1
|
Takahashi K, Sudharsan R, Beltran WA. Mapping protein distribution in the canine photoreceptor sensory cilium and calyceal processes by ultrastructure expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600953. [PMID: 38979372 PMCID: PMC11230445 DOI: 10.1101/2024.06.27.600953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Photoreceptors are highly polarized sensory neurons, possessing a unique ciliary structure known as the photoreceptor sensory cilium (PSC). Vertebrates have two subtypes of photoreceptors: rods, which are responsible for night vision, and cones, which support daylight vision and color perception. Despite identifying functional and morphological differences between these subtypes, ultrastructural analyses of the PSC molecular architecture in rods and cones are still lacking. In this study, we employed ultrastructure expansion microscopy (U-ExM) to characterize the molecular architecture of the PSC in canine retina. We demonstrated that U-ExM is applicable to both non-frozen and cryopreserved retinal tissues with standard paraformaldehyde fixation. Using this validated U-ExM protocol, we revealed the molecular localization of numerous ciliopathy-related proteins in canine photoreceptors. Furthermore, we identified significant architectural differences in the PSC, ciliary rootlet, and calyceal processes between canine rods and cones. These findings pave the way for a better understanding of alterations in the molecular architecture of the PSC in canine models of retinal ciliopathies.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
2
|
Ghilardi S, Bagardi M, Frattini S, Barbariga GE, Brambilla PG, Minozzi G, Polli M. Genotypic and allelic frequencies of progressive rod-cone degeneration and other main variants associated with progressive retinal atrophy in Italian dogs. Vet Rec Open 2023; 10:e77. [PMID: 38028226 PMCID: PMC10665785 DOI: 10.1002/vro2.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Progressive retinal atrophy (PRA) is a group of canine inherited retinal disorders affecting up to 100 breeds. Genetic tests are available. The aim of this study was to retrospectively evaluate the genetic variants associated with PRA among dogs residing in Italy. Methods Genetic data of 20 variants associated with different forms of PRA were collected through DNA tests over a 10-year period for several dog breeds in the Italian canine population. Allelic and genotypic frequencies were calculated. Results A total of 1467 DNA tests were conducted for 1180 dogs. Progressive rod-cone degeneration (PRCD) was the most tested form of PRA, with 58.15% (n = 853) of the DNA tests. Among the widespread breeds in Italy, Labrador retrievers and toy poodles showed a prevalence of heterozygous carriers higher than 15%. Among the others, 175 DNA tests for golden retrievers (GR) showed a prevalence of heterozygous carriers of 13.04% (n = 12) for GR-PRA1 and 8.43% (n = 7) for GR-PRA2. The zwergschnauzer breed was tested for the type B and/or the type B1 forms of PRA with 25.32% (n = 20) heterozygous carriers and 0%, respectively. Conclusion The study offers an overview of the prevalence of PRCD and other PRA forms within some of the most popular breeds in Italy.
Collapse
Affiliation(s)
- Sara Ghilardi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Mara Bagardi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | | | - Giulia E. Barbariga
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Paola G. Brambilla
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Giulietta Minozzi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Michele Polli
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| |
Collapse
|
3
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|
4
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
5
|
Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49:1205-1220. [PMID: 33960378 DOI: 10.1042/bst20200791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.
Collapse
|
6
|
Nozaki Y. The Network of Inflammatory Mechanisms in Lupus Nephritis. Front Med (Lausanne) 2020; 7:591724. [PMID: 33240910 PMCID: PMC7677583 DOI: 10.3389/fmed.2020.591724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Several signaling pathways are involved in the progression of kidney disease in humans and in animal models, and kidney disease is usually due to the sustained activation of these pathways. Some of the best understood pathways are specific proinflammatory cytokine and protein kinase pathways (e.g., protein kinase C and mitogen-activated kinase pathways, which cause cell proliferation and fibrosis and are associated with angiotensin II) and transforming growth factor-beta (TGF-β) signaling pathways (e.g., the TGF-β signaling pathway, which leads to increased fibrosis and kidney scarring. It is thus necessary to continue to advance our knowledge of the pathogenesis and molecular biology of kidney disease and to develop new treatments. This review provides an update of important findings about kidney diseases (including diabetic nephropathy, lupus nephritis, and vasculitis, i.e., vasculitis with antineutrophilic cytoplasmic antibodies). New disease targets, potential pathological pathways, and promising therapeutic approaches from basic science to clinical practice are presented, and the blocking of JAK/STAT and TIM-1/TIM-4 signaling pathways as potential novel therapeutic agents in lupus nephritis is discussed.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
7
|
Hitti-Malin RJ, Burmeister LM, Ricketts SL, Lewis TW, Pettitt L, Boursnell M, Schofield EC, Sargan D, Mellersh CS. A LINE-1 insertion situated in the promoter of IMPG2 is associated with autosomal recessive progressive retinal atrophy in Lhasa Apso dogs. BMC Genet 2020; 21:100. [PMID: 32894063 PMCID: PMC7487703 DOI: 10.1186/s12863-020-00911-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Canine progressive retinal atrophies are a group of hereditary retinal degenerations in dogs characterised by depletion of photoreceptor cells in the retina, which ultimately leads to blindness. PRA in the Lhasa Apso (LA) dog has not previously been clinically characterised or described in the literature, but owners in the UK are advised to have their dog examined through the British Veterinary Association/ Kennel Club/ International Sheep Dog Society (BVA/KC/ISDS) eye scheme annually, and similar schemes that are in operation in other countries. After the exclusion of 25 previously reported canine retinal mutations in LA PRA-affected dogs, we sought to identify the genetic cause of PRA in this breed. Results Analysis of whole-exome sequencing data of three PRA-affected LA and three LA without signs of PRA did not identify any exonic or splice site variants, suggesting the causal variant was non-exonic. We subsequently undertook a genome-wide association study (GWAS), which identified a 1.3 Mb disease-associated region on canine chromosome 33, followed by whole-genome sequencing analysis that revealed a long interspersed element-1 (LINE-1) insertion upstream of the IMPG2 gene. IMPG2 has previously been implicated in human retinal disease; however, until now no canine PRAs have been associated with this gene. The identification of this PRA-associated variant has enabled the development of a DNA test for this form of PRA in the breed, here termed PRA4 to distinguish it from other forms of PRA described in other breeds. This test has been used to determine the genotypes of over 900 LA dogs. A large cohort of genotyped dogs was used to estimate the allele frequency as between 0.07–0.1 in the UK LA population. Conclusions Through the use of GWAS and subsequent sequencing of a PRA case, we have identified a LINE-1 insertion in the retinal candidate gene IMPG2 that is associated with a form of PRA in the LA dog. Validation of this variant in 447 dogs of 123 breeds determined it was private to LA dogs. We envisage that, over time, the developed DNA test will offer breeders the opportunity to avoid producing dogs affected with this form of PRA.
Collapse
Affiliation(s)
- Rebekkah J Hitti-Malin
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| | - Louise M Burmeister
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - Sally L Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - Thomas W Lewis
- The Kennel Club, London, W1J 8AB, UK.,School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Louise Pettitt
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - Mike Boursnell
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - Ellen C Schofield
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Cathryn S Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk, CB8 7UU, UK
| |
Collapse
|
8
|
Winkler PA, Occelli LM, Petersen-Jones SM. Large Animal Models of Inherited Retinal Degenerations: A Review. Cells 2020; 9:cells9040882. [PMID: 32260251 PMCID: PMC7226744 DOI: 10.3390/cells9040882] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Studies utilizing large animal models of inherited retinal degeneration (IRD) have proven important in not only the development of translational therapeutic approaches, but also in improving our understanding of disease mechanisms. The dog is the predominant species utilized because spontaneous IRD is common in the canine pet population. Cats are also a source of spontaneous IRDs. Other large animal models with spontaneous IRDs include sheep, horses and non-human primates (NHP). The pig has also proven valuable due to the ease in which transgenic animals can be generated and work is ongoing to produce engineered models of other large animal species including NHP. These large animal models offer important advantages over the widely used laboratory rodent models. The globe size and dimensions more closely parallel those of humans and, most importantly, they have a retinal region of high cone density and denser photoreceptor packing for high acuity vision. Laboratory rodents lack such a retinal region and, as macular disease is a critical cause for vision loss in humans, having a comparable retinal region in model species is particularly important. This review will discuss several large animal models which have been used to study disease mechanisms relevant for the equivalent human IRD.
