requires LIN-56. Furthermore, LIN-56 and LIN-15A interact in the yeast two-hybrid system. We propose that LIN-56 and LIN-15A associate in a nuclear complex that inhibits vulval specification by repressing lin-3 EGF expression.
Collapse
|
23
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
24
|
Aberrant extracellular signal-regulated kinase (ERK)1/2 signalling in suicide brain: role of ERK kinase 1 (MEK1). Int J Neuropsychopharmacol 2009; 12:1337-54. [PMID: 19835659 DOI: 10.1017/s1461145709990575] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK)1/2 signalling plays a critical role in synaptic and structural plasticity. Recent preclinical and human brain studies suggest that depression and suicidal behaviour are associated with aberrant ERK1/2 signalling. MEK, is a dual-specificity kinase, which is the immediate upstream regulator of ERK1/2. Two isoforms of MEK (MEK1 and MEK2) exist. By phosphorylating at Ser and Thr residues, MEK activates ERK1/2, which then phosphorylates cytoplasmic and nuclear substrates. On the other hand, MEK itself is regulated through phosphorylation by upstream Raf kinases. Recently, we demonstrated that activation of ERK1/2 and B-Raf was attenuated in the brains of suicide subjects. To further investigate the regulation of ERK1/2 signalling, we examined the expression and activation of MEKs, the interaction of MEK with ERKs, MEK-mediated activation of ERK1/2, and ERK1/2-mediated activation of nuclear substrate Elk-1 in the prefrontal cortex and hippocampus of suicide subjects. In addition, in order to investigate whether MEK is regulated by B-Raf, we examined the B-Raf and MEK interaction. No significant changes were observed in expression levels of MEK1 or MEK2; however, the catalytic activity of only MEK1 (not MEK2) was decreased in both the prefrontal cortex and hippocampus of suicide subjects. The interaction of MEK1 with ERK1 and ERK2 was increased along with decreased phosphorylation and catalytic activity of ERK1/2. In addition, we found decreased phosphorylation of MEK1 and less interaction of B-Raf with MEK1. Our results demonstrate abnormalities in MEK1 at multiple levels and suggest that these abnormalities in MEK1 are crucial for aberrant ERK1/2 signalling in suicide brain.
Collapse
|
25
|
Nadeau V, Guillemette S, Bélanger LF, Jacob O, Roy S, Charron J. Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development 2009; 136:1363-74. [PMID: 19304888 DOI: 10.1242/dev.031872] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian genome contains two ERK/MAP kinase kinase genes, Map2k1 and Map2k2, which encode dual-specificity kinases responsible for ERK/MAP kinase activation. In the mouse, loss of Map2k1 function causes embryonic lethality, whereas Map2k2 mutants survive with a normal lifespan, suggesting that Map2k1 masks the phenotype due to the Map2k2 mutation. To uncover the specific function of MAP2K2 and the threshold requirement of MAP2K proteins during embryo formation, we have successively ablated the Map2k gene functions. We report here that Map2k2 haploinsufficiency affects the normal development of placenta in the absence of one Map2k1 allele. Most Map2k1(+/-)Map2k2(+/-) embryos die during gestation because of placenta defects restricted to extra-embryonic tissues. The impaired viability of Map2k1(+/-)Map2k2(+/-) embryos can be rescued when the Map2k1 deletion is restricted to the embryonic tissues. The severity of the placenta phenotype is dependent on the number of Map2k mutant alleles, the deletion of the Map2k1 allele being more deleterious. Moreover, the deletion of one or both Map2k2 alleles in the context of one null Map2k1 allele leads to the formation of multinucleated trophoblast giant (MTG) cells. Genetic experiments indicate that these structures are derived from Gcm1-expressing syncytiotrophoblasts (SynT), which are affected in their ability to form the uniform SynT layer II lining the maternal sinuses. Thus, even though Map2k1 plays a predominant role, these results enlighten the function of Map2k2 in placenta development.
