1
|
Kaur N, Potnis N, De La Fuente L. Pseudogenes and host specialization in the emergent bacterial plant pathogen Xylella fastidiosa. Appl Environ Microbiol 2025:e0207024. [PMID: 40207969 DOI: 10.1128/aem.02070-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Pseudogenes are regarded as "junk" DNA, representing vestigial functions no longer needed for fitness. Accordingly, a higher number of pseudogenes in a bacterial human pathogen was previously hypothesized to be a hallmark of host specialists. In this study, we tested this hypothesis on the emergent bacterial plant pathogen Xylella fastidiosa (Xf) to link pseudogene makeup and host specificity. Xf is an ideal subject for these studies by being a xylem-limited pathogen that underwent extensive genome reduction. Using natural host range data of 151 strains and Pseudofinder analysis on Xf whole genome sequences, we observed that Xf subsp. sandyi had the highest pseudogene content, followed by subsp. morus, while subsp. pauca, fastidiosa, and multiplex had the lowest. The first two subspecies are known to have a limited host range compared to the others, aligning with the hypothesis of a greater number of pseudogenes corresponding to narrower host range. Weed isolates are presumably host specialists because they had the highest pseudogene content. Using a thorough pseudogene map across genomes and empirical pathogenicity data on blueberries, we screened for genes potentially involved in blueberry specialization. Targets were identified by selecting sequences pseudogenized (i) in strains infecting hosts different from blueberry and (ii) only in blueberry asymptomatic strains. Six sequences were identified with a potential role in blueberry infection, including one that was common between the two criteria. Here, we generated hypotheses on host range and specificity of Xf strains that need to be tested experimentally to help understand this devastating plant pathogen.IMPORTANCEXylella fastidiosa is a highly destructive plant pathogen that infects hundreds of landscape and agriculturally important plant species mainly in Europe and the Americas. Nevertheless, the host range of specific genotypes and underlying mechanisms of host specificity remain unclear. These are important aspects to determine the potential risk of infection in specific areas depending on the genetic makeup of the pathogen population and hosts present. This study offers valuable insights into the role of pseudogenization in the genomes of different X. fastidiosa strains, linking it to host specialization. Despite the limited information available for the host range of different strains of this pathogen, this research proposes a relationship between the abundance of pseudogenes and host specificity. These findings are essential for predicting potential host shifts by this pathogen, aiding in the development of strategies to prevent its spread. Additionally, the identification of candidate genes putatively important for symptom development in blueberries offers targets for prevention and control efforts.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
2
|
Olson EG, Dittoe DK, Chaney WE, Binnebose AM, Ricke SC. Potential of saccharomyces cerevisiae fermentation-derived postbiotic technology in mitigating multiple drug-resistant Salmonella enterica serovars in an in vitro broiler cecal model. PLoS One 2025; 20:e0320977. [PMID: 40179087 PMCID: PMC11967930 DOI: 10.1371/journal.pone.0320977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Diamond V Original XPC® is a Saccharomyces cerevisiae fermentation-derived postbiotic technology (SCFP) designed to interact synergistically with the animal to provide health benefits by enhancing immune function, supporting digestive integrity and absorption, and maintaining gastrointestinal (GIT) microbial balance in the host. The current study investigated the effects of 1.25% SCFP on multidrug-resistant (MDR) Salmonella serovars: S. Typhimurium (ATCC 14028), S. Enteritidis, S. Infantis, S. Heidelberg, S. Typhimurium DT104, and S. Reading, and shifts in cecal microbiota populations. Using an anaerobic in vitro poultry cecal model, cecal contents were inoculated with ~ 108 colony forming units (CFU) of MDR Salmonella serovars and incubated for 24 h at 37°C anaerobically. The treatments included: control group consisting of 0.2 g of crushed poultry feed, and a treatment group 0.25 g of feed + 1.25% inclusion of Original XPC® (SCFP). The SCFP significantly reduced five of the six serovars: S. Typhimurium ATCC, S. Enteritidis, S. Infantis, S. Heidelberg, and S. Reading (P < 0.05). Time significantly impacted S. Typhimurium DT104 reduction (P < 0.001). The most significant decrease was observed for S. Enteritidis (3.9 log10 CFU/mL), followed by S. Heidelberg (3.8 log10 CFU/mL), S. Infantis (3.4 log10 CFU/mL), S. Typhimurium ATCC (3 log10 CFU/mL), and S. Reading (1.8 log10 CFU/mL) compared to controls that averaged approximately 1 log10 CFU/mL reduction. Microbiota analysis at 24 h involved genomic DNA extraction, amplification using custom dual-indexed primers, and sequencing on the Illumina MiSeq platform. Sequencing data were analyzed using QIIME2-2021.11. S. Infantis and S. Heidelberg inoculated samples were the only groups that significantly enhanced microbial richness and evenness with SCFP addition at 24 h (P < 0.05). Pairwise comparisons revealed that samples inoculated with S. Reading and S. Typhimurium DT104 exhibited a minor change in microbial composition with SCFP, compared to other serovars that demonstrated increased microbial diversity with SCFP. Additionally, S. Infantis and S. Heidelberg inoculated samples exhibited phylogenetic diversity and microbial abundance with SCFP compared to controls at 24 h (P < 0.05). Lachnospiraceae CHKCI001 was significantly more abundant in SCFP-treated samples compared to controls (ANCOM, P < 0.05), suggesting SCFP impact on cecal fermenters and production of fermentation end products that may impact the ecosystem and inhibit pathogen growth. Although various serovars may exhibit somewhat different responses, SCFP effectively mitigated multiple MDR serovars of Salmonella under in vitro incubation conditions.
Collapse
Affiliation(s)
- Elena G. Olson
- Animal and Dairy Sciences Department, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, United States of America
| | - W. Evan Chaney
- Cargill, Inc., Micronutrition and Health Solutions, Wayzata, Minnesota, United States of America
| | - Andrea M. Binnebose
- Cargill, Inc., Micronutrition and Health Solutions, Wayzata, Minnesota, United States of America
| | - Steven C. Ricke
- Animal and Dairy Sciences Department, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Guo J, He X, Bai Y, Sun H, Yang J. Virulence factors of Salmonella Typhi: interplay between the bacteria and host macrophages. Arch Microbiol 2025; 207:89. [PMID: 40095029 DOI: 10.1007/s00203-025-04297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Salmonella Typhi (S. Typhi) is a Gram-negative bacterium that exclusively infects humans and causes typhoid fever- a major global public health concern responsible for approximately 9 million infections and 110,000 deaths annually. Macrophages, a key component of the innate immune system, play essential roles in pathogen clearance, antigen presentation, immune regulation, and tissue repair. As one of the primary targets of S. Typhi infection, macrophages significantly influence disease onset and progression. S. Typhi expresses a range of virulence factors, including the virulence-associated (Vi) capsule, outer membrane proteins (OMPs), flagella, fimbriae, type III secretion systems (T3SSs) and other genes encoded on Salmonella pathogenicity islands (SPIs), as well as toxins, regulatory factors, and virulence plasmids. These virulence factors facilitate S. Typhi's intracellular survival within macrophages by mediating processes such as adhesion, invasion, nutrient acquisition and immune evasion, ultimately enabling systemic infection. This review explores the role and molecular mechanisms of S. Typhi virulence factors in counteracting macrophage antimicrobial functions, providing insights for future research on typhoid pathogenesis and the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
4
|
Kipper D, Orsi RH, de Souza Zanetti N, De Carli S, Mascitti AK, Fonseca ASK, Ikuta N, Wiedmann M, Lunge VR. Comparative genomic analysis reveals the emergence and dissemination of different Salmonella enterica serovar Gallinarum biovar Gallinarum lineages in Brazil. Avian Pathol 2025:1-13. [PMID: 39850984 DOI: 10.1080/03079457.2025.2458601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
RESEARCH HIGHLIGHTS Fowl typhoid (FT) is a concerning poultry disease caused by S. Gallinarum.Five S. Gallinarum lineages (I to V) were demonstrated in South American farms.S. Gallinarum lineages have specific antimicrobial resistance / virulence genomic profiles.Main FT outbreaks in Brazil have been caused by the specific lineage II.
Collapse
Affiliation(s)
- Diéssy Kipper
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | | | - Silvia De Carli
- Molecular Diagnostics Laboratory, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | | | - Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha, Brazil
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Vagner Ricardo Lunge
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
- Simbios Biotecnologia, Cachoeirinha, Brazil
| |
Collapse
|
5
|
Moreau MR, Edison LK, Ivanov YV, Wijetunge DSS, Hewage EMKK, Linder JE, Kariyawasam S. Comparative Patho-Genomics of Salmonella enterica Serovar Enteritidis Reveal Potential Host-Specific Virulence Factors. Pathogens 2025; 14:128. [PMID: 40005504 PMCID: PMC11858713 DOI: 10.3390/pathogens14020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most common causes of bacterial foodborne infections worldwide. It has an extensive host range, including birds and humans, making it one of the most adaptable Salmonella serovars. This study aims to define the virulence gene profile of S. Enteritidis and identify genes critical to its host specificity. Currently, there is limited understanding of the molecular mechanisms that allow S. Enteritidis to continue as an important foodborne pathogen. To better understand the genes that may play a role in the host-specific virulence and/or fitness of S. Enteritidis, we first compiled a virulence gene profile-based genome analysis of sequenced S. Enteritidis strains isolated from shell eggs in our laboratory. This analysis was subsequently used to compare the representative genomes of Salmonella serovars with varying host ranges and S. Enteritidis genomes. The study involved a comprehensive and direct examination of the conservation of virulence and/or fitness factors, especially in a host-specific manner-an area that has not been previously explored. Key findings include the identification of 10 virulence-associated clusters of orthologous genes (COGs) specific to poultry-colonizing serovars and 12 virulence-associated COGs unique to human-colonizing serovars. Virulence/fitness-associated gene analysis identified more than 600 genes. The genome sequences of the two S. Enteritidis isolates were compared to those of the other serovars. Genome analysis revealed a core of 2817 COGs that were common to all the Salmonella serovars examined. Comparative genome analysis revealed that 10 virulence-associated COGs were specific to poultry-colonizing serovars, whereas 12 virulence-associated COGs were present in all human-colonizing serovars. Phylogenetic analyses further highlight the evolution of host specificity in S. Enteritidis. This study offers the first comprehensive analysis of genes that may be unique to and possibly essential for the colonization and/or pathogenesis of S. Enteritidis in various and specific hosts.
Collapse
Affiliation(s)
- Matthew R. Moreau
- Department of Biology, Providence College, Providence, RI 02918, USA;
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (Y.V.I.); (D.S.S.W.); (E.M.K.K.H.); (J.E.L.)
| | - Lekshmi K. Edison
- Department of Comparative Diagnostics and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Yury V. Ivanov
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (Y.V.I.); (D.S.S.W.); (E.M.K.K.H.); (J.E.L.)
| | - Dona Saumya S. Wijetunge
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (Y.V.I.); (D.S.S.W.); (E.M.K.K.H.); (J.E.L.)
- Houston Health Department, Houston, TX 77054, USA
| | - Eranda Mangala K. Kurundu Hewage
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (Y.V.I.); (D.S.S.W.); (E.M.K.K.H.); (J.E.L.)
- Immatics Biotechnologies, Houston, TX 77477, USA
| | - Jessica E. Linder
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (Y.V.I.); (D.S.S.W.); (E.M.K.K.H.); (J.E.L.)
- College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Subhashinie Kariyawasam
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA; (Y.V.I.); (D.S.S.W.); (E.M.K.K.H.); (J.E.L.)