Collapse
|
9
|
Pasmanter N, Petersen-Jones SM. A review of electroretinography waveforms and models and their application in the dog. Vet Ophthalmol 2020; 23:418-435. [PMID: 32196872 DOI: 10.1111/vop.12759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/04/2023]
Abstract
Electroretinography (ERG) is a commonly used technique to study retinal function in both clinical and research ophthalmology. ERG responses can be divided into component waveforms, analysis of which can provide insight into the health and function of different types and populations of retinal cells. In dogs, ERG has been used in the characterization of normal retinal function, as well as the diagnosis of retinal diseases and measuring effects of treatment. While many components of the recorded waveform are similar across species, dogs have several notable features that should be differentiated from the responses in humans and other animals. Additionally, modifications of standard protocols, such as changing flash frequency and stimulus color, and mathematical models of ERG waveforms have been used in studies of human retinal function but have been infrequently applied to visual electrophysiology in dogs. This review provides an overview of the origins and applications of ERG in addition to potential avenues for further characterization of responses in the dog.
Collapse
Affiliation(s)
- Nathaniel Pasmanter
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
A SIX6 Nonsense Variant in Golden Retrievers with Congenital Eye Malformations. Genes (Basel) 2019; 10:genes10060454. [PMID: 31207931 PMCID: PMC6628151 DOI: 10.3390/genes10060454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Causative genetic variants for more than 30 heritable eye disorders in dogs have been reported. For other clinically described eye disorders, the genetic cause is still unclear. We investigated four Golden Retriever litters segregating for highly variable congenital eye malformations. Several affected puppies had unilateral or bilateral retina dysplasia and/or optic nerve hypoplasia. The four litters shared the same father or grandfather suggesting a heritable condition with an autosomal dominant mode of inheritance. The genome of one affected dog was sequenced and compared to 601 control genomes. A heterozygous private nonsense variant, c.487C>T, was found in the SIX6 gene. This variant is predicted to truncate about a third of the open reading frame, p.(Gln163*). We genotyped all available family members and 464 unrelated Golden Retrievers. All three available cases were heterozygous. Five additional close relatives including the common sire were also heterozygous, but did not show any obvious eye phenotypes. The variant was absent from the 464 unrelated Golden Retrievers and 17 non-affected siblings of the cases. The SIX6 protein is a homeobox transcription factor with a known role in eye development. In humans and other species, SIX6 loss of function variants were reported to cause congenital eye malformations. This strongly suggests that the c.487C>T variant detected contributed to the observed eye malformations. We hypothesize that the residual amount of functional SIX6 protein likely to be expressed in heterozygous dogs is sufficient to explain the observed incomplete penetrance and the varying severity of the eye defects in the affected dogs.
Collapse
|
11
|
Mowat FM, Wise E, Oh A, Foster ML, Kremers J. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli. Exp Eye Res 2019; 185:107673. [PMID: 31128103 DOI: 10.1016/j.exer.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 02/05/2023]
Abstract
The canine species has dichromatic color vision comprising short-wavelength (S-) and long/medium (L/M-) wavelength-sensitive cones with peak spectral sensitivity of 429-435 nm and 555 nm respectively. Although differentiation of rod- and cone-mediated responses by electroretinogram (ERG) in dogs is commonly performed, and standards have been developed based on standards for human observers, methods to differentiate S- and L/M-cone responses in dogs have not been described. We developed flicker protocols derived from previously published rod and cone spectral sensitivities. We used a double silent substitution paradigm to isolate responses from each of the 3 photoreceptor subclasses. ERG responses were measured to sine-wave modulation of photoreceptor excitation at different temporal frequencies (between 4 and 56 Hz) and mean luminance (between 3.25 and 130 cd/m2) on 6 different normal dogs (3 adult female, and 3 adult male beagles) and one female beagle dog with suspected hereditary congenital stationary night blindness (CSNB). Peak rod driven response amplitudes were achieved with low frequency (4 Hz, maximal range 4-12 Hz) and low mean luminance (3.25 cd/m2). In contrast, peak L/M-cone driven response amplitudes were achieved with high frequency (32 Hz, maximal range 28-44 Hz) and high mean luminance (32.5-130 cd/m2). Maximal S-cone driven responses were obtained with low frequency stimuli (4 Hz, maximal range 4-12 Hz) and 32.5-130 cd/m2 mean luminance. The dog with CSNB had reduced rod- and S-cone-driven responses, but normal/supernormal L/M cone-driven responses. We have developed methods to differentiate rod, S- and L/M-cone function in dogs using silent substitution methods. The influence of temporal frequency and mean luminance on the ERGs originating in each photoreceptor type can now be studied independently. Dogs and humans have similar L/M cone responses, whereas mice have significantly different L/M responses. This work will facilitate a greater understanding of canine retinal electrophysiology and will complement the study of canine models of human hereditary photoreceptor disorders.
Collapse
Affiliation(s)
- Freya M Mowat
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Elisabeth Wise
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Annie Oh
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Melanie L Foster
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jan Kremers
- University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Hitti RJ, Oliver JAC, Schofield EC, Bauer A, Kaukonen M, Forman OP, Leeb T, Lohi H, Burmeister LM, Sargan D, Mellersh CS. Whole Genome Sequencing of Giant Schnauzer Dogs with Progressive Retinal Atrophy Establishes NECAP1 as a Novel Candidate Gene for Retinal Degeneration. Genes (Basel) 2019; 10:genes10050385. [PMID: 31117272 PMCID: PMC6562617 DOI: 10.3390/genes10050385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 12/30/2022] Open
Abstract
Canine progressive retinal atrophies (PRA) are genetically heterogeneous diseases characterized by retinal degeneration and subsequent blindness. PRAs are untreatable and affect multiple dog breeds, significantly impacting welfare. Three out of seven Giant Schnauzer (GS) littermates presented with PRA around four years of age. We sought to identify the causal variant to improve our understanding of the aetiology of this form of PRA and to enable development of a DNA test. Whole genome sequencing of two PRA-affected full-siblings and both unaffected parents was performed. Variants were filtered based on those segregating appropriately for an autosomal recessive disorder and predicted to be deleterious. Successive filtering against 568 canine genomes identified a single nucleotide variant in the gene encoding NECAP endocytosis associated 1 (NECAP1): c.544G>A (p.Gly182Arg). Five thousand one hundred and thirty canids of 175 breeds, 10 cross-breeds and 3 wolves were genotyped for c.544G>A. Only the three PRA-affected GS were homozygous (allele frequency in GS, excluding proband family = 0.015). In addition, we identified heterozygotes belonging to Spitz and Dachshund varieties, demonstrating c.544G>A segregates in other breeds of German origin. This study, in parallel with the known retinal expression and role of NECAP1 in clathrin mediated endocytosis (CME) in synapses, presents NECAP1 as a novel candidate gene for retinal degeneration in dogs and other species.
Collapse
Affiliation(s)
- Rebekkah J Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - James A C Oliver
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - Ellen C Schofield
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - Anina Bauer
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland.
| | - Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland.
- Folkhälsan Research Center, 00290 Helsinki, Finland.
| | - Oliver P Forman
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire LE14 4RS, UK.
| | - Tosso Leeb
- Institute of Genetics, University of Bern, 3001 Bern, Switzerland.
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland.
- Department of Medical Genetics, University of Helsinki, 00014 Helsinki, Finland.
- Folkhälsan Research Center, 00290 Helsinki, Finland.
| | - Louise M Burmeister
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| | - Cathryn S Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| |
Collapse
|
13
|
Mowat FM. Naturally Occurring Inherited Forms of Retinal Degeneration in Vertebrate Animal Species: A Comparative and Evolutionary Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:239-243. [PMID: 31884618 DOI: 10.1007/978-3-030-27378-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The ability to noninvasively monitor retinal abnormalities using imaging and cognitive and electrophysiological assessment has made it possible to carefully characterize genetic influences on retinal health. Because genetic retinal traits in animal species are not commonly detrimental to survival beyond birth, it is possible to document the natural history of retinal disease. Human quality of life is greatly impacted by retinal disease, and blindness carries a significant financial burden to society. Because of these compelling reasons, there is an ongoing medical need to study the effect of genetic mutations on retinal health and to develop therapies to address them. Transgenic animal models have aided in these missions, but there are opportunities for novel gene discovery and a development of greater understanding of retinal physiology using animal models that develop naturally occurring heritable retinal disorders. In this chapter, the advantages and disadvantages of transgenic and spontaneous vertebrate animal models of human inherited retinal disease are debated, in particular those of carnivore species, and the potential resource of spontaneous heritable retinal disorders in inbred nondomestic carnivore species is discussed.