Collapse
Affiliation(s)
- Valérie Nadeau
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, QC, G1R 2J6, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Mendenhall AR, LeBlanc MG, Mohan DP, Padilla PA. Reduction in ovulation or male sex phenotype increases long-term anoxia survival in a daf-16-independent manner in Caenorhabditis elegans. Physiol Genomics 2008; 36:167-78. [PMID: 19050081 DOI: 10.1152/physiolgenomics.90278.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identifying genotypes and phenotypes that enhance an organism's ability to survive stress is of interest. We used Caenorhabditis elegans mutants, RNA interference (RNAi), and the chemical 5-fluorodeoxyuridine (FUDR) to test the hypothesis that a reduction in progeny would increase oxygen deprivation (anoxia) survival. In the hermaphrodite gonad, germ line processes such as spermatogenesis and oogenesis can be simultaneously as well as independently disrupted by genetic mutations. We analyzed genetic mutants [glp-1(q158), glp-4(bn2ts), plc-1(rx1), ksr-1(ku68), fog-2(q71), fem-3(q20), spe-9(hc52ts), fer-15(hc15ts)] with reduced progeny production due to various reproductive defects. Furthermore, we used RNAi to inhibit the function of gene products in the RTK/Ras/MAPK signaling pathway, which is known to be involved in a variety of developmental processes including gonad function. We determined that reduced progeny production or complete sterility enhanced anoxia survival except in the case of sterile hermaphrodites [spe-9(hc52ts), fer-15(hc15ts)] undergoing oocyte maturation and ovulation as exhibited by the presence of laid unfertilized oocytes. Furthermore, the fog-2(q71) long-term anoxia survival phenotype was suppressed when oocyte maturation and ovulation were induced by mating with males that have functional or nonfunctional sperm. The mutants with a reduced progeny production survive long-term anoxia in a daf-16- and hif-1-independent manner. Finally, we determined that wild-type males were able to survive long-term anoxia in a daf-16-independent manner. Together, these results suggest that the insulin signaling pathway is not the only mechanism to survive oxygen deprivation and that altering gonad function, in particular oocyte maturation and ovulation, leads to a physiological state conducive for oxygen deprivation survival.
Collapse
|
27
|
Role of the Caenorhabditis elegans Shc adaptor protein in the c-Jun N-terminal kinase signaling pathway. Mol Cell Biol 2008; 28:7041-9. [PMID: 18809575 DOI: 10.1128/mcb.00938-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and a wide variety of environmental stresses. In Caenorhabditis elegans, the stress response is controlled by a c-Jun N-terminal kinase (JNK)-like mitogen-activated protein kinase (MAPK) signaling pathway, which is regulated by MLK-1 MAPK kinase kinase (MAPKKK), MEK-1 MAPK kinase (MAPKK), and KGB-1 JNK-like MAPK. In this study, we identify the shc-1 gene, which encodes a C. elegans homolog of Shc, as a factor that specifically interacts with MEK-1. The shc-1 loss-of-function mutation is defective in activation of KGB-1, resulting in hypersensitivity to heavy metals. A specific tyrosine residue in the NPXY motif of MLK-1 creates a docking site for SHC-1 with the phosphotyrosine binding (PTB) domain. Introduction of a mutation that perturbs binding to the PTB domain or the NPXY motif abolishes the function of SHC-1 or MLK-1, respectively, thereby abolishing the resistance to heavy metal stress. These results suggest that SHC-1 acts as a scaffold to link MAPKKK to MAPKK activation in the KGB-1 MAPK signal transduction pathway.
Collapse
|
28
|
Zhang J, Zafrullah M, Yang X, Yin X, Zhang Z, Fuks Z, Kolesnick R. Downregulation of KSR1 in pancreatic cancer xenografts by antisense oligonucleotide correlates with tumor drug uptake. Cancer Biol Ther 2008; 7:1490-5. [PMID: 18719367 DOI: 10.4161/cbt.7.9.6472] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
While antisense oligonucleotide (AS-ODN) technology holds promise for the treatment of cancer, to date there have been no clinical successes. Unfortunately, current assays are not sufficiently sensitive to measure tissue ODN levels. Hence it has not been possible to ascertain whether treatment failures result from failure of drug delivery. To investigate the relationship between drug uptake and therapeutic effect, we developed an ultrasensitive noncompetitive hybridization-ligation enzyme-linked immunosorbent assay (NCHL-ELISA) to quantify Kinase Suppressor of Ras1 (KSR1) AS-ODN drug uptake in plasma and tumor tissues. In mice harboring PANC-1 pancreatic cancer xenografts and continuously infused with AS-ODN, our ELISA detects plasma and tumor KSR1 AS-ODN levels over an extended range, from 0.05 nM to 20 nM. Using this sensitive assay, we demonstrate that KSR1 repression in pancreatic cancer xenografts correlates highly with AS-ODN uptake into tumor tissues. In contrast, plasma drug levels do not correlate with tumor drug content or target downregulation. These studies indicate the efficacy of our ELISA, and suggest that tumor biopsy material will need to be procured to estimate the potential of this antisense technology.
Collapse
Affiliation(s)
- Jianjun Zhang
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Tissue-specific functions of the Caenorhabditis elegans p120 Ras GTPase activating protein GAP-3. Dev Biol 2008; 323:166-76. [PMID: 18805410 DOI: 10.1016/j.ydbio.2008.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 02/01/2023]
Abstract
All metazoan genomes encode multiple RAS GTPase activating proteins (RasGAPs) that negatively regulate the conserved RAS/MAPK signaling pathway. In mammals, several RasGAPs exhibit tumor suppressor activity by preventing excess RAS signal transduction. We have identified gap-3 as the to date missing Caenorhabditiselegans member of the p120 RasGAP family. By studying the genetic interaction of gap-3 with the two previously identified RasGAPs gap-1 and gap-2, we find that different combinations of RasGAPs are used to repress LET-60 RAS signaling depending on the cellular context. GAP-3 is the predominant negative regulator of RAS during meiotic progression of the germ cells, while GAP-1 is the key inhibitor of RAS during vulval induction. In other tissues such as the sex myoblasts or the chemosensory neurons, all three RasGAPs act in concert. The C. elegans RasGAPs have thus undergone partial specialization after gene duplication to allow the differential regulation of the RAS/MAPK signaling pathway in different cell types. A similar tissue specialization of the human tumor suppressor genes may explain the strong bias in the type of cancer they promote when mutated.