- Department of Comparative Diagnostics and Population Medicine, University of Florida, Gainesville, FL 32608, USA;
| |
Collapse
|
6
|
Fei X, Yuan Z, Wellner SM, Ma Y, Olsen JE. A sequencing-based method for quantifying gene-deletion mutants of bacteria in the intracellular environment. Front Microbiol 2025; 15:1487724. [PMID: 39981033 PMCID: PMC11841384 DOI: 10.3389/fmicb.2024.1487724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/23/2024] [Indexed: 02/22/2025] Open
Abstract
Advancements in next-generation sequencing (NGS) have significantly accelerated the development of innovative methodologies in microbiological research. In this study, we present a novel method to quantify the net survival of gene-deletion mutants within the intracellular environment. Based on standardized Illumina short-read sequencing of genomic DNA, the method eliminates the need for specific selective markers on each deletion mutant. For validation, the method was shown to accurately quantify mutants in spiked pools of mixed mutants, showing no statistically significant differences compared to the expected values based on CFU determination (p > 0.05). Further, the method was used to quantify mutants of S. Gallinarum in macrophages. Six mutants and one control strain were mixed in a pool and allowed to infect HD11 cells for 2 h. The results align with prior research results, providing evidence of the feasibility of mixed mutant infections in functional gene identification. Notably, the simplicity and standardization of the method, rooted in standard whole-genome sequencing protocols, make it easily implementable across various laboratories.
Collapse
Affiliation(s)
- Xiao Fei
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zengzhi Yuan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, China
- College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Sandra Marina Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yibing Ma
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
8
|
Oliveira V, Cleary DFR, Polónia ARM, Huang YM, Rocha U, Voogd NJD, Gomes NCM. Unravelling a Latent Pathobiome Across Coral Reef Biotopes. Environ Microbiol 2024; 26:e70008. [PMID: 39705298 DOI: 10.1111/1462-2920.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024]
Abstract
Previous studies on disease in coral reef organisms have neglected the natural distribution of potential pathogens and the genetic factors that underlie disease incidence. This study explores the intricate associations between hosts, microbial communities, putative pathogens, antibiotic resistance genes (ARGs) and virulence factors (VFs) across diverse coral reef biotopes. We observed a substantial compositional overlap of putative bacterial pathogens, VFs and ARGs across biotopes, consistent with the 'everything is everywhere, but the environment selects' hypothesis. However, flatworms and soft corals deviated from this pattern, harbouring the least diverse microbial communities and the lowest diversity of putative pathogens and ARGs. Notably, our study revealed a significant congruence between the distribution of putative pathogens, ARGs and microbial assemblages across different biotopes, suggesting an association between pathogen and ARG occurrence. This study sheds light on the existence of this latent pathobiome, the disturbance of which may contribute to disease onset in coral reef organisms.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Daniel F R Cleary
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ana R M Polónia
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Yusheng M Huang
- Tropical Island Sustainable Development Research Center, National Penghu University of Science and Technology, Magong City, Penghu, Taiwan
- Department of Marine Recreation, National Penghu University of Science and Technology, Magong City, Penghu, Taiwan
| | - Ulisses Rocha
- Department of Applied and Environmental Microbiology, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| | - Nicole J de Voogd
- Understanding Evolution Group, Naturalis Biodiversity Center, Leiden, Netherlands
- Institute of Biology (IBL), Leiden University, Leiden, Netherlands
| | - Newton C M Gomes
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
9
|
Ferreira VA, Saraiva MMS, de Lima TS, de Fátima Nascimento C, Paschone GBC, Rabelo ALC, Almeida AM, Neto OCF, Barrow PA, Junior AB. A double ttrA and pduA knock-out mutant of Salmonella Typhimurium is not attenuated for mice (Mus musculus). Braz J Microbiol 2024; 55:4177-4182. [PMID: 39412602 PMCID: PMC11711602 DOI: 10.1007/s42770-024-01533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/23/2024] [Indexed: 01/11/2025] Open
Abstract
Despite numerous studies on Salmonella enterica subsp. enterica serovar Typhimurium, the underlying mechanisms of several aspects of its virulence are still under investigation, including the role of the pdu and ttrA genes, associated with the metabolism of 1,2-propanediol using tetrathionate as an electron acceptor respectively. Our objective was to contribute to an understanding of the role of these genes inbacterial virulence for mice (Mus musculus) using an S. Typhumirum ΔttrApduA mutant. The experiment was conducted with a group infected by the S. Typhimurium mutant and a control group infected with a wild-type strain. The mutant was not attenuated compared with the parent strain. There were no differences in the bacterial numbers recovered from the mesenteric lymph nodes and Peyer's patches but at 8-day after oral infection higher numbers were recovered from the spleen, liver, and cecum. Unlike the single pduA and ttrA mutants, the double ΔttrApduA mutation did not affect invasion and survival in mice, which highlights the need for further studies to clarify the role of these important metabolism genes under reduced redox conditions linked to Salmonella virulence.
Collapse
Affiliation(s)
- Viviane Amorim Ferreira
- São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil
| | - Mauro M S Saraiva
- São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil.
| | - Túlio Spina de Lima
- São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil
| | - Camila de Fátima Nascimento
- São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil
| | | | - André L C Rabelo
- São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil
| | - Adriana M Almeida
- São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil
| | - Oliveiro C Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Paul A Barrow
- School of Veterinary Medicine and Science, Daphne Jackson Road, University of Surrey, Guildford, GU2 7AL, UK
| | - Angelo Berchieri Junior
- São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, Brazil.
| |
Collapse
|
10
|
Carneiro DG, Vidigal PMP, Morgan T, Vanetti MCD. Genome sequencing and analysis of Salmonella enterica subsp. enterica serotype Enteritidis PT4 578: insights into pathogenicity and virulence. Access Microbiol 2024; 6:000828.v3. [PMID: 39686970 PMCID: PMC11649194 DOI: 10.1099/acmi.0.000828.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella enterica serotype Enteritidis is a generalist serotype that adapts to different hosts and transmission niches. It has significant epidemiological relevance and is among the most prevalent serotypes distributed in several countries. Salmonella Enteritidis causes self-limited gastroenteritis in humans, which can progress to systemic infection in immunocompromised individuals. The Salmonella pathogenicity mechanism is multifactorial and complex, including the presence of virulence factors that are encoded by virulence genes. Poultry products are considered significant reservoirs of many Salmonella serotypes, and Salmonella Enteritidis infections are often related to the consumption of chicken meat and eggs. This study reports the whole-genome sequence of Salmonella Enteritidis PT4 strain 578. A total of 165 genes (3.66%) of the 4506 coding sequences (CDS) predicted in its genome are virulence factors associated with cell invasion, intestinal colonization, and intracellular survival. The genome harbours twelve Salmonella pathogenicity islands (SPIs), with the SPI-1 and SPI-2 genes encoding type III secretion systems (T3SS) showing high conservation. Six prophage-related sequences were found, with regions of intact prophages corresponding to Salmon_118970_sal3 and Gifsy-2. The genome also contains two CRISPR systems. Comparative genome analysis with Salmonella Enteritidis ATCC 13076, Salmonella Typhimurium ATCC 13311, and Salmonella Typhimurium ATCC 14028 demonstrates that most unshared genes are related to metabolism, membrane, and hypothetical proteins. Finally, the phenotypic characterization evidenced differences among Salmonella Enteritidis PT4 578 and the other three serotypes regarding the expression of the red, dry, and rough (rdar) morphotype and biofilm formation. Overall, the genomic characterization and phenotypic properties expand knowledge of the mechanisms of pathogenicity in Salmonella Enteritidis PT4 578.
Collapse
Affiliation(s)
- Deisy G. Carneiro
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Pedro Marcus P. Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa 36570-900, Minas Gerais, Brazil
| | - Túlio Morgan
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Maria Cristina D. Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
11
|
Han J, Tang H, Zhao S, Foley SL. Salmonella enterica virulence databases and bioinformatic analysis tools development. Sci Rep 2024; 14:25228. [PMID: 39448688 PMCID: PMC11502889 DOI: 10.1038/s41598-024-74124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Salmonella enterica, a prominent foodborne pathogen, contributes significantly to global foodborne illnesses annually. This species exhibits significant genetic diversity, potentially impacting its infectivity, disease severity, and antimicrobial resistance. Whole genome sequencing (WGS) offers comprehensive genetic insights that can be utilized for virulence assessment. However, existing bioinformatic tools for studying Salmonella virulence have notable limitations. To address this gap, a Salmonella Virulence Database with a non-redundant, comprehensive list of putative virulence factors was constructed. Two bioinformatic analysis tools, Virulence Factor Profile Assessment and Virulence Factor Profile Comparison tools, were developed. The former provides data on similarity to the reference genes, e-value, and bite score, while the latter assesses the presence/absence of virulence genes in Salmonella isolates and facilitates comparison of virulence profiles across multiple sequences. To validate the database and associated bioinformatic tools, WGS data from 43,853 Salmonella isolates spanning 14 serovars was extracted from GenBank, and WGS data previously generated in our lab was used. Overall, the Salmonella Virulence database and our bioinformatic tools effectively facilitated virulence assessment, enhancing our understanding of virulence profiles among Salmonella isolates and serovars. The public availability of these resources will empower researchers to assess Salmonella virulence comprehensively, which could inform strategies for pathogen control and risk evaluations associated with human illnesses.
Collapse
Affiliation(s)
- Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Division of Microbiology, National Center of Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 7209, USA.
| | - Hailin Tang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, Food and Drug Administration, Laurel, MD, 20708, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Division of Microbiology, National Center of Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 7209, USA.
| |
Collapse
|
12
|
A. Ghomi F, Jung JJ, Langridge GC, Cain AK, Boinett CJ, Abd El Ghany M, Pickard DJ, Kingsley RA, Thomson NR, Parkhill J, Gardner PP, Barquist L. High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality. mBio 2024; 15:e0179824. [PMID: 39207104 PMCID: PMC11481867 DOI: 10.1128/mbio.01798-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism Escherichia coli, as well as major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio E. coli single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species. To investigate this, we have assembled a collection of 13 sequenced high-density transposon mutant libraries from five genera within the Enterobacteriaceae. We first assess several gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations, we develop a new classifier for gene essentiality. Using this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently acquired essentiality multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts that have emerged from within the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival and identifies several instances of essential stress responses masked by redundancy in free-living bacteria.IMPORTANCEThe essential genome, that is the set of genes absolutely required to sustain life, is a core concept in genetics. Essential genes in bacteria serve as drug targets, put constraints on the engineering of biological chassis for technological or industrial purposes, and are key to constructing synthetic life. Despite decades of study, relatively little is known about how gene essentiality varies across related bacteria. In this study, we have collected gene essentiality data for 13 bacteria related to the model organism Escherichia coli, including several human pathogens, and investigated the conservation of essentiality. We find that approximately a third of the genes essential in any particular strain are non-essential in another related strain. Surprisingly, we do not find evidence for essential genes unique to specific genera; rather it appears a substantial fraction of the essential genome rapidly gains or loses essentiality during evolution. This suggests that essentiality is not an immutable characteristic but depends crucially on the genomic context. We illustrate this through a comparison of our essential genes in free-living bacteria to genes conserved in 34 insect endosymbionts with naturally reduced genomes, finding several cases where genes generally regarded as being important for specific stress responses appear to have become essential in endosymbionts due to a loss of functional redundancy in the genome.
Collapse
Affiliation(s)
- Fatemeh A. Ghomi
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jakob J. Jung
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Moataz Abd El Ghany
- The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Derek J. Pickard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Kingsley
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Department of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul P. Gardner
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry, Otago University, Dunedin, New Zealand
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
13
|
Heffernan LM, Lawrence ALE, Marcotte HA, Sharma A, Jenkins AX, Iguwe D, Rood J, Herke SW, O'Riordan MX, Abuaita BH. Heterogeneity of Salmonella enterica lipopolysaccharide counteracts macrophage and antimicrobial peptide defenses. Infect Immun 2024; 92:e0025124. [PMID: 39225472 PMCID: PMC11475854 DOI: 10.1128/iai.00251-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella enterica is comprised of over 2,500 serovars, in which non-typhoidal serovars (NTS), Enteritidis (SE), and Typhimurium (STM) are the most clinically associated with human infections. Although NTS have similar genetic elements to cause disease, phenotypic variation including differences in lipopolysaccharide (LPS) composition may control immune evasion. Here, we demonstrate that macrophage host defenses and LL-37 antimicrobial efficacy against SE and STM are substantially altered by LPS heterogeneity. We found that SE evades macrophage killing by inhibiting phagocytosis while STM survives better intracellularly post-phagocytosis. SE-infected macrophages failed to activate the inflammasomes and subsequently produced less interleukin-1β (IL-1β), IL-18, and interferon λ. Inactivation of LPS biosynthesis genes altered LPS composition, and the SE LPS-altered mutants could no longer inhibit phagocytosis, inflammasome activation, and type II interferon signaling. In addition, SE and STM showed differential susceptibility to the antimicrobials LL-37 and colistin, and alteration of LPS structure substantially increased susceptibility to these molecules. Collectively, our findings highlight that modification of LPS composition by Salmonella increases resistance to host defenses and antibiotics.