Collapse
Affiliation(s)
- Freya M Mowat
- North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| |
Collapse
|
14
|
Gandolfi B, Alhaddad H, Abdi M, Bach LH, Creighton EK, Davis BW, Decker JE, Dodman NH, Ginns EI, Grahn JC, Grahn RA, Haase B, Haggstrom J, Hamilton MJ, Helps CR, Kurushima JD, Lohi H, Longeri M, Malik R, Meurs KM, Montague MJ, Mullikin JC, Murphy WJ, Nilson SM, Pedersen NC, Peterson CB, Rusbridge C, Saif R, Shelton GD, Warren WC, Wasim M, Lyons LA. Applications and efficiencies of the first cat 63K DNA array. Sci Rep 2018; 8:7024. [PMID: 29728693 PMCID: PMC5935720 DOI: 10.1038/s41598-018-25438-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array’s genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50–1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations.
Collapse
Affiliation(s)
- Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA
| | - Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Safat, Kuwait.
| | - Mona Abdi
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Leslie H Bach
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,University of San Francisco, San Francisco, CA, USA
| | - Erica K Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri - Columbia, Columbia, MO, USA
| | - Nicholas H Dodman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Edward I Ginns
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer C Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Robert A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Bianca Haase
- Sydney School of Veterinary Science, University of Sydney, Sydney, Australia
| | - Jens Haggstrom
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michael J Hamilton
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Department of Biochemistry, University of California - Riverside, Riverside, CA, USA
| | | | - Jennifer D Kurushima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Foothill College, Los Altos Hills, CA, USA
| | - Hannes Lohi
- Department of Veterinary Biosciences, Research Programs Unit, Molecular Neurology, University of Helsinki, and The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maria Longeri
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Richard Malik
- Centre for Veterinary Education, University of Sydney, New South Wales, Australia
| | - Kathryn M Meurs
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Michael J Montague
- Department of Neuroscience, Parelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Sara M Nilson
- Division of Animal Sciences, University of Missouri - Columbia, Columbia, MO, USA
| | - Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Carlyn B Peterson
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Clare Rusbridge
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Rashid Saif
- Institute of Biotechnology, Gulab Devi Educational Complex, Lahore, Pakistan
| | - G Diane Shelton
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Muhammad Wasim
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, MO, USA.
| |
Collapse
|
15
|
Miyadera K. Mapping of Canine Models of Inherited Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:257-264. [PMID: 29721951 DOI: 10.1007/978-3-319-75402-4_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gene/mutation discovery approaches for inherited retinal diseases (RDs) in the dog model have seen considerable development over the past 25 years. Initial attempts were focused on candidate genes, followed by genome-wide approaches including linkage analysis and DNA-chip-based genome-wide association study. Combined, there are as many as 32 mutations in 27 genes that have been associated with canine retinal diseases to date. More recently, next-generation sequencing has become one of the key methods of choice. With increasing knowledge of the molecular basis of RDs and follow-up surveys in different subpopulations, the conventional understanding of RDs as simple Mendelian traits is being challenged. Modifiers and involvement of multiple genes that alter the disease expression are complicating the prediction of the disease course. In this chapter, advances in the gene/mutation discovery approaches for canine RDs are reviewed, and a multigenic form of canine RD is discussed using a form of canine cone-rod dystrophy as an example.
Collapse
Affiliation(s)
- Keiko Miyadera
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Everson R, Pettitt L, Forman OP, Dower-Tylee O, McLaughlin B, Ahonen S, Kaukonen M, Komáromy AM, Lohi H, Mellersh CS, Sansom J, Ricketts SL. An intronic LINE-1 insertion in MERTK is strongly associated with retinopathy in Swedish Vallhund dogs. PLoS One 2017; 12:e0183021. [PMID: 28813472 PMCID: PMC5558984 DOI: 10.1371/journal.pone.0183021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/30/2017] [Indexed: 12/31/2022] Open
Abstract
The domestic dog segregates a significant number of inherited progressive retinal diseases, several of which mirror human retinal diseases and which are collectively termed progressive retinal atrophy (PRA). In 2014, a novel form of PRA was reported in the Swedish Vallhund breed, and the disease was mapped to canine chromosome 17. The causal mutation was not identified, but expression analyses of the retinas of affected Vallhunds demonstrated a 6-fold increased expression of the MERTK gene compared to unaffected dogs. Using 24 retinopathy cases and 97 controls with no clinical signs of retinopathy, we replicated the chromosome 17 association in Swedish Vallhunds from the UK and aimed to elucidate the causal variant underlying this association using whole genome sequencing (WGS) of an affected dog. This revealed a 6-8 kb insertion in intron 1 of MERTK that was not present in WGS of 49 dogs of other breeds. Sequencing and BLASTN analysis of the inserted segment was consistent with the insertion comprising a full-length intact LINE-1 retroelement. Testing of the LINE-1 insertion for association with retinopathy in the UK set of 24 cases and 97 controls revealed a strong statistical association (P-value 6.0 x 10-11) that was subsequently replicated in the original Finnish study set (49 cases and 89 controls (P-value 4.3 x 10-19). In a pooled analysis of both studies (73 cases and 186 controls), the LINE-1 insertion was associated with a ~20-fold increased risk of retinopathy (odds ratio 23.41, 95% confidence intervals 10.99-49.86, P-value 1.3 x 10-27). Our study adds further support for regulatory disruption of MERTK in Swedish Vallhund retinopathy; however, further work is required to establish a functional overexpression model. Future work to characterise the mechanism by which this intronic mutation disrupts gene regulation will further improve the understanding of MERTK biology and its role in retinal function.
Collapse
Affiliation(s)
- Richard Everson
- Centre for Small Animal Studies–Ophthalmology Unit, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Louise Pettitt
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Oliver P. Forman
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Olivia Dower-Tylee
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Bryan McLaughlin
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Saija Ahonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maria Kaukonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Cathryn S. Mellersh
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Jane Sansom
- Centre for Small Animal Studies–Ophthalmology Unit, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Sally L. Ricketts
- Canine Genetics Research Group, Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Oh A, Pearce JW, Gandolfi B, Creighton EK, Suedmeyer WK, Selig M, Bosiack AP, Castaner LJ, Whiting REH, Belknap EB, Lyons LA. Early-Onset Progressive Retinal Atrophy Associated with an IQCB1 Variant in African Black-Footed Cats (Felis nigripes). Sci Rep 2017; 7:43918. [PMID: 28322220 PMCID: PMC5359545 DOI: 10.1038/srep43918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 02/01/2017] [Indexed: 11/10/2022] Open
Abstract
African black-footed cats (Felis nigripes) are endangered wild felids. One male and full-sibling female African black-footed cat developed vision deficits and mydriasis as early as 3 months of age. The diagnosis of early-onset progressive retinal atrophy (PRA) was supported by reduced direct and consensual pupillary light reflexes, phenotypic presence of retinal degeneration, and a non-recordable electroretinogram with negligible amplitudes in both eyes. Whole genome sequencing, conducted on two unaffected parents and one affected offspring was compared to a variant database from 51 domestic cats and a Pallas cat, revealed 50 candidate variants that segregated concordantly with the PRA phenotype. Testing in additional affected cats confirmed that cats homozygous for a 2 base pair (bp) deletion within IQ calmodulin-binding motif-containing protein-1 (IQCB1), the gene that encodes for nephrocystin-5 (NPHP5), had vision loss. The variant segregated concordantly in other related individuals within the pedigree supporting the identification of a recessively inherited early-onset feline PRA. Analysis of the black-footed cat studbook suggests additional captive cats are at risk. Genetic testing for IQCB1 and avoidance of matings between carriers should be added to the species survival plan for captive management.
Collapse
Affiliation(s)
- Annie Oh
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Jacqueline W. Pearce
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Erica K. Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | | | | - Ann P. Bosiack
- Animal Eye Care of Richmond LLC, Midlothian, Virginia, USA
| | - Leilani J. Castaner
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Rebecca E. H. Whiting
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Ophthalmology, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO, 65212, USA
| | | | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
18
|
Evaluation of the genetic basis of primary hypoadrenocorticism in Standard Poodles using SNP array genotyping and whole-genome sequencing. Mamm Genome 2016; 28:56-65. [PMID: 27864587 DOI: 10.1007/s00335-016-9671-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
Primary hypoadrenocorticism, also known as Addison's disease, is an autoimmune disorder leading to the destruction of the adrenal cortex and subsequent loss of glucocorticoid and mineralocorticoid hormones. The disease is prevalent in Standard Poodles and is believed to be highly heritable in the breed. Using genotypes derived from the Illumina Canine HD SNP array, we performed a genome-wide association study of 133 carefully phenotyped Standard Poodles (61 affected, 72 unaffected) and found no markers significantly associated with the disease. We also sequenced the entire genomes of 20 Standard Poodles (13 affected, 7 unaffected) and analyzed the data to identify common variants (including SNPs, indels, structural variants, and copy number variants) across affected dogs and variants segregating within a single pedigree of highly affected dogs. We identified several candidate genes that may be fixed in both Standard Poodles and a small population of dogs of related breeds. Further studies are required to confirm these findings more broadly, as well as additional gene-mapping efforts aimed at fully understanding the genetic basis of what is likely a complex inherited disorder.