Collapse
|
30
|
Bissonauth V, Roy S, Gravel M, Guillemette S, Charron J. Requirement for Map2k1 (Mek1) in extra-embryonic ectoderm during placentogenesis. Development 2006; 133:3429-40. [PMID: 16887817 DOI: 10.1242/dev.02526] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Map2k1(-/-) embryos die at mid-gestation from abnormal development and hypovascularization of the placenta. We now show that this phenotype is associated with a decreased labyrinth cell proliferation and an augmented cell apoptosis. Although the activation of MAP2K1 and MAP2K2 is widespread in the labyrinthine region, MAPK1 and MAPK3 activation is restricted to the cells lining the maternal sinuses, suggesting an important role for the ERK/MAPK cascade in these cells. In Map2k1(-/-) placenta, ERK/MAPK cascade activation is perturbed. Abnormal localization of the syncytiotrophoblasts is also observed in Map2k1(-/-) placenta, even though this cell lineage is specified at the correct time during placentogenesis. The placental phenotype can be rescued in tetraploid experiments. In addition, Map2k1-specific deletion in the embryo leads to normal embryo development and to the birth of viable Map2k1(-/-) mice. Altogether, these data enlighten the essential role of Map2k1 in extra-embryonic ectoderm during placentogenesis. In the embryo, the Map2k1 gene function appears dispensable.
Collapse
Affiliation(s)
- Vickram Bissonauth
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, QC G1R 2J6, Canada
| | | | | | | | | |
Collapse
|
31
|
Cortese MR, Di Vito M, De Giorgi C. The expression of the homologue of the Caenorhabditis elegans lin-45 raf is regulated in the motile stages of the plant parasitic nematode Meloidogyne artiellia. Mol Biochem Parasitol 2006; 149:38-47. [PMID: 16737746 DOI: 10.1016/j.molbiopara.2006.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/30/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The Ras-MAPK signal transduction pathway controls multiple developmental events and is involved in the processing of olfactory information in the free living nematode Caenorhabditis elegans. We have studied the Ras-MAPK pathway in the plant parasitic nematode Meloidogyne artiellia. The genes Mt-let-60, Mt-lin-45, Mt-mek-2 and Mt-mpk-1 have been isolated and sequenced. Each of them shows a high level of sequence similarity to its presumed ortholog in C. elegans and key functional domains are structurally conserved. Furthermore, we show that the M. artiellia recombinant MEK-2 protein can phosphorylate and activate the M. artiellia recombinant MPK-1 and the recombinant MEK-2 itself can be phosphorylated and activated by immunoprecipitated mammalian Raf. Surprisingly, the Mt-lin-45 message is not detectable in freshly emerged juveniles or in male specimens, suggesting that it may be quickly degraded in these life stages.
Collapse
|
32
|
Tiensuu T, Larsen MK, Vernersson E, Tuck S. lin-1 has both positive and negative functions in specifying multiple cell fates induced by Ras/MAP kinase signaling in C. elegans. Dev Biol 2005; 286:338-51. [PMID: 16140291 DOI: 10.1016/j.ydbio.2005.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 07/27/2005] [Accepted: 08/05/2005] [Indexed: 11/30/2022]
Abstract
lin-1 encodes an ETS domain transcription factor that functions downstream of a Ras/MAP kinase pathway mediating induction of the 1 degrees cell fate during vulval development in the C. elegans hermaphrodite. Mutants lacking lin-1 activity display a phenotype similar to that caused by mutations that constitutively activate let-60 Ras consistent with a model in which lin-1 is a repressor of the 1 degree fate whose activity is inhibited by phosphorylation by MPK-1 MAP kinase. Here, we show that, contrary the current model, lin-1 is required positively for the proper expression of several genes regulated by the pathway in cells adopting the 1 degrees cell fate. We show that the positive requirement for lin-1 is downstream of let-60 Ras and mpk-1 MAP kinase, and that it has a focus in the vulval precursor cells themselves. lin-1 alleles encoding proteins lacking a docking site for MPK-1 MAP kinase are defective in the positive function. We also show that lin-1 apparently has both positive and negative functions during the specification of the fates of other cells in the worm requiring Ras/MAP kinase signaling.