Collapse
Affiliation(s)
- Linda M. Heffernan
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Anna-Lisa E. Lawrence
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Haley A. Marcotte
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Amit Sharma
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Aria X. Jenkins
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Damilola Iguwe
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Scott W. Herke
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Mary X. O'Riordan
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Basel H. Abuaita
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| |
Collapse
|
14
|
Singh A, Rani PS, Bandsode V, Nyambero M, Qumar S, Ahmed N. Drivers of virulence and antimicrobial resistance in Gram-negative bacteria in different settings: A genomic perspective. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 124:105666. [PMID: 39242067 DOI: 10.1016/j.meegid.2024.105666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The human gut presents a complex ecosystem harboring trillions of microorganisms living in close association with each other and the host body. Any perturbation or imbalance of the normal gut microbiota may prove detrimental to human health. Enteric infections and treatment with antibiotics pose major threats to gut microbiota health. Recent genomics-driven research has provided insights into the transmission and evolutionary dynamics of major enteric pathogens such as Escherichia coli, Klebsiella pneumoniae, Vibrio cholerae, Helicobacter pylori and Salmonella spp. Studies entailing the identification of various dominant lineages of some of these organisms based on artificial intelligence and machine learning point to the possibility of a system for prediction of antimicrobial resistance (AMR) as some lineages have a higher propensity to acquire virulence and fitness advantages. This is pertinent in the light of emerging AMR being one of the immediate threats posed by pathogenic bacteria in the form of a multi-layered fitness manifesting as phenotypic drug resistance at the level of clinics and field settings. To develop a holistic or systems-level understanding of such devastating traits, present methodologies need to be advanced with the high throughput techniques integrating community and ecosystem/niche level data across different omics platforms. The next major challenge for public health epidemiologists is understanding the interactions and functioning of these pathogens at the community level, both in the gut and outside. This would provide new insights into the dimensions of enteric bacteria in different environments and niches and would have a plausible impact on infection control strategies in terms of tackling AMR. Hence, the aim of this review is to discuss virulence and AMR in Gram-negative pathogens, the spillover of AMR and methodological advancements aimed at addressing it through a unified One Health framework applicable to the farms, the environment, different clinical settings and the human gut.
Collapse
Affiliation(s)
- Anuradha Singh
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Pittu Sandhya Rani
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Viraj Bandsode
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Mahanga Nyambero
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Shamsul Qumar
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
15
|
Joaquim P, Balbiani F, Socas ML, Morales H, Casey M, Rubio J, Chacana P. Combination of Live and Inactivated Salmonella Vaccines to Protect Against Fowl Typhoid in Laying Hens. Avian Dis 2024; 68:259-262. [PMID: 39400221 DOI: 10.1637/aviandiseases-d-24-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/16/2024] [Indexed: 10/15/2024]
Abstract
Fowl typhoid (FT) caused by Salmonella Gallinarum (SG) is a poultry disease distributed worldwide that has been eradicated in commercial production of many developed countries but still persists in many developing countries. Vaccination is one of the main strategies to reduce mortality, clinical signs, and vertical or horizontal transmission. The aim of this work was to assess the protection against FT conferred by vaccines based on Salmonella Enteritidis (SE), SG, or a combination. Five experimental groups of birds, vaccinated with different live or inactivated SG and SE vaccines were included in the trial: 1) two doses of a SG-SE bivalent inactivated vaccine; 2) four doses of the live attenuated SE vaccine; 3) three doses of the live attenuated SE vaccine and two doses of the SG-SE bivalent inactivated vaccine; 4) two doses of the live attenuated SG9R vaccine; and 5) unvaccinated birds. At 28 wk of age, all hens were challenged with a virulent strain of SG, and mortality was recorded during the subsequent 15 days. The results showed that the plan that included only the inactivated vaccine did not show significant protection (P = 1), while the plan based on the administration of the attenuated strain of SE significantly reduced mortality in the group of birds (P = 0.0309). However, the highest levels of protection were obtained in the group of hens immunized with the combination of the inactivated vaccine and the live attenuated SE strain (P < 0.0001), which was statistically similar to the homologous protection conferred by the SG 9R strain, a vaccine used in many countries to control FT. These results demonstrate that the combination of existing vaccines together with strict biosecurity measures on farms may help improve the control of the pathogen in countries where FT in an emerging or reemerging disease.
Collapse
Affiliation(s)
- Patricia Joaquim
- Instituto de Patobiolog'ıa Veterinaria, Instituto Nacional de Tecnolog'ıa Agropecuaria-Consejo Nacional de Investigaciones Cient'ıficas y Técnicas, B1686 Hurlingham, Buenos Aires, Argentina
| | - Facundo Balbiani
- Instituto de Patobiolog'ıa Veterinaria, Instituto Nacional de Tecnolog'ıa Agropecuaria-Consejo Nacional de Investigaciones Cient'ıficas y Técnicas, B1686 Hurlingham, Buenos Aires, Argentina
| | - M Laura Socas
- Instituto de Patobiolog'ıa Veterinaria, Instituto Nacional de Tecnolog'ıa Agropecuaria-Consejo Nacional de Investigaciones Cient'ıficas y Técnicas, B1686 Hurlingham, Buenos Aires, Argentina
| | | | | | | | - Pablo Chacana
- Instituto de Patobiolog'ıa Veterinaria, Instituto Nacional de Tecnolog'ıa Agropecuaria-Consejo Nacional de Investigaciones Cient'ıficas y Técnicas, B1686 Hurlingham, Buenos Aires, Argentina,
| |
Collapse
|
16
|
Richards PJ, Almutrafy A, Liang L, Flaujac Lafontaine GM, King E, Fish NM, Connerton AJ, Connerton PL, Connerton IF. Prebiotic galactooligosaccharide feed modifies the chicken gut microbiota to efficiently clear Salmonella. mSystems 2024; 9:e0075424. [PMID: 39082804 PMCID: PMC11334501 DOI: 10.1128/msystems.00754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Chicken meat is contaminated with Salmonella from the gut of infected chickens during slaughter. Eradication of Salmonella from broiler chickens through hygiene measures and/or vaccination is not cost-effective; complementary approaches are required. A mature gut microbiota obstructs Salmonella infection in chickens, and deliberate fortification of colonization resistance through prebiotic feed formulations would benefit public health and poultry production. Prebiotic galactooligosaccharides hastens Salmonella clearance from the gut of infected chickens. To better understand the role of galactooligosaccharides in colonization resistance, broiler chickens were raised on a wheat-soybean meal-based feed, with or without galactooligosaccharides for the first 24 days of life. Chickens were orally challenged with Salmonella enterica serovar Enteritidis at 20 days and the effect of supplementary galactooligosaccharides characterized by profiling Salmonella colonization, gut microbiota, innate immune response, and cecal short-chain fatty acid concentrations. Exposure to dietary galactooligosaccharides shortened the time to clear S. Enteritidis from the ceca. Differential abundance analysis of the cecal microbiota associated Salmonella challenge with a bacterial taxon belonging to the Acidaminococcaceae family (P < 0.005). Increased cecal concentrations of the short-chain fatty acids propionate and valerate were measured in Salmonella-challenged chickens sustained on either control or galactooligosaccharide-supplemented feed relative to mock-challenged controls; but far greater concentrations were detected in chickens fed a galactooligosaccharide-supplemented diet in early life. The abundance of the Acidaminococcaceae taxon exhibited a positive correlation with the cecal concentrations of propionate (ρ = 0.724, P = 0.008) and valerate (ρ = 0.71, P = 0.013). The absence of cecal pro-inflammatory transcriptional responses suggest that the rapid Salmonella clearance observed for the galactooligosaccharide-supplemented diet was not linked to innate immune function. IMPORTANCE Work presented here identifies bacterial taxa responsible for colonization resistance to Salmonella in broiler chickens. Deliberate cultivation of these taxa with prebiotic galactooligosaccharide has potential as a straight-forward, safe, and cost-effective intervention against Salmonella. We hypothesize that catabolism of galactooligosaccharide and its breakdown products by indigenous microorganisms colonizing the chicken gut produce excess levels of propionate. In the absence of gross inflammation, propionate is inimical to Salmonella and hastens intestinal clearance.
Collapse
Affiliation(s)
- Philip J. Richards
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Abeer Almutrafy
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Lu Liang
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Geraldine M. Flaujac Lafontaine
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Elizabeth King
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Neville M. Fish
- Saputo Dairy UK (c/o Simon Hunt), Saputo Dairy UK Innovation Centre, Harper Adams University, Edgmond, Newport, United Kingdom
| | - Amber J. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Phillippa L. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Ian F. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
17
|
Ferreira VA, Saraiva MMS, Campos IC, Silva MPSD, Benevides VP, Almeida AM, Codognoto TA, Nascimento CDF, Lima TSD, Rodrigues Alves LB, Berchieri Junior A. In vitro conjugation of IncB/O-plasmid: Minimum inhibitory concentration of β-lactams increases 16-fold in Salmonella enterica compared with Escherichia coli. Microb Pathog 2024; 193:106788. [PMID: 38986823 DOI: 10.1016/j.micpath.2024.106788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The use of antimicrobials in poultry leaves residues in the litter, favoring the emergence of antimicrobial-resistant pathogens and making it a source of contamination. An in vitro 4 × 4 factorial trial was performed to investigate the influence of four treatments, consisting of antimicrobial sub-concentrations, on the transference of IncB/O-plasmid through conjugation in four groups. Each group was composed of one plasmid donor bacterium (Escherichia coli H2332) and a recipient bacterium (Escherichia coli J62 or Salmonella enterica serovars, Enteritidis, Typhimurium, or Heidelberg). Our results showed a little decrease in the conjugation frequency in almost all treatments between the two bacterial species, which varied according to each strain. The MIC test revealed an increase of up to 4096-fold in resistance to beta-lactams in Salmonella serovars after plasmid acquisition. This finding suggests that some genetic apparatus may be involved in increased antimicrobial resistance in Salmonella serovars after the acquisition of primary resistance determinants.
Collapse
Affiliation(s)
- Viviane Amorim Ferreira
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1165, Denmark.
| | - Isabella C Campos
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Mariana Pavão Saraiva da Silva
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Valdinete P Benevides
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1165, Denmark.
| | - Adriana M Almeida
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Thais Alves Codognoto
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Camila de Fátima Nascimento
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Túlio Spina de Lima
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| | - Lucas B Rodrigues Alves
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1165, Denmark.
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction, and One Health, Sao Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
18
|
Kang X, An H, Wang B, Huang L, Huang C, Huang Y, Wang Z, He F, Li Y, Yue M. Integrated OMICs approach reveals energy metabolism pathway is vital for Salmonella Pullorum survival within the egg white. mSphere 2024; 9:e0036224. [PMID: 38860771 PMCID: PMC11288002 DOI: 10.1128/msphere.00362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Eggs, an important part of a healthy daily diet, can protect chicken embryo development due to the shell barrier and various antibacterial components within the egg white. Our previous study demonstrated that Salmonella Pullorum, highly adapted to chickens, can survive in the egg white and, therefore, be passed to newly hatched chicks. However, the survival strategy of Salmonella Pullorum in antibacterial conditions remains unknown. The overall transcripts in the egg white showed a large-scale shift compared to LB broth. The expression of common response genes and pathways, such as those involved in iron uptake, biotin biosynthesis, and virulence, was significantly changed, consistent with the other transovarial transmission serovar Enteritidis. Notably, membrane stress response, amino acid metabolism, and carbohydrate metabolism were specifically affected. Additional upregulated functionally relevant genes (JI728_13095, JI728_13100, JI728_17960, JI728_10085, JI728_15605, and nhaA) as mutants confirmed the susceptible phenotype. Furthermore, fim deletion resulted in an increased survival capacity in the egg white, consistent with the downregulated expression. The second-round RNA-Seq analysis of the Δfim mutant in the egg white revealed significantly upregulated genes compared with the wild type in the egg white responsible for energy metabolism located on the hyc and hyp operons regulated by FhlA, indicating the Δfim mutant cannot receive enough oxygen and switched to fermentative growth due to its inability to attach to the albumen surface. Together, this study provides a first estimate of the global transcriptional response of Salmonella Pullorum under antibacterial egg white and highlights the new potential role of fim deletion in optimizing energy metabolism pathways that may assist vertical transmission. IMPORTANCE Pullorum disease, causing serious embryo death and chick mortality, results in substantial economic losses worldwide due to transovarial transmission. Egg-borne outbreaks are frequently reported in many countries. The present study has filled the knowledge gap regarding how the specific chicken-adapted pathogen Salmonella Pullorum behaves within the challenging environment of egg white. The deletion of the fim fimbrial system can increase survival in the albumen, possibly by reprogramming metabolism-related gene products, which reveals a new adaptive strategy of pathogens. Moreover, the comparison, including previous research on Salmonella Enteritidis, capable of vertical transmission, aims to provide diversified data sets in the field and further help to implement reasonable and effective measures to improve both food safety and animal health.
