1
|
Wang M, Huang Y, Liu K, Wang Z, Zhang M, Yuan H, Duan S, Wei L, Yao H, Sun Q, Zhong J, Tang R, Chen J, Sun Y, Li X, Su H, Yang Q, Hu L, Yun L, Yang J, Nie S, Cai Y, Yan J, Zhou K, Wang C, Zhu B, Liu C, He G. Multiple Human Population Movements and Cultural Dispersal Events Shaped the Landscape of Chinese Paternal Heritage. Mol Biol Evol 2024; 41:msae122. [PMID: 38885310 PMCID: PMC11232699 DOI: 10.1093/molbev/msae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Large-scale genomic projects and ancient DNA innovations have ushered in a new paradigm for exploring human evolutionary history. However, the genetic legacy of spatiotemporally diverse ancient Eurasians within Chinese paternal lineages remains unresolved. Here, we report an integrated Y-chromosome genomic database encompassing 15,563 individuals from both modern and ancient Eurasians, including 919 newly reported individuals, to investigate the Chinese paternal genomic diversity. The high-resolution, time-stamped phylogeny reveals multiple diversification events and extensive expansions in the early and middle Neolithic. We identify four major ancient population movements, each associated with technological innovations that have shaped the Chinese paternal landscape. First, the expansion of early East Asians and millet farmers from the Yellow River Basin predominantly carrying O2/D subclades significantly influenced the formation of the Sino-Tibetan people and facilitated the permanent settlement of the Tibetan Plateau. Second, the dispersal of rice farmers from the Yangtze River Valley carrying O1 and certain O2 sublineages reshapes the genetic makeup of southern Han Chinese, as well as the Tai-Kadai, Austronesian, Hmong-Mien, and Austroasiatic people. Third, the Neolithic Siberian Q/C paternal lineages originated and proliferated among hunter-gatherers on the Mongolian Plateau and the Amur River Basin, leaving a significant imprint on the gene pools of northern China. Fourth, the J/G/R paternal lineages derived from western Eurasia, which were initially spread by Yamnaya-related steppe pastoralists, maintain their presence primarily in northwestern China. Overall, our research provides comprehensive genetic evidence elucidating the significant impact of interactions with culturally distinct ancient Eurasians on the patterns of paternal diversity in modern Chinese populations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
| | - Kaijun Liu
- School of International Tourism and Culture, Guizhou Normal University, Guiyang 550025, China
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, Fudan University, Shanghai 200433, China
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Haibing Yuan
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637100, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot 010022, China
| | - Hongbing Yao
- Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou 730000, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Jie Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030001, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Laboratory Medicine and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Qingxin Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junbao Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Yan Cai
- School of Laboratory Medicine and Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637007, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030001, China
| | - Kun Zhou
- MoFang Human Genome Research Institute, Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Chuanchao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chao Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu 610000, China
| |
Collapse
|
2
|
Fan H, Xu Y, Zhao Y, Feng K, Hong L, Zhao Q, Lu X, Shi M, Li H, Wang L, Wen S. Development and validation of YARN: A novel SE-400 MPS kit for East Asian paternal lineage analysis. Forensic Sci Int Genet 2024; 71:103029. [PMID: 38518712 DOI: 10.1016/j.fsigen.2024.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 03/24/2024]
Abstract
Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs. A total of 386 reactions were validated for the effectiveness and applicability of YARN according to SWGDAM validation guidelines, including sensitivity (with a minimum input gDNA of 0.125 ng), mixture identification (ranging from 1:1-1:10), PCR inhibitor testing (using substances such as 50 μM hematin, 100 μM hemoglobin, 100 μM humic acid, and 2.5 mM indigo dye), species specificity (successfully distinguishing humans from other animals), repeatability study (achieved 100% accuracy), and concordance study (with 99.91% accuracy for 1121 Y-STR alleles). Furthermore, we conducted a pilot study using YARN in a cohort of 484 Han Chinese males from Huaiji County, Zhaoqing City, Guangdong, China (GDZQHJ cohort). In this cohort, we identified 52 different Y-haplogroups and 73 different surnames. We found weak to moderate correlations between the Y-haplogroups, Chinese surnames, and geographical locations of the GDZQHJ cohort (with λ values ranging from 0.050 to 0.340). However, when we combined two different categories into a new independent variable, we observed stronger correlations (with λ values ranging from 0.617 to 0.754). Overall, the YARN panel, which combines Y-STR and Y-SNP genetic markers, meets forensic DNA quality assurance guidelines and holds potential for East Asian geographical origin inference and paternal lineage analysis.
Collapse
Affiliation(s)
- Haoliang Fan
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Yiran Xu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China.
| | - Yutao Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Kai Feng
- Duanzhou Branch of Zhaoqing Public Security Bureau, Zhaoqing 526060, China.
| | - Liuxi Hong
- Sihui Public Security Bureau of Guangdong Province, Zhaoqing 526299, China.
| | - Qiancheng Zhao
- Public Security Bureau of Zhaoqing Municipality, Zhaoqing 526000, China.
| | - Xiaoyu Lu
- Deepreads Biotech Company Limited, Guangzhou 510663, China.