Collapse
Affiliation(s)
- Teresa Tiensuu
- Umeå Center for Molecular Pathogenesis, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
33
|
Goldstein JL, Glossip D, Nayak S, Kornfeld K. The CRAL/TRIO and GOLD domain protein CGR-1 promotes induction of vulval cell fates in Caenorhabditis elegans and interacts genetically with the Ras signaling pathway. Genetics 2005; 172:929-42. [PMID: 16219793 PMCID: PMC1456255 DOI: 10.1534/genetics.104.035550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ras-mediated signaling is necessary for the induction of vulval cell fates during Caenorhabditis elegans development. We identified cgr-1 by screening for suppressors of the ectopic vulval cell fates caused by a gain-of-function mutation of the let-60 ras gene. Analysis of two cgr-1 loss-of-function mutations indicates that cgr-1 positively regulates induction of vulval cell fates. cgr-1 is likely to function at a step in the Ras signaling pathway that is downstream of let-60, which encodes Ras, and upstream of lin-1, which encodes a transcription factor, if these genes function in a linear signaling pathway. These genetic studies are also consistent with the model that cgr-1 functions in a parallel pathway that promotes vulval cell fates. Localized expression studies suggest that cgr-1 functions cell autonomously to affect vulval cell fates. cgr-1 also functions early in development, since cgr-1 is necessary for larval viability. CGR-1 contains a CRAL/TRIO domain likely to bind a small hydrophobic ligand and a GOLD domain that may mediate interactions with proteins. A bioinformatic analysis revealed that there is a conserved family of CRAL/TRIO and GOLD domain-containing proteins that includes members from vertebrates and Drosophila. The analysis of cgr-1 identifies a novel in vivo function for a member of this family and a potential new regulator of Ras-mediated signaling.
Collapse
Affiliation(s)
- Jessica L Goldstein
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
34
|
Hirotsu T, Iino Y. Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway. Genes Cells 2005; 10:517-30. [PMID: 15938711 DOI: 10.1111/j.1365-2443.2005.00856.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular machinery that mediates odor adaptation in the olfactory neurons is well documented in various animal species. However, types of adaptation that depend on neural circuits are mostly unexplored. We report here that the Ras-MAPK pathway is essential for such a type of odor adaptation, called early adaptation, in C. elegans. Early adaptation requires a pair of AIY interneurons, which receive synaptic inputs from olfactory neurons. Mutants of the Ras-MAPK pathway show defects in early adaptation. Continued exposure to an odorant causes activation of MAP kinase not only in the olfactory neurons, but also in the AIY interneurons. While activity of the Ras-MAPK pathway in the olfactory neurons is important for odor perception, its activity in the AIY interneurons is important for odor adaptation. Our results thus reveal a dual role of the Ras-MAPK pathway in sensory processing in the nervous system of C. elegans.
Collapse
Affiliation(s)
- Takaaki Hirotsu
- Molecular Genetics Research Laboratory, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
35
|
Miley GR, Fantz D, Glossip D, Lu X, Saito RM, Palmer RE, Inoue T, Van Den Heuvel S, Sternberg PW, Kornfeld K. Identification of residues of the Caenorhabditis elegans LIN-1 ETS domain that are necessary for DNA binding and regulation of vulval cell fates. Genetics 2005; 167:1697-709. [PMID: 15342509 PMCID: PMC1471005 DOI: 10.1534/genetics.104.029017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LIN-1 is an ETS domain protein. A receptor tyrosine kinase/Ras/mitogen-activated protein kinase signaling pathway regulates LIN-1 in the P6.p cell to induce the primary vulval cell fate during Caenorhabditis elegans development. We identified 23 lin-1 loss-of-function mutations by conducting several genetic screens. We characterized the molecular lesions in these lin-1 alleles and in several previously identified lin-1 alleles. Nine missense mutations and 10 nonsense mutations were identified. All of these lin-1 missense mutations affect highly conserved residues in the ETS domain. These missense mutations can be arranged in an allelic series; the strongest mutations eliminate most or all lin-1 functions, and the weakest mutation partially reduces lin-1 function. An electrophoretic mobility shift assay was used to demonstrate that purified LIN-1 protein has sequence-specific DNA-binding activity that required the core sequence GGAA. LIN-1 mutant proteins containing the missense substitutions had dramatically reduced DNA binding. These experiments identify eight highly conserved residues of the ETS domain that are necessary for DNA binding. The identification of multiple mutations that reduce the function of lin-1 as an inhibitor of the primary vulval cell fate and also reduce DNA binding suggest that DNA binding is essential for LIN-1 function in an animal.
Collapse
Affiliation(s)
- Ginger R Miley
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Leight ER, Glossip D, Kornfeld K. Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development 2005; 132:1047-56. [PMID: 15689373 DOI: 10.1242/dev.01664] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The LIN-1 ETS transcription factor inhibits vulval cell fates during Caenorhabditis elegans development. We demonstrate that LIN-1 interacts with UBC-9, a small ubiquitin-related modifier (SUMO) conjugating enzyme. This interaction is mediated by two consensus sumoylation motifs in LIN-1. Biochemical studies showed that LIN-1 is covalently modified by SUMO-1. ubc-9 and smo-1, the gene encoding SUMO-1, inhibit vulval cell fates and function at the level of lin-1, indicating that sumoylation promotes LIN-1 inhibition of vulval cell fates. Sumoylation of LIN-1 promoted transcriptional repression and mediated an interaction with MEP-1, a protein previously shown to associate with the nucleosome remodeling and histone deacetylation (NuRD) transcriptional repression complex. Genetic studies showed that mep-1 inhibits vulval cell fates and functions at the level of lin-1. We propose that sumoylation of LIN-1 mediates an interaction with MEP-1 that contributes to transcriptional repression of genes that promote vulval cell fates. These studies identify a molecular mechanism for SUMO-mediated transcriptional repression.