Collapse
|
19
|
Stokol T. Veterinary Pathology - A Path Forward with New Directions and Opportunities. Front Vet Sci 2016; 3:76. [PMID: 27630996 PMCID: PMC5005974 DOI: 10.3389/fvets.2016.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/23/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University , Ithaca, NY , USA
| |
Collapse
|
20
|
Koll S, Reese S, Medugorac I, Rosenhagen CU, Sanchez RF, Köstlin R. The effect of repeated eye examinations and breeding advice on the prevalence and incidence of cataracts and progressive retinal atrophy in German dachshunds over a 13-year period. Vet Ophthalmol 2016; 20:114-122. [DOI: 10.1111/vop.12378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sarah Koll
- Clinic for Small Animal Surgery and Reproduction; Veterinary Faculty; Ludwig Maximilians University Munich; Veterinärstr. 13 Munich Germany
- Royal Veterinary College; University of London; Hawkshead Lane North Mymms Herfordshire AL9 7TA UK
| | - Sven Reese
- Institute of Veterinary Anatomy, Histology and Embryology; Veterinary Faculty; Ludwig Maximilians University Munich; Veterinärstr. 13 Munich Germany
| | - Ivica Medugorac
- Chair of Animal Genetics and Husbandry; Veterinary Faculty; Ludwig Maximilians University Munich; Veterinärstr. 13 Munich Germany
| | - Carsten U. Rosenhagen
- Dortmunder Kreis - Association for Diagnosis of Inherited Eye Diseases in Animals (DOK); Hoher Wall 20 44137 Dortmund Germany
| | - Rick F. Sanchez
- Royal Veterinary College; University of London; Hawkshead Lane North Mymms Herfordshire AL9 7TA UK
| | - Roberto Köstlin
- Clinic for Small Animal Surgery and Reproduction; Veterinary Faculty; Ludwig Maximilians University Munich; Veterinärstr. 13 Munich Germany
| |
Collapse
|
21
|
Palanova A. The genetics of inherited retinal disorders in dogs: implications for diagnosis and management. VETERINARY MEDICINE-RESEARCH AND REPORTS 2016; 7:41-51. [PMID: 30050836 PMCID: PMC6042528 DOI: 10.2147/vmrr.s63537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Dogs are affected by many hereditary diseases just as humans are. One group of these diseases comprises of retinal disorders, which are a growing problem in canine breeding. These disorders are heterogeneous, with diverse causative mutations and modes of inheritance. Some affect only one breed, while others may affect many breeds; some breeds are affected by only one disease, while others can be affected by two or more. Dog breeders should take into account the presence of any deleterious alleles when choosing parents for the next generation.
Collapse
Affiliation(s)
- Anna Palanova
- Department of Tumor Biology, Institute of Animal Physiology and Genetics, v. v. i., Academy of Sciences of the Czech Republic, Libechov, Czech Republic,
| |
Collapse
|
22
|
Kostic C, Arsenijevic Y. Animal modelling for inherited central vision loss. J Pathol 2015; 238:300-10. [PMID: 26387748 PMCID: PMC5063185 DOI: 10.1002/path.4641] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 01/01/2023]
Abstract
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.
Collapse
Affiliation(s)
- Corinne Kostic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Switzerland
| |
Collapse
|
23
|
Petersen-Jones SM, Komáromy AM. Dog models for blinding inherited retinal dystrophies. HUM GENE THER CL DEV 2015; 26:15-26. [PMID: 25671556 DOI: 10.1089/humc.2014.155] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spontaneous canine models exist for several inherited retinal dystrophies. This review will summarize the models and indicate where they have been used in translational gene therapy trials. The RPE65 gene therapy trials to treat childhood blindness are a good example of how studies in dogs have contributed to therapy development. Outcomes in human clinical trials are compared and contrasted with the result of the preclinical dog trials.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- 1 Department of Small Animal Clinical Sciences, Michigan State University , East Lansing, MI 48824
| | | |
Collapse
|
24
|
Petersen-Jones S, Komaromy AM. Dog Models for Blinding Inherited Retinal Degenerations. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Ahonen SJ, Arumilli M, Seppälä E, Hakosalo O, Kaukonen MK, Komáromy AM, Lohi H. Increased expression of MERTK is associated with a unique form of canine retinopathy. PLoS One 2014; 9:e114552. [PMID: 25517981 PMCID: PMC4269413 DOI: 10.1371/journal.pone.0114552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
Progressive retinal degenerations are among the most common causes of blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) resembles human retinitis pigmentosa (RP) and is typically characterized by a progressive loss of rod photoreceptors followed by a loss of cone function. The disease gradually progress from the loss of night and day vision to a complete blindness. We have recently described a unique form of retinopathy characterized by the multifocal gray/brown discoloration and thinning of the retina in the Swedish Vallhund (SV) breed. We aimed to identify the genetic cause by performing a genome wide association analysis in a cohort of 18 affected and 10 healthy control dogs using Illumina's canine 22k SNP array. We mapped the disease to canine chromosome 17 (p = 7.7×10−5) and found a 6.1 Mb shared homozygous region in the affected dogs. A combined analysis of the GWAS and replication data with additional 60 dogs confirmed the association (p = 4.3×10−8, OR = 11.2 for homozygosity). A targeted resequencing of the entire associated region in four cases and four controls with opposite risk haplotypes identified several variants in the coding region of functional candidate genes, such as a known retinopathy gene, MERTK. However, none of the identified coding variants followed a compelling case- or breed-specific segregation pattern. The expression analyses of four candidate genes in the region, MERTK, NPHP1, ANAPC1 and KRCC1, revealed specific upregulation of MERTK in the retina of the affected dogs. Collectively, these results indicate that the retinopathy is associated with overexpression of MERTK, however further investigation is needed to discover the regulatory mutation for the better understanding of the disease pathogenesis. Our study establishes a novel gain-of-function model for the MERTK biology and provides a therapy model for retinopathy MERTK inhibitors. Meanwhile, a marker-based genetic counseling can be developed to revise breeding programs.
Collapse
Affiliation(s)
- Saija J. Ahonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Meharji Arumilli
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Eija Seppälä
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Osmo Hakosalo
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Maria K. Kaukonen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- * E-mail:
| |
Collapse
|
26
|
Li P, Guo M, Wang C, Liu X, Zou Q. An overview of SNP interactions in genome-wide association studies. Brief Funct Genomics 2014; 14:143-55. [PMID: 25241224 DOI: 10.1093/bfgp/elu036] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the recent explosion in high-throughput genotyping technology, the amount and quality of single-nucleotide polymorphism (SNP) data has increased exponentially. Therefore, the identification of SNP interactions that are associated with common diseases is playing an increasing and important role in interpreting the genetic basis of disease susceptibility and in devising new diagnostic tests and treatments. However, because these data sets are large, although they typically have small sample sizes and low signal-to-noise ratios, there has been no major breakthrough despite many efforts, making this a major focus in the field of bioinformatics. In this article, we review the two main aspects of SNP interaction studies in recent years-the simulation and identification of SNP interactions-and then discuss the principles, efficiency and differences between these methods.