Collapse
Affiliation(s)
- Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Hongli An
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Baikui Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Linlin Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghu Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yingying Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zining Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Fang He
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University,, Hangzhou, China
| |
Collapse
|
19
|
Zhu Z, Hu Z, Ojima S, Yu X, Sugiyama M, Ono HK, Hu DL. Critical Involvement of the Thioredoxin Reductase Gene ( trxB) in Salmonella Gallinarum-Induced Systemic Infection in Chickens. Microorganisms 2024; 12:1180. [PMID: 38930562 PMCID: PMC11205728 DOI: 10.3390/microorganisms12061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella serovar, but the role in SG-induced chicken systemic infection has yet to be determined. Here, we constructed a mutant SG strain lacking the trxB gene (trxB::Cm) and used chicken embryo inoculation and chicken oral infection to investigate the role of trxB gene in the pathogenicity of SG. Our results showed that trxB::Cm exhibited no apparent differences in colony morphology and growth conditions but exhibited reduced tolerance to H2O2 and increased resistance to bile acids. In the chicken embryo inoculation model, there was no significant difference in the pathogenicity of trxB::Cm and wild-type (WT) strains. In the chicken oral infection, the WT-infected group exhibited typical clinical symptoms of fowl typhoid, with complete mortality between days 6 and 9 post infection. In contrast, the trxB::Cm group showed a 100% survival rate, with no apparent clinical symptoms or pathological changes observed. The viable bacterial counts in the liver and spleen of the trxB::Cm-infected group were significantly reduced, accompanied by decreased expression of cytokines and chemokines (IL-1β, IL-6, IL-12, CXCLi1, TNF-α, and IFN-γ), which were significantly lower than those in the WT group. These results show that the pathogenicity of the trxB-deficient strain was significantly attenuated, indicating that the trxB gene is a crucial virulence factor in SG-induced systemic infection in chickens, suggesting that trxB may become a potentially effective target for controlling and preventing SG infection in chickens.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| | - Shinjiro Ojima
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Xiaoying Yu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| |
Collapse
|
20
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Hu Z, Ojima S, Zhu Z, Yu X, Sugiyama M, Haneda T, Okamura M, Ono HK, Hu DL. Salmonella pathogenicity island-14 is a critical virulence factor responsible for systemic infection in chickens caused by Salmonella gallinarum. Front Vet Sci 2024; 11:1401392. [PMID: 38846788 PMCID: PMC11153813 DOI: 10.3389/fvets.2024.1401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Salmonella enterica serovar Gallinarum (S. gallinarum) is an important host-specific pathogen that causes fowl typhoid, a severe systemic, septicemic, and fatal infection, in chickens. S. gallinarum causes high morbidity and mortality in chickens and poses a significant burden and economic losses to the poultry industry in many developing countries. However, the virulence factors and mechanisms of S. gallinarum-induced systemic infection in chickens remain poorly understood. In this study, we constructed a Salmonella pathogenicity island-14 (SPI-14) mutant strain (mSPI-14) of S. gallinarum and evaluated the pathogenicity of mSPI-14 in the chicken systemic infection model. The mSPI-14 exhibited the same level of bacterial growth and morphological characteristics but significantly reduced resistance to bile acids compared with the wild-type (WT) strain in vitro. The virulence of mSPI-14 was significantly attenuated in the chicken oral infection model in vivo. Chickens infected with WT showed typical clinical symptoms of fowl typhoid, with all birds succumbing to the infection within 6 to 9 days post-inoculation, and substantial increases in bacterial counts and significant pathological changes in the liver and spleen were observed. In contrast, all mSPI-14-infected chickens survived, the bacterial counts in the organs were significantly lower, and no significant pathological changes were observed in the liver and spleen. The expression of interleukin (IL)-1β, IL-12, CXCLi1, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the liver of mSPI-14-infected chickens were significantly lower than those in the WT-infected chickens. These results indicate that SPI-14 is a crucial virulence factor in systemic infection of chickens, and avirulent mSPI-14 could be used to develop a new attenuated live vaccine to prevent S. gallinarum infection in chickens.
Collapse
Affiliation(s)
- Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Shinjiro Ojima
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Xiaoying Yu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Masashi Okamura
- Section of Applied Veterinary Sciences, Division of Veterinary Sciences, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada, Japan
| |
Collapse
|
22
|
Andrews K, Landeryou T, Sicheritz-Pontén T, Nale JY. Diverse Prophage Elements of Salmonella enterica Serovars Show Potential Roles in Bacterial Pathogenicity. Cells 2024; 13:514. [PMID: 38534358 PMCID: PMC10969437 DOI: 10.3390/cells13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Nontyphoidal salmonellosis is an important foodborne and zoonotic infection that causes significant global public health concern. Diverse serovars are multidrug-resistant and encode several virulence indicators; however, little is known on the role prophages play in driving these traits. Here, we extracted prophages from seventy-five Salmonella genomes which represent the fifteen important serovars in the United Kingdom. We analyzed the intact prophages for the presence of virulence genes and established their genomic relationships. We identified 615 prophages from the Salmonella strains, from which 195 prophages are intact, 332 are incomplete, while 88 are questionable. The average prophage carriage was found to be 'extreme' in S. Heidelberg, S. Inverness, and S. Newport (10.2-11.6 prophages/strain), 'high' in S. Infantis, S. Stanley, S. Typhimurium, and S. Virchow (8.2-9.0 prophages/strain), 'moderate' in S. Agona, S. Braenderup, S. Bovismorbificans, S. Choleraesuis, S. Dublin, and S. Java (6.0-7.8 prophages/strain), and 'low' in S. Javiana and S. Enteritidis (5.8 prophages/strain). Cumulatively, 61 virulence genes (1500 gene copies) were detected from representative intact prophages and linked to Salmonella delivery/secretion system (42.62%), adherence (32.7%), magnesium uptake (3.88%), regulation (5%), stress/survival (1.6%), toxins (10%), and antivirulence (1.6%). Diverse clusters were formed among the intact prophages and with bacteriophages of other enterobacteria, suggesting different lineages and associations. Our work provides a strong body of data to support the contributions diverse prophages make to the pathogenicity of Salmonella, including thirteen previously unexplored serovars.
Collapse
Affiliation(s)
- Kirstie Andrews
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| | - Toby Landeryou
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark;
| | - Janet Yakubu Nale
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| |
Collapse
|
23
|
Lobertti CA, Gizzi FO, Magni C, Rial A, Chabalgoity JA, Yim L, Blancato VS, Asquith CRM, García Véscovi E. Enhancing colistin efficacy against Salmonella infections with a quinazoline-based dual therapeutic strategy. Sci Rep 2024; 14:5148. [PMID: 38429351 PMCID: PMC10907601 DOI: 10.1038/s41598-024-55793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Colistin remains one of the last-resort therapies for combating infections caused by multidrug-resistant (MDR) Enterobacterales, despite its adverse nephro- and neuro-toxic effects. This study elucidates the mechanism of action of a non-antibiotic 4-anilinoquinazoline-based compound that synergistically enhances the effectiveness of colistin against Salmonella enterica. The quinazoline sensitizes Salmonella by deactivating intrinsic, mutational, and transferable resistance mechanisms that enable Salmonella to counteract the antibiotic impact colistin, together with an induced disruption to the electrochemical balance of the bacterial membrane. The attenuation of colistin resistance via the combined treatment approach also proves efficacious against E. coli, Klebsiella, and Acinetobacter strains. The dual therapy reduces the mortality of Galleria mellonella larvae undergoing a systemic Salmonella infection when compared to individual drug treatments. Overall, our findings unveil the potential of the quinazoline-colistin combined therapy as an innovative strategy against MDR bacteria.
Collapse
Affiliation(s)
- Carlos A Lobertti
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina
| | - Fernán O Gizzi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina
| | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina
| | - Analía Rial
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Avda. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - José A Chabalgoity
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Avda. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Lucía Yim
- Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Avda. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Víctor S Blancato
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina
| | - Christopher R M Asquith
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Predio CCT-CONICET Rosario, S2000, Santa Fe, Rosario, Argentina.
| |
Collapse
|
24
|
Rodrigues Alves LB, Freitas Neto OCD, Saraiva MDMS, do Monte DFM, de Lima BN, Cabrera JM, Barbosa FDO, Benevides VP, de Lima TS, Campos IC, Rubio MDS, Nascimento CDF, Arantes LCRV, Alves VV, de Almeida AM, Olsen JE, Berchieri Junior A. Salmonella Gallinarum mgtC mutant shows a delayed fowl typhoid progression in chicken. Gene 2024; 892:147827. [PMID: 37748627 DOI: 10.1016/j.gene.2023.147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Salmonella Gallinarum (SG) provokes fowl typhoid, an infectious disease of acute clinical course that affects gallinaceous of any age and leads to high mortality rates. During the typhoid-like systemic infection of S. Typhimurium (STM) in mice, the bacterium expresses the mgtC gene, which is encoded in the Salmonella Pathogenecity Island - 3 (SPI-3). In this serovar, the function is linked to bacterial replication within macrophages, and its absence attenuates the pathogen. We hypothesized that deleting mgtC from SG genome would alter the microorganism pathogenicity in susceptible commercial poultry in a similar manner. Thus, the present study sought to elucidate the importance of mgtC on SG pathogenicity. For this, a mgtC-mutant lacking S. Gallinarum mutant was constructed (SG ΔmgtC). Its ability to replicate in medium that mimicries the mgtC-related intracellular environment of macrophages as well as in primary macrophages from chicken was evaluated. Moreover, the infection of susceptible chickens was performed to elucidate its pathogenicity and the elicited immune responses by measuring key interleukins by qRT-PCR and the population of macrophages and lymphocytes T CD4+ and CD8+ by means of immunohistochemistry. It was observed that mgtC was required for S. Gallinarum replication in acidified low-Mg2+ media and survival within macrophages. However, unlike its requirement for initial phase of STM infection in mice, lower bacterial counts were only observed at the late stage of macrophage infection without affecting the citotoxicity. Experiments showed that knocking-out the mgtC gene neither altered bacterial uptake by macrophages nor affects bacterial counts in liver and spleen and total chicken mortality. However, plotting a survival curve and analyzing the clinical-pathologic conditions, it was observed a slower progression of the disease in chickens infected by SG ΔmgtC compared to those challenged by the wild-type strain. Furthermore, the mRNA expression of IFN-γ and LITAF were similar between the infected chickens, but higher than in the uninfected group. The same was observed in macrophages and lymphocytes T CD4+ populations. On the other hand, the presence of lymphocytes T CD8+ was increased in the initial phase of the disease provoked by the wild-type strain over the mutant strain. We concluded that the role of mgtC in Fowl Typhoid in susceptible chickens differs from the role in typhoid-like infections in mammals. Thus, the deletion of mgtC gene from S. Gallinarum genome does not affect the overall pathogenicity, but slightly alters the pathogenesis.