Collapse
Affiliation(s)
- Elizabeth R Leight
- Department of Molecular Biology and Pharmacology Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
37
|
Nicholas HR, Hodgkin J. The ERK MAP kinase cascade mediates tail swelling and a protective response to rectal infection in C. elegans. Curr Biol 2004; 14:1256-61. [PMID: 15268855 DOI: 10.1016/j.cub.2004.07.022] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 05/10/2004] [Accepted: 05/26/2004] [Indexed: 11/21/2022]
Abstract
The nematode Caenorhabditis elegans is proving to be an attractive model organism for investigating innate immune responses to infection. Among the known pathogens of C. elegans is the bacterium Microbacterium nematophilum, which adheres to the nematode rectum and postanal cuticle, inducing swelling of the underlying hypodermal tissue and causing mild constipation. We find that on infection by M. nematophilum, an extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase cascade mediates tail swelling and protects C. elegans from severe constipation, which would otherwise arrest development and cause sterility. Involvement in pathogen defense represents a new role for ERK MAP kinase signaling in this organism.
Collapse
Affiliation(s)
- Hannah R Nicholas
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
38
|
Dichtel-Danjoy ML, Félix MA. The two steps of vulval induction in Oscheius tipulae CEW1 recruit common regulators including a MEK kinase. Dev Biol 2004; 265:113-26. [PMID: 14697357 DOI: 10.1016/j.ydbio.2003.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cell interactions that specify the spatial pattern of vulval precursor cell (VPC) fates differ between the nematodes Oscheius tipulae CEW1 and Caenorhabditis elegans. In the former, the centered pattern of fates is obtained by two successive inductions from the gonadal anchor cell, whereas in the latter, a single inductive step by the anchor cell (EGF-Ras-MAP kinase pathway) can act as a morphogen and is reinforced by lateral signaling between the vulval precursors (Notch pathway). We performed a genetic screen for vulva mutants in O. tipulae CEW1. Here we present the mutants that specifically affect the vulval induction mechanisms. Phenotypic and epistatic analyses of these mutants show that both vulval induction steps share common components, one of which appears to be MEK kinase(s). Moreover, the inductive pathway (including MEK kinase) influences the competence of the vulval precursor cells and more strikingly their division pattern as well, irrespective of their vulval fate. Finally, a comparison of vulval mutant phenotypes obtained in C. elegans and O. tipulae CEW1 highlights the evolution of vulval induction mechanisms between the two species.
Collapse
|
39
|
Bélanger LF, Roy S, Tremblay M, Brott B, Steff AM, Mourad W, Hugo P, Erikson R, Charron J. Mek2 is dispensable for mouse growth and development. Mol Cell Biol 2003; 23:4778-87. [PMID: 12832465 PMCID: PMC162209 DOI: 10.1128/mcb.23.14.4778-4787.2003] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MEK is a dual-specificity kinase that activates the extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase upon agonist binding to receptors. The ERK/MAP kinase cascade is involved in cell fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single Mek gene is present in Caenorhabditis elegans, Drosophila melanogaster, and Xenopus laevis, two Mek homologs, Mek1 and Mek2, are present in the mammalian cascade. The inactivation of the Mek1 gene leads to embryonic lethality and has revealed the unique role played by Mek1 during embryogenesis. To investigate the biological function of the second homolog, we have generated mice deficient in Mek2 function. Mek2 mutant mice are viable and fertile, and they do not present flagrant morphological alteration. Although several components of the ERK/MAP kinase cascade have been implicated in thymocyte development, no such involvement was observed for MEK2, which appears to be nonessential for thymocyte differentiation and T-cell-receptor-induced proliferation and apoptosis. Altogether, our findings demonstrate that MEK2 is not necessary for the normal development of the embryo and T-cell lineages, suggesting that the loss of MEK2 can be compensated for by MEK1.
