1
|
Li H, Yang L, Yang Q, Liang Z, Su W, Yu L. Integration of osimertinib-targeted EGFR gene-associated differential gene expression in constructing a prognostic model for lung adenocarcinoma. Funct Integr Genomics 2024; 24:226. [PMID: 39661202 PMCID: PMC11634928 DOI: 10.1007/s10142-024-01499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the deadliest cancers. Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-targeted therapy is an important approach for treating LUAD. However, the development of acquired resistance poses a serious clinical challenge. Our objective was to explore the differentially expressed genes (DEGs) associated with EGFR and detect biomarkers for diagnosing and treating osimertinib resistance in LUAD patients. LUAD datasets were downloaded from public databases. Differential expression analysis was performed to screen DEGs, and prognostic modules were constructed by Cox regression. Enrichment analysis, gene regulatory network analysis and immune microenvironment analysis were employed to explore the underlying mechanisms in LUAD. Finally, the expression of prognosis module genes (PMGs) was validated in 8 LUAD tissue specimens and 5 cell lines by qRT-PCR. In total, 13 differential module genes (BIRC3, CCT6A, CPLX2, GLCCI1, GSTA1, HLA-DQB2, ID1, KCTD12, MUC15, NOTUM, NT5E, TCIM, and TM4SF4) were screened for the construction of a prognostic module. Notably, CCT6A and KCTD12 demonstrated excellent accuracy in the diagnosis of LUAD. Immune dysregulation and BIRC3, HLA-DQB2, KCTD12, and NT5E expression were significantly associated with invasive immune cells in LUAD patients. The expression level of CCT6A was highest in PC9-OR and H1975-OR cells, while the expression level of KCTD12 was highest in paracancerous tissue and HBE cells. The constructed prognostic model showed promise in predicting the survival of LUAD patients. Notably, KCTD12 and CCT6A might be candidate biomarkers for improving diagnostic performance and guiding individualized therapy for EGFR-TKI-resistant LUAD patients.
Collapse
Affiliation(s)
- Haiwen Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, P.R. China
- Department of Head and Neck Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, P.R. China
| | - Li Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, P.R. China
- Department of Digestive Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, P.R. China
| | - Quan Yang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, Guangdong Province, 524000, P.R. China
| | - Zhu Liang
- Department of Cardiovascular and Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, P.R. China
| | - Wenmei Su
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, P.R. China.
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, 57 South Renmin Road, Zhanjiang, Guangdong Province, 524000, P.R. China.
| | - Lili Yu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, P.R. China.
- The State Key Laboratory for Quality Research in Chinese Medicines of the Macau University of Science and Technology, Macau, 999078, P.R. China.
| |
Collapse
|
2
|
Li H, Luo F, Sun X, Liao C, Wang G, Han Y, Li L, Xu C, Wang W, Cai S, Li G, Wu D. A differentially-methylated-region signature predicts the recurrence risk for patients with early stage lung adenocarcinoma. Aging (Albany NY) 2024; 16:13323-13339. [PMID: 39560475 PMCID: PMC11719112 DOI: 10.18632/aging.206139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Predicting prognosis in lung cancer patients is important in establishing future treatment and monitoring plans. Lung adenocarcinoma (LUAD) is the most common and aggressive type of lung cancer with dismal prognosis and prognostic stratification would help to guide treatment. Aberrant DNA methylation in tumors occurs earlier than clinical variations, and keeps accumulating as cancer progresses. Preliminary studies have given us some clues that DNA methylation might serve as a promising biomarker for prognosis prediction. Herein, we aimed to study the potential utility of DNA methylation pattern in predicting the recurrence risk of early stage resectable LUAD and to develop a risk-modeling signature based on differentially methylated regions (DMRs). This study consisted of three cohorts of 244 patients with stage I-IIIA LUAD, including marker discovery cohort (n = 39), prognostic model training cohort (n = 117) and validation cohort (n = 80). 468 DMRs between LUAD tumor and adjacent tissues were screened out in the marker discovery cohort (adjusted P < 0.05), and a prognostic signature was developed based on 15 DMRs significantly related to disease-free survival in early stage LUAD patients. The DMR signature showed commendable performance in predicting the recurrence risk of LUAD patients both in model training cohort (P < 0.001; HR = 4.32, 95% CI = 2.39-7.80) and model validation cohort (P = 0.009; HR = 9.08, 95% CI = 1.20-68.80), which might be of great utility both for understanding the molecular basis of LUAD relapse, providing risk stratification of patients, and establishing future monitoring plans.
Collapse
Affiliation(s)
- Heng Li
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, P.R. China
| | - Fuchao Luo
- Chongqing University Fuling Hospital, Chongqing, P.R. China
| | | | | | | | | | - Leo Li
- Burning Rock Biotech, Guangzhou, P.R. China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Wenxian Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, P.R. China
| | | | - Gao Li
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, P.R. China
| | - Di Wu
- The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People’s Hospital), Shenzhen, P.R. China
| |
Collapse
|
3
|
Liang P, Peng M, Tao J, Wang B, Wei J, Lin L, Cheng B, Xiong S, Li J, Li C, Yu Z, Li C, Wang J, Li H, Chen Z, Fan J, Liang W, He J. Development of a genome atlas for discriminating benign, preinvasive, and invasive lung nodules. MedComm (Beijing) 2024; 5:e644. [PMID: 39036344 PMCID: PMC11258453 DOI: 10.1002/mco2.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
To tackle misdiagnosis in lung cancer screening with low-dose computed tomography (LDCT), we aimed to compile a genome atlas for differentiating benign, preinvasive, and invasive lung nodules and characterize their molecular pathogenesis. We collected 432 lung nodule tissue samples from Chinese patients, spanning benign, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA). We performed comprehensive sequencing, examining somatic variants, gene expressions, and methylation levels. Our findings uncovered EGFR and TP53 mutations as key drivers in - early lung cancer development, with EGFR mutation frequency increasing with disease progression. Both EGFR mutations and EGF/EGFR hypo-methylation activated the EGFR pathway, fueling cancer growth. Transcriptome analysis identified four lung nodule subtypes (G1-4) with distinct molecular features and immune cell infiltrations: EGFR-driven G1, EGFR/TP53 co-mutation G2, inflamed G3, stem-like G4. Estrogen/androgen response was associated with the EGFR pathway, proposing a new therapy combining tyrosine kinase inhibitors with antiestrogens. Preinvasive nodules exhibited stem cell pathway enrichment, potentially hindering invasion. Epigenetic regulation of various genes was essential for lung cancer initiation and development. This study provides insights into the molecular mechanism of neoplastic progression and identifies potential diagnostic biomarkers and therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Peng Liang
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Minhua Peng
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Jinsheng Tao
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Bo Wang
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Jinwang Wei
- Department of Data ScienceGenomicare Biotechnology (Shanghai) Co., Ltd.ShanghaiChina
- Department of Data ScienceShanghai CreateCured Biotechnology Co., Ltd.ShanghaiChina
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Bo Cheng
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Shan Xiong
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jianfu Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Caichen Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Ziwen Yu
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Chunyan Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jun Wang
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Hui Li
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Zhiwei Chen
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
- AnchorDx Inc.FremontCaliforniaUSA
| | - Jian‐Bing Fan
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
- Department of PathologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jianxing He
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| |
Collapse
|
4
|
Chen X, Li R, Yin YH, Liu X, Zhou XJ, Qu YQ. Pan-cancer prognosis, immune infiltration, and drug resistance characterization of lung squamous cell carcinoma tumor microenvironment-related genes. Biochem Biophys Rep 2024; 38:101722. [PMID: 38711549 PMCID: PMC11070325 DOI: 10.1016/j.bbrep.2024.101722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Background The tumor microenvironment (TME) plays an important role in cancer development; however, its implications in lung squamous cell carcinoma (LUSC) and pan-cancer have been poorly understood. Methods In this study, The Cancer Genome Atlas (TCGA) and Estimation of Stromal and Immune cells in Malignant Tumor tissue using Expression Data (ESTIMATE) datasets were applied to identify differentially expressed genes. Additionally, online public databases were utilized for in-depth bioinformatics analysis of pan-cancer datasets to investigate the prognostic implications of TME-related genes further. Results Our study demonstrated a significant association between stromal scores, immune scores, and specific clinical characteristics in LUSC patients. C3AR1, CSF1R, CCL2, CCR1, and CD14 were identified as prognostic genes related to the TME. All TME-related prognostic genes demonstrated varying degrees of correlation with immune infiltration subtypes and tumor cell stemness. Moreover, our study revealed that TME-related prognostic genes, particularly C3AR1 and CCR1, might contribute to drug resistance in cancer cells. Conclusions The identified TME-related prognostic genes, particularly C3AR1 and CCR1, have potential implications for understanding and targeting drug resistance mechanisms in cancer cells.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Respiratory Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yun-Hong Yin
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Sun H, Li X, Long Q, Wang X, Zhu W, Chen E, Zhou W, Yang H, Huang C, Deng W, Chen M. TERC promotes non-small cell lung cancer progression by facilitating the nuclear localization of TERT. iScience 2024; 27:109869. [PMID: 38799568 PMCID: PMC11126826 DOI: 10.1016/j.isci.2024.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The core of telomerase consists of the protein subunit telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC). So far, the role of TERC in cancer development has remained elusive. Here, we found TERC expression elevated in non-small cell lung cancer (NSCLC) tissues, which was associated with disease progression and poor prognosis in patients. Using NSCLC cell lines and xenograft models, we showed that knockdown of TERC caused cell cycle arrest, and inhibition of cell proliferation and migration. Mechanistically, TERC was exported to the cytoplasm by nuclear RNA export factor 1 (NXF1), where it mediated the interaction of TERT with other telomerase subunits. Depletion of TERC hindered the assembly and subsequent nuclear localization of the telomerase complex, preventing TERT from functioning in telomere maintenance and transcription regulation. Our findings suggest that TERC is a potential biomarker for NSCLC diagnosis and prognosis and can be a target for NSCLC treatment.
Collapse
Affiliation(s)
- Haohui Sun
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaodi Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Qian Long
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaonan Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wancui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Enni Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wenhao Zhou
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Han Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Chuyang Huang
- Department of Urology, Shaoyang Central Hospital, University of South China, Shaoyang, Hunan 422000, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| |
Collapse
|
6
|
Yang F, Zheng Y, Luo Q, Zhang S, Yang S, Chen X. Knockdown of NCAPD3 inhibits the tumorigenesis of non-small cell lung cancer by regulation of the PI3K/Akt pathway. BMC Cancer 2024; 24:408. [PMID: 38566039 PMCID: PMC10986035 DOI: 10.1186/s12885-024-12131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Accumulating evidence indicates that aberrant non-SMC condensin II complex subunit D3 (NCAPD3) is associated with carcinogenesis of various cancers. Nevertheless, the biological role of NCAPD3 in the pathogenesis of non-small cell lung cancer (NSCLC) remains unclear. METHODS Immunohistochemistry and Western blot were performed to assess NCAPD3 expression in NSCLC tissues and cell lines. The ability of cell proliferation, invasion, and migration was evaluated by CCK-8 assays, EdU assays, Transwell assays, and scratch wound healing assays. Flow cytometry was performed to verify the cell cycle and apoptosis. RNA-sequence and rescue experiment were performed to reveal the underlying mechanisms. RESULTS The results showed that the expression of NCAPD3 was significantly elevated in NSCLC tissues. High NCAPD3 expression in NSCLC patients was substantially associated with a worse prognosis. Functionally, knockdown of NCAPD3 resulted in cell apoptosis and cell cycle arrest in NSCLC cells as well as a significant inhibition of proliferation, invasion, and migration. Furthermore, RNA-sequencing analysis suggested that NCAPD3 contributes to NSCLC carcinogenesis by regulating PI3K/Akt/FOXO4 pathway. Insulin-like growth factors-1 (IGF-1), an activator of PI3K/Akt signaling pathway, could reverse NCAPD3 silence-mediated proliferation inhibition and apoptosis in NSCLC cells. CONCLUSION NCAPD3 suppresses apoptosis and promotes cell proliferation via the PI3K/Akt/FOXO4 signaling pathway, suggesting a potential use for NCAPD3 inhibitors as NSCLC therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Yunfeng Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Qiong Luo
- Department of Oncology, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Suyun Zhang
- Department of Internal Medicine, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China.