Collapse
|
27
|
Pedersen NC, Liu H, Gandolfi B, Lyons LA. The influence of age and genetics on natural resistance to experimentally induced feline infectious peritonitis. Vet Immunol Immunopathol 2014; 162:33-40. [PMID: 25265870 PMCID: PMC7112829 DOI: 10.1016/j.vetimm.2014.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/12/2014] [Accepted: 09/08/2014] [Indexed: 11/17/2022]
Abstract
Naturally occurring feline infectious peritonitis (FIP) is usually fatal, giving the impression that immunity to the FIP virus (FIPV) is extremely poor. This impression may be incorrect, because not all cats experimentally exposed to FIPV develop FIP. There is also a belief that the incidence of FIP may be affected by a number of host, virus, and environmental cofactors. However, the contribution of these cofactors to immunity and disease incidence has not been determined. The present study followed 111 random-bred specific pathogen free (SPF) cats that were obtained from a single research breeding colony and experimentally infected with FIPV. The cats were from several studies conducted over the past 5 years, and as a result, some of them had prior exposure to feline enteric coronavirus (FECV) or avirulent FIPVs. The cats were housed under optimized conditions of nutrition, husbandry, and quarantine to eliminate most of the cofactors implicated in FIPV infection outcome and were uniformly challenge exposed to the same field strain of serotype 1 FIPV. Forty of the 111 (36%) cats survived their initial challenge exposure to a Type I cat-passaged field strains of FIPV. Six of these 40 survivors succumbed to FIP to a second or third challenge exposure, suggesting that immunity was not always sustained. Exposure to non-FIP-inducing feline coronaviruses prior to challenge with virulent FIPV did not significantly affect FIP incidence but did accelerate the disease course in some cats. There were no significant differences in FIP incidence between males and females, but resistance increased significantly between 6 months and 1 or more years of age. Genetic testing was done on 107 of the 111 infected cats. Multidimensional scaling (MDS) segregated the 107 cats into three distinct families based primarily on a common sire(s), and resistant and susceptible cats were equally distributed within each family. Genome-wide association studies (GWAS) on 73 cats that died of FIP after one or more exposures (cases) and 34 cats that survived (controls) demonstrated four significant associations after 100k permutations. When these same cats were analyzed using a sib-pair transmission test, three of the four associations were confirmed although not with genome-wide significance. GWAS was then done on three different age groups of cases to take into account age-related resistance, and different associations were observed. The only common and strong association identified between the various GWAS case configurations was for the 34.7-45.8Mb region of chromosome A3. No obvious candidate genes were present in this region.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Hongwei Liu
- Center for Companion Animal Health, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Barbara Gandolfi
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Columbia, MO 65211, USA
| | - Leslie A Lyons
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Columbia, MO 65211, USA
| |
Collapse
|
28
|
A novel form of progressive retinal atrophy in Swedish vallhund dogs. PLoS One 2014; 9:e106610. [PMID: 25198798 PMCID: PMC4157785 DOI: 10.1371/journal.pone.0106610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/30/2014] [Indexed: 12/22/2022] Open
Abstract
Inherited retinal degenerations, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), represent leading causes of incurable blindness in humans. This is also true in dogs, where the term progressive retinal atrophy (PRA) is used to describe inherited photoreceptor degeneration resulting in progressive vision loss. Because of the similarities in ocular anatomy, including the presence of a cone photoreceptor-rich central retinal region, and the close genotype-phenotype correlation, canine models contribute significantly to the understanding of retinal disease mechanisms and the development of new therapies. The screening of the pure-bred dog population for new forms of PRA represents an important strategy to establish new large animal models. By examining 324 dogs of the Swedish vallhund breed in seven countries and across three continents, we were able to describe a new and unique form of PRA characterized by the multifocal appearance of red and brown discoloration of the tapetal fundus followed over time by thinning of the retina. We propose three stages of the disease based on the appearance of the ocular fundus and associated visual deficits. Electroretinography revealed a gradual loss of both rod and cone photoreceptor-mediated function in Stages 2 and 3 of the disease. In the few dogs that suffered from pronounced vision loss, night-blindness occurred first in late Stage 2, followed by decreased day-vision in Stage 3. Histologic examinations confirmed the loss of photoreceptor cells at Stage 3, which was associated with the accumulation of autofluorescent material in the adjacent retinal pigment epithelium. Pedigree analysis was suggestive of an autosomal-recessive mode of inheritance. Mutations in six known canine retinal degeneration genes as well as hypovitaminosis E were excluded as causes of the disease. The observed variability in the age of disease onset and rate of progression suggest the presence of genetic and/or environmental disease modifiers.
Collapse
|
29
|
Mellersh CS. The genetics of eye disorders in the dog. Canine Genet Epidemiol 2014; 1:3. [PMID: 26401320 PMCID: PMC4574392 DOI: 10.1186/2052-6687-1-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/06/2014] [Indexed: 11/10/2022] Open
Abstract
Inherited forms of eye disease are arguably the best described and best characterized of all inherited diseases in the dog, at both the clinical and molecular level and at the time of writing 29 different mutations have been documented in the scientific literature that are associated with an inherited ocular disorder in the dog. The dog has already played an important role in the identification of genes that are important for ocular development and function as well as emerging therapies for inherited blindness in humans. Similarities in disease phenotype and eye structure and function between dog and man, together with the increasingly sophisticated genetic tools that are available for the dog, mean that the dog is likely to play an ever increasing role in both our understanding of the normal functioning of the eye and in our ability to treat inherited eye disorders. This review summarises the mutations that have been associated with inherited eye disorders in the dog.
Collapse
|
30
|
Wheway G, Parry DA, Johnson CA. The role of primary cilia in the development and disease of the retina. Organogenesis 2014; 10:69-85. [PMID: 24162842 PMCID: PMC4049897 DOI: 10.4161/org.26710] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023] Open
Abstract
The normal development and function of photoreceptors is essential for eye health and visual acuity in vertebrates. Mutations in genes encoding proteins involved in photoreceptor development and function are associated with a suite of inherited retinal dystrophies, often as part of complex multi-organ syndromic conditions. In this review, we focus on the role of the photoreceptor outer segment, a highly modified and specialized primary cilium, in retinal health and disease. We discuss the many defects in the structure and function of the photoreceptor primary cilium that can cause a class of inherited conditions known as ciliopathies, often characterized by retinal dystrophy and degeneration, and highlight the recent insights into disease mechanisms.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - David A Parry
- Section of Genetics; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences; Leeds Institute of Molecular Medicine; The University of Leeds; Leeds, United Kingdom
| |
Collapse
|
31
|
Miyadera K. Inherited retinal diseases in dogs: advances in gene/mutation discovery. DOBUTSU IDEN IKUSHU KENKYU = JOURNAL OF ANIMAL GENETICS 2014; 42:79-89. [PMID: 26120276 PMCID: PMC4480793 DOI: 10.5924/abgri.42.79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1. Inherited retinal diseases (RDs) are vision-threatening conditions affecting humans as well as many domestic animals. Through many years of clinical studies of the domestic dog population, a wide array of RDs has been phenotypically characterized. Extensive effort to map the causative gene and to identify the underlying mutation followed. Through candidate gene, linkage analysis, genome-wide association studies, and more recently, by means of next-generation sequencing, as many as 31 mutations in 24 genes have been identified as the underlying cause for canine RDs. Most of these genes have been associated with human RDs providing opportunities to study their roles in the disease pathogenesis and in normal visual function. The canine model has also contributed in developing new treatments such as gene therapy which has been clinically applied to human patients. Meanwhile, with increasing knowledge of the molecular architecture of RDs in different subpopulations of dogs, the conventional understanding of RDs as a simple monogenic disease is beginning to change. Emerging evidence of modifiers that alters the disease outcome is complicating the interpretation of DNA tests. In this review, advances in the gene/mutation discovery approaches and the emerging genetic complexity of canine RDs are discussed.
Collapse
Affiliation(s)
- Keiko Miyadera
- School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia PA 19104 USA
| |
Collapse
|
32
|
Goldstein O, Mezey JG, Schweitzer PA, Boyko AR, Gao C, Bustamante CD, Jordan JA, Aguirre GD, Acland GM. IQCB1 and PDE6B mutations cause similar early onset retinal degenerations in two closely related terrier dog breeds. Invest Ophthalmol Vis Sci 2013; 54:7005-19. [PMID: 24045995 DOI: 10.1167/iovs.13-12915] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify the causative mutations in two early-onset canine retinal degenerations, crd1 and crd2, segregating in the American Staffordshire terrier and the Pit Bull Terrier breeds, respectively. METHODS Retinal morphology of crd1- and crd2-affected dogs was evaluated by light microscopy. DNA was extracted from affected and related unaffected controls. Association analysis was undertaken using the Illumina Canine SNP array and PLINK (crd1 study), or the Affymetrix Version 2 Canine array, the "MAGIC" genotype algorithm, and Fisher's Exact test for association (crd2 study). Positional candidate genes were evaluated for each disease. RESULTS Structural photoreceptor abnormalities were observed in crd1-affected dogs as young as 11-weeks old. Rod and cone inner segment (IS) and outer segments (OS) were abnormal in size, shape, and number. In crd2-affected dogs, rod and cone IS and OS were abnormal as early as 3 weeks of age, progressing with age to severe loss of the OS, and thinning of the outer nuclear layer (ONL) by 12 weeks of age. Genome-wide association study (GWAS) identified association at the telomeric end of CFA3 in crd1-affected dogs and on CFA33 in crd2-affected dogs. Candidate gene evaluation identified a three bases deletion in exon 21 of PDE6B in crd1-affected dogs, and a cytosine insertion in exon 10 of IQCB1 in crd2-affected dogs. CONCLUSIONS Identification of the mutations responsible for these two early-onset retinal degenerations provides new large animal models for comparative disease studies and evaluation of potential therapeutic approaches for the homologous human diseases.