Collapse
Affiliation(s)
- Louis-François Bélanger
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bruinsma JJ, Jirakulaporn T, Muslin AJ, Kornfeld K. Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell 2002; 2:567-78. [PMID: 12015965 DOI: 10.1016/s1534-5807(02)00151-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
C. elegans cdf-1 was identified in a genetic screen for regulators of Ras-mediated signaling. CDF-1 is a cation diffusion facilitator protein that is structurally and functionally similar to vertebrate ZnT-1. These proteins have an evolutionarily conserved function as positive regulators of the Ras pathway, and the Ras pathway has an evolutionarily conserved ability to respond to CDF proteins. CDF proteins regulate Ras-mediated signaling by promoting Zn(2+) efflux and reducing the concentration of cytosolic Zn(2+), and cytosolic Zn(2+) negatively regulates Ras-mediated signaling. Physiological concentrations of Zn(2+) cause a significant inhibition of Ras-mediated signaling. These findings suggest that Zn(2+) negatively regulates a conserved element of the signaling pathway and that Zn(2+) regulation is important for maintaining the inactive state of the Ras pathway.
Collapse
Affiliation(s)
- Janelle J Bruinsma
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The nematode Caenorhabditis elegans was chosen as a model genetic organism because its attributes, chiefly its hermaphroditic lifestyle and rapid generation time, make it suitable for the isolation and characterization of genetic mutants. The most important challenge for the geneticist is to design a genetic screen that will identify mutations that specifically disrupt the biological process of interest. Since 1974, when Sydney Brenner published his pioneering genetic screen, researchers have developed increasingly powerful methods for identifying genes and genetic pathways in C. elegans.
Collapse
Affiliation(s)
- Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
42
|
Hsu V, Zobel CL, Lambie EJ, Schedl T, Kornfeld K. Caenorhabditis elegans lin-45 raf is essential for larval viability, fertility and the induction of vulval cell fates. Genetics 2002; 160:481-92. [PMID: 11861555 PMCID: PMC1461998 DOI: 10.1093/genetics/160.2.481] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The protein kinase Raf is an important signaling protein. Raf activation is initiated by an interaction with GTP-bound Ras, and Raf functions in signal transmission by phosphorylating and activating a mitogen-activated protein (MAP) kinase kinase named MEK. We identified 13 mutations in the Caenorhabditis elegans lin-45 raf gene by screening for hermaphrodites with abnormal vulval formation or germline function. Weak, intermediate, and strong loss-of-function or null mutations were isolated. The phenotype caused by the most severe mutations demonstrates that lin-45 is essential for larval viability, fertility, and the induction of vulval cell fates. The lin-45(null) phenotype is similar to the mek-2(null) and mpk-1(null) phenotypes, indicating that LIN-45, MEK-2, and MPK-1 ERK MAP kinase function in a predominantly linear signaling pathway. The lin-45 alleles include three missense mutations that affect the Ras-binding domain, three missense mutations that affect the protein kinase domain, two missense mutations that affect the C-terminal 14-3-3 binding domain, three nonsense mutations, and one small deletion. The analysis of the missense mutations indicates that Ras binding, 14-3-3-binding, and protein kinase activity are necessary for full Raf function and suggests that a 14-3-3 protein positively regulates Raf-mediated signaling during C. elegans development.
Collapse
Affiliation(s)
- Virginia Hsu
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
43
|
Schutzman JL, Borland CZ, Newman JC, Robinson MK, Kokel M, Stern MJ. The Caenorhabditis elegans EGL-15 signaling pathway implicates a DOS-like multisubstrate adaptor protein in fibroblast growth factor signal transduction. Mol Cell Biol 2001; 21:8104-16. [PMID: 11689700 PMCID: PMC99976 DOI: 10.1128/mcb.21.23.8104-8116.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EGL-15 is a fibroblast growth factor receptor in the nematode Caenorhabditis elegans. Components that mediate EGL-15 signaling have been identified via mutations that confer a Clear (Clr) phenotype, indicative of hyperactivity of this pathway, or a suppressor-of-Clr (Soc) phenotype, indicative of reduced pathway activity. We have isolated a gain-of-function allele of let-60 ras that confers a Clr phenotype and implicated both let-60 ras and components of a mitogen-activated protein kinase cascade in EGL-15 signaling by their Soc phenotype. Epistasis analysis indicates that the gene soc-1 functions in EGL-15 signaling by acting either upstream of or independently of LET-60 RAS. soc-1 encodes a multisubstrate adaptor protein with an amino-terminal pleckstrin homology domain that is structurally similar to the DOS protein in Drosophila and mammalian GAB1. DOS is known to act with the cytoplasmic tyrosine phosphatase Corkscrew (CSW) in signaling pathways in Drosophila. Similarly, the C. elegans CSW ortholog PTP-2 was found to be involved in EGL-15 signaling. Structure-function analysis of SOC-1 and phenotypic analysis of single and double mutants are consistent with a model in which SOC-1 and PTP-2 act together in a pathway downstream of EGL-15 and the Src homology domain 2 (SH2)/SH3-adaptor protein SEM-5/GRB2 contributes to SOC-1-independent activities of EGL-15.