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China.
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China.
| |
Collapse
|
7
|
Kim HS, Kim JK, Lee JH, Lee YJ, Lee GK, Han JY. Prognostic Model for High-Grade Neuroendocrine Carcinoma of the Lung Incorporating Genomic Profiling and Poly (ADP-ribose) Polymerase-1 Expression. JCO Precis Oncol 2024; 8:e2300495. [PMID: 38635931 PMCID: PMC11161257 DOI: 10.1200/po.23.00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
PURPOSE High-grade neuroendocrine carcinoma (HGNEC) of the lung is an aggressive cancer with a complex biology. We aimed to explore the prognostic value of genetic aberrations and poly(ADP-ribose) polymerase-1 (PARP1) expression in HGNEC and to establish a novel prognostic model. MATERIALS AND METHODS We retrospectively enrolled 191 patients with histologically confirmed HGNEC of the lung. Tumor tissues were analyzed using PARP1 immunohistochemistry (IHC; N = 191) and comprehensive cancer panel sequencing (n = 102). Clinical and genetic data were used to develop an integrated Cox hazards model. RESULTS Strong PARP1 IHC expression (intensity 3) was observed in 153 of 191 (80.1%) patients, and the mean PARP1 H-score was 285 (range, 5-300). To develop an integrated Cox hazard model, our data set included information from 357 gene mutations and 19 clinical profiles. When the targeted mutation profiles were combined with clinical profiles, 12 genes (ATRX, CCND2, EXT2, FGFR2, FOXO1, IL21R, MAF, TGM7, TNFAIP3, TP53, TSHR, and DDR2) were identified as prognostic factors for survival. The integrated Cox hazard model, which combines mutation profiles with a baseline model, outperformed the baseline model (incremental area under the curve 0.84 v 0.78; P = 8.79e-12). The integrated model stratified patients into high- and low-risk groups with significantly different disease-free and overall survival (integrated model: hazard ratio, 7.14 [95% CI, 4.07 to 12.54]; P < .01; baseline model: 4.38 [2.56 to 7.51]; P < .01). CONCLUSION We introduced a new prognostic model for HGNEC that combines genetic and clinical data. The integrated Cox hazard model outperformed the baseline model in predicting the survival of patients with HGNEC.
Collapse
Affiliation(s)
- Hye Sook Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University, Goyang, Republic of Korea
| | - Jong Kwang Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Jeong Hyeon Lee
- Department of Pathology, Korea University Medical Center, Anam Hospital, Seoul, Republic of Korea
| | - Young Joo Lee
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Geon-Kuk Lee
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Ji-Youn Han
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
8
|
Lee S, Kim G, Lee J, Lee AC, Kwon S. Mapping cancer biology in space: applications and perspectives on spatial omics for oncology. Mol Cancer 2024; 23:26. [PMID: 38291400 PMCID: PMC10826015 DOI: 10.1186/s12943-024-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Technologies to decipher cellular biology, such as bulk sequencing technologies and single-cell sequencing technologies, have greatly assisted novel findings in tumor biology. Recent findings in tumor biology suggest that tumors construct architectures that influence the underlying cancerous mechanisms. Increasing research has reported novel techniques to map the tissue in a spatial context or targeted sampling-based characterization and has introduced such technologies to solve oncology regarding tumor heterogeneity, tumor microenvironment, and spatially located biomarkers. In this study, we address spatial technologies that can delineate the omics profile in a spatial context, novel findings discovered via spatial technologies in oncology, and suggest perspectives regarding therapeutic approaches and further technological developments.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea
| | - Gyeongjun Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - JinYoung Lee
- Division of Engineering Science, University of Toronto, Toronto, Ontario, ON, M5S 3H6, Canada
| | - Amos C Lee
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, 08826, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
9
|
Cai D, Tian F, Wu M, Tu J, Wang Y. UBE2C is a diagnosis and therapeutic biomarker involved in immune infiltration of cancers including lung adenocarcinoma. J Cancer 2024; 15:1701-1717. [PMID: 38370368 PMCID: PMC10869987 DOI: 10.7150/jca.92473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
The mechanism of action of UBE2C in lung adenocarcinoma (LUAD) and its significance in cancer diagnosis, targeted therapy and immunotherapy, even in pan-cancer, are still unclear. Several large public databases and online analysis tools were used for big data mining analysis. RNA interference technology, CCK8 assay, flow cytometry and apoptosis detection, and western blot were used for in vitro experiments. UBE2C was found to be overexpressed in various of tumors, including LUAD, and its expression level was found to be significantly related to gender, weight, tumor stage, grade and prognosis in LUAD. Downregulation of UBE2C expression induced proliferation suppression and G2/M phase arrest and cell apoptosis in LUAD cells and suppressed LUAD cell growth through inhibiting the Akt-mTOR signaling pathway. Expression level of UBE2C was negatively correlated with B cells and CD4+ T cell, and also with immune checkpoint genes in LUAD. Pan-cancer assay shown that UBE2C was significantly overexpressed in 28 cancers and was correlated with Ki-67 index in many cancers. Overexpression of UBE2C in BRCA, LUAD and MESO indicated worse Overall Survival (OS). UBE2C expression levels were positively associated with immunocyte infiltration, immune regulatory genes, immune checkpoints, TMB, MSI and MMRs in some cancers. Additionally, Single-cell functional analysis showed that UBE2C was positively correlated with cell cycle, proliferation, DNA damage, EMT, DNA repair, invasion and differentiation in some cancers. These findings suggested that UBE2C could be regarded as a latent diagnosis and prognostic biomarker and a new target for immunological therapy of cancers including LUAD.
Collapse
Affiliation(s)
- Daxia Cai
- Cancer Center, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Feng Tian
- Department of Stomach Enterochirurgia, Lishui People's Hospital, the Six Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Minhua Wu
- Cancer Center, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Jianfei Tu
- Cancer Center, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Yonghui Wang
- Cancer Center, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China
| |
Collapse
|
10
|
Song C, Song Y, Wan X, Zhao Z, Geng Q. Carcinogenic Role and Clinical Significance of Histone H3-H4 Chaperone Anti-silencing Function 1 B (ASF1B) in Lung Adenocarcinoma. J Cancer 2024; 15:218-231. [PMID: 38164276 PMCID: PMC10751675 DOI: 10.7150/jca.88777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
Histone H3-H4 chaperone anti-silencing function 1 (ASF1) plays an important role in the polymerization, transport, and modification of histones. However, the significance of ASF1B in lung adenocarcinoma (LUAD) is largely overlooked. We investigated the aberrant expression of ASF1B in LUAD and its potential link to patient survival using multiple databases. ASF1B-overexpressing and knockdown cell lines were constructed to explore its effects on the biological behavior of lung cancer cells. ssGSEA, TMB, TIDE and IMvigor210 cohort were used to explore and validate the association of ASF1B to tumor immunity. Our data suggested that ASF1B was overexpressed in LUAD, and was associated with poor prognosis. ASF1B promoted the proliferation, migration, and invasion of lung cancer cells by regulating the phosphorylation of AKT in vitro. ASF1B was associated with tumor immunity. In summary, ASF1B may promote malignant behavior of LUAD cells, and its overexpression correlates with worse prognosis and better immunotherapy effect.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaolin Song
- Department of Thoracic Surgery, Ezhou Central Hospital, Ezhou, China
| | - Xiaoxia Wan
- Department of Thoracic Surgery, Ezhou Central Hospital, Ezhou, China
| | - Zhihong Zhao
- Department of Thoracic Surgery, Ezhou Central Hospital, Ezhou, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Yu H, Liu Q, Jin M, Huang G, Cai Q. Comprehensive analysis of mitophagy-related genes in NSCLC diagnosis and immune scenery: based on bulk and single-cell RNA sequencing data. Front Immunol 2023; 14:1276074. [PMID: 38155968 PMCID: PMC10752969 DOI: 10.3389/fimmu.2023.1276074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Lung cancer is the main cause of cancer-related deaths, and non-small cell lung cancer (NSCLC) is the most common type. Understanding the potential mechanisms, prognosis, and treatment aspects of NSCLC is essential. This study systematically analyzed the correlation between mitophagy and NSCLC. Six mitophagy-related feature genes (SRC, UBB, PINK1, FUNDC1, MAP1LC3B, and CSNK2A1) were selected through machine learning and used to construct a diagnostic model for NSCLC. These feature genes are closely associated with the occurrence and development of NSCLC. Additionally, NSCLC was divided into two subtypes using unsupervised consensus clustering, and their differences in clinical characteristics, immune infiltration, and immunotherapy were systematically analyzed. Furthermore, the interaction between mitophagy-related genes (MRGs) and immune cells was analyzed using single-cell sequencing data. The findings of this study will contribute to the development of potential diagnostic biomarkers for NSCLC and the advancement of personalized treatment strategies.
Collapse
Affiliation(s)
- Haibo Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qingtao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qianqian Cai
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
12
|
Li P, Ma G, Cui Z, Zhang S, Su Q, Cai Z. FOXM1 and CENPF are associated with a poor prognosis through promoting proliferation and migration in lung adenocarcinoma. Oncol Lett 2023; 26:518. [PMID: 37920441 PMCID: PMC10618931 DOI: 10.3892/ol.2023.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a clinically challenging disease due to its poor prognosis and limited therapeutic methods. The aim of the present study was to identify prognosis-related genes and therapeutic targets for LUAD. Raw data from the GSE32863, GSE41271 and GSE42127 datasets were downloaded from the Gene Expression Omnibus database. Following normalization, the data were merged into a matrix, which was first used to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and survival analysis were performed to screen potential prognosis-related genes. Gene overlaps among DEGs, survival-related genes and WGCNA genes were finally constructed to obtain candidate genes. An analysis with the STRING database was performed to construct a protein-protein interaction network and hub genes were selected using Cytoscape. The candidate genes were finally identified by univariate and multivariate Cox regression analysis. Furthermore, in vivo and in vitro experiments, including immunohistochemistry, immunofluorescence, Cell Counting Kit-8, colony-formation and migration assays, were performed to validate the potential mechanism of these genes in LUAD. Two genes, namely forkhead box M1 (FOXM1) and centromere protein F (CENPF), were identified as unfavorable indicators of prognosis in patients with LUAD. High expression of FOXM1 and CENPF were associated with poor survival. Furthermore, LUAD cells with FOXM1 and CENPF knockdown showed a significant reduction in proliferation and migration (P<0.05). FOXM1 and CENPF may have an essential role in the prognosis of patients with LUAD by influencing cell proliferation and migration, and they provide potential molecular targets for LUAD therapy.
Collapse
Affiliation(s)
- Peipei Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Department of Pulmonary and Critical Care Medicine, Hengshui People's Hospital, Hengshui, Hebei 053000, P.R. China
| | - Geng Ma
- Department of Gastroenterology, Hengshui People's Hospital, Hengshui, Hebei 053000, P.R. China
| | - Zhaobo Cui
- Department of Pulmonary and Critical Care Medicine, Hengshui People's Hospital, Hengshui, Hebei 053000, P.R. China
| | - Shusen Zhang
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Qiao Su
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhigang Cai
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
13
|
Fu L, Li M, Lv J, Yang C, Zhang Z, Qin S, Li W, Wang X, Chen L. Deep neural network for discovering metabolism-related biomarkers for lung adenocarcinoma. Front Endocrinol (Lausanne) 2023; 14:1270772. [PMID: 37955007 PMCID: PMC10634586 DOI: 10.3389/fendo.2023.1270772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Lung cancer is a major cause of illness and death worldwide. Lung adenocarcinoma (LUAD) is its most common subtype. Metabolite-mRNA interactions play a crucial role in cancer metabolism. Thus, metabolism-related mRNAs are potential targets for cancer therapy. Methods This study constructed a network of metabolite-mRNA interactions (MMIs) using four databases. We retrieved mRNAs from the Tumor Genome Atlas (TCGA)-LUAD cohort showing significant expressional changes between tumor and non-tumor tissues and identified metabolism-related differential expression (DE) mRNAs among the MMIs. Candidate mRNAs showing significant contributions to the deep neural network (DNN) model were mined. Using MMIs and the results of function analysis, we created a subnetwork comprising candidate mRNAs and metabolites. Results Finally, 10 biomarkers were obtained after survival analysis and validation. Their good prognostic value in LUAD was validated in independent datasets. Their effectiveness was confirmed in the TCGA and an independent Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset by comparison with traditional machine-learning models. Conclusion To summarize, 10 metabolism-related biomarkers were identified, and their prognostic value was confirmed successfully through the MMI network and the DNN model. Our strategy bears implications to pave the way for investigating metabolic biomarkers in other cancers.