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Haiyan Li
- Criminal Technology Center of Guangdong Provincial Public Security Department, Guangzhou 510050, China.
| | - Lingxiang Wang
- MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| | - Shaoqing Wen
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China; Institute of Archaeological Science, Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
He G, Wang M, Miao L, Chen J, Zhao J, Sun Q, Duan S, Wang Z, Xu X, Sun Y, Liu Y, Liu J, Wang Z, Wei L, Liu C, Ye J, Wang L. Multiple founding paternal lineages inferred from the newly-developed 639-plex Y-SNP panel suggested the complex admixture and migration history of Chinese people. Hum Genomics 2023; 17:29. [PMID: 36973821 PMCID: PMC10045532 DOI: 10.1186/s40246-023-00476-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Non-recombining regions of the Y-chromosome recorded the evolutionary traces of male human populations and are inherited haplotype-dependently and male-specifically. Recent whole Y-chromosome sequencing studies have identified previously unrecognized population divergence, expansion and admixture processes, which promotes a better understanding and application of the observed patterns of Y-chromosome genetic diversity. RESULTS Here, we developed one highest-resolution Y-chromosome single nucleotide polymorphism (Y-SNP) panel targeted for uniparental genealogy reconstruction and paternal biogeographical ancestry inference, which included 639 phylogenetically informative SNPs. We genotyped these loci in 1033 Chinese male individuals from 33 ethnolinguistically diverse populations and identified 256 terminal Y-chromosomal lineages with frequency ranging from 0.0010 (singleton) to 0.0687. We identified six dominant common founding lineages associated with different ethnolinguistic backgrounds, which included O2a2b1a1a1a1a1a1a1-M6539, O2a1b1a1a1a1a1a1-F17, O2a2b1a1a1a1a1b1a1b-MF15397, O2a2b2a1b1-A16609, O1b1a1a1a1b2a1a1-F2517, and O2a2b1a1a1a1a1a1-F155. The AMOVA and nucleotide diversity estimates revealed considerable differences and high genetic diversity among ethnolinguistically different populations. We constructed one representative phylogenetic tree among 33 studied populations based on the haplogroup frequency spectrum and sequence variations. Clustering patterns in principal component analysis and multidimensional scaling results showed a genetic differentiation between Tai-Kadai-speaking Li, Mongolic-speaking Mongolian, and other Sinitic-speaking Han Chinese populations. Phylogenetic topology inferred from the BEAST and Network relationships reconstructed from the popART further showed the founding lineages from culturally/linguistically diverse populations, such as C2a/C2b was dominant in Mongolian people and O1a/O1b was dominant in island Li people. We also identified many lineages shared by more than two ethnolinguistically different populations with a high proportion, suggesting their extensive admixture and migration history. CONCLUSIONS Our findings indicated that our developed high-resolution Y-SNP panel included major dominant Y-lineages of Chinese populations from different ethnic groups and geographical regions, which can be used as the primary and powerful tool for forensic practice. We should emphasize the necessity and importance of whole sequencing of more ethnolinguistically different populations, which can help identify more unrecognized population-specific variations for the promotion of Y-chromosome-based forensic applications.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Mengge Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Miao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Jing Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Jie Zhao
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Xiaofei Xu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Hohhot, 010028, Inner Mongolia, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian Ye
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| | - Le Wang
- National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, China.
| |
Collapse
|
4
|
García-Fernández C, Lizano E, Telford M, Olalde Í, de Cid R, Larmuseau MHD, M. de Pancorbo M, Calafell F. Y-chromosome target enrichment reveals rapid expansion of haplogroup R1b-DF27 in Iberia during the Bronze Age transition. Sci Rep 2022; 12:20708. [PMID: 36456614 PMCID: PMC9715704 DOI: 10.1038/s41598-022-25200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The Y chromosome can yield a unique perspective into the study of human demographic history. However, due to the repetitive nature of part of its sequence, only a small set of regions are suitable for variant calling and discovery from short-read sequencing data. These regions combined represent 8.9 Mbp or 0.14% of a diploid human genome. Consequently, investing in whole-genome sequencing to resolve Y-chromosome questions is poorly efficient. Here we use, as an alternative, target enrichment technology to greatly increase sequencing effectiveness, validating and applying the technique to 181 males, for 162 of whom we obtained a positive result. Additionally, 75 samples sequenced for the whole genome were also included, for a total sample size of 237. These samples were chosen for their Y chromosome haplogroup: R1b-DF27. In the context of European populations, and particularly in Iberia, this haplogroup stands out for its high frequency and its demographic history. Current evidence indicates that the diffusion of this haplogroup is related to the population movements that mark the cultural Bronze Age transition, making it remarkably interesting for population geneticists. The results of this study show the effects of the rapid radiation of the haplogroup in Spain, as even with the higher discriminating power of whole sequences, most haplotypes still fall within the R1b-DF27* paragroup rather than in the main derived branches. However, we were able to refine the ISOGG 2019-2020 phylogeny, and its two main subbranches, namely L176.2 and Z272, which present geographical differentiation between the Atlantic and Mediterranean coasts of Iberia.