Collapse
Affiliation(s)
- Orly Goldstein
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Palánová A, Schröffelová D, Přibáňová M, Dvořáková V, Stratil A. Analysis of a deletion in the nephronophthisis 4 gene in different dog breeds. Vet Ophthalmol 2013; 17:76-8. [DOI: 10.1111/vop.12092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Palánová
- Institute of Animal Physiology and Genetics; v.v.i.; Academy of Sciences of the Czech Republic; 277 21 Liběchov Czech Republic
| | - Daniela Schröffelová
- Laboratory of Immunogenetics; Czech Moravian Breeders Corporation; 252 09 Hradištko pod Medníkem Czech Republic
| | - Michaela Přibáňová
- Laboratory of Immunogenetics; Czech Moravian Breeders Corporation; 252 09 Hradištko pod Medníkem Czech Republic
| | - Věra Dvořáková
- Institute of Animal Physiology and Genetics; v.v.i.; Academy of Sciences of the Czech Republic; 277 21 Liběchov Czech Republic
| | - Antonín Stratil
- Institute of Animal Physiology and Genetics; v.v.i.; Academy of Sciences of the Czech Republic; 277 21 Liběchov Czech Republic
| |
Collapse
|
34
|
A CNGB1 frameshift mutation in Papillon and Phalène dogs with progressive retinal atrophy. PLoS One 2013; 8:e72122. [PMID: 24015210 PMCID: PMC3756049 DOI: 10.1371/journal.pone.0072122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes.
Collapse
|
35
|
Muhammad E, Reish O, Ohno Y, Scheetz T, Deluca A, Searby C, Regev M, Benyamini L, Fellig Y, Kihara A, Sheffield VC, Parvari R. Congenital myopathy is caused by mutation of HACD1. Hum Mol Genet 2013; 22:5229-36. [PMID: 23933735 PMCID: PMC3842179 DOI: 10.1093/hmg/ddt380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function.
Collapse
Affiliation(s)
- Emad Muhammad
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alazami AM, Alshammari MJ, Baig M, Salih MA, Hassan HH, Alkuraya FS. NPHP4 mutation is linked to cerebello-oculo-renal syndrome and male infertility. Clin Genet 2013; 85:371-5. [PMID: 23574405 DOI: 10.1111/cge.12160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 11/29/2022]
Abstract
Nephronophthisis is the most common genetic cause of renal failure in children and young adults. It is genetically heterogeneous and can be seen in isolation or in combination with other ciliopathy phenotypes. Here we report an index case where nephronophthisis is associated with oculomotor apraxia and cerebellar abnormalities, consistent with the clinical diagnosis of cerebello-oculo-renal syndrome. Prompted by a family history of an uncle with early onset end stage renal failure and infertility, we performed semen analysis on the index. This revealed marked reduction in the count of motile sperms as well as multiple abnormalities in the head and tail. Autozygome-guided mutation analysis followed by exome sequencing and segregation analysis revealed a homozygous truncating mutation in NPHP4, indicating that mutations of this gene can on rare occasions cause cerebello-oculo-renal syndrome. Our finding of severe male infertility in a family with NPHP4 truncation is strongly supported by the mouse model and, to our knowledge, is the first reported male infertility phenotype in association with NPHP4 or any other nephrocystin in humans.
Collapse
Affiliation(s)
- A M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
37
|
Petersen-Jones SM. Drug and gene therapy of hereditary retinal disease in dog and cat models. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.ddmod.2014.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Zhang D, Aravind L. Novel transglutaminase-like peptidase and C2 domains elucidate the structure, biogenesis and evolution of the ciliary compartment. Cell Cycle 2012; 11:3861-75. [PMID: 22983010 PMCID: PMC3495828 DOI: 10.4161/cc.22068] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In addition to their role in motility, eukaryotic cilia serve as a distinct compartment for signal transduction and regulatory sequestration of biomolecules. Recent genetic and biochemical studies have revealed an extraordinary diversity of protein complexes involved in the biogenesis of cilia during each cell cycle. Mutations in components of these complexes are at the heart of human ciliopathies such as Nephronophthisis (NPHP), Meckel-Gruber syndrome (MKS), Bardet-Biedl syndrome (BBS) and Joubert syndrome (JBTS). Despite intense studies, proteins in some of these complexes, such as the NPHP1-4-8 and the MKS, remain poorly understood. Using a combination of computational analyses we studied these complexes to identify novel domains in them which might throw new light on their functions and evolutionary origins. First, we identified both catalytically active and inactive versions of transglutaminase-like (TGL) peptidase domains in key ciliary/centrosomal proteins CC2D2A/MKS6, CC2D2B, CEP76 and CCDC135. These ciliary TGL domains appear to have originated from prokaryotic TGL domains that act as peptidases, either in a prokaryotic protein degradation system with the MoxR AAA+ ATPase, the precursor of eukaryotic dyneins and midasins, or in a peptide-ligase system with an ATP-grasp enzyme comparable to tubulin-modifying TTL proteins. We suggest that active ciliary TGL proteins are part of a cilia-specific peptidase system that might remove tubulin modifications or cleave cilia- localized proteins, while the inactive versions are likely to bind peptides and mediate key interactions during ciliogenesis. Second, we observe a vast radiation of C2 domains, which are key membrane-localization modules, in multiple ciliary proteins, including those from the NPHP1-4-8 and the MKS complexes, such as CC2D2A/MKS6, RPGRIP1, RPGRIP1L, NPHP1, NPHP4, C2CD3, AHI1/Jouberin and CEP76, most of which can be traced back to the last common eukaryotic ancestor. Identification of these TGL and C2 domains aid in the proper reconstruction of the Y-shaped linkers, which are key structures in the transitional zone of cilia, by allowing precise prediction of the multiple membrane-contacting and protein-protein interaction sites in these structures. These findings help decipher key events in the evolutionary separation of the ciliary and nuclear compartments in course of the emergence of the eukaryotic cell.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
39
|
Kuznetsova T, Iwabe S, Boesze-Battaglia K, Pearce-Kelling S, Chang-Min Y, McDaid K, Miyadera K, Komaromy A, Aguirre GD. Exclusion of RPGRIP1 ins44 from primary causal association with early-onset cone-rod dystrophy in dogs. Invest Ophthalmol Vis Sci 2012; 53:5486-501. [PMID: 22807295 DOI: 10.1167/iovs.12-10178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Canine cone-rod dystrophy 1 (cord1) has been previously mapped to CFA15, and a homozygous 44-bp insertion in exon 2 (Ins44) of canine RPGRIP1 (cRPGRIP1(Ins/Ins)) has been associated with the disease. However, from the recent identification of a significant discordance in genotype-phenotype association, we have reexamined the role of cRPGRIP1 in cord1. METHODS Retinal structure and function was assessed by clinical retinal examination, noninvasive imaging, electroretinography, and histopathology/immunohistochemistry. cRPGRIP1 splicing was analyzed by RT-PCR. Retinal gene expression was determined by quantitative RT-PCR (qRT-PCR). Five markers spanning the entire cRPGRIP1 were identified and used for haplotyping. RESULTS Electroretinography demonstrated that cone responses were absent or present in cRPGRIP1(Ins/Ins) individuals. Moreover, performance in vision testing and optical coherence tomography (OCT) were comparable in cRPGRIP1(Ins/Ins) dogs, regardless of the cone ERG status. While histologic changes in retinal structure were minimal, immunohistochemistry demonstrated a lack of cone opsin labeling in cRPGRIP1(Ins/Ins) dogs. cDNA analysis revealed that Ins44 disrupts a putative exonic splicing enhancer that allows for skipping of exon 2, while retaining the functional RPGR-interacting domain (RID) of the protein. New cRPGRIP1 sequence changes were identified, including a 3-bp deletion affecting the 3' acceptor splice site of alternative exon 19c. The extended haplotype spanning cRPGRIP1 was identical in cRPGRIP1(Ins/Ins) dogs with and without retinal degeneration. Gene expression analysis showed that expression levels were not associated with Ins44 genotype. CONCLUSIONS The results indicated that cRPGRIP1 Ins44 is an unlikely primary cause of cord1, and that the causal gene and mutation are likely located elsewhere in the critical disease interval.