Collapse
Affiliation(s)
- Lei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Manshi Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chengcheng Yang
- Department of Respiratory, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shimei Qin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinyan Wang
- Department of Respiratory, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Yuan K, Zhang Y, Yu Y, Xu Y, Xian S. Anchoring Filament Protein Ladinin-1 is an Immunosuppressive Microenvironment and Cold Tumor Correlated Prognosticator in Lung Adenocarcinoma. Biochem Genet 2023; 61:2173-2202. [PMID: 37005975 DOI: 10.1007/s10528-023-10370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
Anchoring filament protein ladinin-1 (LAD1) codes for an anchor filament protein in the basement membrane. Here, we have aimed to determine its potential role in LUAD. According to the comprehensive analyses conducted in this study, we studied the expression, prognostic significance, function, methylation, copy number variations, and the immune cell infiltration of LAD1 in LUAD. A higher level of LAD1 gene expression was observed in the LUAD tumor tissues compared to the normal lung tissues (p < 0.001). Furthermore, the multivariate analysis indicated that a higher LAD1 gene expression level was the independent prognostic factor. Additionally, the DNA methylation level of the LAD1 was inversely linked to its expression (p < 0.001). We noted that the patients affected due to LAD1 hypomethylation showed a very low overall survival rate compared to the patients with a higher LAD1 methylation score (p < 0.05). Moreover, the results of the immunity analysis indicated that the LAD1 expression might be inversely linked to the immune cell infiltration degree, expression of the infiltrated immune cells, and the PD-L1 levels. Lastly, we supplemented some verification to increase the rigor of the study. The results suggested that high expression of LAD1 may be related to cold tumors. Hence, this indirectly reflects that the immunotherapy effect of LUAD patients with high LAD1 expression might be worse. Based on the role played by the LAD1 in the tumor immune microenvironment, it can be considered a potential biomarker for predicting the immunotherapy response to LUAD.
Collapse
Affiliation(s)
- Kun Yuan
- Department of Respiratory and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, 610095, China
| | - Yiping Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yilin Yu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yuanji Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Shuang Xian
- China Drug Development and Medical Affairs Center, Eli Lilly and Company, Shanghai, 20040, China.
| |
Collapse
|
15
|
Ying J, Hong H, Yu C, Jiang M, Ding D. Identification of TLRs as potential prognostic biomarkers for lung adenocarcinoma. Medicine (Baltimore) 2023; 102:e34954. [PMID: 37746997 PMCID: PMC10519552 DOI: 10.1097/md.0000000000034954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common tumors with the highest cancer-related death rate worldwide. Early diagnosis of LUAD can improve survival. Abnormal expression of the Toll-like receptors (TLRs) is related to tumorigenesis and development, inflammation and immune infiltration. However, the role of TLRs as an immunotherapy target and prognostic marker in lung adenocarcinoma is not well understood and needs to be analyzed. Relevant data obtained from databases such as ONCOMINE, UALCAN, GEPIA, and the Kaplan-Meier plotter, GSCALite, GeneMANIA, DAVID 6.8, Metascape, LinkedOmics and TIMER, to compare transcriptional TLRs and survival data of patients with LUAD. The expression levels of TLR1/2/3/4/5/7/8 in LUAD tissues were significantly reduced while the expression levels of TLR6/9/10 were significantly elevated. LUAD patients having low expression of TLR1/2/3/5/8 and high expression of TLR9 had a poor overall survival while patients with low expression of TLR2/3/7 presented with worse first progress. TLR4, TLR7 and TLR8 are the 3 most frequently mutated genes in the TLR family. Correlation suggested a low to moderate correlation among TLR family. TLR family was also involved in the activation or inhibition of the famous cancer related pathways. Analysis of immune infiltrates analysis suggested that TLR1/2/7/8 levels significantly correlated with immune infiltration level. Enrichment analysis revealed that TLRs were involved in TLR signaling pathway, immune response, inflammatory response, primary immunodeficiency, regulation of IL-8 production and PI3K-Akt signaling pathway. Our results provided information on TLRs expression and potential regulatory networks in LUAD. Moreover, our results suggested TLR2/7/8 as a potential prognostic biomarker for lung adenocarcinoma.
Collapse
Affiliation(s)
- Junjie Ying
- Department of Thoracic Surgery, The People’s Hospital of Beilun District, Ningbo, China
| | - Haihua Hong
- Department of Respiratory Medicine, The People’s Hospital of Beilun District, Ningbo, China
| | - Chaoqun Yu
- Department of General Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Maofen Jiang
- Department of Pathology, The People’s Hospital of Beilun District, Ningbo, China
| | - Dongxiao Ding
- Department of Thoracic Surgery, The People’s Hospital of Beilun District, Ningbo, China
| |
Collapse
|
16
|
Cheng C, Nguyen TT, Tang M, Wang X, Jiang C, Liu Y, Gorlov I, Gorlova O, Iafrate J, Lanuti M, Christiani DC, Amos CI. Immune Infiltration in Tumor and Adjacent Non-Neoplastic Regions Codetermines Patient Clinical Outcomes in Early-Stage Lung Cancer. J Thorac Oncol 2023; 18:1184-1198. [PMID: 37146750 PMCID: PMC10528252 DOI: 10.1016/j.jtho.2023.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
INTRODUCTION In recent years, the proportion of patients with NSCLC diagnosed at an early stage has increased continuously. METHODS In this study, we analyzed samples and data collected from 119 samples from 67 early stage patients with NSCLC, including 52 pairs of tumor and adjacent non-neoplastic samples, and performed RNA-sequencing analysis with high sequencing depth. RESULTS We found that immune-related genes were highly enriched among the differentially expressed genes and observed significantly higher inferred immune infiltration levels in adjacent non-neoplastic samples than in tumor samples. In survival analysis, the infiltration of certain immune cell types in tumor, but not adjacent non-neoplastic, samples were associated with overall patient survival, and excitingly, the differential infiltration between paired samples (tumor minus non-neoplastic) was more prognostic than expression in either non-neoplastic or tumor tissues. We also performed B cell receptor (BCR) and T cell receptor (TCR) repertoire analysis and observed more BCR/TCR clonotypes and increased BCR clonality in tumor than in non-neoplastic samples. Finally, we carefully quantified the fraction of the five histologic subtypes in our adenocarcinoma samples and found that higher histologic pattern complexity was associated with higher immune infiltration and low TCR clonality in the tumor-proximal regions. CONCLUSIONS Our results indicated significantly differential immune characteristics between tumor and adjacent non-neoplastic samples and suggested that the two regions provided complementary prognostic values in early-stage NSCLCs.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas; Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas; The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Thinh T Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mabel Tang
- Department of Biosciences, Rice University, Houston, Texas
| | - Xinan Wang
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yanhong Liu
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ivan Gorlov
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Olga Gorlova
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Lanuti
- Department of Surgery, Thoracic Surgery Division, Massachusetts General Hospital, Boston, Massachusetts
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Pulmonary and Critical Care Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, Texas; Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas; The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
17
|
Xu B, Zhang J, Chen W, Cai W. Exploring the methylation status of CFTR and PKIA genes as potential biomarkers for lung adenocarcinoma. Orphanet J Rare Dis 2023; 18:246. [PMID: 37644544 PMCID: PMC10466921 DOI: 10.1186/s13023-023-02807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND One of the most prevalent cancers in the world is lung cancer, with adenocarcinoma (LUAD) making up a significant portion of cases. According to the National Cancer Institute (NCI), there are new cases and fatality rates per 100,000 individuals as follows: New instances of lung and bronchial cancer occur annually at a rate of 50.0 per 100,000 persons. The yearly death rate for men and women is 35.0 per 100,000. DNA methylation is one of the earliest discovered and widely studied epigenetic regulatory mechanisms, and its abnormality is closely related to the occurrence and development of cancer. However, the prognostic value of DNA methylation and LUAD needs to be further explored to improve the survival prediction of LUAD patients. METHODS The transcriptome data and clinical data of LUAD were downloaded from TCGA and GEO databases, and the Illumina Human Methylation450 array (450k array) data were downloaded from the TCGA database. Firstly, the intersection of the expressed genes of the two databases is corrected, the differential analysis is performed, and the methylation data is evaluated by the MethylMix package to obtain differentially methylated genes. Independent prognostic genes were screened out using univariate and multivariate Cox regression analysis, and a methylation prognostic model was developed using univariate Cox analysis and validated with the GSE30219 dataset in the GEO database. Survival analysis between methylation high-risk and low-risk groups was performed and a methylation-based gene prognostic model was constructed. Finally, the prediction of potential drugs associated with the LUAD gene signature using Drug Sensitivity Genomics in Cancer (GDSC). RESULTS In this study, a total of 555 samples from the TCGA database and 307 samples from GSE30219 were included, and a total of 24 differential methylation driver genes were identified. Univariate and multivariate Cox regression analyzes were used to screen out independent prognostic genes, involving 2 genes: CFTR, PKIA. Survival analysis was different between the methylation high-risk group and the low-risk group, the CFTR high methylation group and the low methylation group were poor, and the opposite was true for PKIA. CONCLUSIONS Our study revealed that the methylation status of CFTR and PKIA can serve as potential prognostic biomarkers and therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Bowen Xu
- Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, 264000, China
| | - Jingang Zhang
- Weihai Second Hospital affiliated to Qingdao University, Weihai, Shandong, 264200, China
| | - Weigang Chen
- Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China.
| | - Wei Cai
- Xuzhou Central Hospital, Xuzhou, Jiangsu, 221000, China.
| |
Collapse
|
18
|
Song C, Liu X, Lin W, Lai K, Pan S, Lu Z, Li D, Li N, Geng Q. Systematic analysis of histone acetylation regulators across human cancers. BMC Cancer 2023; 23:733. [PMID: 37553641 PMCID: PMC10408135 DOI: 10.1186/s12885-023-11220-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Histone acetylation (HA) is an important and common epigenetic pathway, which could be hijacked by tumor cells during carcinogenesis and cancer progression. However, the important role of HA across human cancers remains elusive. METHODS In this study, we performed a comprehensive analysis at multiple levels, aiming to systematically describe the molecular characteristics and clinical relevance of HA regulators in more than 10000 tumor samples representing 33 cancer types. RESULTS We found a highly heterogeneous genetic alteration landscape of HA regulators across different human cancer types. CNV alteration may be one of the major mechanisms leading to the expression perturbations in HA regulators. Furthermore, expression perturbations of HA regulators correlated with the activity of multiple hallmark oncogenic pathways. HA regulators were found to be potentially useful for the prognostic stratification of kidney renal clear cell carcinoma (KIRC). Additionally, we identified HDAC3 as a potential oncogene in lung adenocarcinoma (LUAD). CONCLUSION Overall, our results highlights the importance of HA regulators in cancer development, which may contribute to the development of clinical strategies for cancer treatment.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Xinfei Liu
- Department of Hematology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Weichen Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Donghang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
19
|
Ma G, Zeng Y, Zhong W, Zhao X, Wang G, Bie F, Du J. Comprehensive analysis of suppressor of cytokine signaling 2 protein in the malignant transformation of NSCLC. Exp Ther Med 2023; 26:370. [PMID: 37415839 PMCID: PMC10320659 DOI: 10.3892/etm.2023.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/02/2023] [Indexed: 07/08/2023] Open
Abstract
Suppressor of cytokine signaling 2 (SOCS2) plays an essential role in a number of physiological phenomena and functions as a tumor suppressor. Understanding the predictive effects of SOCS2 on non-small cell lung cancer (NSCLC) is urgently needed. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to assess SOCS2 gene expression levels in NSCLC. The clinical significance of SOCS2 was evaluated through Kaplan-Meier curve analysis and the analysis of related clinical factors. Gene Set Enrichment Analysis (GSEA) was used to identify the biological functions of SOCS2. Subsequently proliferation, wound-healing, colony formation and Transwell assays, and carboplatin drug experiments were used for verification. The results revealed that SOCS2 expression was low in the NSCLC tissues of patients in TCGA and GEO database analyses. Downregulated SOCS2 was associated with poor prognosis, as determined by Kaplan-Meier survival analysis (HR 0.61, 95% CI 0.52-0.73; P<0.001). GSEA showed that SOCS2 was involved in intracellular reactions, including epithelial-mesenchymal transition (EMT). Cell experiments indicated that knockdown of SOCS2 caused the malignant progression of NSCLC cell lines. Furthermore, the drug experiment showed that silencing of SOCS2 promoted the resistance of NSCLC cells to carboplatin. In conclusion, low expression of SOCS2 was associated with poor clinical prognosis by effecting EMT and causing drug resistance in NSCLC cell lines. Furthermore, SOCS2 could act as a predictive indicator for NSCLC.