Collapse
Affiliation(s)
- Lucas Bocchini Rodrigues Alves
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark.
| | - Oliveiro Caetano de Freitas Neto
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Mauro de Mesquita Souza Saraiva
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Daniel Farias Marinho do Monte
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Bruna Nestlehner de Lima
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Julia Memrava Cabrera
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Fernanda de Oliveira Barbosa
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Valdinete Pereira Benevides
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Túlio Spina de Lima
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Isabella Cardeal Campos
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Marcela da Silva Rubio
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Camila de Fatima Nascimento
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - Letícia Cury Rocha Veloso Arantes
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Victória Veiga Alves
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Maria de Almeida
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen (KU), Copenhagen, Denmark
| | - Angelo Berchieri Junior
- Veterinary Medicine Post-graduation Program (Animal Pathology), Avian Pathology Laboratory, Department of Pathology, Theriogenology, and One Health, School of Agricultural and Veterinary Sciences, Sao Paulo State University (FCAV/Unesp), Jaboticabal, São Paulo, Brazil.
| |
Collapse
|
25
|
Farhat M, Khayi S, Berrada J, Mouahid M, Ameur N, El-Adawy H, Fellahi S. Salmonella enterica Serovar Gallinarum Biovars Pullorum and Gallinarum in Poultry: Review of Pathogenesis, Antibiotic Resistance, Diagnosis and Control in the Genomic Era. Antibiotics (Basel) 2023; 13:23. [PMID: 38247582 PMCID: PMC10812584 DOI: 10.3390/antibiotics13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) has two distinct biovars, Pullorum and Gallinarum. They are bacterial pathogens that exhibit host specificity for poultry and aquatic birds, causing severe systemic diseases known as fowl typhoid (FT) and Pullorum disease (PD), respectively. The virulence mechanisms of biovars Gallinarum and Pullorum are multifactorial, involving a variety of genes and pathways that contribute to their pathogenicity. In addition, these serovars have developed resistance to various antimicrobial agents, leading to the emergence of multidrug-resistant strains. Due to their economic and public health significance, rapid and accurate diagnosis is crucial for effective control and prevention of these diseases. Conventional methods, such as bacterial culture and serological tests, have been used for screening and diagnosis. However, molecular-based methods are becoming increasingly important due to their rapidity, high sensitivity, and specificity, opening new horizons for the development of innovative approaches to control FT and PD. The aim of this review is to highlight the current state of knowledge on biovars Gallinarum and Pullorum, emphasizing the importance of continued research into their pathogenesis, drug resistance and diagnosis to better understand and control these pathogens in poultry farms.
Collapse
Affiliation(s)
- Mouad Farhat
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | - Slimane Khayi
- Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Avenue Ennasr, Rabat Principale, BP 415, Rabat 10090, Morocco;
| | - Jaouad Berrada
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| | | | - Najia Ameur
- Department of Food Microbiology and Hygiene, National Institute of Hygiene. Av. Ibn Batouta, 27, BP 769, Rabat 10000, Morocco;
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, BP 6202, Rabat 10000, Morocco; (M.F.); (J.B.)
| |
Collapse
|
26
|
Zhang D, Jiang Y, Dong Y, Fu L, Zhuang L, Wu K, Dou X, Xu B, Wang C, Gong J. siRNA targeting Atp5a1 gene encoding ATPase α, the ligand of Peg fimbriae, reduced Salmonella Enteritidis adhesion. Avian Pathol 2023; 52:412-419. [PMID: 37526573 DOI: 10.1080/03079457.2023.2243842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a zoonotic pathogen that can infect both humans and animals. Among the 13 types of fimbrial operons in S. Enteritidis, the highly conserved Peg fimbriae play a crucial role in the adhesion and invasion of S. Enteritidis into host cells but are not well studied. In this study, we identified the ATP synthase subunit alpha (ATPase α) as a ligand of Peg fimbriae using ligand blotting and mass spectrometry techniques. We confirmed the in vitro binding of ATPase α to the purified adhesion protein (PegD). Furthermore, we used siRNA to suppress the expression of ATPase α gene Atp5a1 in Leghorn male hepatoma (LMH) cells, which resulted in a significant reduction in the adhesion rate of S. Enteritidis to the cells (P < 0.05). The findings in this study provide insight into the mechanism of S. Enteritidis infection through Peg fimbriae and highlight the importance of ATPase α in the adhesion process.RESEARCH HIGHLIGHTS Ligand blotting was performed to screen the ligand of S. Enteritidis Peg fimbriae.Binding assay confirmed that ATPase α is the ligand of the Peg fimbriae.siRNA targeting ATPase α gene (Atp5a1) significantly reduced S. Enteritidis adhesion.
Collapse
Affiliation(s)
- Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Yi Jiang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Yongyi Dong
- Jiangsu Animal Disease Prevention and Control Center, Nanjing, People's Republic of China
| | - Lixia Fu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Linlin Zhuang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Kun Wu
- Jiangsu Animal Disease Prevention and Control Center, Nanjing, People's Republic of China
| | - Xinhong Dou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Bu Xu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| |
Collapse
|
27
|
Hoppe-Elsholz G, Piña-Iturbe A, Vallejos OP, Suazo ID, Sepúlveda-Alfaro J, Pereira-Sánchez P, Martínez-Balboa Y, Catalán EA, Reyes P, Scaff V, Bassi F, Campos-Gajardo S, Avilés A, Santiviago CA, Kalergis AM, Bueno SM. SEN1990 is a predicted winged helix-turn-helix protein involved in the pathogenicity of Salmonella enterica serovar Enteritidis and the expression of the gene oafB in the SPI-17. Front Microbiol 2023; 14:1236458. [PMID: 38029095 PMCID: PMC10655114 DOI: 10.3389/fmicb.2023.1236458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Excisable genomic islands (EGIs) are horizontally acquired genetic elements that harbor an array of genes with diverse functions. ROD21 is an EGI found integrated in the chromosome of Salmonella enterica serovar Enteritidis (Salmonella ser. Enteritidis). While this island is known to be involved in the capacity of Salmonella ser. Enteritidis to cross the epithelial barrier and colonize sterile organs, the role of most ROD21 genes remains unknown, and thus, the identification of their function is fundamental to understanding the impact of this EGI on bacterium pathogenicity. Therefore, in this study, we used a bioinformatical approach to evaluate the function of ROD21-encoded genes and delve into the characterization of SEN1990, a gene encoding a putative DNA-binding protein. We characterized the predicted structure of SEN1990, finding that this protein contains a three-stranded winged helix-turn-helix (wHTH) DNA-binding domain. Additionally, we identified homologs of SEN1990 among other members of the EARL EGIs. Furthermore, we deleted SEN1990 in Salmonella ser. Enteritidis, finding no differences in the replication or maintenance of the excised ROD21, contrary to what the previous Refseq annotation of the protein suggests. High-throughput RNA sequencing was carried out to evaluate the effect of the absence of SEN1990 on the bacterium's global transcription. We found a downregulated expression of oafB, an SPI-17-encoded acetyltransferase involved in O-antigen modification, which was restored when the deletion mutant was complemented ectopically. Additionally, we found that strains lacking SEN1990 had a reduced capacity to colonize sterile organs in mice. Our findings suggest that SEN1990 encodes a wHTH domain-containing protein that modulates the transcription of oafB from the SPI-17, implying a crosstalk between these pathogenicity islands and a possible new role of ROD21 in the pathogenesis of Salmonella ser. Enteritidis.
Collapse
Affiliation(s)
- Guillermo Hoppe-Elsholz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Piña-Iturbe
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D. Suazo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Sepúlveda-Alfaro
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Pereira-Sánchez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yohana Martínez-Balboa
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo A. Catalán
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Reyes
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Scaff
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Franco Bassi
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sofia Campos-Gajardo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Avilés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
28
|
Fei X, Schroll C, Huang K, Christensen JP, Christensen H, Lemire S, Kilstrup M, Thomsen LE, Jelsbak L, Olsen JE. The global transcriptomes of Salmonella enterica serovars Gallinarum, Dublin and Enteritidis in the avian host. Microb Pathog 2023; 182:106236. [PMID: 37419218 DOI: 10.1016/j.micpath.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Salmonella enterica serovar Gallinarum causes Fowl Typhoid in poultry, and it is host specific to avian species. The reasons why S. Gallinarum is restricted to avians, and at the same time predominately cause systemic infections in these hosts, are unknown. In the current study, we developed a surgical approach to study gene expression inside the peritoneal cavity of hens to shed light on this. Strains of the host specific S. Gallinarum, the cattle-adapted S. Dublin and the broad host range serovar, S. Enteritidis, were enclosed in semi-permeable tubes and surgically placed for 4 h in the peritoneal cavity of hens and for control in a minimal medium at 41.2 °C. Global gene-expression under these conditions was compared between serovars using tiled-micro arrays with probes representing the genome of S. Typhimurium, S. Dublin and S. Gallinarum. Among other genes, genes of SPI-13, SPI-14 and the macrophage survival gene mig-14 were specifically up-regulated in the host specific serovar, S. Gallinarum, and further studies into the role of these genes in host specific infection are highly indicated. Analysis of pathways and GO-terms, which were enriched in the host specific S. Gallinarum without being enriched in the two other serovars indicated that host specificity was characterized by a metabolic fine-tuning as well as unique expression of virulence associated pathways. The cattle adapted serovar S. Dublin differed from the two other serovars by a lack of up-regulation of genes encoded in the virulence associated pathogenicity island 2, and this may explain the inability of this serovar to cause disease in poultry.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China
| | - Casper Schroll
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kaisong Huang
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Zhuhai Center for Disease Control and Prevention, Zhuhai, China
| | - Jens P Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sebastien Lemire
- Department of Systems Biology, Technical University of Denmark, Denmark
| | - Mogens Kilstrup
- Department of Systems Biology, Technical University of Denmark, Denmark
| | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Science and Environment, Roskilde University, Denmark
| | - John E Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
29
|
Mikolajczyk-Martinez A, Ugorski M. Unraveling the role of type 1 fimbriae in Salmonella pathogenesis: insights from a comparative analysis of Salmonella Enteritidis and Salmonella Gallinarum. Poult Sci 2023; 102:102833. [PMID: 37356296 PMCID: PMC10404763 DOI: 10.1016/j.psj.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Significant differences in pathogenicity between Salmonella Enteritidis and Salmonella Gallinarum exist despite the fact that S. Gallinarum is a direct descendant of S. Enteritidis. It was hypothesized that such various properties may be in part the result of differences in structure and functions of type 1 fimbriae (T1Fs). In S. Enteritidis, T1Fs bind to oligomannosidic structures carried by host cell glycoproteins and are called mannose-sensitive T1Fs (MST1F). In S. Gallinarum, T1Fs lost ability to bind such carbohydrate chains, and were named mannose-resistant MRT1Fs (MRT1F). Therefore, the present study was undertaken to evaluate the role of MST1Fs and MRT1Fs in the adhesion, invasion, intracellular survival and cytotoxicity of S. Enteritidis and S. Gallinarum toward chicken intestinal CHIC8-E11cells and macrophage-like HD11 cells. Using mutant strains: S. Enteritidis fimH::kan and S. Gallinarum fimH::kan devoid of T1Fs and in vitro assays the following observations were made. MST1Fs have a significant impact on the chicken cell invasion by S. Enteritidis as MST1F-mediated adhesion facilitates direct and stable contact of bacteria with host cells, in contrast to MRT1Fs expressed by S. Gallinarum. MST1Fs as well as MRT1Fs did not affected intracellular viability of S. Enteritidis and S. Gallinarum. However, absolute numbers of intracellular viable wild-type S. Enteritidis were significantly higher than S. Enteritidis fimH::kan mutant and wild-type S. Gallinarum and S. Gallinarum fimH::kan mutant. These differences, reflecting the numbers of adherent and invading bacteria, underline the importance of MST1Fs in the pathogenicity of S. Enteritidis infections. The cytotoxicity of wild-type S. Enteritidis and its mutant devoid of MST1Fs to HD11 cells was essentially the same, despite the fact that the number of viable intracellular bacteria was significantly lower in the mutated strain. Using HD11 cells with similar number of intracellular wild-type S. Enteritidis and S. Enteritidis fimH::kan mutant, it was found that the lack of MST1Fs did not affect directly the cytotoxicity, suggesting that the increase in cytotoxicity of S. Enteritidis devoid of MST1Fs may be associated with crosstalk between T1Fs and other virulence factors.