Collapse
Affiliation(s)
- Carla García-Fernández
- grid.5612.00000 0001 2172 2676Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Esther Lizano
- grid.5612.00000 0001 2172 2676Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marco Telford
- grid.5612.00000 0001 2172 2676Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Íñigo Olalde
- grid.11480.3c0000000121671098BIOMICs Research Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque—Basque Foundation of Science, Bilbao, Spain
| | - Rafael de Cid
- grid.429186.00000 0004 1756 6852Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Maarten H. D. Larmuseau
- grid.5596.f0000 0001 0668 7884Laboratory of Human Genetic Genealogy, Department of Human Genetics, KU Leuven, Leuven, Belgium ,grid.5284.b0000 0001 0790 3681ARCHES–Antwerp Cultural Heritage Sciences, Faculty of Design Sciences, University of Antwerp, Antwerp, Belgium ,Histories Vzw, Gent, Belgium
| | - Marian M. de Pancorbo
- grid.11480.3c0000000121671098BIOMICs Research Group, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesc Calafell
- grid.5612.00000 0001 2172 2676Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
5
|
Font-Porterias N, García-Fernández C, Aizpurua-Iraola J, Comas D, Torrents D, de Cid R, Calafell F. Sequence diversity of the uniparentally transmitted portions of the genome in the resident population of Catalonia. Forensic Sci Int Genet 2022; 61:102783. [DOI: 10.1016/j.fsigen.2022.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
6
|
Targeted Y chromosome capture enrichment in admixed South American samples with haplogroup Q. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2022. [DOI: 10.1016/j.fsigss.2022.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Hadi S, Yao J, Adnan A. Editorial: Role of Y Chromosome in Molecular Anthropology, Forensics, and Genetic Genealogy. Front Genet 2022; 13:863455. [PMID: 35754810 PMCID: PMC9218708 DOI: 10.3389/fgene.2022.863455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Sibte Hadi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Jun Yao
- Department of Forensic Genetics, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Atif Adnan
- Department of Forensic Genetics, School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Testing the Ion AmpliSeq™ HID Y-SNP Research Panel v1 for performance and resolution in admixed South Americans of haplogroup Q. Forensic Sci Int Genet 2022; 59:102708. [DOI: 10.1016/j.fsigen.2022.102708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
|
9
|
Zho Z, Zhou Y, Li Z, Yao Y, Yang Q, Qian J, Shao C, Qian X, Sun K, Tang Q, Xie J. Identification and assessment of a subset of Y-SNPs with recurrent mutation for forensic purpose. Forensic Sci Int 2022; 334:111270. [DOI: 10.1016/j.forsciint.2022.111270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
|
10
|
Ai H, Zhang M, Yang B, Goldberg A, Li W, Ma J, Brandt D, Zhang Z, Nielsen R, Huang L. Human-Mediated Admixture and Selection Shape the Diversity on the Modern Swine (Sus scrofa) Y Chromosomes. Mol Biol Evol 2021; 38:5051-5065. [PMID: 34343337 PMCID: PMC8557463 DOI: 10.1093/molbev/msab230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Throughout its distribution across Eurasia, domestic pig (Sus scrofa) populations have acquired differences through natural and artificial selection, and have often interbred. We resequenced 80 Eurasian pigs from nine different Asian and European breeds; we identify 42,288 reliable SNPs on the Y chromosome in a panel of 103 males, among which 96.1% are newly detected. Based on these new data, we elucidate the evolutionary history of pigs through the lens of the Y chromosome. We identify two highly divergent haplogroups: one present only in Asia and one fixed in Europe but present in some Asian populations. Analyzing the European haplotypes present in Asian populations, we find evidence of three independent waves of introgression from Europe to Asia in last 200 years, agreeing well with the literature and historical records. The diverse European lineages were brought in China by humans and left significant imprints not only on the autosomes but also on the Y chromosome of geographically and genetically distinct Chinese pig breeds. We also find a general excess of European ancestry on Y chromosomes relative to autosomes in Chinese pigs, an observation that cannot be explained solely by sex-biased migration and genetic drift. The European Y haplotype is associated with leaner meat production, and we hypothesize that the European Y chromosome increased in frequency in Chinese populations due to artificial selection. We find evidence of Y chromosomal gene flow between Sumatran wild boar and Chinese pigs. Our results demonstrate how human-mediated admixture and selection shaped the distribution of modern swine Y chromosomes.
Collapse
Affiliation(s)
- Huashui Ai
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Mingpeng Zhang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Bin Yang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Wanbo Li
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Junwu Ma
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Debora Brandt
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Zhiyan Zhang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China
| |
Collapse
|
11
|
Genetic insights into the paternal admixture history of Chinese Mongolians via high-resolution customized Y-SNP SNaPshot panels. Forensic Sci Int Genet 2021; 54:102565. [PMID: 34332322 DOI: 10.1016/j.fsigen.2021.102565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
The Mongolian people, one of the Mongolic-speaking populations, are native to the Mongolian Plateau in North China and southern Siberia. Many ancient DNA studies recently reported extensive population transformations during the Paleolithic to historic periods in this region, while little is known about the paternal genetic legacy of modern geographically different Mongolians. Here, we genotyped 215 Y-chromosomal single nucleotide polymorphisms (Y-SNPs) and 37 Y-chromosomal short tandem repeats (Y-STRs) among 679 Mongolian individuals from Hohhot, Hulunbuir, and Ordos in North China using the AGCU Y37 kit and our developed eight Y-SNP SNaPshot panels (including two panels first reported herein). The C-M130 Y-SNP SNaPshot panel defines 28 subhaplogroups, and the N/O/Q complementary Y-SNP SNaPshot panel defines 30 subhaplogroups of N1b-F2930, N1a1a1a1a3-B197, Q-M242, and O2a2b1a1a1a4a-CTS4658, which improved the resolution our developed Y-SNP SNaPshot panel set and could be applied for dissecting the finer-scale paternal lineages of Mongolic speakers. We found a strong association between Mongolian-prevailing haplogroups and some observed microvariants among the newly generated Y-STR haplotype data, suggesting the possibility of haplogroup prediction based on the distribution of Y-STR haplotypes. We identified three main ancestral sources of the observed Mongolian-dominant haplogroups, including the local lineage of C2*-M217 and incoming lineages from other regions of southern East Asia (O2*-M122, O1b*-P31, and N1*-CTS3750) and western Eurasia (R1*-M173). We also observed DE-M145, D1*-M174, C1*-F3393, G*-M201, I-M170, J*-M304, L-M20, O1a*-M119, and Q*-M242 at relatively low frequencies (< 5.00%), suggesting a complex admixture history between Mongolians and other incoming Eurasians from surrounding regions. Genetic clustering analyses indicated that the studied Mongolians showed close genetic affinities with other Altaic-speaking populations and Sinitic-speaking Hui people. The Y-SNP haplotype/haplogroup-based genetic legacy not only revealed that the stratification among geographically/linguistically/ethnically different Chinese populations was highly consistent with the geographical division and language classification, but also demonstrated that patrilineal genetic materials could provide fine-scale genetic structures among geographically different Mongolian people, suggesting that our developed high-resolution Y-SNP SNaPshot panels have the potential for forensic pedigree searches and biogeographical ancestry inference.