Collapse
Affiliation(s)
- Guoyuan Ma
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yukai Zeng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Weiqing Zhong
- Department of Radiology, The Third Affiliated Hospital of Shandong First Medical University (The Fourth People's Hospital of Jinan), Jinan, Shandong 250031, P.R. China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Fenglong Bie
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
20
|
Özdede M, Taban H, Akman O, Önder S, Kılıçkap S. The Prognostic Significance of KIAA1522 Expression in Non-Small-Cell Lung Cancer Patients. Cureus 2023; 15:e44016. [PMID: 37746394 PMCID: PMC10517341 DOI: 10.7759/cureus.44016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
The majority of lung cancers belong to the non-small-cell lung cancer (NSCLC) category, which is linked to a high mortality rate despite significant progress in diagnosis and treatment. Therefore, there is a need for novel prognostic NSCLC biomarkers to improve prognosis which currently remains poor. Recent studies and analyses of gene expression data of NSCLC revealed that high expression of KIAA1522 was significantly associated with poor prognosis and decreased overall survival. We identified 98 patients who underwent radical curative surgical resections or metastasectomy for pulmonary adenocarcinoma and squamous cell carcinoma at our institution or the pathological diagnosis confirmed by our pathologists. Following the latest data, we utilized immunohistochemistry to assess the expression of KIAA1522 and investigated its association with various clinic-demographic parameters, pathological stages, recurrence rates, overall survival, and disease-free survival in patients who achieved complete remission. Notably, there were no significant differences in the expression profiles of KIAA1522 between adenocarcinoma and squamous cell carcinoma samples (p=0.6). Survival analysis was conducted using log-rank tests and a multivariate Cox proportional hazard model. Of the 98 samples, 54 (55.1%) exhibited high expression of KIAA1522, and patients with high KIAA1522 expression had a significantly shorter overall survival than the low-expression group (p=0.01). Multivariate Cox proportional hazard models in which metastatic patients were included revealed that along with older age, higher TNM stage (tumor, node, metastasis system), and Eastern Cooperative Oncology Group (ECOG) performance status, high expression of KIAA1522 served as an independent prognostic factor. A high expression profile was not significantly associated with relapses in those whose complete remission had been achieved. Still, those patients with high expression of KIAA1522 tended to exhibit a shorter disease-free survival rate. In conclusion, our findings suggest that KIAA1522 expression is an independent factor for predicting overall survival and may serve as a valuable prognostic indicator for relapse and disease-free survival in NSCLC patients.
Collapse
Affiliation(s)
- Murat Özdede
- Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, TUR
| | - Hakan Taban
- Medical Oncology, Hacettepe University Faculty of Medicine, Ankara, TUR
| | - Orkun Akman
- Pathology, Hacettepe University Faculty of Medicine, Ankara, TUR
| | - Sevgen Önder
- Pathology, Hacettepe University Faculty of Medicine, Ankara, TUR
| | | |
Collapse
|
21
|
Lu T, Xu R, Wang C, Zhou X, Parra-Medina R, Díaz-Peña R, Peng B, Zhang L. Bioinformatics analysis and single-cell RNA sequencing: elucidating the ubiquitination pathways and key enzymes in lung adenocarcinoma. J Thorac Dis 2023; 15:3885-3907. [PMID: 37559628 PMCID: PMC10407523 DOI: 10.21037/jtd-23-795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a prevalent subtype of lung cancer associated with high mortality rates. We aimed to utilize single-cell multiomics analysis to identify the key molecules involved in ubiquitination modification, which plays a role in LUAD development and progression. METHODS We use a systematic approach to analyze LUAD-related single-cell and bulk transcriptome datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Single-cell RNA sequencing (scRNA-seq) data were normalized, clustered, and annotated with the Seurat package in R. InferCNV was used to distinguish malignant from epithelial cells, and AUCell evaluated the area under the curve (AUC) score of ubiquitination-related enzymes. Survival and differential analyses identified significant molecular markers associated with ubiquitination. PSMD14 expression was confirmed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot assays, and its knockdown cell lines were assessed for effects on cellular processes and tumor formation in mice. PSMD14's interacting proteins were predicted, and its impact on AGR2 protein half-life and ubiquitination was evaluated. Rescue experiments involving PSMD14 overexpression and AGR2 silencing assessed their impact on malignant behaviors. RESULTS By means of single-cell sequencing analysis, we probed the ubiquitination modification landscape in the LUAD microenvironment. Malignant cells had elevated scores for enzymes and ubiquitin-binding domains compared to normal epithelial cells, with 53 ubiquitination-related molecules showing prognostic disparities. FGR, PSMD14, and ZBTB16 were identified as genes with prognostic significance, with PSMD14 showing higher expression in epithelial and malignant cells. Two missense mutation sites were identified in PSMD14, which had a high copy number amplification ratio and positive correlation with messenger RNA (mRNA) expression. PSMD14 expression and tumor stage were found to be independent prognostic factors, and interfering with PSMD14 expression reduced the malignant behavior of LUAD cells. PSMD14 was found to bind to AGR2 protein and reduce its ubiquitination, leading to increased AGR2 stability. Knockdown of AGR2 inhibited the enhancement of cell viability, invasion, and migration resulting from PSMD14 overexpression. CONCLUSIONS This study examined ubiquitination modifications in LUAD using sequencing data, identifying PSMD14's critical role in malignancy regulation and its potential as a prognostic and therapeutic biomarker. These insights enhance understanding of LUAD mechanisms and treatment.
Collapse
Affiliation(s)
- Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Rafael Parra-Medina
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud, Hospital San José, Bogotá, Colombia
- Department of Pathology, National Cancer Institute (INC), Bogotá, Colombia
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Zhu K, Wang B, Li Y, Yu Y, Chen Z, Yue H, Meng Q, Tian D, Liu X, Shen W, Tian Y. CAVIN2/SDPR Functioned as a Tumor Suppressor in Lung Adenocarcinoma from Systematic Analysis of Caveolae-Related Genes and Experimental Validation. J Cancer 2023; 14:2001-2014. [PMID: 37497407 PMCID: PMC10367915 DOI: 10.7150/jca.84567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Caveolae-Related Genes include caveolins and cavins, which are the main component of the fossa and, play important roles in a variety of physiological and pathological processes. Although increasing evidence indicated that caveolins (CAVs) and cavins (CAVINs) are involved in carcinogenesis and progression, their clinical significance and biological function in lung cancer are still limited. Methods: We investigated the expression of CAVs and CAVINs at transcriptional levels using Oncomine and Gene Expression Profiling Interactive Analysis. The protein and mRNA expression levels of CAVs and CAVINs were determined by the human protein atlas website and our surgically resected samples, respectively. The clinical value of prognostic prediction based on the expression of CAVs and CAVINs was also assessed. cBioPortal, GeneMANIA and STRING were used to analyze the molecular characteristics of CAVs and CAVINs in lung adenocarcinoma (LUAD) comprehensively. Finally, we investigated the effect of CAVIN2/SDPR (serum deprivation protein response) on LUAD cells with biological experiments in vitro. Results: The expression of CAV1/2 and CAVIN1/2/3 were significantly downregulated in LUAD and lung squamous cell carcinoma (LUSC). The patients with high expression of CAV1, CAV2, CAV3, CAVIN1 and CAVIN2/SDPR were tightly correlated with a better prognosis in LUAD, while no statistical significances in LUSC. Further, our results found that CAVIN2/SDPR can be identified as a prognostic biomarker independent of other CAVINs in patients with LUAD. Mechanically, the overexpression of CAVIN2/SDPR inhibited cell proliferation and migration owing to the cell apoptosis induction and cell cycle arrest at S phase in LUAD cells. Conclusions: CAVIN2/SDPR functioned as a tumor suppressor, and was able to serve as prognostic biomarkers in precision medicine of LUAD. Mechanically, overexpression of CAVIN2/SDPR inhibited cell proliferation by inducing cell apoptosis and S phase arrest in LUAD cells.
Collapse
Affiliation(s)
- Keyun Zhu
- Department of Thoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, P. R. China, 315040
| | - Baichuan Wang
- Anhui Medical University Clinical College of Chest, Hefei, Anhui Province, P. R. China, 230022
- Anhui Chest Hospital, Hefei, Anhui Province, P. R. China, 230022
| | - Yingxi Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China, 300070
| | - Yue Yu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China, 300060
| | - Zhaohui Chen
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China, 300060
| | - Haoran Yue
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China, 300060
| | - Qingxiang Meng
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China, 300060
| | - Dongchen Tian
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China, 300060
| | - Xiaofeng Liu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China, 300060
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, P. R. China, 315040
| | - Yao Tian
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, P. R. China, 300052
| |
Collapse
|
23
|
Neely AM, Yang M, Marconett CN. CLOCK'ing differences in DNA methylation signatures to understand the molecular etiology of lung cancer. Transl Lung Cancer Res 2023; 12:1338-1341. [PMID: 37425400 PMCID: PMC10326774 DOI: 10.21037/tlcr-23-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 07/11/2023]
Affiliation(s)
- Aaron M. Neely
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Minxiao Yang
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Crystal N. Marconett
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Zhang L, Wang S, Wu GR, Yue H, Dong R, Zhang S, Yu Q, Yang P, Zhao J, Zhang H, Yu J, Yuan X, Xiong W, Yang X, Yong T, Wang CY. MBD2 facilitates tumor metastasis by mitigating DDB2 expression. Cell Death Dis 2023; 14:303. [PMID: 37142578 PMCID: PMC10160113 DOI: 10.1038/s41419-023-05804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Despite past extensive studies, the pathoetiologies underlying tumor metastasis remain poorly understood, which renders its treatment largely unsuccessful. The methyl-CpG-binding domain 2 (MBD2), a "reader" to interpret DNA methylome-encoded information, has been noted to be involved in the development of certain types of tumors, while its exact impact on tumor metastasis remains elusive. Herein we demonstrated that patients with LUAD metastasis were highly correlated with enhanced MBD2 expression. Therefore, knockdown of MBD2 significantly attenuated the migration and invasion of LUAD cells (A549 and H1975 cell lines) coupled with attenuated epithelial-mesenchymal transition (EMT). Moreover, similar results were observed in other types of tumor cells (B16F10). Mechanistically, MBD2 selectively bound to the methylated CpG DNA within the DDB2 promoter, by which MBD2 repressed DDB2 expression to promote tumor metastasis. As a result, administration of MBD2 siRNA-loaded liposomes remarkably suppressed EMT along with attenuated tumor metastasis in the B16F10 tumor-bearing mice. Collectively, our study indicates that MBD2 could be a promising prognostic marker for tumor metastasis, while administration of MBD2 siRNA-loaded liposomes could be a viable therapeutic approach against tumor metastasis in clinical settings.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Siyuan Wang
- Department of Gerontology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Rao Wu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Ruihan Dong
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Shu Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Qilin Yu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Ping Yang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Huilan Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Weining Xiong
- Department of Respiratory and Critical Care Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, 200011, Shanghai, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
25
|
Ito Y, Usui G, Seki M, Fukuyo M, Matsusaka K, Hoshii T, Sata Y, Morimoto J, Hata A, Nakajima T, Rahmutulla B, Kaiho T, Inage T, Tanaka K, Sakairi Y, Suzuki H, Yoshino I, Kaneda A. Association of frequent hypermethylation with high grade histological subtype in lung adenocarcinoma. Cancer Sci 2023. [PMID: 37082886 DOI: 10.1111/cas.15817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Lung adenocarcinoma is classified morphologically into five histological subtypes according to the WHO classification. While each histological subtype correlates with a distinct prognosis, the molecular basis has not been fully elucidated. Here we conducted DNA methylation analysis of 30 lung adenocarcinoma cases annotated with the predominant histological subtypes and three normal lung cases using the Infinium BeadChip. Unsupervised hierarchical clustering analysis revealed three subgroups with different methylation levels: high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME). Micropapillary pattern (MPP)-predominant cases and those with MPP components were significantly enriched in HME (p = 0.02 and p = 0.03, respectively). HME cases showed a significantly poor prognosis for recurrence-free survival (p < 0.001) and overall survival (p = 0.006). We identified 365 HME marker genes specifically hypermethylated in HME cases with enrichment of "cell morphogenesis" related genes; 305 IME marker genes hypermethylated in HME and IME, but not in LME, with enrichment "embryonic organ morphogenesis"-related genes; 257 Common marker genes hypermethylated commonly in all cancer cases, with enrichment of "regionalization"-related genes. We extracted surrogate markers for each epigenotype and designed pyrosequencing primers for five HME markers (TCERG1L, CXCL12, FAM181B, HOXA11, GAD2), three IME markers (TBX18, ZNF154, NWD2) and three Common markers (SCT, GJD2, BARHL2). DNA methylation profiling using Infinium data was validated by pyrosequencing, and HME cases defined by pyrosequencing results also showed the worse recurrence-free survival. In conclusion, lung adenocarcinomas are stratified into subtypes with distinct DNA methylation levels, and the high-methylation subtype correlated with MPP-predominant cases and those with MPP components and showed a poor prognosis.