Collapse
Affiliation(s)
- Tatyana Kuznetsova
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Selective loss of RPGRIP1-dependent ciliary targeting of NPHP4, RPGR and SDCCAG8 underlies the degeneration of photoreceptor neurons. Cell Death Dis 2012; 3:e355. [PMID: 22825473 PMCID: PMC3406595 DOI: 10.1038/cddis.2012.96] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The retinitis pigmentosa GTPase regulator (RPGR) and nephrocystin-4 (NPHP4) comprise two key partners of the assembly complex of the RPGR-interacting protein 1 (RPGRIP1). Mutations in RPGR and NPHP4 are linked to severe multisystemic diseases with strong retinal involvement of photoreceptor neurons, whereas those in RPGRIP1 cause the fulminant photoreceptor dystrophy, Leber congenital amaurosis (LCA). Further, mutations in Rpgrip1 and Nphp4 suppress the elaboration of the outer segment compartment of photoreceptor neurons by elusive mechanisms, the understanding of which has critical implications in uncovering the pathogenesis of syndromic retinal dystrophies. Here we show RPGRIP1 localizes to the photoreceptor connecting cilium (CC) distally to the centriole/basal body marker, centrin-2 and the ciliary marker, acetylated-α-tubulin. NPHP4 abuts proximally RPGRIP1, RPGR and the serologically defined colon cancer antigen-8 (SDCCAG8), a protein thought to partake in the RPGRIP1 interactome and implicated also in retinal-renal ciliopathies. Ultrastructurally, RPGRIP1 localizes exclusively throughout the photoreceptor CC and Rpgrip1(nmf247) photoreceptors present shorter cilia with a ruffled membrane. Strikingly, Rpgrip1(nmf247) mice without RPGRIP1 expression lack NPHP4 and RPGR in photoreceptor cilia, whereas the SDCCAG8 and acetylated-α-tubulin ciliary localizations are strongly decreased, even though the NPHP4 and SDCCAG8 expression levels are unaffected and those of acetylated-α-tubulin and γ-tubulin are upregulated. Further, RPGRIP1 loss in photoreceptors shifts the subcellular partitioning of SDCCAG8 and NPHP4 to the membrane fraction associated to the endoplasmic reticulum. Conversely, the ciliary localization of these proteins is unaffected in glomeruli or tubular kidney cells of Rpgrip1(nmf247), but NPHP4 is downregulated developmentally and selectively in kidney cortex. Hence, RPGRIP1 presents cell type-dependent pathological effects crucial to the ciliary targeting and subcellular partitioning of NPHP4, RPGR and SDCCAG8, and acetylation of ciliary α-tubulin or its ciliary targeting, selectively in photoreceptors, but not kidney cells, and these pathological effects underlie photoreceptor degeneration and LCA.
Collapse
|
41
|
Assessment of hereditary retinal degeneration in the English springer spaniel dog and disease relationship to an RPGRIP1 mutation. Stem Cells Int 2012; 2012:685901. [PMID: 22550515 PMCID: PMC3328374 DOI: 10.1155/2012/685901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/09/2011] [Accepted: 11/15/2011] [Indexed: 11/21/2022] Open
Abstract
Intensive breeding and selection on desired traits have produced high rates of inherited diseases in dogs. Hereditary retinal degeneration, often called progressive retinal atrophy (PRA), is prevalent in dogs with disease entities comparable to human retinitis pigmentosa (RP) and Leber's congenital amaurosis (LCA). Recent molecular studies in the English Springer Spaniel (ESS) dog have shown that PRA cases are often homozygous for a mutation in the RPGRIP1 gene, the defect also causing human RP, LCA, and cone rod dystrophies. The present study characterizes the disease in a group of affected ESS in USA, using clinical, functional, and morphological studies. An objective evaluation of retinal function using electroretinography (ERG) is further performed in a masked fashion in a group of American ESS dogs, with the examiner masked to the genetic status of the dogs. Only 4 of 6 homozygous animals showed clinical signs of disease, emphasizing the need and importance for more precise studies on the clinical expression of molecular defects before utilizing animal models for translational research, such as when using stem cells for therapeutic intervention.
Collapse
|
42
|
Miyadera K, Acland GM, Aguirre GD. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies. Mamm Genome 2012; 23:40-61. [PMID: 22065099 PMCID: PMC3942498 DOI: 10.1007/s00335-011-9361-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/26/2011] [Indexed: 12/31/2022]
Abstract
Considerable clinical and molecular variations have been known in retinal blinding diseases in man and also in dogs. Different forms of retinal diseases occur in specific breed(s) caused by mutations segregating within each isolated breeding population. While molecular studies to find genes and mutations underlying retinal diseases in dogs have benefited largely from the phenotypic and genetic uniformity within a breed, within- and across-breed variations have often played a key role in elucidating the molecular basis. The increasing knowledge of phenotypic, allelic, and genetic heterogeneities in canine retinal degeneration has shown that the overall picture is rather more complicated than initially thought. Over the past 20 years, various approaches have been developed and tested to search for genes and mutations underlying genetic traits in dogs, depending on the availability of genetic tools and sample resources. Candidate gene, linkage analysis, and genome-wide association studies have so far identified 24 mutations in 18 genes underlying retinal diseases in at least 58 dog breeds. Many of these genes have been associated with retinal diseases in humans, thus providing opportunities to study the role in pathogenesis and in normal vision. Application in therapeutic interventions such as gene therapy has proven successful initially in a naturally occurring dog model followed by trials in human patients. Other genes whose human homologs have not been associated with retinal diseases are potential candidates to explain equivalent human diseases and contribute to the understanding of their function in vision.
Collapse
Affiliation(s)
- Keiko Miyadera
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA 19104, USA
| | - Gregory M. Acland
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Gustavo D. Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St., Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Kuznetsova T, Zangerl B, Aguirre GD. RPGRIP1 and cone-rod dystrophy in dogs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:321-8. [PMID: 22183349 DOI: 10.1007/978-1-4614-0631-0_42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tatyana Kuznetsova
- Department of Clinical Studies, Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
44
|
Patil H, Guruju MR, Cho KI, Yi H, Orry A, Kim H, Ferreira PA. Structural and functional plasticity of subcellular tethering, targeting and processing of RPGRIP1 by RPGR isoforms. Biol Open 2011; 1:140-60. [PMID: 23213406 PMCID: PMC3507198 DOI: 10.1242/bio.2011489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutations affecting the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) interactome cause syndromic retinal dystrophies. RPGRIP1 interacts with the retinitis pigmentosa GTPase regulator (RPGR) through a domain homologous to RCC1 (RHD), a nucleotide exchange factor of Ran GTPase. However, functional relationships between RPGR and RPGRIP1 and their subcellular roles are lacking. We show by molecular modeling and analyses of RPGR disease-mutations that the RPGR-interacting domain (RID) of RPGRIP1 embraces multivalently the shared RHD of RPGR1–19 and RPGRORF15 isoforms and the mutations are non-overlapping with the interface found between RCC1 and Ran GTPase. RPGR disease-mutations grouped into six classes based on their structural locations and differential impairment with RPGRIP1 interaction. RPGRIP1α1 expression alone causes its profuse self-aggregation, an effect suppressed by co-expression of either RPGR isoform before and after RPGRIP1α1 self-aggregation ensue. RPGR1–19 localizes to the endoplasmic reticulum, whereas RPGRORF15 presents cytosolic distribution and they determine uniquely the subcellular co-localization of RPGRIP1α1. Disease mutations in RPGR1–19, RPGRORF15, or RID of RPGRIP1α1, singly or in combination, exert distinct effects on the subcellular targeting, co-localization or tethering of RPGRIP1α1 with RPGR1–19 or RPGRORF15 in kidney, photoreceptor and hepatocyte cell lines. Additionally, RPGRORF15, but not RPGR1–19, protects the RID of RPGRIP1α1 from limited proteolysis. These studies define RPGR- and cell-type-dependent targeting pathways with structural and functional plasticity modulating the expression of mutations in RPGR and RPGRIP1. Further, RPGR isoforms distinctively determine the subcellular targeting of RPGRIP1α1, with deficits in RPGRORF15-dependent intracellular localization of RPGRIP1α1 contributing to pathomechanisms shared by etiologically distinct syndromic retinal dystrophies.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology, Duke University Medical Center , Durham, NC 27710 , USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Alvarez CE, Akey JM. Copy number variation in the domestic dog. Mamm Genome 2011; 23:144-63. [PMID: 22138850 DOI: 10.1007/s00335-011-9369-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/09/2011] [Indexed: 12/13/2022]
Abstract
Differences in the content and organization of DNA, collectively referred to as structural variation, have emerged as a major source of genetic and phenotypic diversity within and between species. In addition, structural variation provides an important substrate for evolutionary innovations. Here, we review recent progress in characterizing patterns of canine structural variation within and between breeds, and in correlating copy number variants (CNVs) with phenotypes. Because of the extensive phenotypic diversity that exists within and between breeds and the tantalizing examples of canine CNVs that influence traits such as skin wrinkling in Shar-Pei, dorsal hair ridge in Rhodesian and Thai Ridgebacks, and short limbs in many breeds such as Dachshunds and Corgis, we argue that domesticated dogs are uniquely poised to contribute novel insights into CNV biology. As new technologies continue to be developed and refined, the field of canine genomics is on the precipice of a deeper understanding of how structural variation and CNVs contribute to canine genetic diversity, phenotypic variation, and disease susceptibility.