Collapse
Affiliation(s)
- Agata Mikolajczyk-Martinez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
30
|
Esteves NC, Bigham DN, Scharf BE. Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi. PLoS Pathog 2023; 19:e1011537. [PMID: 37535496 PMCID: PMC10399903 DOI: 10.1371/journal.ppat.1011537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
The bacterial flagellum is a rotary motor organelle and important virulence factor that propels motile pathogenic bacteria, such as Salmonella enterica, through their surroundings. Bacteriophages, or phages, are viruses that solely infect bacteria. As such, phages have myriad applications in the healthcare field, including phage therapy against antibiotic-resistant bacterial pathogens. Bacteriophage χ (Chi) is a flagellum-dependent (flagellotropic) bacteriophage, which begins its infection cycle by attaching its long tail fiber to the S. enterica flagellar filament as its primary receptor. The interactions between phage and flagellum are poorly understood, as are the reasons that χ only kills certain Salmonella serotypes while others entirely evade phage infection. In this study, we used molecular cloning, targeted mutagenesis, heterologous flagellin expression, and phage-host interaction assays to determine which domains within the flagellar filament protein flagellin mediate this complex interaction. We identified the antigenic N- and C-terminal D2 domains as essential for phage χ binding, with the hypervariable central D3 domain playing a less crucial role. Here, we report that the primary structure of the Salmonella flagellin D2 domains is the major determinant of χ adhesion. The phage susceptibility of a strain is directly tied to these domains. We additionally uncovered important information about flagellar function. The central and most variable domain, D3, is not required for motility in S. Typhimurium 14028s, as it can be deleted or its sequence composition can be significantly altered with minimal impacts on motility. Further knowledge about the complex interactions between flagellotropic phage χ and its primary bacterial receptor may allow genetic engineering of its host range for use as targeted antimicrobial therapy against motile pathogens of the χ-host genera Salmonella, Escherichia, or Serratia.
Collapse
Affiliation(s)
- Nathaniel C. Esteves
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Danielle N. Bigham
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Birgit E. Scharf
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
31
|
Beylefeld A, Abolnik C. Salmonella gallinarum strains from outbreaks of fowl typhoid fever in Southern Africa closely related to SG9R vaccines. Front Vet Sci 2023; 10:1191497. [PMID: 37476827 PMCID: PMC10354334 DOI: 10.3389/fvets.2023.1191497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Salmonella enterica subspecies enterica serovar Gallinarum biovar Gallinarum (SG) is associated with fowl typhoid fever, and the attenuated rough strain SG9R is widely used as a vaccine in many regions. Reversion to virulence of vaccine strains was suspected as the cause during recent fowl typhoid fever outbreaks in poultry in South Africa and Eswatini. Methods To compare nine field isolates with global wild-type SG9 strains and the two commercial SG9R vaccines in use, Nobilis® SG9R and Cevac®-SG, we used whole-genome comparison with single-nucleotide polymorphism (SNP) detection. Results SNP phylogenic analysis showed that all the southern African field isolates were more closely related to the vaccine strains than wild-type SG9 strains. Furthermore, SNPs in the pyruvate dehydrogenase (aceE) and/or lipopolysaccharide 1,2-glucosyltransferase (rfaJ) genes, which are known markers of attenuation, were found in four of the field isolates along with intact spv, SPI-1, and SPI-2 gene clusters, providing conclusive evidence that these four isolates were originally vaccine strains that reverted to virulence. Five other field isolates lacked the SG9R attenuation markers, but variant analysis identified an SNP in the yihX gene, insertions in the ybjX and hydH genes, and deletions in the ftsK and sadA genes that were shared between the field isolates and vaccine strains but absent in wild-type SG9, indicating that these field isolates were also likely revertant vaccines. Discussion Overall, this study highlights different mechanisms of reversion of two commercial vaccines, where virulence caused by field isolates closely related to the Nobilis® SG9R vaccine was associated with the restoration of intact virulence gene clusters, and those derived from the Cevac®-SG vaccine were characterized by point mutations resulting in restored aceE and rfaJ genes. A possible new marker of attenuation was identified as a point mutation in the yihX gene, as well as four new candidate genes that could potentially be used to distinguish current vaccine strains from wild-type strains using PCR assays.
Collapse
|
32
|
Fu Y, M’ikanatha NM, Dudley EG. Whole-Genome Subtyping Reveals Population Structure and Host Adaptation of Salmonella Typhimurium from Wild Birds. J Clin Microbiol 2023; 61:e0184722. [PMID: 37249426 PMCID: PMC10281135 DOI: 10.1128/jcm.01847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Within-host evolution of bacterial pathogens can lead to host-associated variants of the same species or serovar. Identification and characterization of closely related variants from diverse host species are crucial to public health and host-pathogen adaptation research. However, the work remained largely underexplored at a strain level until the advent of whole-genome sequencing (WGS). Here, we performed WGS-based subtyping and analyses of Salmonella enterica serovar Typhimurium (n = 787) from different wild birds across 18 countries over a 75-year period. We revealed seven avian host-associated S. Typhimurium variants/lineages. These lineages emerged globally over short timescales and presented genetic features distinct from S. Typhimurium lineages circulating among humans and domestic animals. We further showed that, in terms of virulence, host adaptation of these variants was driven by genome degradation. Our results provide a snapshot of the population structure and genetic diversity of S. Typhimurium within avian hosts. We also demonstrate the value of WGS-based subtyping and analyses in unravelling closely related variants at the strain level.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
33
|
Fei X, Li Q, Jiao X, Olsen JE. Identification of Salmonella Pullorum Factors Affecting Immune Reaction in Macrophages from the Avian Host. Microbiol Spectr 2023; 11:e0078623. [PMID: 37191575 PMCID: PMC10269470 DOI: 10.1128/spectrum.00786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The host-specific Salmonella serovar S. Pullorum (SP) modulates the chicken immune response to a Th2-biased response associated with persistent infection. This is different from the Th1-biased immune response induced by the genetically close serovar, S. Enteritidis (SE). Based on core genome differences between SP and SE, we used three complementary bioinformatics approaches to identify SP genes, which may be important for stimulation of the immune response. Defined mutants were constructed in selected genes, and the infection potential and ability of mutants to stimulate cytokine production in avian derived HD11 macrophages were determined. Deletion of large genomic regions unique to SP did not change infection potential nor immune stimulation significantly. Mutants in genes with conserved single nucleotide polymorphisms (SNPs) between the two serovars in the region 100 bp upstream of the start codon (conserved upstream SNPs [CuSNPs]) such as sseE, osmB, tolQ, a putative immune antigen, and a putative persistent infection factor, exhibited differences in induction of inflammatory cytokines compared to wild-type SP, suggesting a possible role of these CuSNPs in immune regulation. Single nucleotide SP mutants correcting for the CuSNP difference were constructed in the upstream region of sifA and pipA. The SNP corrected pipA mutant expressed pipA at a higher level than the wild-type SP strain, and the mutant differentially caused upregulation of proinflammatory cytokines. It suggests that this CuSNP is important for the suppression of proinflammatory responses. In conclusion, this study has identified putative immune stimulating factors of relevance to the difference in infection dynamics between SP and SE in avian macrophages. IMPORTANCE Salmonella Pullorum is host specific to avian species, where it causes life-threatening infection in young birds. It is unknown why it is host restricted and causes systemic disease, rather than gastroenteritis normally seen with Salmonella. In the present study, we identified genes and single nucleotide polymorphisms (SNPs; relative to the broad-host-range type Salmonella Enteritidis), which affected survival and immune induction in macrophages from hens suggesting a role in development of the host specific infection. Further studies of such genes may enable understanding of which genetic factors determine the development of host specific infection by S. Pullorum. In this study, we developed an in silico approach to predict candidate genes and SNPs for development of the host-specific infection and the specific induction of immunity associated with this infection. This study flow can be used in similar studies in other clades of bacteria.
Collapse
Affiliation(s)
- Xiao Fei
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People’s Republic of China
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Qiuchun Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, People’s Republic of China
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
34
|
Pye HV, Thilliez G, Acton L, Kolenda R, Al-Khanaq H, Grove S, Kingsley RA. Strain and serovar variants of Salmonella enterica exhibit diverse tolerance to food chain-related stress. Food Microbiol 2023; 112:104237. [PMID: 36906307 DOI: 10.1016/j.fm.2023.104237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Non-Typhoidal Salmonella (NTS) continues to be a leading cause of foodborne illness worldwide. Food manufacturers implement hurdle technology by combining more than one approach to control food safety and quality, including preservatives such as organic acids, refrigeration, and heating. We assessed the variation in survival in stresses of genotypically diverse isolates of Salmonella enterica to identify genotypes with potential elevated risk to sub-optimal processing or cooking. Sub-lethal heat treatment, survival in desiccated conditions and growth in the presence of NaCl or organic acids were investigated. S. Gallinarum strain 287/91 was most sensitive to all stress conditions. While none of the strains replicated in a food matrix at 4 °C, S. Infantis strain S1326/28 retained the greatest viability, and six strains exhibited a significantly reduced viability. A S. Kedougou strain exhibited the greatest resistance to incubation at 60 °C in a food matrix that was significantly greater than S. Typhimurium U288, S Heidelberg, S. Kentucky, S. Schwarzengrund and S. Gallinarum strains. Two isolates of monophasic S. Typhimurium, S04698-09 and B54Col9 exhibited the greatest tolerance to desiccation that was significantly more than for the S. Kentucky and S. Typhimurium U288 strains. In general, the presence of 12 mM acetic acid or 14 mM citric acid resulted in a similar pattern of decreased growth in broth, but this was not observed for S. Enteritidis, and S. Typhimurium strains ST4/74 and U288 S01960-05. Acetic acid had a moderately greater effect on growth despite the lower concentration tested. A similar pattern of decreased growth was observed in the presence of 6% NaCl, with the notable exception that S. Typhimurium strain U288 S01960-05 exhibited enhanced growth in elevated NaCl concentrations.
Collapse
Affiliation(s)
- Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK
| | - Gaёtan Thilliez
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Luke Acton
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK
| | - Rafał Kolenda
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Stephen Grove
- Nestlé Development Centre, Cannon Road, Solon, OH, USA; McCain Foods, 1 Tower Lane, Oakbrook Terrace, Illinois, USA
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
35
|
Fong WY, Canals R, Predeus AV, Perez-Sepulveda B, Wenner N, Lacharme-Lora L, Feasey N, Wigley P, Hinton JCD. Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and global epidemic pathovariants of Salmonella enterica Enteritidis. Microb Genom 2023; 9:mgen001017. [PMID: 37219927 PMCID: PMC10272866 DOI: 10.1099/mgen.0.001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/17/2023] [Indexed: 05/24/2023] Open
Abstract
Salmonella enterica Enteritidis is the second most common serovar associated with invasive non-typhoidal Salmonella (iNTS) disease in sub-Saharan Africa. Previously, genomic and phylogenetic characterization of S . enterica Enteritidis isolates from the human bloodstream led to the discovery of the Central/Eastern African clade (CEAC) and West African clade, which were distinct from the gastroenteritis-associated global epidemic clade (GEC). The African S . enterica Enteritidis clades have unique genetic signatures that include genomic degradation, novel prophage repertoires and multi-drug resistance, but the molecular basis for the enhanced propensity of African S . enterica Enteritidis to cause bloodstream infection is poorly understood. We used transposon insertion sequencing (TIS) to identify the genetic determinants of the GEC representative strain P125109 and the CEAC representative strain D7795 for growth in three in vitro conditions (LB or minimal NonSPI2 and InSPI2 growth media), and for survival and replication in RAW 264.7 murine macrophages. We identified 207 in vitro -required genes that were common to both S . enterica Enteritidis strains and also required by S . enterica Typhimurium, S . enterica Typhi and Escherichia coli , and 63 genes that were only required by individual S . enterica Enteritidis strains. Similar types of genes were required by both P125109 and D7795 for optimal growth in particular media. Screening the transposon libraries during macrophage infection identified 177 P125109 and 201 D7795 genes that contribute to bacterial survival and replication in mammalian cells. The majority of these genes have proven roles in Salmonella virulence. Our analysis uncovered candidate strain-specific macrophage fitness genes that could encode novel Salmonella virulence factors.