Collapse
Affiliation(s)
- Yuki Ito
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Genki Usui
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Sata
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Morimoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Hata
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Taisuke Kaiho
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Terunaga Inage
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhisa Tanaka
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
26
|
Liu B, Ma H, Liu X, Xing W. CircSCN8A suppresses malignant progression and induces ferroptosis in non-small cell lung cancer by regulating miR-1290/ACSL4 axis. Cell Cycle 2023; 22:758-776. [PMID: 36482742 PMCID: PMC10026894 DOI: 10.1080/15384101.2022.2154543] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (CircRNAs) are reported to exert vital regulatory roles in the occurrence and development of various human malignancies, including non-small cell lung cancer (NSCLC). Bioinformatics methods identified the down-regulation of circSCN8A (circBase ID: hsa_circ_0026337) in NSCLC tissues. However, its biological functions and molecular mechanisms in NSCLC remain unknown. In this study, we found that circSCN8A expression was down-regulated in NSCLC tissues and cells. Low circSCN8A expression was positively associated with aggressive clinicopathological characteristics and poor prognosis in NSCLC patients. CircSCN8A suppressed cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and blocked tumor growth in vivo. Moreover, circSCN8A promoted cell ferroptosis in NSCLC. Mechanistically, circSCN8A acted as a competing endogenous RNA (ceRNA) by sponging miR-1290 to enhance the expression of long-chain acyl-CoA synthetase-4 (ACSL4). Furthermore, the knockdown of ACSL4 or overexpression of miR-1290 reversed the effect of circSCN8A on facilitating ferroptosis and inhibiting cell proliferation and metastasis. In summary, circSCN8A represses cell proliferation and metastasis in NSCLC by regulating the miR-1290/ACSL4 axis to induce ferroptosis. Thus, circSCN8A may represent a promising therapeutic target against NSCLC.
Collapse
Affiliation(s)
- Baoxing Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Haibo Ma
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xingyu Liu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenqun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
27
|
Zhang M, Liao X, Ji G, Fan X, Wu Q. High Expression of COA6 Is Related to Unfavorable Prognosis and Enhanced Oxidative Phosphorylation in Lung Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24065705. [PMID: 36982777 PMCID: PMC10056783 DOI: 10.3390/ijms24065705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Mitochondrial metabolism plays an important role in the occurrence and development of cancers. Cytochrome C oxidase assembly factor six (COA6) is essential in mitochondrial metabolism. However, the role of COA6 in lung adenocarcinoma (LUAD) remains unknown. Here we report that the expression of COA6 mRNA and protein were upregulated in LUAD tissues compared with lung normal tissues. We found that COA6 had high sensitivity and specificity to distinguish LUAD tissues from normal lung tissues shown by a receiver operating characteristic (ROC) curve. In addition, our univariate and multivariate Cox regression analysis indicated that COA6 was an independent unfavorable prognostic factor for LUAD patients. Furthermore, our survival analysis and nomogram showed that a high expression of COA6 mRNA was related to the short overall survival (OS) of LUAD patients. Notably, our weighted correlation network analysis (WGCNA) and functional enrichment analysis revealed that COA6 may participate in the development of LUAD by affecting mitochondrial oxidative phosphorylation (OXPHOS). Importantly, we demonstrated that depletion of COA6 could decrease the mitochondrial membrane potential (MMP), nicotinamide adenine dinucleotide (NAD) + hydrogen (H) (NADH), and adenosine triphosphate (ATP) production in LUAD cells (A549 and H1975), hence inhibiting the proliferation of these cells in vitro. Together, our study strongly suggests that COA6 is significantly associated with the prognosis and OXPHOS in LUAD. Hence, COA6 is highly likely a novel prognostic biomarker and therapeutic target of LUAD.
Collapse
Affiliation(s)
- Ming Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macao 999078, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaohua Liao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macao 999078, China
| | - Guanxu Ji
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macao 999078, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence: (X.F.); (Q.W.); Tel.: +86-139-8276-9572 (X.F.); +853-8897-2708 (Q.W.)
| | - Qiang Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macao 999078, China
- Correspondence: (X.F.); (Q.W.); Tel.: +86-139-8276-9572 (X.F.); +853-8897-2708 (Q.W.)
| |
Collapse
|
28
|
Yang L, Yu Q, Zhu Y, Ali Mallah M, Wang W, Feng F, Zhang Q. Core genes in lung adenocarcinoma identified by integrated bioinformatic analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:243-257. [PMID: 34961365 DOI: 10.1080/09603123.2021.2016660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This study aims to identify potential core genes of lung adenocarcinoma (LUAD). Three datasets (GSE32863, GSE43458, and GSE116959) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between LUAD and normal tissues were filtrated by GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed via Metascape database. The protein-protein interaction (PPI) network was constructed and core genes were identified using STRING and Cytoscape. Core genes expressions and their relevant clinical characteristics were performed via Oncomine and UALCAN databases respectively. The correlation between core genes and immune infiltrates was investigated by TIMER database. Kaplan-Meier plotter was performed for survival analysis. The signal pathway network of core genes was mapped by KEGG Mapper analysis tool. In this study, ten core genes were significantly related to overall survival (OS) of LUAD patients, which can provide clues for prognosis of LUAD.
Collapse
Affiliation(s)
- Liu Yang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Qi Yu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Yonghang Zhu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| |
Collapse
|
29
|
Wang Y, Jia Z, Liang C, He Y, Cong M, Wu Q, Tian P, He D, Miao X, Sun B, Yin Y, Peng C, Yao F, Fu D, Liang Y, Zhang P, Xiong H, Hu G. MTSS1 curtails lung adenocarcinoma immune evasion by promoting AIP4-mediated PD-L1 monoubiquitination and lysosomal degradation. Cell Discov 2023; 9:20. [PMID: 36810288 PMCID: PMC9944270 DOI: 10.1038/s41421-022-00507-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 02/23/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy targeting PD-1/PD-L1 has shown durable clinical benefits in lung cancer. However, many patients respond poorly to ICB treatment, underscoring an incomplete understanding of PD-L1 regulation and therapy resistance. Here, we find that MTSS1 is downregulated in lung adenocarcinoma, leading to PD-L1 upregulation, impairment of CD8+ lymphocyte function, and enhanced tumor progression. MTSS1 downregulation correlates with improved ICB efficacy in patients. Mechanistically, MTSS1 interacts with the E3 ligase AIP4 for PD-L1 monoubiquitination at Lysine 263, leading to PD-L1 endocytic sorting and lysosomal degradation. In addition, EGFR-KRAS signaling in lung adenocarcinoma suppresses MTSS1 and upregulates PD-L1. More importantly, combining AIP4-targeting via the clinical antidepressant drug clomipramine and ICB treatment improves therapy response and effectively suppresses the growth of ICB-resistant tumors in immunocompetent mice and humanized mice. Overall, our study discovers an MTSS1-AIP4 axis for PD-L1 monoubiquitination and reveals a potential combinatory therapy with antidepressants and ICB.
Collapse
Affiliation(s)
- Yuan Wang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenchang Jia
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenxi Liang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunfei He
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Cong
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyao Wu
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Tian
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dasa He
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Miao
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Beibei Sun
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yue Yin
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Chao Peng
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Feng Yao
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Da Fu
- grid.412538.90000 0004 0527 0050Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293General Surgery, Ruijin Hospital & Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yajun Liang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
30
|
Pandey N, Chongtham J, Pal S, Ali A, Lalwani S, Jain D, Mohan A, Srivastava T. When "No-Smoking" is not enough: Hypoxia and nicotine acetylcholine receptor signaling may drive lung adenocarcinoma progression in never-smokers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119302. [PMID: 35649481 DOI: 10.1016/j.bbamcr.2022.119302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 01/03/2023]
Abstract
The question of how lung cancer progresses in never-smokers remains largely unanswered. In our analysis of data from 1727 lung cancer patients, we observed a difference of only 47 days in the overall survival between lung adenocarcinoma patients who were smokers vis-a-vis never-smokers - the disease has a poor prognosis irrespective of the smoking status, or gender. We have investigated the possible collaboration between the nAChR and hypoxia signaling pathway to explicate a mechanism of disease progression in never-smokers using patient-derived tumor cells. We found a previously unidentified increase in both acetylcholine and nAChR-α7 levels in non-small cell lung cancer cells in hypoxia. A similar increase in ubiquitously expressed nAChR-α7 transcripts was also observed in other cancer lines and primary tumor tissues. A direct binding of HIF-1α with the hypoxia-response element (HRE) present at -48 position preceding the transcriptional start site in nAChR-α7 promoter region was established. Crucially, the increased acetylcholine levels in hypoxia drove a feedback loop via modulation of PI3K/AKT pathway to stabilize HIF-1α in hypoxia. Further, hypoxia-mediated metastasis and induction of HIF-1α in these cells was significantly reversed by bungarotoxin, an antagonist of nAChR-α7. The nAChR-AKT-HIF network needs to be further investigated to conclusively prove its mechanism and to explore its therapeutic potential. Our study gives a plausible explanation for the equally worse prognosis of lung adenocarcinoma in never-smokers wherein the nAChR signaling is enhanced in hypoxia by acetylcholine in the absence of nicotine.