Collapse
|
12
|
Improved Models of Coalescence Ages of Y-DNA Haplogroups. Genes (Basel) 2021; 12:genes12060862. [PMID: 34200049 PMCID: PMC8228294 DOI: 10.3390/genes12060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022] Open
Abstract
Databases of commercial DNA-testing companies now contain more customers with sequenced DNA than any completed academic study, leading to growing interest from academic and forensic entities. An important result for both these entities and the test takers themselves is how closely two individuals are related in time, as calculated through one or more molecular clocks. For Y-DNA, existing interpretations of these clocks are insufficiently accurate to usefully measure relatedness in historic times. In this article, I update the methods used to calculate coalescence ages (times to most-recent common ancestor, or TMRCAs) using a new, probabilistic statistical model that includes Y-SNP, Y-STR and ancilliary historical data, and provide examples of its use.
Collapse
|
13
|
Abstract
A common assumption in dating patrilineal events using Y-chromosome sequencing data is that the Y-chromosome mutation rate is invariant across haplogroups. Previous studies revealed interhaplogroup heterogeneity in phylogenetic branch length. Whether this heterogeneity is caused by interhaplogroup mutation rate variation or nongenetic confounders remains unknown. Here, we analyzed whole-genome sequences from cultured cells derived from >1,700 males. We confirmed the presence of branch length heterogeneity. We demonstrate that sex-chromosome mutations that appear within cell lines, which likely occurred somatically or in vitro (and are thus not influenced by nongenetic confounders) are informative for germline mutational processes. Using within-cell-line mutations, we computed a relative Y-chromosome somatic mutation rate, and uncovered substantial variation (up to 83.3%) in this proxy for germline mutation rate among haplogroups. This rate positively correlates with phylogenetic branch length, indicating that interhaplogroup mutation rate variation is a likely cause of branch length heterogeneity.
Collapse
Affiliation(s)
- Qiliang Ding
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Ya Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
- New York Genome Center, New York, NY
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
- Department of Computational Biology, Cornell University, Ithaca, NY
| |
Collapse
|
14
|
García-Fernández C, Font-Porterias N, Kučinskas V, Sukarova-Stefanovska E, Pamjav H, Makukh H, Dobon B, Bertranpetit J, Netea MG, Calafell F, Comas D. Sex-biased patterns shaped the genetic history of Roma. Sci Rep 2020; 10:14464. [PMID: 32879340 PMCID: PMC7468237 DOI: 10.1038/s41598-020-71066-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The Roma population is a European ethnic minority characterized by recent and multiple dispersals and founder effects. After their origin in South Asia around 1,500 years ago, they migrated West. In Europe, they diverged into ethnolinguistically distinct migrant groups that spread across the continent. Previous genetic studies based on genome-wide data and uniparental markers detected Roma founder events and West-Eurasian gene flow. However, to the best of our knowledge, it has not been assessed whether these demographic processes have equally affected both sexes in the population. The present study uses the largest and most comprehensive dataset of complete mitochondrial and Y chromosome Roma sequences to unravel the sex-biased patterns that have shaped their genetic history. The results show that the Roma maternal genetic pool carries a higher lineage diversity from South Asia, as opposed to a single paternal South Asian lineage. Nonetheless, the European gene flow events mainly occurred through the maternal lineages; however, a signal of this gene flow is also traceable in the paternal lineages. We also detect a higher female migration rate among European Roma groups. Altogether, these results suggest that sociocultural factors influenced the emergence of sex-biased genetic patterns at global and local scales in the Roma population through time.
Collapse
Affiliation(s)
- C García-Fernández
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - N Font-Porterias
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - V Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Biomedical Science Institute, Vilnius University, Vilnius, Lithuania
| | - E Sukarova-Stefanovska
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Academy of Sciences and Arts of the Republic of North Macedonia - MASA, Skopje, Republic of North Macedonia
| | - H Pamjav
- Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - H Makukh
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lviv, Ukraine
| | - B Dobon
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - J Bertranpetit
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - M G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA, Nijmegen, the Netherlands.,Department of Human Genetics, University of Medicine and Pharmacy Craiova, Craiova, Romania.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - F Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - D Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
15
|
Hallast P, Agdzhoyan A, Balanovsky O, Xue Y, Tyler-Smith C. A Southeast Asian origin for present-day non-African human Y chromosomes. Hum Genet 2020; 140:299-307. [PMID: 32666166 PMCID: PMC7864842 DOI: 10.1007/s00439-020-02204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
The genomes of present-day humans outside Africa originated almost entirely from a single out-migration ~ 50,000–70,000 years ago, followed by mixture with Neanderthals contributing ~ 2% to all non-Africans. However, the details of this initial migration remain poorly understood because no ancient DNA analyses are available from this key time period, and interpretation of present-day autosomal data is complicated due to subsequent population movements/reshaping. One locus, however, does retain male-specific information from this early period: the Y chromosome, where a detailed calibrated phylogeny has been constructed. Three present-day Y lineages were carried by the initial migration: the rare haplogroup D, the moderately rare C, and the very common FT lineage which now dominates most non-African populations. Here, we show that phylogenetic analyses of haplogroup C, D and FT sequences, including very rare deep-rooting lineages, together with phylogeographic analyses of ancient and present-day non-African Y chromosomes, all point to East/Southeast Asia as the origin 50,000–55,000 years ago of all known surviving non-African male lineages (apart from recent migrants). This observation contrasts with the expectation of a West Eurasian origin predicted by a simple model of expansion from a source near Africa, and can be interpreted as resulting from extensive genetic drift in the initial population or replacement of early western Y lineages from the east, thus informing and constraining models of the initial expansion.