Collapse
Affiliation(s)
- Wai Yee Fong
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, USA
| | - Rocío Canals
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: GSK Vaccines Institute for Global Health S.R.L., Siena, Italy
| | - Alexander V. Predeus
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Wellcome Trust Sanger Institute, Cambridge, UK
| | - Blanca Perez-Sepulveda
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicolas Wenner
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Biozentrum, University of Basel, Basel, Switzerland
| | - Lizeth Lacharme-Lora
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicholas Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Paul Wigley
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- Present address: Bristol Veterinary School,University of Bristol, Langford Campus, UK
| | - Jay C. D. Hinton
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
36
|
Bayliss SC, Locke RK, Jenkins C, Chattaway MA, Dallman TJ, Cowley LA. Rapid geographical source attribution of Salmonella enterica serovar Enteritidis genomes using hierarchical machine learning. eLife 2023; 12:e84167. [PMID: 37042517 PMCID: PMC10147375 DOI: 10.7554/elife.84167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the most frequent causes of Salmonellosis globally and is commonly transmitted from animals to humans by the consumption of contaminated foodstuffs. In the UK and many other countries in the Global North, a significant proportion of cases are caused by the consumption of imported food products or contracted during foreign travel, therefore, making the rapid identification of the geographical source of new infections a requirement for robust public health outbreak investigations. Herein, we detail the development and application of a hierarchical machine learning model to rapidly identify and trace the geographical source of S. Enteritidis infections from whole genome sequencing data. 2313 S. Enteritidis genomes, collected by the UKHSA between 2014-2019, were used to train a 'local classifier per node' hierarchical classifier to attribute isolates to four continents, 11 sub-regions, and 38 countries (53 classes). The highest classification accuracy was achieved at the continental level followed by the sub-regional and country levels (macro F1: 0.954, 0.718, 0.661, respectively). A number of countries commonly visited by UK travelers were predicted with high accuracy (hF1: >0.9). Longitudinal analysis and validation with publicly accessible international samples indicated that predictions were robust to prospective external datasets. The hierarchical machine learning framework provided granular geographical source prediction directly from sequencing reads in <4 min per sample, facilitating rapid outbreak resolution and real-time genomic epidemiology. The results suggest additional application to a broader range of pathogens and other geographically structured problems, such as antimicrobial resistance prediction, is warranted.
Collapse
Affiliation(s)
- Sion C Bayliss
- Bristol Veterinary School, University of BristolBristolUnited Kingdom
| | - Rebecca K Locke
- Milner Centre for Evolution, Life Sciences Department, University of BathBathUnited Kingdom
- Genomic Laboratory Hub (GLH), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
| | - Claire Jenkins
- Gastrointestinal Reference Services, UK Health Security AgencyLondonUnited Kingdom
| | - Marie Anne Chattaway
- Gastrointestinal Reference Services, UK Health Security AgencyLondonUnited Kingdom
| | - Timothy J Dallman
- Institute for Risk Assessment Sciences, Utrecht UniversityUtrechtNetherlands
| | - Lauren A Cowley
- Milner Centre for Evolution, Life Sciences Department, University of BathBathUnited Kingdom
| |
Collapse
|
37
|
Chacón RD, Ramírez M, Rodríguez-Cueva CL, Sánchez C, Quispe-Rojas WU, Astolfi-Ferreira CS, Piantino Ferreira AJ. Genomic Characterization and Genetic Profiles of Salmonella Gallinarum Strains Isolated from Layers with Fowl Typhoid in Colombia. Genes (Basel) 2023; 14:genes14040823. [PMID: 37107581 PMCID: PMC10138188 DOI: 10.3390/genes14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Salmonella Gallinarum (SG) is the causative agent of fowl typhoid (FT), a disease that is harmful to the poultry industry. Despite sanitation and prophylactic measures, this pathogen is associated with frequent disease outbreaks in developing countries, causing high morbidity and mortality. We characterized the complete genome sequence of Colombian SG strains and then performed a comparative genome analysis with other SG strains found in different regions worldwide. Eight field strains of SG plus a 9R-derived vaccine were subjected to whole-genome sequencing (WGS) and bioinformatics analysis, and the results were used for subsequent molecular typing; virulome, resistome, and mobilome characterization; and a comparative genome study. We identified 26 chromosome-located resistance genes that mostly encode efflux pumps, and point mutations were found in gyrase genes (gyrA and gyrB), with the gyrB mutation S464T frequently found in the Colombian strains. Moreover, we detected 135 virulence genes, mainly in 15 different Salmonella pathogenicity islands (SPIs). We generated an SPI profile for SG, including C63PI, CS54, ssaD, SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-9, SPI-10, SPI-11, SPI-12, SPI-13, and SPI-14. Regarding mobile genetic elements, we found the plasmids Col(pHAD28) and IncFII(S) in most of the strains and 13 different prophage sequences, indicating a frequently obtained profile that included the complete phage Gifsy_2 and incomplete phage sequences resembling Escher_500465_2, Shigel_SfIV, Entero_mEp237, and Salmon_SJ46. This study presents, for the first time, the genomic content of Colombian SG strains and a profile of the genetic elements frequently found in SG, which can be further studied to clarify the pathogenicity and evolutionary characteristics of this serotype.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
- Inter-Units Program in Biotechnology, University of São Paulo, São Paulo 05508-900, Brazil
| | - Manuel Ramírez
- Unidad de Bioinformática, Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Bellavista 07006, Peru
| | - Carmen L Rodríguez-Cueva
- Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Christian Sánchez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Wilma Ursula Quispe-Rojas
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Claudete S Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - Antonio J Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
38
|
Wales A, Lawes J. JMM Profile: Salmonella enterica serovar Gallinarum, biovars Pullorum and Gallinarum. J Med Microbiol 2023; 72. [PMID: 36753431 DOI: 10.1099/jmm.0.001653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Salmonella
serovar Gallinarum has two distinct biovars, Pullorum and Gallinarum. They are host-adapted avian pathogens that infect a number of wild and domesticated species but they pose a particular threat to farmed and backyard chickens and turkeys. Both biovars cause invasive and septicaemic disease, often resulting in high mortality. Pullorum is transmitted in eggs and typically affects birds soon after hatch. Gallinarum may cause disease in any age of bird, which often progresses through mature flocks. The establishment of clean breeding stock has resulted in freedom from the pathogens in many countries although even in these territories sporadic incursions still occur.
Collapse
Affiliation(s)
- Andrew Wales
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| | - Joanna Lawes
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
39
|
Salmonella in Poultry and Other Birds. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
40
|
Multiplex PCR Assay for Clade Typing of Salmonella enterica Serovar Enteritidis. Microbiol Spectr 2022; 10:e0318222. [PMID: 36409092 PMCID: PMC9769638 DOI: 10.1128/spectrum.03182-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the most commonly reported serovars of nontyphoidal Salmonella causing human disease and is responsible for both gastroenteritis and invasive nontyphoidal Salmonella (iNTS) disease worldwide. Whole-genome sequence (WGS) comparison of Salmonella Enteritidis isolates from across the world has identified three distinct clades, global epidemic, Central/East African, and West African, all of which have been implicated in epidemics: the global epidemic clade was linked to poultry-associated gastroenteritis, while the two African clades were related to iNTS disease. However, the distribution and epidemiology of these clades across Africa are poorly understood because identification of these clades currently requires whole-genome sequencing capacity. Here, we report a sensitive, time- and cost-effective real-time PCR assay capable of differentiating between the Salmonella Enteritidis clades to facilitate surveillance and to inform public health responses. The assay described here is limited to previously confirmed S. Enteritidis isolates. IMPORTANCE Challenges in the diagnosis and treatment of invasive Salmonella Enteritidis bloodstream infections in sub-Saharan Africa are responsible for a case fatality rate of approximately 15%. It is important to identify distinct clades of S. Enteritidis in diagnostic laboratories in the African setting to determine the different health outcomes associated with particular outbreaks. Here, we describe the development of a high-quality molecular classification assay for clade typing of S. Enteritidis that is ideal for use in public health laboratories in resource-limited settings.
Collapse
|
41
|
Cohn AR, Orsi RH, Carroll LM, Liao J, Wiedmann M, Cheng RA. Salmonella enterica serovar Cerro displays a phylogenetic structure and genomic features consistent with virulence attenuation and adaptation to cattle. Front Microbiol 2022; 13:1005215. [PMID: 36532462 PMCID: PMC9748477 DOI: 10.3389/fmicb.2022.1005215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
Salmonella enterica subsp. enterica (S.) serovar Cerro is rarely isolated from human clinical cases of salmonellosis but represents the most common serovar isolated from cattle without clinical signs of illness in the United States. In this study, using a large, diverse set of 316 isolates, we utilized genomic methods to further elucidate the evolutionary history of S. Cerro and to identify genomic features associated with its apparent virulence attenuation in humans. Phylogenetic analyses showed that within this polyphyletic serovar, 98.4% of isolates (311/316) represent a monophyletic clade within section Typhi and the remaining 1.6% of isolates (5/316) form a monophyletic clade within subspecies enterica Clade A1. Of the section Typhi S. Cerro isolates, 93.2% of isolates (290/311) clustered into a large clonal clade comprised of predominantly sequence type (ST) 367 cattle and environmental isolates, while the remaining 6.8% of isolates (21/311), primarily from human clinical sources, clustered outside of this clonal clade. A tip-dated phylogeny of S. Cerro ST367 identified two major clades (I and II), one of which overwhelmingly consisted of cattle isolates that share a most recent common ancestor that existed circa 1975. Gene presence/absence and rarefaction curve analyses suggested that the pangenome of section Typhi S. Cerro is open, potentially reflecting the gain/loss of prophage; human isolates contained the most open pangenome, while cattle isolates had the least open pangenome. Hypothetically disrupted coding sequences (HDCs) displayed clade-specific losses of intact speC and sopA virulence genes within the large clonal S. Cerro clade, while loss of intact vgrG, araH, and vapC occurred in all section Typhi S. Cerro isolates. Further phenotypic analysis suggested that the presence of a premature stop codon in speC does not abolish ornithine decarboxylase activity in S. Cerro, likely due to the activity of the second ornithine decarboxylase encoded by speF, which remained intact in all isolates. Overall, our study identifies specific genomic features associated with S. Cerro's infrequent isolation from humans and its apparent adaptation to cattle, which has broader implications for informing our understanding of the evolutionary events facilitating host adaptation in Salmonella.