Collapse
Affiliation(s)
- Namita Pandey
- Department of Genetics, University of Delhi South Campus, New Delhi, India; Clinical Genomic Knowledgebase, PierianDx, Pune, Maharashtra, India
| | - Jonita Chongtham
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| | | | - Ashraf Ali
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
31
|
Zhang X, Chen Q, He Y, Shi Q, Yin C, Xie Y, Yu H, Bao Y, Wang X, Tang C, Dong Z. STRIP2 motivates non-small cell lung cancer progression by modulating the TMBIM6 stability through IGF2BP3 dependent. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:19. [PMID: 36639675 PMCID: PMC9837939 DOI: 10.1186/s13046-022-02573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Striatin interacting protein 2 (STRIP2) is a core component of the striatin-interacting phosphatase and kinase (STRIPAK) complexes, which is involved in tumor initiation and progression via the regulation of cell contractile and metastasis. However, the underlying molecular mechanisms of STRIP2 in non-small cell lung cancer (NSCLC) progression remain largely unknown. METHODS The expressions of STRIP2 and IGF2BP3 in human NSCLC specimens and NSCLC cell lines were detected using quantitative RT-PCR, western blotting, and immunohistochemistry (IHC) analyses. The roles and molecular mechanisms of STRIP2 in promoting NSCLC progression were investigated in vitro and in vivo. RESULTS Here, we found that STRIP2 expression was significantly elevated in NSCLC tissues and high STRIP2 expression was associated with a poor prognosis. Knockdown of STRIP2 suppressed tumor growth and metastasis in vitro and in vivo, while STRIP2 overexpression obtained the opposite effect. Mechanistically, P300/CBP-mediated H3K27 acetylation activation in the promoter of STRIP2 induced STRIP2 transcription, which interacted with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and upregulated IGF2BP3 transcription. In addition, STRIP2-IGF2BP3 axis stimulated m6A modification of TMBIM6 mRNA and enhanced TMBIM6 stability. Consequently, TMBIM6 involved NSCLC cell proliferation, migration and invasion dependent on STRIP2 and IGF2BP3. In NSCLC patients, high co-expression of STRIP2, IGF2BP3 and TMBIM6 was associated with poor outcomes. CONCLUSIONS Our findings indicate that STRIP2 interacts with IGF2BP3 to regulate TMBIM6 mRNA stability in an m6A-dependent manner and may represent a potential prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xilin Zhang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Qiuqiang Chen
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Ying He
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Qian Shi
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Chengyi Yin
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Yanping Xie
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Huanming Yu
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Ying Bao
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Xiang Wang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Chengwu Tang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Zhaohui Dong
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| |
Collapse
|
32
|
Chen MM, Guo W, Chen SM, Guo XZ, Xu L, Ma XY, Wang YX, Xie C, Meng LH. Xanthine dehydrogenase rewires metabolism and the survival of nutrient deprived lung adenocarcinoma cells by facilitating UPR and autophagic degradation. Int J Biol Sci 2023; 19:772-788. [PMID: 36778128 PMCID: PMC9909990 DOI: 10.7150/ijbs.78948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Xanthine dehydrogenase (XDH) is the rate-limiting enzyme in purine catabolism by converting hypoxanthine to xanthine and xanthine to uric acid. The altered expression and activity of XDH are associated with the development and prognosis of multiple types of cancer, while its role in lung adenocarcinoma (LUAD) remains unknown. Herein, we demonstrated that XDH was highly expressed in LUAD and was significantly correlated with poor prognosis. Though inhibition of XDH displayed moderate effect on the viability of LUAD cells cultured in the complete medium, it significantly attenuated the survival of starved cells. Similar results were obtained in XDH-knockout cells. Nucleosides supplementation rescued the survival of starved LUAD cells upon XDH inhibition, while inhibition of purine nucleoside phosphorylase abrogated the process, indicating that nucleoside degradation is required for the XDH-mediated survival of LUAD cells. Accordingly, metabolic flux revealed that ribose derived from nucleoside fueled key carbon metabolic pathways to sustain the survival of starved LUAD cells. Mechanistically, down-regulation of XDH suppressed unfolded protein response (UPR) and autophagic flux in starved LUAD cells. Inhibition of XDH decreased the level of amino acids produced by autophagic degradation, which was accompanied with down-regulation of mTORC1 signaling. Supplementation of amino acids including glutamine or glutamate rescued the survival of starved LUAD cells upon knockout or inhibition of XDH. Finally, XDH inhibitors potentiated the anti-cancer activity of 2-deoxy-D-glucose that induced UPR and/or autophagy in vitro and in vivo. In summary, XDH plays a crucial role in the survival of starved LUAD cells and targeting XDH may improve the efficacy of drugs that induce UPR and autophagy in the therapy of LUAD.
Collapse
Affiliation(s)
- Man-Man Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Guo
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Meng Chen
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiao-Zhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Lan Xu
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiao-Yu Ma
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Xiang Wang
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Hua Meng
- Division of Anti-tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma. J Pers Med 2022; 13:jpm13010049. [PMID: 36675710 PMCID: PMC9862762 DOI: 10.3390/jpm13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The complexity of lung adenocarcinoma (LUAD), the development of which involves many interacting biological processes, makes it difficult to find therapeutic biomarkers for treatment. FK506-binding proteins (FKBPs) are composed of 12 members classified as conservative intracellular immunophilin family proteins, which are often connected to cyclophilin structures by tetratricopeptide repeat domains and have peptidyl prolyl isomerase activity that catalyzes proline from residues and turns the trans form into the cis form. Since FKBPs belong to chaperone molecules and promote protein folding, previous studies demonstrated that FKBP family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcript expressions of this gene family in LUAD still need to be more fully investigated. In this research, we adopted high-throughput bioinformatics technology to analyze FKBP family genes in LUAD to provide credible information to clinicians and promote the development of novel cancer target drugs in the future. The current data revealed that the messenger (m)RNA levels of FKBP2, FKBP3, FKBP4, FKBP10, FKBP11, and FKBP14 were overexpressed in LUAD, and FKBP10 had connections to poor prognoses among LUAD patients in an overall survival (OS) analysis. Based on the above results, we selected FKBP10 to further conduct a comprehensive analysis of the downstream pathway and network. Through a DAVID analysis, we found that FKBP10 was involved in mitochondrial electron transport, NADH to ubiquinone transport, mitochondrial respiratory chain complex I assembly, etc. The MetaCore pathway analysis also indicated that FKBP10 was involved in "Ubiquinone metabolism", "Translation_(L)-selenoaminoacid incorporation in proteins during translation", and "Transcription_Negative regulation of HIF1A function". Collectively, this study revealed that FKBP family members are both significant prognostic biomarkers for lung cancer progression and promising clinical therapeutic targets, thus providing new targets for treating LUAD patients.
Collapse
|
34
|
Sun D, Zhang H, Zhang C, Wang L. An evaluation of KIF20A as a prognostic factor and therapeutic target for lung adenocarcinoma using integrated bioinformatics analysis. Front Bioeng Biotechnol 2022; 10:993820. [PMID: 36619388 PMCID: PMC9816395 DOI: 10.3389/fbioe.2022.993820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
The identification of prognostic and therapeutic biomarkers is essential to reduce morbidity and mortality from lung adenocarcinoma (LUAD). This study aimed to identify a reliable prognostic and therapeutic biomarker for LUAD using integrated bioinformatics. Based on the cancer genome atlas (TCGA) and genome-tissue expression (GTEx) analyses, KIF20A has been identified as the hub gene. Following validation using a series of cohorts, survival analysis, meta-analysis, and univariate Cox analysis was conducted. ESTIMATE and CIBERSORT algorithms were then used to study the association of KIF20A with the tumor microenvironment (TME) and the percentage of tumor-infiltrating immune cells (TICs). In vitro experiments were conducted to determine the function of KIF20A. Finally, there was a negative association between the expression of the KIF20A and overall survival, progression-free survival, and disease-free survival, which was confirmed by meta-analysis and COX analysis. Furthermore, KIF20A also had a potential role of altering the TME and TICs proportions in LUAD. Validations in vitro were performed on A549 and PC-9 cell lines, and we found that the knockdown of KIF20A exhibited inhibitory effects on cell proliferation, resulted in cell cycle arrest during the G2/M phase, and induced cellular apoptosis. Our study demonstrated that KIF20A could be utilized as a reliable prognostic marker and treatment target for LUAD. However, further studies are required to validate these findings.
Collapse
Affiliation(s)
- Dongjie Sun
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chi Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Lina Wang
- Department of Pediatric Respiration, The First Hospital of Jilin University, Changchun, China,*Correspondence: Lina Wang,
| |
Collapse
|
35
|
Pan YQ, Xiao Y, Li Z, Tao L, Chen G, Zhu JF, Lv L, Liu JC, Qi JQ, Shao A. Comprehensive analysis of the significance of METTL7A gene in the prognosis of lung adenocarcinoma. Front Oncol 2022; 12:1071100. [PMID: 36620541 PMCID: PMC9817104 DOI: 10.3389/fonc.2022.1071100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022] Open
Abstract
Background The most common subtype of lung cancer, called lung adenocarcinoma (LUAD), is also the largest cause of cancer death in the world. The aim of this study was to determine the importance of the METTL7A gene in the prognosis of patients with LUAD. Methods This particular study used a total of four different LUAD datasets, namely TCGA-LUAD, GSE32863, GSE31210 and GSE13213. Using RT-qPCR, we were able to determine METTL7A expression levels in clinical samples. Univariate and multivariate Cox regression analyses were used to identify factors with independent effects on prognosis in patients with LUAD, and nomograms were designed to predict survival in these patients. Using gene set variation analysis (GSVA), we investigated differences in enriched pathways between METTL7A high and low expression groups. Microenvironmental cell population counter (MCP-counter) and single-sample gene set enrichment analysis (ssGSEA) methods were used to study immune infiltration in LUAD samples. Using the ESTIMATE technique, we were able to determine the immune score, stromal score, and estimated score for each LUAD patient. A competing endogenous RNA network, also known as ceRNA, was established with the help of the Cytoscape program. Results We detected that METTL7A was down-regulated in pan-cancer, including LUAD. The survival study indicates that METTL7A was a protective factor in the prognosis of LUAD. The univariate and multivariate Cox regression analyses revealed that METTL7A was a robust independent prognostic indicator in survival prediction. Through the use of GSVA, several immune-related pathways were shown to be enriched in both the high-expression and low-expression groups of METTL7A. Analysis of the tumor microenvironment revealed that the immune microenvironment of the group with low expression was suppressed, which may be connected to the poor prognosis. To explore the ceRNA regulatory mechanism of METTL7A, we finally constructed a regulatory network containing 1 mRNA, 2 miRNAs, and 5 long non-coding RNAs (lncRNAs). Conclusion In conclusion, we presented METTL7A as a potential and promising prognostic indicator of LUAD. This biomarker has the potential to offer us with a comprehensive perspective of the prediction of prognosis and treatment for LUAD patients.
Collapse
Affiliation(s)
- Ya-Qiang Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Xiao
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenhua Li
- Department of Thoracic Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Long Tao
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ge Chen
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jing-Feng Zhu
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jian-Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jun-Qing Qi
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - AiZhong Shao
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China,*Correspondence: AiZhong Shao,
| |
Collapse
|
36
|
Wang M, Chen X, Fu G, Ge M. Glutathione peroxidase 2 overexpression promotes malignant progression and cisplatin resistance of KRAS‑mutated lung cancer cells. Oncol Rep 2022; 48:207. [PMID: 36222298 PMCID: PMC9579749 DOI: 10.3892/or.2022.8422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) aberrations frequently occur in patients with lung cancer. Oncogenic KRAS is characterized by excessive reactive oxygen species (ROS) accumulation, thus, ROS detoxification may contribute to KRAS‑driven lung tumorigenesis. In the present study, the influence of glutathione peroxidase 2 (GPX2) on malignant progression and cisplatin resistance of KRAS‑driven lung cancer was explored. The RNA sequencing data from TCGA lung cancer samples and GEO database were downloaded and analyzed. The effects of GPX2 on KRAS‑driven lung tumorigenesis were evaluated by western blotting, cell viability assay, soft agar assay, Transwell assay, tumor xenograft model, flow cytometry, BrdU incorporation assay, transcriptome RNA sequencing, luciferase reporter assay and RNA immunoprecipitation. In the present study, GPX2 was upregulated in patients with non‑small cell lung carcinoma (NSCLC), and positively correlated with poor overall survival. Ectopic GPX2 expression facilitated malignant progression of KRASG12C‑transformed BEAS‑2B cells. Moreover, GPX2 overexpression promoted growth, migration, invasion, tumor xenograft growth and cisplatin resistance of KRAS‑mutated NSCLC cells, while GPX2 knockdown exhibited the opposite effects. GPX2 overexpression reduced ROS accumulation and increased matrix metalloproteinase‑1 (MMP1) expression in KRAS‑mutated NSCLC cells. In addition, GPX2 was directly targeted by miR‑325‑3p, while MMP1 knockdown or miR‑325‑3p overexpression partially abrogated the effects of GPX2 in NSCLC cells. In conclusion, the results indicated that GPX2 facilitated malignant progression and cisplatin resistance of KRAS‑driven lung cancer, and inhibition of GPX2 may be a feasible strategy for lung cancer treatment, particularly in patients with active KRAS mutations.