Collapse
Affiliation(s)
- Pille Hallast
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia. .,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Anastasia Agdzhoyan
- Vavilov Institute of General Genetics, Moscow, 119991, Russia.,Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Moscow, 119991, Russia.,Research Centre for Medical Genetics, Moscow, 115522, Russia.,Biobank of North Eurasia, Moscow, 115201, Russia
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
16
|
Naidoo T, Xu J, Vicente M, Malmström H, Soodyall H, Jakobsson M, Schlebusch CM. Y-Chromosome Variation in Southern African Khoe-San Populations Based on Whole-Genome Sequences. Genome Biol Evol 2020; 12:1031-1039. [PMID: 32697300 PMCID: PMC7375190 DOI: 10.1093/gbe/evaa098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
Although the human Y chromosome has effectively shown utility in uncovering facets of human evolution and population histories, the ascertainment bias present in early Y-chromosome variant data sets limited the accuracy of diversity and TMRCA estimates obtained from them. The advent of next-generation sequencing, however, has removed this bias and allowed for the discovery of thousands of new variants for use in improving the Y-chromosome phylogeny and computing estimates that are more accurate. Here, we describe the high-coverage sequencing of the whole Y chromosome in a data set of 19 male Khoe-San individuals in comparison with existing whole Y-chromosome sequence data. Due to the increased resolution, we potentially resolve the source of haplogroup B-P70 in the Khoe-San, and reconcile recently published haplogroup A-M51 data with the most recent version of the ISOGG Y-chromosome phylogeny. Our results also improve the positioning of tentatively placed new branches of the ISOGG Y-chromosome phylogeny. The distribution of major Y-chromosome haplogroups in the Khoe-San and other African groups coincide with the emerging picture of African demographic history; with E-M2 linked to the agriculturalist Bantu expansion, E-M35 linked to pastoralist eastern African migrations, B-M112 linked to earlier east-south gene flow, A-M14 linked to shared ancestry with central African rainforest hunter-gatherers, and A-M51 potentially unique to the Khoe-San.
Collapse
Affiliation(s)
- Thijessen Naidoo
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Sweden
- Science for Life Laboratory, Uppsala, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Jingzi Xu
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Mário Vicente
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Helena Malmström
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
- Academy of Science of South Africa
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Science for Life Laboratory, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Science for Life Laboratory, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
17
|
Rivera Franco N, Braga Y, Espitia Fajardo M, Barreto G. Identifying new lineages in the Y chromosome of Colombian Amazon indigenous populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:165-175. [PMID: 32141615 DOI: 10.1002/ajpa.24039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES The Y chromosome has highly informative markers, such as single-nucleotide polymorphisms (SNPs), that are useful for making historical inferences about the settlement of the Americas. However, the scarcity of these markers has limited their use. This study aims to identify new SNPs and increase the phylogenetic resolution of haplogroup Q for the Americas, mainly focusing on the lineages of the Amazon region. MATERIALS AND METHODS Next-generation sequencing was performed on two Y chromosomes belonging to haplogroup Q-M3 using samples with divergent short tandem repeat haplotypes from the Colombian Amazon, and 14 of the new variants identified were selected for characterization in 207 samples of indigenous Colombians belonging to haplogroup Q-M3. RESULTS This methodology allowed us to establish nine new lineages within Q-M3, including its paragroups. The most basal lineages were predominant in communities of Andean origin, such as the Embera-Katio, the Nasas, and the Pastos. In contrast, the most distal lineages were restricted to inhabitants of the Amazon region of Vaupés. DISCUSSION The SNPs reported here advance the development of subhaplogroups of Q-M3 with a higher level of phylogenetic resolution than has been previously reported, which allowed the differentiation between populations that inhabit two regions of Vaupes area: the Pirá-Paraná region and the upper and middle sections of the Vaupés River, and the region encompassing the Papurí River and the lower Vaupés. They are very useful for the microevolutionary analysis of the Amerindian populations of Colombia and of the Americas.
Collapse
Affiliation(s)
- Nelson Rivera Franco
- Laboratory of Human Molecular Genetics, Department of Biology, Universidad del Valle, Cali, Colombia
| | - Yamid Braga
- Laboratory of Human Molecular Genetics, Department of Biology, Universidad del Valle, Cali, Colombia.,Research Group in Biology, Languages and History. IMGB, Corpodihva, Mitú, Colombia
| | - Marisol Espitia Fajardo
- Laboratory of Human Molecular Genetics, Department of Biology, Universidad del Valle, Cali, Colombia
| | - Guillermo Barreto
- Laboratory of Human Molecular Genetics, Department of Biology, Universidad del Valle, Cali, Colombia
| |
Collapse
|
18
|
Eales JM, Maan AA, Xu X, Michoel T, Hallast P, Batini C, Zadik D, Prestes PR, Molina E, Denniff M, Schroeder J, Bjorkegren JLM, Thompson J, Maffia P, Guzik TJ, Keavney B, Jobling MA, Samani NJ, Charchar FJ, Tomaszewski M. Human Y Chromosome Exerts Pleiotropic Effects on Susceptibility to Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:2386-2401. [PMID: 31644355 PMCID: PMC6818981 DOI: 10.1161/atvbaha.119.312405] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supplemental Digital Content is available in the text. The male-specific region of the Y chromosome (MSY) remains one of the most unexplored regions of the genome. We sought to examine how the genetic variants of the MSY influence male susceptibility to coronary artery disease (CAD) and atherosclerosis.