Collapse
Affiliation(s)
- J L Schutzman
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Studies of C. elegans vulval development provide insights into the process of pattern formation during animal development. The invariant pattern of vulval precursor cell fates is specified by the integration of at least two signaling systems. Recent findings suggest that multiple, partially redundant mechanisms are involved in patterning the vulval precursor cells. The inductive signal activates the LET-60/RAS signaling pathway and induces the 1 degree fate, whereas the lateral signal mediated by LIN-12/Notch is required for specification of the 2 degrees fate. Several regulatory pathways antagonize the RAS signaling pathway and specify the non-vulval 3 degrees fate in the absence of induction. The temporal and spatial regulation of VPC competence and production of the inductive and the lateral signal are precisely coordinated to ensure the wild-type vulval pattern.
Collapse
Affiliation(s)
- M Wang
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
45
|
Sugimoto A, Kusano A, Hozak RR, Derry WB, Zhu J, Rothman JH. Many genomic regions are required for normal embryonic programmed cell death in Caenorhabditis elegans. Genetics 2001; 158:237-52. [PMID: 11333233 PMCID: PMC1461632 DOI: 10.1093/genetics/158.1.237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To identify genes involved in programmed cell death (PCD) in Caenorhabditis elegans, we screened a comprehensive set of chromosomal deficiencies for alterations in the pattern of PCD throughout embryonic development. From a set of 58 deficiencies, which collectively remove approximately 74% of the genome, four distinct classes were identified. In class I (20 deficiencies), no significant deviation from wild type in the temporal pattern of cell corpses was observed, indicating that much of the genome does not contain zygotic genes that perform conspicuous roles in embryonic PCD. The class II deficiencies (16 deficiencies defining at least 11 distinct genomic regions) led to no or fewer-than-normal cell corpses. Some of these cause premature cell division arrest, probably explaining the diminution in cell corpse number; however, others have little effect on cell proliferation, indicating that the reduced cell corpse number is not a direct result of premature embryonic arrest. In class III (18 deficiencies defining at least 16 unique regions), an excess of cell corpses was observed. The developmental stage at which the extra corpses were observed varied among the class III deficiencies, suggesting the existence of genes that perform temporal-specific functions in PCD. The four deficiencies in class IV (defining at least three unique regions), showed unusually large corpses that were, in some cases, attributable to extremely premature arrest in cell division without a concomitant block in PCD. Deficiencies in this last class suggest that the cell death program does not require normal embryonic cell proliferation to be activated and suggest that while some genes required for cell division might also be required for cell death, others are not. Most of the regions identified by these deficiencies do not contain previously identified zygotic cell death genes. There are, therefore, a substantial number of as yet unidentified genes required for normal PCD in C. elegans.
Collapse
Affiliation(s)
- A Sugimoto
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
46
|
Jin SW, Kimble J, Ellis RE. Regulation of cell fate in Caenorhabditis elegans by a novel cytoplasmic polyadenylation element binding protein. Dev Biol 2001; 229:537-53. [PMID: 11150246 DOI: 10.1006/dbio.2000.9993] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The fog-1 gene of Caenorhabditis elegans specifies that germ cells differentiate as sperm rather than as oocytes. We cloned fog-1 through a combination of transformation rescue experiments, RNA-mediated inactivation, and mutant analyses. Our results show that fog-1 produces two transcripts, both of which are found in germ cells but not in the soma. Furthermore, two deletion mutants alter these transcripts and are likely to eliminate fog-1 activity. The larger transcript is expressed under the control of sex-determination genes, is necessary for fog-1 activity, and is sufficient to rescue a fog-1 mutant. This transcript encodes a novel member of the CPEB family of RNA-binding proteins. Because CPEB proteins in Xenopus and Drosophila regulate gene expression at the level of translation, we propose that FOG-1 controls germ cell fates by regulating the translation of specific messenger RNAs.
Collapse
Affiliation(s)
- S W Jin
- Department of Biology, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | |
Collapse
|
47
|
Nilsson L, Tiensuu T, Tuck S. Caenorhabditis elegans lin-25: a study of its role in multiple cell fate specification events involving Ras and the identification and characterization of evolutionarily conserved domains. Genetics 2000; 156:1083-96. [PMID: 11063686 PMCID: PMC1461318 DOI: 10.1093/genetics/156.3.1083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Caenorhabditis elegans lin-25 functions downstream of let-60 ras in the genetic pathway for the induction of the 1 degrees cell fate during vulval development and encodes a novel 130-kD protein. The biochemical activity of LIN-25 is presently unknown, but the protein appears to function together with SUR-2, whose human homologue binds to Mediator, a protein complex required for transcriptional regulation. We describe here experiments that indicate that, besides its role in vulval development, lin-25 also participates in the fate specification of a number of other cells in the worm that are known to require Ras-mediated signaling. We also describe the cloning of a lin-25 orthologue from C. briggsae. Sequence comparisons suggest that the gene is evolving relatively rapidly. By characterizing the molecular lesions associated with 10 lin-25 mutant alleles and by assaying in vivo the activity of mutants lin-25 generated in vitro, we have identified three domains within LIN-25 that are required for activity or stability. We have also identified a sequence that is required for efficient nuclear translocation. We discuss how lin-25 might act in cell fate specification in C. elegans within the context of models for lin-25 function in cell identity and cell signaling.