Collapse
Affiliation(s)
- Carlos E Alvarez
- The Center for Human and Molecular Genetics, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, W491, Columbus, OH 43205, USA.
| | | |
Collapse
|
46
|
LI FG, WANG ZP, HU G, LI H. Current status of SNPs interaction in genome-wide association study. YI CHUAN = HEREDITAS 2011; 33:901-10. [DOI: 10.3724/sp.j.1005.2011.00901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
A frameshift mutation in golden retriever dogs with progressive retinal atrophy endorses SLC4A3 as a candidate gene for human retinal degenerations. PLoS One 2011; 6:e21452. [PMID: 21738669 PMCID: PMC3124514 DOI: 10.1371/journal.pone.0021452] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022] Open
Abstract
Progressive retinal atrophy (PRA) in dogs, the canine equivalent of retinitis pigmentosa (RP) in humans, is characterised by vision loss due to degeneration of the photoreceptor cells in the retina, eventually leading to complete blindness. It affects more than 100 dog breeds, and is caused by numerous mutations. RP affects 1 in 4000 people in the Western world and 70% of causal mutations remain unknown. Canine diseases are natural models for the study of human diseases and are becoming increasingly useful for the development of therapies in humans. One variant, prcd-PRA, only accounts for a small proportion of PRA cases in the Golden Retriever (GR) breed. Using genome-wide association with 27 cases and 19 controls we identified a novel PRA locus on CFA37 (praw = 1.94×10−10, pgenome = 1.0×10−5), where a 644 kb region was homozygous within cases. A frameshift mutation was identified in a solute carrier anion exchanger gene (SLC4A3) located within this region. This variant was present in 56% of PRA cases and 87% of obligate carriers, and displayed a recessive mode of inheritance with full penetrance within those lineages in which it segregated. Allele frequencies are approximately 4% in the UK, 6% in Sweden and 2% in France, but the variant has not been found in GRs from the US. A large proportion of cases (approximately 44%) remain unexplained, indicating that PRA in this breed is genetically heterogeneous and caused by at least three mutations. SLC4A3 is important for retinal function and has not previously been associated with spontaneously occurring retinal degenerations in any other species, including humans.
Collapse
|
48
|
Kuznetsova T, Zangerl B, Goldstein O, Acland GM, Aguirre GD. Structural organization and expression pattern of the canine RPGRIP1 isoforms in retinal tissue. Invest Ophthalmol Vis Sci 2011; 52:2989-98. [PMID: 21282582 DOI: 10.1167/iovs.10-6094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine the structure and expression of RPGRIP1 in dog retina. METHODS Determination of the structural analysis and expression pattern of canine RPGRIP1 (cRPGRIP1) was based on cDNA amplification. Absolute quantification of the expression level of cRPGRIP1 splice variants was determined by qRT-PCR. Regulatory structures were examined by computational analysis of comparative genomics. RESULTS cRPGRIP1 encompasses 25 exons that harbor a 3627-bp open reading frame (ORF) encoding a 1209-amino-acid (aa)-predicted protein. In addition to the main transcript, five full-length and several partial cRPGRIP1 isoforms were identified revealing four alternative 3'-terminal exons--24, 19a, 19c, and 19d--three of which could potentially produce C-terminally truncated proteins that lack the RPGR-interacting domain. A complex organization of the 5'-UTR for the cRPGRIP1 splice products have been described, with a common promoter driving multiple isoforms, including four full-length transcripts using the 3'-terminal exon 24. In addition, a potential alternative internal promoter was revealed to initiate at least two cRPGRIP1 splice variants sharing the same 3'-terminal exon 19c. Transcription initiation sites were highly supported by conserved arrangements of cis-elements predicted in a bioinformatic analysis of orthologous RPGRIP1 promoter regions. CONCLUSIONS The use of alternative transcription start and termination sites results in substantial heterogeneity of cRPGRIP1 transcripts, many of which are likely to have tissue-specific expression. The identified exon-intron structure of cRPGRIP1 isoforms provides a basis for evaluating the gene defects underlying inherited retinal disorders in dogs.
Collapse
Affiliation(s)
- Tatyana Kuznetsova
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
49
|
Burcklé C, Gaudé HM, Vesque C, Silbermann F, Salomon R, Jeanpierre C, Antignac C, Saunier S, Schneider-Maunoury S. Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum Mol Genet 2011; 20:2611-27. [PMID: 21498478 DOI: 10.1093/hmg/ddr164] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nephronophthisis is a hereditary nephropathy characterized by interstitial fibrosis and cyst formation. It is caused by mutations in NPHP genes encoding the ciliary proteins, nephrocystins. In this paper, we investigate the function of nephrocystin-4, the product of the nphp4 gene, in vivo by morpholino-mediated knockdown in zebrafish and in vitro in mammalian kidney cells. Depletion of nephrocystin-4 results in convergence and extension defects, impaired laterality, retinal anomalies and pronephric cysts associated with alterations in early cloacal morphogenesis. These defects are accompanied by abnormal ciliogenesis in the cloaca and in the laterality organ. We show that nephrocystin-4 is required for the elongation of the caudal pronephric primordium and for the regulation of cell rearrangements during cloaca morphogenesis. Moreover, depletion of either inversin, the product of the nphp2 gene, or of the Wnt-planar cell polarity (PCP) pathway component prickle2 increases the proportion of cyst formation in nphp4-depleted embryos. Nephrocystin-4 represses the Wnt-β-catenin pathway in the zebrafish cloaca and in mammalian kidney cells in culture. In these cells, nephrocystin-4 interacts with inversin and dishevelled, and regulates dishevelled stability and subcellular localization. Our data point to a function of nephrocystin-4 in a tight regulation of the Wnt-β-catenin and Wnt-PCP pathways, in particular during morphogenesis of the zebrafish pronephros. Moreover, they highlight common signalling functions for inversin and nephrocystin-4, suggesting that these two nephrocystins are involved in common physiopathological mechanisms.
Collapse
Affiliation(s)
- Céline Burcklé
- INSERM U983, Tour Lavoisier, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The domestic cat as a large animal model for characterization of disease and therapeutic intervention in hereditary retinal blindness. J Ophthalmol 2011; 2011:906943. [PMID: 21584261 PMCID: PMC3090773 DOI: 10.1155/2011/906943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/04/2010] [Accepted: 01/24/2011] [Indexed: 01/09/2023] Open
Abstract
Large mammals, including canids and felids, are affected by spontaneously occurring hereditary retinal diseases with similarities to those of humans. The large mammal models may be used for thorough clinical characterization of disease processes, understanding the effects of specific mutations, elucidation of disease mechanisms, and for development of therapeutic intervention. Two well-characterized feline models are addressed in this paper. The first model is the autosomal recessive, slowly progressive, late-onset, rod-cone degenerative disease caused by a mutation in the CEP290 gene. The second model addressed in this paper is the autosomal dominant early onset rod cone dysplasia, putatively caused by the mutation found in the CRX gene. Therapeutic trials have been performed mainly in the former type including stem cell therapy, retinal transplantation, and development of ocular prosthetics. Domestic cats, having large human-like eyes with comparable spontaneous retinal diseases, are also considered useful for gene replacement therapy, thus functioning as effective model systems for further research.
Collapse
|