Collapse
Affiliation(s)
- James M Eales
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.)
| | - Akhlaq A Maan
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.)
| | - Xiaoguang Xu
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.)
| | - Tom Michoel
- The Roslin Institute, The University of Edinburgh, United Kingdom (T.M.).,Computational Biology Unit and Department of Informatics, University of Bergen, Norway (T.M.)
| | - Pille Hallast
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia (P.H.)
| | - Chiara Batini
- Department of Health Sciences (C.B., J.T.), University of Leicester, United Kingdom
| | - Daniel Zadik
- Department of Genetics and Genome Biology (D.Z., M.A.J.), University of Leicester, United Kingdom
| | - Priscilla R Prestes
- School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria (P.R.P., E.M., F.J.C.)
| | - Elsa Molina
- School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria (P.R.P., E.M., F.J.C.)
| | - Matthew Denniff
- Department of Cardiovascular Sciences (M.D., N.J.S., F.J.C.), University of Leicester, United Kingdom
| | - Juliane Schroeder
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation (J.S., P.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences (J.S., P.M., T.J.G.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Johan L M Bjorkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (J.L.M.B.)
| | - John Thompson
- Department of Health Sciences (C.B., J.T.), University of Leicester, United Kingdom
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation (J.S., P.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences (J.S., P.M., T.J.G.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Italy (P.M.)
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences (J.S., P.M., T.J.G.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Jagiellonian University College of Medicine, Kraków, Poland (T.J.G.)
| | - Bernard Keavney
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.).,Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, United Kingdom (B.K., M.T.)
| | - Mark A Jobling
- Department of Genetics and Genome Biology (D.Z., M.A.J.), University of Leicester, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences (M.D., N.J.S., F.J.C.), University of Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, United Kingdom (N.J.S.)
| | - Fadi J Charchar
- Department of Cardiovascular Sciences (M.D., N.J.S., F.J.C.), University of Leicester, United Kingdom.,School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria (P.R.P., E.M., F.J.C.).,Department of Physiology, University of Melbourne, Parkville, Victoria, Australia (F.J.C.)
| | - Maciej Tomaszewski
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.).,Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, United Kingdom (B.K., M.T.)
| |
Collapse
|
19
|
Haber M, Jones AL, Connell BA, Asan, Arciero E, Yang H, Thomas MG, Xue Y, Tyler-Smith C. A Rare Deep-Rooting D0 African Y-Chromosomal Haplogroup and Its Implications for the Expansion of Modern Humans Out of Africa. Genetics 2019; 212:1421-1428. [PMID: 31196864 PMCID: PMC6707464 DOI: 10.1534/genetics.119.302368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Present-day humans outside Africa descend mainly from a single expansion out ∼50,000-70,000 years ago, but many details of this expansion remain unclear, including the history of the male-specific Y chromosome at this time. Here, we reinvestigate a rare deep-rooting African Y-chromosomal lineage by sequencing the whole genomes of three Nigerian men described in 2003 as carrying haplogroup DE* Y chromosomes, and analyzing them in the context of a calibrated worldwide Y-chromosomal phylogeny. We confirm that these three chromosomes do represent a deep-rooting DE lineage, branching close to the DE bifurcation, but place them on the D branch as an outgroup to all other known D chromosomes, and designate the new lineage D0. We consider three models for the expansion of Y lineages out of Africa ∼50,000-100,000 years ago, incorporating migration back to Africa where necessary to explain present-day Y-lineage distributions. Considering both the Y-chromosomal phylogenetic structure incorporating the D0 lineage, and published evidence for modern humans outside Africa, the most favored model involves an origin of the DE lineage within Africa with D0 and E remaining there, and migration out of the three lineages (C, D, and FT) that now form the vast majority of non-African Y chromosomes. The exit took place 50,300-81,000 years ago (latest date for FT lineage expansion outside Africa - earliest date for the D/D0 lineage split inside Africa), and most likely 50,300-59,400 years ago (considering Neanderthal admixture). This work resolves a long-running debate about Y-chromosomal out-of-Africa/back-to-Africa migrations, and provides insights into the out-of-Africa expansion more generally.