Collapse
Affiliation(s)
- L Nilsson
- Umeå Center for Molecular Pathogenesis, Umeâ University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
48
|
Yoon CH, Chang C, Hopper NA, Lesa GM, Sternberg PW. Requirements of multiple domains of SLI-1, a Caenorhabditis elegans homologue of c-Cbl, and an inhibitory tyrosine in LET-23 in regulating vulval differentiation. Mol Biol Cell 2000; 11:4019-31. [PMID: 11071924 PMCID: PMC15054 DOI: 10.1091/mbc.11.11.4019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
SLI-1, a Caenorhabditis elegans homologue of the proto-oncogene product c-Cbl, is a negative regulator of LET-23-mediated vulval differentiation. Lack of SLI-1 activity can compensate for decreased function of the LET-23 epidermal growth factor receptor, the SEM-5 adaptor, but not the LET-60 RAS, suggesting that SLI-1 acts before RAS activation. SLI-1 and c-Cbl comprise an N-terminal region (termed SLI-1:N/Cbl-N, containing a four-helix bundle, an EF hand calcium-binding domain, and a divergent SH2 domain) followed by a RING finger domain and a proline-rich C-terminus. In a transgenic functional assay, the proline-rich C-terminal domain is not essential for sli-1(+) function. A protein lacking the SH2 and RING finger domains has no activity, but a chimeric protein with the SH2 and RING finger domains of SLI-1 replaced by the equivalent domains of c-Cbl has activity. The RING finger domain of c-Cbl has been shown recently to enhance ubiquitination of active RTKs by acting as an E3 ubiquitin-protein ligase. We find that the RING finger domain of SLI-1 is partially dispensable. Further, we identify an inhibitory tyrosine of LET-23 requiring sli-1(+) for its effects: removal of this tyrosine closely mimics the loss of sli-1 but not of another negative regulator, ark-1. Thus, we suggest that this inhibitory tyrosine mediates its effects through SLI-1, which in turn inhibits signaling upstream of LET-60 RAS in a manner not wholly dependent on the ubiquitin-ligase domain.
Collapse
Affiliation(s)
- C H Yoon
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
49
|
Iwasaki K, Toyonaga R. The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO J 2000; 19:4806-16. [PMID: 10970871 PMCID: PMC302062 DOI: 10.1093/emboj/19.17.4806] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Guanine nucleotide exchange is essential for Rab GTPase activities in regulating intracellular vesicle trafficking. This exchange process is facilitated by guanine nucleotide exchange factor (GEF). Previously, we identified Caenorhabditis elegans AEX-3 as a GEF for Rab3 GTPase. Here we demonstrate that AEX-3 regulates neural activities through a second, previously unrecognized pathway via interactions with the novel protein CAB-1. CAB-1 is 425 amino acids long and has an 80 amino acid motif in common with the mouse neural protein NPDC-1. cab-1 and rab-3 mutants have different behavioral defects, and RAB-3 localization and function are apparently normal in cab-1 mutants, indicating that the CAB-1 pathway is distinct from the RAB-3 pathway. The aex-3 mutant phenotype resembles the sum of the rab-3 and cab-1 mutant phenotypes, indicating that AEX-3 regulates two different pathways for neural activities. We propose that connection of multiple pathways may be an important feature of Rab GEFs to coordinate various cellular events.
Collapse
Affiliation(s)
- K Iwasaki
- Laboratory of Molecular Neurobiology, National Institute of Bioscience and Human Technology, 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
50
|
Chang C, Hopper NA, Sternberg PW. Caenorhabditis elegans SOS-1 is necessary for multiple RAS-mediated developmental signals. EMBO J 2000; 19:3283-94. [PMID: 10880441 PMCID: PMC313952 DOI: 10.1093/emboj/19.13.3283] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vulval induction in Caenorhabditis elegans has helped define an evolutionarily conserved signal transduction pathway from receptor tyrosine kinases (RTKs) through the adaptor protein SEM-5 to RAS. One component present in other organisms, a guanine nucleotide exchange factor for Ras, has been missing in C.ELEGANS: To understand the regulation of this pathway it is crucial to have all positive-acting components in hand. Here we describe the identification, cloning and genetic characterization of C.ELEGANS: SOS-1, a putative guanine nucleotide exchanger for LET-60 RAS. RNA interference experiments suggest that SOS-1 participates in RAS-dependent signaling events downstream of LET-23 EGFR, EGL-15 FGFR and an unknown RTK. We demonstrate that the previously identified let-341 gene encodes SOS-1. Analyzing vulval development in a let-341 null mutant, we find an SOS-1-independent pathway involved in the activation of RAS signaling. This SOS-1-independent signaling is not inhibited by SLI-1/Cbl and is not mediated by PTP-2/SHP, raising the possibility that there could be another RasGEF.
Collapse
Affiliation(s)
- C Chang
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|