Collapse
Affiliation(s)
- Mei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xu Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guang Fu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mingjian Ge
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
37
|
Zu Y, Wang D, Ping W, Sun W. The roles of CPSF6 in proliferation, apoptosis and tumorigenicity of lung adenocarcinoma. Aging (Albany NY) 2022; 14:9300-9316. [PMID: 36446361 PMCID: PMC9740356 DOI: 10.18632/aging.204407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Cleavage and polyadenylation specific factor 6 (CPSF6), a member of serine/arginine-rich protein family, is implicated in HIV-1-infection and replication. Overexpression of CPSF6 predicts poor prognostic outcomes of breast cancer. However, the expression and possible function of CPSF6 in lung adenocarcinoma (LUAD) still needs to be explored. Here, we found that CPSF6 is significantly higher expressed in tumor tissues than normal tissues in multiple cancer types. Besides, CPSF6 plays a significant risky role in LUAD that is associated with overall survival (HR=1.337, P=0.051) and disease-specific survival (HR=1.4739, P=0.042). CPSF6 mRNA was up-regulated in LUAD tissues by analyzing publicly available datasets from Gene Expression Omnibus (GEO). Further survival analysis on The Cancer Genome Atlas (TCGA) dataset suggested a close correlation between CPSF6 expression and overall survival, and disease-free survival of LUAD patients. Inhibition of CPSF6 expression by lentivirus-mediated RNA interference (RNAi) in two LUAD cell lines (A549 and NCH-H1299) caused a significant reduction in cell proliferation, colony formation and a notable induction in apoptotic rate. CPSF6 knockdown in xenograft tumors inhibited LUAD cell growth in vivo. Moreover, we identified differentially expressed genes with CPSF6 inhibition by Microarray analysis, and pathway analyses revealed that CPSF6 knockdown resulted in the dysregulation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Collectively, our results are the first to demonstrate that CPSF6 functions as an oncoprotein by regulating cancer-related pathways in LUAD.
Collapse
Affiliation(s)
- Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dao Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
38
|
Ye J, Chen J, Wang J, Xia Z, Jia Y. Association of the Timeless Gene with Prognosis and Clinical Characteristics of Human Lung Cancer. Diagnostics (Basel) 2022; 12:2681. [PMID: 36359523 PMCID: PMC9688960 DOI: 10.3390/diagnostics12112681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 07/24/2023] Open
Abstract
(1) Background: As the most common malignant tumor type worldwide, it is necessary to identify novel potential prognostic biomarkers to improve the poor prognosis of lung cancer. The Timeless gene, a circadian rhythm-related gene, is associated with several types of cancer. However, studies analyzing the clinical significance of the Timeless gene in patients with lung cancer are currently limited. (2) Methods: In the present study, the expression levels and prognostic potential of the Timeless gene and its co-expressed genes in different subtypes of lung cancer were explored using multiple bioinformatics approaches. The correlations between the Timeless gene and its co-expressed genes were validated using A549 and NCI-H226 cells by transfecting them with expression vectors and analyses using Western blot and reverse transcription-quantitative PCR. (3) Results: The Oncomine and GEPIA database analyses indicated that the expression of the Timeless gene was significantly higher in lung cancer as compared to that in the normal tissue. Using the UALCAN database, significant differences in Timeless gene expression were determined among different stages of lung cancer and between genders. A Kaplan-Meier plotter analysis indicated that high expression of the Timeless gene was associated with poor overall survival (OS) and progression-free survival (PFS) of patients with lung cancer. In the cBioPortal and GEPIA database analyses, extra spindle pole bodies like 1 (ESPL1) was the top correlated gene of Timeless in patients with lung cancer. Similar to the Timeless gene, high expression of the ESPL1 gene was also associated with poor OS and PFS. Of note, overexpression of the Timeless gene increased the expression level of ESPL1 at both the mRNA and protein levels. (4) Conclusion: The present study explored the clinical significance of the Timeless gene and its correlated gene ESPL1 in patients with lung cancer, thereby providing a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Jishi Ye
- Department of Pain, Renmin Hospital of Wuhan University, 99 Zhang Road, Wuhan 430060, China
| | - Jingli Chen
- Department of Pain, Renmin Hospital of Wuhan University, 99 Zhang Road, Wuhan 430060, China
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430060, China
| | - Juan Wang
- Department of Pain, Renmin Hospital of Wuhan University, 99 Zhang Road, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Pain, Renmin Hospital of Wuhan University, 99 Zhang Road, Wuhan 430060, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, 99 Zhang Road, Wuhan 430060, China
| |
Collapse
|
39
|
Xie T, Fan G, Huang L, Lou N, Han X, Xing P, Shi Y. Analysis on methylation and expression of PSMB8 and its correlation with immunity and immunotherapy in lung adenocarcinoma. Epigenomics 2022; 14:1427-1448. [PMID: 36683462 DOI: 10.2217/epi-2022-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: To find biomarkers for immunity and immunotherapy in lung adenocarcinoma (LUAD) through multiomics analysis. Materials & methods: The multiomics data of patients with LUAD were downloaded from the TCGA and GEO databases. CIBERSORT, quanTIseq, ESTIMATEScore, k-means clustering, gene set enrichment analysis, gene set variation analysis, immunophenoscore and logistic regression were used in this study. Results: PSMB8 HypoMet-HighExp group patients have more active immune-related pathways, more antitumor immune cells, less protumor immune cells, higher immunophenoscore and longer progression-free survival of immune checkpoint inhibitor therapy than HyperMet-LowExp group. In multivariate analysis, PSMB8 showed an independent value. Conclusion: The combination of DNA methylation and mRNA expression of PSMB8 could independently distinguish types of tumor immune microenvironment and predict programmed cell death protein 1/programmed cell death-ligand 1 inhibitors' effects in patients with LUAD.
Collapse
Affiliation(s)
- Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Liling Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ning Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe & Rare Diseases, NMPA Key Laboratory for Clinical Research & Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
40
|
Prognostic Value of GIMAP4 and Its Role in Promoting Immune Cell Infiltration into Tumor Microenvironment of Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7440189. [PMID: 36246963 PMCID: PMC9560834 DOI: 10.1155/2022/7440189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
GIMAPs are recognized as an important regulator in the carcinogenesis and development of lung cancer, but the function of GIMAP4 in the tumor microenvironment (TME) of lung cancers is unclear. In this study, we investigated the expression and variation of GIMAP4 in lung adenocarcinoma (LUAD), to explore its association with infiltration of immune cells. The Cancer Genome Atlas (TCGA) data and Gene Expression Omnibus (GEO) data were analyzed. Infiltration of immune cells was identified with TIMER (Tumor Immune Estimation Resource) and TISIDB (an integrated repository portal for tumor-immune system interactions). GIMAP4 expression declined in non-small-cell lung cancer (NSCLC), correlated with a poor overall survival (OS) in LUAD, indicating that GIMAP4 was a promising prognostic biomarker in LUAD. GIMAP4 mutation frequency was 1.76% in TCGA cohort and was relevant to the expression of immune components. TIMER and CIBERSORT analysis further confirmed that high GIMAP4 expression possibly promoted immune cell infiltration into the TME, with low GIMAP4 impairing the efficacy of immunotherapies targeting common immune check point inhibitors (ICI). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were performed to provide insights into biological processes involved in LUAD. GIMAP4 was expected to be a prognostic biomarker in LUAD and provides potential adjuvant or neoadjuvant therapeutic strategies for targeting ICIs.
Collapse
|
41
|
Zhang L, Jiang B, Lan Z, Yang C, Yao Y, Lin J, Wei Q. Immune infiltration landscape on prognosis and therapeutic response and relevant epigenetic and transcriptomic mechanisms in lung adenocarcinoma. Front Immunol 2022; 13:983570. [PMID: 36275753 PMCID: PMC9582346 DOI: 10.3389/fimmu.2022.983570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Lung adenocarcinoma (LUAD) is the most prevalent lung cancer subtype, but its immune infiltration features are not comprehensively understood. To address the issue, the present study was initiated to describe the immune infiltrations across LUAD from cellular compositional, functional, and mechanism perspectives. Methods We adopted five LUAD datasets (GSE32863, GSE43458, GSE75037, TCGA-LUAD, and GSE72094). Differentially expressed genes between LUAD and controls were selected for co-expression network analysis. Risky immune cell types were determined for classifying LUAD patients as diverse subtypes, followed by a comparison of antitumor immunity and therapeutic response between subtypes. Then, LUAD- and subtype-related key module genes affected by DNA methylation were determined for quantifying a scoring scheme. EXO1 was chosen for functional analysis via in vitro assays. Results Two immune cell infiltration-based subtypes (C1 and C2) were established across LUAD, with poorer prognostic outcomes and lower infiltration of immune cell types in C1. Additionally, C1 presented higher responses to immune checkpoint blockade and targeted agents (JNK inhibitor VIII, BI-D1870, RO-3306, etc.). The scoring system (comprising GAPDH, EXO1, FYN, CFTR, and KLF4) possessed higher accuracy in estimating patients’ prognostic outcomes. EXO1 upregulation contributed to the growth, migration, and invasion of LUAD cells. In addition, EXO1 facilitated PD-L1 and sPD-L1 expression in LUAD cells. Conclusion Altogether, our findings offer a comprehensive understanding of the immune infiltration landscape on prognosis and therapeutic response of LUAD as well as unveil potential epigenetic and transcriptomic mechanisms, which might assist personalized treatment.
Collapse
Affiliation(s)
- Liangming Zhang
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Nanning, Nanning, China
| | - Biwang Jiang
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Nanning, Nanning, China
| | - Zhuxiang Lan
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Nanning, Nanning, China
| | - Chaomian Yang
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Nanning, Nanning, China
| | - Yien Yao
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Nanning, Nanning, China
| | - Jie Lin
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Nanning, Nanning, China
- *Correspondence: Qiu Wei, ; Jie Lin,
| | - Qiu Wei
- Department of Pulmonary and Critical Care Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Nanning, Nanning, China
- *Correspondence: Qiu Wei, ; Jie Lin,
| |
Collapse
|
42
|
Kwon M, Rubio G, Wang H, Riedlinger G, Adem A, Zhong H, Slegowski D, Post-Zwicker L, Chidananda A, Schrump DS, Pine SR, Libutti SK. Smoking-associated Downregulation of FILIP1L Enhances Lung Adenocarcinoma Progression Through Mucin Production, Inflammation, and Fibrosis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1197-1213. [PMID: 36860703 PMCID: PMC9973389 DOI: 10.1158/2767-9764.crc-22-0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Lung adenocarcinoma (LUAD) is the major subtype in lung cancer, and cigarette smoking is essentially linked to its pathogenesis. We show that downregulation of Filamin A interacting protein 1-like (FILIP1L) is a driver of LUAD progression. Cigarette smoking causes its downregulation by promoter methylation in LUAD. Loss of FILIP1L increases xenograft growth, and, in lung-specific knockout mice, induces lung adenoma formation and mucin secretion. In syngeneic allograft tumors, reduction of FILIP1L and subsequent increase in its binding partner, prefoldin 1 (PFDN1) increases mucin secretion, proliferation, inflammation, and fibrosis. Importantly, from the RNA-sequencing analysis of these tumors, reduction of FILIP1L is associated with upregulated Wnt/β-catenin signaling, which has been implicated in proliferation of cancer cells as well as inflammation and fibrosis within the tumor microenvironment. Overall, these findings suggest that down-regulation of FILIP1L is clinically relevant in LUAD, and warrant further efforts to evaluate pharmacologic regimens that either directly or indirectly restore FILIP1L-mediated gene regulation for the treatment of these neoplasms. Significance This study identifies FILIP1L as a tumor suppressor in LUADs and demonstrates that downregulation of FILIP1L is a clinically relevant event in the pathogenesis and clinical course of these neoplasms.