Collapse
Affiliation(s)
- Marc Haber
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | | - Bruce A Connell
- Glendon College, York University, Toronto, Ontario M4N 3N6, Canada
| | - Asan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Elena Arciero
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Science, 310008 Hangzhou, China
| | - Mark G Thomas
- Research Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK, and University College London (UCL) Genetics Institute, University College London, WC1E 6BT, UK
| | - Yali Xue
- The Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | | |
Collapse
|
20
|
Lorente-Galdos B, Lao O, Serra-Vidal G, Santpere G, Kuderna LFK, Arauna LR, Fadhlaoui-Zid K, Pimenoff VN, Soodyall H, Zalloua P, Marques-Bonet T, Comas D. Whole-genome sequence analysis of a Pan African set of samples reveals archaic gene flow from an extinct basal population of modern humans into sub-Saharan populations. Genome Biol 2019; 20:77. [PMID: 31023378 PMCID: PMC6485163 DOI: 10.1186/s13059-019-1684-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/28/2019] [Indexed: 12/30/2022] Open
Abstract
Background Population demography and gene flow among African groups, as well as the putative archaic introgression of ancient hominins, have been poorly explored at the genome level. Results Here, we examine 15 African populations covering all major continental linguistic groups, ecosystems, and lifestyles within Africa through analysis of whole-genome sequence data of 21 individuals sequenced at deep coverage. We observe a remarkable correlation among genetic diversity and geographic distance, with the hunter-gatherer groups being more genetically differentiated and having larger effective population sizes throughout most modern-human history. Admixture signals are found between neighbor populations from both hunter-gatherer and agriculturalists groups, whereas North African individuals are closely related to Eurasian populations. Regarding archaic gene flow, we test six complex demographic models that consider recent admixture as well as archaic introgression. We identify the fingerprint of an archaic introgression event in the sub-Saharan populations included in the models (~ 4.0% in Khoisan, ~ 4.3% in Mbuti Pygmies, and ~ 5.8% in Mandenka) from an early divergent and currently extinct ghost modern human lineage. Conclusion The present study represents an in-depth genomic analysis of a Pan African set of individuals, which emphasizes their complex relationships and demographic history at population level. Electronic supplementary material The online version of this article (10.1186/s13059-019-1684-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Belen Lorente-Galdos
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF/CSIC), Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gerard Serra-Vidal
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF/CSIC), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Gabriel Santpere
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF/CSIC), Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Lukas F K Kuderna
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF/CSIC), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Lara R Arauna
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF/CSIC), Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Karima Fadhlaoui-Zid
- College of Science, Department of Biology, Taibah University, Al Madinah, Al Monawarah, Saudi Arabia.,Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba, BP, 382, 9000, Beja, Tunisia
| | - Ville N Pimenoff
- Oncology Data Analytics Program, Bellvitge Biomedical Research Institute (ICO-IDIBELL), Consortium for Biomedical Research in Epidemiology and Public Health, Hospitalet de Llobregat, Barcelona, Spain.,Department of Archaeology, University of Helsinki, Helsinki, Finland
| | - Himla Soodyall
- Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Pierre Zalloua
- School of Medicine, The Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Tomas Marques-Bonet
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF/CSIC), Universitat Pompeu Fabra, 08003, Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, 08028, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, ICREA, 08003, Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF/CSIC), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
21
|
Wang M, Wang Z, He G, Liu J, Wang S, Qian X, Lang M, Li J, Xie M, Li C, Hou Y. Developmental validation of a custom panel including 165 Y-SNPs for Chinese Y-chromosomal haplogroups dissection using the ion S5 XL system. Forensic Sci Int Genet 2019; 38:70-76. [DOI: 10.1016/j.fsigen.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 02/03/2023]
|
22
|
Jobin M, Schurz H, Henn BM. IMPUTOR: Phylogenetically Aware Software for Imputation of Errors in Next-Generation Sequencing. Genome Biol Evol 2018; 10:1248-1254. [PMID: 29722813 PMCID: PMC5961346 DOI: 10.1093/gbe/evy088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
We introduce IMPUTOR, software for phylogenetically aware imputation of missing haploid nonrecombining genomic data. Targeted for next-generation sequencing data, IMPUTOR uses the principle of parsimony to impute data marked as missing due to low coverage. Along with efficiently imputing missing variant genotypes, IMPUTOR is capable of reliably and accurately correcting many nonmissing sites that represent spurious sequencing errors. Tests on simulated data show that IMPUTOR is capable of detecting many induced mutations without making erroneous imputations/corrections, with as many as 95% of missing sites imputed and 81% of errors corrected under optimal conditions. We tested IMPUTOR with human Y-chromosomes from pairs of close relatives and demonstrate IMPUTOR's efficacy in imputing missing and correcting erroneous calls.
Collapse
Affiliation(s)
- Matthew Jobin
- Department of Anthropology, Santa Clara University.,UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz
| | - Haiko Schurz
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Tygerberg, South Africa
| | - Brenna M Henn
- Department of Anthropology and the Genome Center, University of California, Davis
| |
Collapse
|
23
|
Genetic diversities and phylogenetic analyses of three Chinese main ethnic groups in southwest China: A Y-Chromosomal STR study. Sci Rep 2018; 8:15339. [PMID: 30337624 PMCID: PMC6193932 DOI: 10.1038/s41598-018-33751-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 10/05/2018] [Indexed: 01/25/2023] Open
Abstract
Short tandem repeats (STRs) located on the Y chromosome with the properties of male-specific inheritance and haploidy are widely used in forensics to analyze paternal genealogies and match male trace donors to evidence. Besides, Y-chromosomal haplotypes play an important role in providing breathtaking insights into population genetic history. However, the genetic diversity and forensic characteristics of Y-STRs in Guizhou main ethnic groups (Hans, Miaos and Bouyeis) remain uncharacterized. Here, we obtained Y-chromosomal 23-marker haplotypes in three Guizhou populations and submitted the first batch of Y-STR haplotype data to the YHRD. The HD in the aforementioned three populations are 0.99990, 0.99983, and 0.99979, respectively, and DC values are 0.9902, 0.9908, and 0.97959, respectively. Subsequently, genetic differentiation between our newly studied populations and reference groups along ethnic/administrative divisions, as well as national/continental boundaries were investigated via AMOVA, MDS, and phylogenetic relationship reconstruction. Significant genetic differentiations from our subjects and other groups are identified in ethnically, linguistically and geographically diverse populations, including most prominently Tibetans and Uyghurs among 30 mainland Chinese populations, Taiwanese groups and others among 58 Asian populations, as well as African groups and others among 89 worldwide populations. Qiannan Bouyei has a close genetic relationship with Guangxi Zhuang, and Zunyi Han and Qiandongnan Miao have close genetic affinity with Hunan Han and Guizhou Shui, respectively. Collectively, this new-generation Y-STR amplification system can be used as a supplementary tool in forensic identification and male parentage testing and even pedigree search.