Collapse
Affiliation(s)
- Alexa R. Cohn
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Renato H. Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M. Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A. Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
42
|
Kong X, Chen J, Yang Y, Li M, Wang J, Jia Q, Wang Y, Yuan Q, Miao Y, Zhao P, You Y, Zhao X, Pei X, Zuo H, Meng J. Phenotypic and genotypic characterization of
salmonella
Enteritidis isolated from two consecutive
Food‐Poisoning
outbreaks in Sichuan, China. J Food Saf 2022. [DOI: 10.1111/jfs.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ximei Kong
- Chengdu Center for Disease Control and Prevention Chengdu China
| | - Jingxian Chen
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu China
| | - Yang Yang
- Chengdu Center for Disease Control and Prevention Chengdu China
| | - Ming Li
- Chengdu Center for Disease Control and Prevention Chengdu China
| | - Jian Wang
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu China
| | - Qu Jia
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu China
| | - Yao Wang
- Chengdu Center for Disease Control and Prevention Chengdu China
| | - Qiwu Yuan
- Chengdu Center for Disease Control and Prevention Chengdu China
| | - Yanfang Miao
- Chengdu Center for Disease Control and Prevention Chengdu China
| | - Pinnan Zhao
- Chengdu Center for Disease Control and Prevention Chengdu China
| | - Yiping You
- Chengdu Center for Disease Control and Prevention Chengdu China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu China
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province Chengdu China
| | - Jiantong Meng
- Chengdu Center for Disease Control and Prevention Chengdu China
| |
Collapse
|
43
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
44
|
Vidovic S, Paturi G, Gupta S, Fletcher GC. Lifestyle of Listeria monocytogenes and food safety: Emerging listericidal technologies in the food industry. Crit Rev Food Sci Nutr 2022; 64:1817-1835. [PMID: 36062812 DOI: 10.1080/10408398.2022.2119205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Listeria monocytogenes, a causative agent of listeriosis, is a major foodborne pathogen. Among pathogens, L. monocytogenes stands out for its unique ecological and physiological characteristics. This distinct lifestyle of L. monocytogenes has a significant impact on food safety and public health, mainly through the ability of this pathogen to multiply at refrigeration temperature and to persist in the food processing environment. Due to a combination of these characteristics and emerging trends in consumer preference for ready-to-eat and minimally processed food, there is a need to develop effective and sustainable approaches to control contamination of food products with L. monocytogenes. Implementation of an efficient and reliable control strategy for L. monocytogenes must first address the problem of cross-contamination. Besides the preventive control strategies, cross-contamination may be addressed with the introduction of emerging post packaging non-thermal or thermal hurdles that can ensure delivery of a listericidal step in a packed product without interfering with the organoleptic characteristics of a food product. This review aims to present the most relevant findings underlying the distinct lifestyle of L. monocytogenes and its impact on food safety. We also discuss emerging food decontamination technologies that can be used to better control L. monocytogenes.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Gunaranjan Paturi
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sravani Gupta
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Graham C Fletcher
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
45
|
Subtyping Evaluation of Salmonella Enteritidis Using Single Nucleotide Polymorphism and Core Genome Multilocus Sequence Typing with Nanopore Reads. Appl Environ Microbiol 2022; 88:e0078522. [PMID: 35867567 PMCID: PMC9361833 DOI: 10.1128/aem.00785-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Whole-genome sequencing (WGS) for public health surveillance and epidemiological investigation of foodborne pathogens predominantly relies on sequencing platforms that generate short reads. Continuous improvement of long-read nanopore sequencing, such as Oxford nanopore technologies (ONT), presents a potential for leveraging multiple advantages of the technology in public health and food industry settings, including rapid turnaround and onsite applicability in addition to superior read length. Using an established cohort of Salmonella Enteritidis isolates for subtyping evaluation, we assessed the technical readiness of nanopore long read sequencing for single nucleotide polymorphism (SNP) analysis and core-genome multilocus sequence typing (cgMLST) of a major foodborne pathogen. By multiplexing three isolates per flow cell, we generated sufficient sequencing depths in <7 h of sequencing for robust subtyping. SNP calls by ONT and Illumina reads were highly concordant despite homopolymer errors in ONT reads (R9.4.1 chemistry). In silico correction of such errors allowed accurate allelic calling for cgMLST and allelic difference measurements to facilitate heuristic detection of outbreak isolates. IMPORTANCE Evaluation, standardization, and implementation of the ONT approach to WGS-based, strain-level subtyping is challenging, in part due to its relatively high base-calling error rates and frequent iterations of sequencing chemistry and bioinformatic analytics. Our study established a baseline for the continuously evolving nanopore technology as a viable solution to high-quality subtyping of Salmonella, delivering comparable subtyping performance when used standalone or together with short-read platforms. This study paves the way for evaluating and optimizing the logistics of implementing the ONT approach for foodborne pathogen surveillance in specific settings.
Collapse
|
46
|
Wellawa DH, Lam PKS, White AP, Allan B, Köster W. Characterization of colonization kinetics and virulence potential of Salmonella Enteritidis in chickens by photonic detection. Front Vet Sci 2022; 9:948448. [PMID: 35982923 PMCID: PMC9378992 DOI: 10.3389/fvets.2022.948448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The light emitting module lux operon (luxCDABE) of Photorhabdus luminescens can be integrated into a “dark” bacterium for expression under a suitable promoter. The technique has been used to monitor kinetics of infection, e.g., by studying gene expression in Salmonella using mouse models in vivo and ex vivo. Here, we applied the bioluminescence imaging (BLI) technique to track Salmonella Enteritidis (SEn) strains carrying the lux operon expressed under a constitutive promoter sequence (sigma 70) in chicken after oral challenge. Detectable photon signals were localized in the crop, small intestine, cecum, and yolk sac in orally gavaged birds. The level of colonization was determined by quantification of signal intensity and SEn prevalence in the cecum and yolk sac. Furthermore, an isogenic SEn mutant strain tagged with the lux operon allowed for us to assess virulence determinants regarding their role in colonization of the cecum and yolk sac. Interestingly, mutations of SPI-1(Salmonella Pathogenicity Island 1) and fur (ferric uptake regulator) showed significantly decreased colonization in yolk sac that was correlated with the BLI data. A similar trend was detected in a ΔtonB strain by analyzing enrichment culture data. The inherently low quantum yield, light scattering, and absorption by tissues did not facilitate detection of signals from live birds. However, the detection limit of lux operon has the potential to be improved by resonance energy transfer to a secondary molecule. As a proof-of-concept, we were able to show that sensitization of a fluorescent-bound molecule known as the lumazine protein (LumP) improved the limit of detection to a certain extent.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Po-King S. Lam
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Wolfgang Köster
| |
Collapse
|
47
|
Liu Z, Yu Y, Fotina T, Petrov R, Klishchova Z, Fotin A, Ma J. Multiplex PCR assay based on the citE2 gene and intergenic sequence for the rapid detection of Salmonella Pullorum in chickens. Poult Sci 2022; 101:101981. [PMID: 35797781 PMCID: PMC9264022 DOI: 10.1016/j.psj.2022.101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/31/2021] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
Salmonella is one of the most common Gram-negative pathogens and seriously threatens chicken farms and food safety. This study aimed to establish a multiplex polymerase chain reaction (PCR) approach for the identification of different Salmonella enterica subsp. enterica. The citE2 gene and interval sequence of SPS4_00301–SPS4_00311 existed in all S. enterica subsp. enterica serovars by genomic comparison. By contrast, a 76 bp deletion in citE2 was found only in Salmonella Pullorum. Two pairs of special primers designed from citE2 and interval sequence were used to establish the multiplex PCR system. The optimized multiplex PCR system could distinguish Salmonella Pullorum and non-Salmonella Pullorum. The sensitivity of the optimized multiplex PCR system could be as low as 6.25 pg/μL and 104 colony-forming units (CFU)/mL for genomic DNA and Salmonella Pullorum cells, respectively. The developed multiplex PCR assay distinguished Salmonella Pullorum from 33 different Salmonella enterica subsp. enterica serotypes and 13 non-target species. The detection of egg samples artificially contaminated with Salmonella Pullorum, Salmonella Enteritidis, and naturally contaminated 69 anal swab samples showed that results were consistent with the culture method. These features indicated that the developed multiplex PCR system had high sensitivity and specificity and could be used for the accurate detection of Salmonella Pullorum in clinical samples.
Collapse
|
48
|
Maguire M, Khan AS, Adesiyun AA, Georges K, Gonzalez-Escalona N. Genomic Comparison of Eight Closed Genomes of Multidrug-Resistant Salmonella enterica Strains Isolated From Broiler Farms and Processing Plants in Trinidad and Tobago. Front Microbiol 2022; 13:863104. [PMID: 35620095 PMCID: PMC9127609 DOI: 10.3389/fmicb.2022.863104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica is an important foodborne pathogen worldwide. We used long and short-read sequencing to close genomes of eight multidrug-resistant (MDR) S. enterica strains, belonging to serovars Infantis (2), Albany, Oranienburg, I 4,[5],12:i:-, Javiana, Schwarzengrund, and Kentucky from broiler chicken farms and processing plants in Trinidad and Tobago. They also belonged to seven different sequence types (STs- 32, 292, 1510, 19, 24, 152, and 96). Among the strains, seven had demonstrated multi-drug resistance with the presence of at least three AMR genes, whereas three isolates contained the quinolone resistance gene qnr B19 in plasmids (CFSAN103840, CFSAN103854, and CFSAN103872). The extended-spectrum β-lactamase genes bla CTX-M-65 (CFSAN103796) and bla TEM-1 (CFSAN103852) were detected in this study. The genomes closed in this study will be useful for future source tracking and outbreak investigations in Trinidad and Tobago and worldwide.
Collapse
Affiliation(s)
- Meghan Maguire
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Anisa S Khan
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Abiodun A Adesiyun
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Karla Georges
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Narjol Gonzalez-Escalona
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
49
|
Feng Y, Wang Z, Chien KY, Chen HL, Liang YH, Hua X, Chiu CH. "Pseudo-pseudogenes" in bacterial genomes: Proteogenomics reveals a wide but low protein expression of pseudogenes in Salmonella enterica. Nucleic Acids Res 2022; 50:5158-5170. [PMID: 35489061 PMCID: PMC9122581 DOI: 10.1093/nar/gkac302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudogenes (genes disrupted by frameshift or in-frame stop codons) are ubiquitously present in the bacterial genome and considered as nonfunctional fossil. Here, we used RNA-seq and mass-spectrometry technologies to measure the transcriptomes and proteomes of Salmonella enterica serovars Paratyphi A and Typhi. All pseudogenes’ mRNA sequences remained disrupted, and were present at comparable levels to their intact homologs. At the protein level, however, 101 out of 161 pseudogenes suggested successful translation, with their low expression regardless of growth conditions, genetic background and pseudogenization causes. The majority of frameshifting detected was compensatory for -1 frameshift mutations. Readthrough of in-frame stop codons primarily involved UAG; and cytosine was the most frequent base adjacent to the codon. Using a fluorescence reporter system, fifteen pseudogenes were confirmed to express successfully in vivo in Escherichia coli. Expression of the intact copy of the fifteen pseudogenes in S. Typhi affected bacterial pathogenesis as revealed in human macrophage and epithelial cell infection models. The above findings suggest the need to revisit the nonstandard translation mechanism as well as the biological role of pseudogenes in the bacterial genome.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zeyu Wang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Republic of China.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Republic of China.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Republic of China
| |
Collapse
|
50
|
Distinct Potentially Adaptive Accumulation of Truncation Mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Microbiol Spectr 2022; 10:e0196921. [PMID: 35467366 PMCID: PMC9241588 DOI: 10.1128/spectrum.01969-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene inactivation through the accumulation of truncation (or premature stop codon) mutations is a common mode of evolution in bacteria. It is frequently believed to result from reductive evolutionary processes allowing purging of superfluous traits. However, several works have demonstrated that, similar to the occurrences of inactivating nonsynonymous (i.e., amino acid replacement) mutations under positive selection pressures, truncation mutations can also be adaptive where specific traits deleterious in particular environmental conditions need to be inactivated for survival. Here, we performed a comparative analysis of genome-wide accumulation of truncation mutations in Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A. Considering the known convergent evolutionary trajectories in these two serovars, we expected a strong overlap of truncated genes in S. Typhi and S. Paratyphi A, emerging through either reductive or adaptive dynamics. However, we detected a distinct set of core truncated genes encoding different overrepresented functional clusters in each serovar. In 54% and 28% truncated genes in S. Typhi and S. Paratyphi A, respectively, inactivating mutations were acquired by only different subsets of isolates, instead of all isolates analyzed for that serovar. Importantly, 62% truncated genes (P < 0.001) in S. Typhi and S. Paratyphi A were also targeted by convergent amino acid mutations in different serovars, suggesting those genes to be under selection pressures. Our findings indicate significant presence of potentially adaptive truncation mutations in conjunction with the ones emerging due to reductive evolution. Further experimental and large-scale bioinformatic studies are necessary to better explore the impact of such adaptive footprints of truncation mutations in the evolution of bacterial virulence. IMPORTANCE Detecting the adaptive mutations leading to gene inactivation or loss of function is crucial for understanding their contribution in the evolution of bacterial virulence and antibiotic resistance. Such inactivating mutations, apart from being of nonsynonymous (i.e., amino acid replacement) nature, can also be truncation mutations, abruptly trimming the length of encoded proteins. Importantly, the notion of reductive evolutionary dynamics is primarily accepted toward the accumulation of truncation mutations. However, our case study on S. Typhi and S. Paratyphi A, two human-restricted systemically invasive pathogens exerting similar clinical manifestations, indicated that a significant proportion of truncation mutations emerge from positive selection pressures. The candidate genes from our study will enable directed functional assays for deciphering the adaptive role of truncation mutations in S. Typhi and S. Paratyphi A pathogenesis. Also, our genome-level analytical approach will pave the way to understand the contribution of truncation mutations in the adaptive evolution of other bacterial pathogens.
Collapse
|