Collapse
Affiliation(s)
- Mijung Kwon
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Genesaret Rubio
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Haitao Wang
- Thoracic Surgery Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Gregory Riedlinger
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Asha Adem
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Hua Zhong
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Daniel Slegowski
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | - David S. Schrump
- Thoracic Surgery Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Sharon R. Pine
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | | |
Collapse
|
43
|
Qiu X, Liu W, Zheng Y, Zeng K, Wang H, Sun H, Dai J. Identification of HMGB2 associated with proliferation, invasion and prognosis in lung adenocarcinoma via weighted gene co-expression network analysis. BMC Pulm Med 2022; 22:310. [PMID: 35962344 PMCID: PMC9373369 DOI: 10.1186/s12890-022-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background High mobility group protein B2 (HMGB2) is a multifunctional protein that plays various roles in different cellular compartments. Moreover, HMGB2 serves as a potential prognostic biomarker and therapeutic target for lung adenocarcinoma (LUAD). Methods In this study, the expression pattern, prognostic implication, and potential role of HMGB2 in LUAD were evaluated using the integrated bioinformatics analyses based on public available mRNA expression profiles from The Cancer Genome Atlas and Gene Expression Omnibus databases, both at the single-cell level and the tissue level. Further study in the patient-derived samples was conducted to explore the correlation between HMGB2 protein expression levels with tissue specificity, (tumor size-lymph node-metastasis) TNM stage, pathological grade, Ki-67 status, and overall survival. In vitro experiments, such as CCK-8, colony-formation and Transwell assay, were performed with human LUAD cell line A549 to investigate the role of HMGB2 in LUAD progression. Furthermore, xenograft tumor model was generated with A549 in nude mice. Results The results showed that the HMGB2 expression was higher in the LUAD samples than in the adjacent normal tissues and was correlated with high degree of malignancy in different public data in this study. Besides, over-expression of HMGB2 promoted A549 cells proliferation and migration while knocking down of HMGB2 suppressed the tumor promoting effect. Conclusions Our study indicated that HMGB2 was remarkably highly expressed in LUAD tissues, suggesting that it is a promising diagnostic and therapeutic marker for LUAD in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02110-y.
Collapse
Affiliation(s)
- Xie Qiu
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China
| | - Wei Liu
- Department of Thoracic Surgery, Haian People's Hospital Affiliated to Nantong University, Haian, People's Republic of China
| | - Yifan Zheng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Kai Zeng
- Department of Thyroid Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Hao Wang
- Yancheng TCM Hospital, Nanjing University of Chinese Medicine, Yancheng, 224002, China
| | - Haijun Sun
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China.
| | - Jianhua Dai
- Department of Cardiothoracic Surgery, The First People's Hospital of Lianyungang, Lianyungang, People's Republic of China.
| |
Collapse
|
44
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
45
|
CCT6A and CHCHD2 Are Coamplified with EGFR and Associated with the Unfavorable Clinical Outcomes of Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:1560199. [PMID: 35937942 PMCID: PMC9352476 DOI: 10.1155/2022/1560199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Chaperonin containing TCP1 subunit 6A (CCT6A) and coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are located at the chromosome 7p11 region proximal to epidermal growth factor receptor (EGFR). However, the amplifications, expressions, and the prognostic effects of CCT6A and CHCDH2 in lung adenocarcinoma (LUAD) are unclear. Here, using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, we found that CCT6A was coamplified and coexpressed with EGFR in LUAD patients. CCT6A amplification was correlated with the unfavorable outcomes of LUAD. Moreover, CCT6A was upregulated in LUAD tissues, and CCT6A overexpression was correlated with the unfavorable relapse free survival or overall survival of LUAD. On the contrary, CCT6A was hypomethylated in LUAD, and CCT6A hypermethylation was correlated with the favorable overall survival of LUAD. Similar expression and methylation profiling of CCT6A were obtained in 479 lung normal tissues and 544 LUAD tissues collected from 11 independent datasets. In 1,462 LUAD patients from eight independent cohorts, CCT6A was also correlated with LUAD relapse-free survival or overall survival. Furthermore, CCT6A overexpression promoted the cell growth and invasion of LUAD. Identification of genes differentially expressed in CCT6A highly expressed LUAD patients revealed that CHCHD2 was the most correlated with CCT6A expression. CHCHD2 was coamplified with CCT6A. CHCHD2 was upregulated in LUAD tissues, and overexpression of CHCHD2 was correlated with the shorted relapse-free survival or overall survival of LUAD. Overall, our results revealed that CCT6A and CHCHD2 were coamplifying and coexpressing with EGFR and were correlated with the unfavorable clinical outcomes of LUAD.
Collapse
|
46
|
Wang J, Yang Q, Tang M, Liu W. Validation and analysis of expression, prognosis and immune infiltration of WNT gene family in non-small cell lung cancer. Front Oncol 2022; 12:911316. [PMID: 35957916 PMCID: PMC9359207 DOI: 10.3389/fonc.2022.911316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis and prognosis prediction of non-small cell lung cancer (NSCLC) have been challenging. Signaling cascades involving the Wingless-type (WNT) gene family play important biological roles and show prognostic value in various cancers, including NSCLC. On this basis, this study aimed to investigate the significance of WNTs in the prognosis and tumor immunity in NSCLC by comprehensive analysis. Expression and methylation levels of WNTs were obtained from the ONCOMINE, TIMER, and UALCAN. The dataset obtained from The Cancer Genome Atlas (TCGA) was utilized for prognostic analysis. cBioPortal was used to perform genetic alterations and correlation analysis of WNTs. R software was employed for functional enrichment and pathway analysis, partial statistics, and graph drawing. TRRUST was used to find key transcription factors. GEPIA was utilized for the analysis of expression, pathological staging, etc. Correlative analysis of immune infiltrates from TIMER. TISIDB was used for further immune infiltration validation analysis. Compared with that of normal tissues, WNT2/2B/3A/4/7A/9A/9B/11 expressions decreased, while WNT3/5B/6/7B/8B/10A/10B/16 expressions increased in lung adenocarcinoma (LUAD); WNT2/3A/7A/11 expressions were lessened, while WNT2B/3/5A/5B/6/7B/10A/10B/16 expressions were enhanced in squamous cell lung cancer (LUSC). Survival analysis revealed that highly expressed WNT2B and lowly expressed WNT7A predicted better prognostic outcomes in LUAD and LUSC. In the study of immune infiltration levels, WNT2, WNT9B, and WNT10A were positively correlated with six immune cells in LUAD; WNT1, WNT2, and WNT9B were positively correlated with six immune cells in LUSC, while WNT7B was negatively correlated. Our study indicated that WNT2B and WNT7A might have prognostic value in LUAD, and both of them might be important prognostic factors in LUSC and correlated to immune cell infiltration in LUAD and LUSC to a certain extent. Considering the prognostic value of WNT2B and WNT7A in NSCLC, we validated their mRNA and protein expression levels in NSCLC by performing qRT-PCR, western blot, and immunohistochemical staining on NSCLC pathological tissues and cell lines. This study may provide some direction for the subsequent exploration of the prognostic value of the WNTs and their role as biomarkers in NSCLC.
Collapse
Affiliation(s)
- Jianglin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingping Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mengjie Tang
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei Liu,
| |
Collapse
|
47
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
48
|
Zheng X, Wang X, He Y, Ge H. Systematic analysis of expression profiles of HMGB family members for prognostic application in non-small cell lung cancer. Front Mol Biosci 2022; 9:844618. [PMID: 35923467 PMCID: PMC9340210 DOI: 10.3389/fmolb.2022.844618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Lung cancer is a significant challenge to human health. Members of the high mobility group (HMG) superfamily (HMGB proteins) are implicated in a wide variety of physiological and pathophysiological processes, but the expression and prognostic value of HMGB family members in non-small cell lung cancer (NSCLC) have not been elucidated. Methods: In this study, ONCOMINE, UALCAN, GEPIA, Kaplan–Meier Plotter, starBase, OncomiR databases, and GeneMANIA were utilized to evaluate the prognostic significance of HMGB family members in NSCLC. Results: HMGB2/3 expression levels were higher in NSCLC patients. HMGB1 expression was higher in lung squamous cell carcinoma (LUSC) and was lower in lung adenocarcinoma (LUAD) tissue than in normal lung tissue. HMGB2 expression was related to cancer stage. Increased HMGB1 mRNA expression levels were associated with improved lung cancer prognosis, including overall survival (OS), first-progression survival (FP), and post-progression survival (PPS). There was no significant association between HMGB2 levels and prognostic indicators. HMGB3 expression was associated with poorer OS. GeneMANIA and GO/KEGG pathway analysis showed that HMGB family members mainly associated with chromosome condensation, regulation of chromatin organization, and nucleosome binding in NSCLC. HMGBs expression were closely correlated with infiltrating levels of specific types of immune cells in NSCLC, especially Th2 cells, Th17 cells, and mast cells. hsa-miR-25-3p, hsa-miR-374a-3p, and hsa-miR-93-5p were significantly positively correlated with HMGB1, HMGB2, and HMGB3, respectively. However, hsa-miR-30a-5p was predicted to significantly negatively regulate HMGB3 expression. Conclusion: Our study revealed that HMGB1 is positively related to the improved prognosis in NSCLC, and demonstrate that HMGB3 might be a risk factor for poorer survival of NSCLC patients.
Collapse
|
49
|
Wang Z, Liu Y, Zhan X, Wang X, Zhang C, Qin L, Liu L, Qin S. A novel prognostic signature of metastasis-associated genes and personalized therapeutic strategy for lung adenocarcinoma patients. Aging (Albany NY) 2022; 14:5571-5589. [PMID: 35830566 PMCID: PMC9320549 DOI: 10.18632/aging.204169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/18/2022] [Indexed: 01/01/2023]
Abstract
Lung adenocarcinoma (LUAD) is a highly invasive and metastatic malignant tumor with high morbidity and mortality. This study aimed to construct a prognostic signature for LUAD patients based on metastasis-associated genes (MAGs). RNA expression profiles were downloaded from the Cancer Genome Atlas (TCGA) database. RRA method was applied to identify differentially expressed MAGs. A total of 192 significantly robust MAGs were determined among seven GEO datasets. MAGs were initially selected through the Lasso Cox regression analysis and 6 MAGs were included to construct a prognostic signature model. Transcriptome profile, patient prognosis, correlation between the risk score and clinicopathological features, immune cell infiltration characteristics, immunotherapy sensitivity and chemotherapy sensitivity differed between low- and high-risk groups after grouping according to median risk score. The reliability and applicability of the signature were further validated in the GSE31210, GSE50081 and GSE68465 cohort. CMap predicted 62 small molecule drugs on the base of the prognostic MAGs. Targeted drug staurosporine had hydrogen bonding with Gln-172 of SLC2A1, which is one of MAGs. Staurosporine could inhibit cell migration in A549 and H1299. We further verified mRNA and protein expression of 6 MAGs in A549 and H1299. The signature can serve as a promising prognostic tool and may provide a novel personalized therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Zhihao Wang
- Hubei University of Science and Technology Xianning Medical College, Xianning 437100, China
| | - Yusi Liu
- Hubei University of Science and Technology Xianning Medical College, Xianning 437100, China
| | - Xiaoqian Zhan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
50
|
Expressional regulation of NKG2DLs is associated with the tumor development and shortened overall survival in lung adenocarcinoma. Immunobiology 2022; 227:152239. [PMID: 35780757 DOI: 10.1016/j.imbio.2022.152239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
Natural killer group 2D ligands (NKG2DLs) are expressed on tumor cells as a ligand for Natural killer group 2D (NKG2D) receptors. NKG2DLs interact with NKG2D to induce immune cell-mediated cytotoxicity for eliminating tumors. Studies demonstrated that tumor cells can reduce NKG2DLs' expression to escape from anti-tumor immunity, leading to an aggressive cancer phenotype and poor prognosis in some cancers. However, these studies are limited and there is no comprehensive work on the regulation of NKG2DLs in lung adenocarcinoma (LUAD) which is one of the deadliest cancers worldwide. Here, we conducted an in silico analysis to evaluate the changes in NKG2DLs in LUAD by analyzing The Cancer Genome Atlas and the Gene Expression Omnibus datasets including tumor vs. normal comparisons, TNM stages, survival and infiltrating immune estimation profile. Results indicated that some members of NKG2DL were downregulated in LUAD as compared to normal samples. We determined that MICA (MHC class I polypeptide-related sequence A) was the most and significantly downregulated ligand among others and the results were nearly consistent with the different datasets which we used. Furthermore, survival analysis revealed that down-regulated MICA transcript expression might be one of the prognostic indicators of LUAD. Interestingly, according to the immune cell infiltrating analysis, there wasn't a direct correlation between the MICA transcript expression and immune cell infiltration, while for MICB there was. In addition, in genetic alteration, DNA methylation and miRNA analyses, we did not observe critical outcomes that would clarify the down-regulated MICA expression in detail. Regardless, this study is highly comprehensive and contributes valuable suggestions to further functional studies about the regulation of NKG2DLs and promising immunotherapeutic approaches in LUAD.
Collapse
|