Collapse
|
24
|
Scheib CL, Li H, Desai T, Link V, Kendall C, Dewar G, Griffith PW, Mörseburg A, Johnson JR, Potter A, Kerr SL, Endicott P, Lindo J, Haber M, Xue Y, Tyler-Smith C, Sandhu MS, Lorenz JG, Randall TD, Faltyskova Z, Pagani L, Danecek P, O'Connell TC, Martz P, Boraas AS, Byrd BF, Leventhal A, Cambra R, Williamson R, Lesage L, Holguin B, Ygnacio-De Soto E, Rosas J, Metspalu M, Stock JT, Manica A, Scally A, Wegmann D, Malhi RS, Kivisild T. Ancient human parallel lineages within North America contributed to a coastal expansion. Science 2018; 360:1024-1027. [PMID: 29853687 DOI: 10.1126/science.aar6851] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
Little is known regarding the first people to enter the Americas and their genetic legacy. Genomic analysis of the oldest human remains from the Americas showed a direct relationship between a Clovis-related ancestral population and all modern Central and South Americans as well as a deep split separating them from North Americans in Canada. We present 91 ancient human genomes from California and Southwestern Ontario and demonstrate the existence of two distinct ancestries in North America, which possibly split south of the ice sheets. A contribution from both of these ancestral populations is found in all modern Central and South Americans. The proportions of these two ancestries in ancient and modern populations are consistent with a coastal dispersal and multiple admixture events.
Collapse
Affiliation(s)
- C L Scheib
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK. .,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Hongjie Li
- Department of Anthropology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tariq Desai
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Vivian Link
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Christopher Kendall
- Department of Anthropology, University of Toronto, Toronto, Ontario M5S 2S2, Canada
| | - Genevieve Dewar
- Department of Anthropology, University of Toronto, Toronto, Ontario M5S 2S2, Canada
| | | | | | - John R Johnson
- Santa Barbara Museum of Natural History, Santa Barbara, CA 93105, USA
| | - Amiee Potter
- Department of Anthropology, Portland State University, Portland, OR 97232, USA.,Knight Diagnostics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Susan L Kerr
- Department of Anthropology, Modesto Junior College, Modesto, CA 95350, USA
| | - Phillip Endicott
- Department Hommes Natures Societies, Musée de l'Homme, Paris 75016, France
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Marc Haber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Joseph G Lorenz
- Department of Anthropology and Museum Studies, Central Washington University, Ellensburg, WA 98926, USA
| | - Tori D Randall
- Department of Anthropology, San Diego City College, San Diego, CA 92101, USA
| | - Zuzana Faltyskova
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.,APE Lab, Department of Biology, University of Padova, Padova, Italy
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Tamsin C O'Connell
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Patricia Martz
- Department of Anthropology, California State University, Los Angeles, CA 90032, USA
| | | | - Brian F Byrd
- Far Western Anthropological Research Group Inc., Davis, CA 95618, USA
| | - Alan Leventhal
- Muwekma Ohlone Tribe of the San Francisco Bay Area, P.O. Box 360791, Milpitas, CA 95036, USA.,Department of Anthropology, San Jose State University, San Jose, CA 95192, USA
| | - Rosemary Cambra
- Muwekma Ohlone Tribe of the San Francisco Bay Area, P.O. Box 360791, Milpitas, CA 95036, USA
| | | | | | - Brian Holguin
- Department of Anthropology, University of California, Los Angeles, CA 90095, USA
| | - Ernestine Ygnacio-De Soto
- Barbareño Chumash, California Indian Advisory Committee, Santa Barbara Museum of Natural History, Santa Barbara, CA 93105, USA
| | | | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK.,Department of Anthropology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Daniel Wegmann
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | - Ripan S Malhi
- Department of Anthropology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Toomas Kivisild
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK. .,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
25
|
Whole Y-chromosome sequences reveal an extremely recent origin of the most common North African paternal lineage E-M183 (M81). Sci Rep 2017; 7:15941. [PMID: 29162904 PMCID: PMC5698413 DOI: 10.1038/s41598-017-16271-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022] Open
Abstract
E-M183 (E-M81) is the most frequent paternal lineage in North Africa and thus it must be considered to explore past historical and demographical processes. Here, by using whole Y chromosome sequences from 32 North African individuals, we have identified five new branches within E-M183. The validation of these variants in more than 200 North African samples, from which we also have information of 13 Y-STRs, has revealed a strong resemblance among E-M183 Y-STR haplotypes that pointed to a rapid expansion of this haplogroup. Moreover, for the first time, by using both SNP and STR data, we have provided updated estimates of the times-to-the-most-recent-common-ancestor (TMRCA) for E-M183, which evidenced an extremely recent origin of this haplogroup (2,000-3,000 ya). Our results also showed a lack of population structure within the E-M183 branch, which could be explained by the recent and rapid expansion of this haplogroup. In spite of a reduction in STR heterozygosity towards the West, which would point to an origin in the Near East, ancient DNA evidence together with our TMRCA estimates point to a local origin of E-M183 in NW Africa.
Collapse
|
26
|
Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, Groves C, Pybus M, Sonay TB, Roos C, Lameira AR, Wich SA, Askew J, Davila-Ross M, Fredriksson G, de Valles G, Casals F, Prado-Martinez J, Goossens B, Verschoor EJ, Warren KS, Singleton I, Marques DA, Pamungkas J, Perwitasari-Farajallah D, Rianti P, Tuuga A, Gut IG, Gut M, Orozco-terWengel P, van Schaik CP, Bertranpetit J, Anisimova M, Scally A, Marques-Bonet T, Meijaard E, Krützen M. Morphometric, Behavioral, and Genomic Evidence for a New Orangutan Species. Curr Biol 2017; 27:3487-3498.e10. [PMID: 29103940 DOI: 10.1016/j.cub.2017.09.047] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022]
Abstract
Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexander Nater
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| | - Maja P Mattle-Greminger
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Anton Nurcahyo
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia
| | - Matthew G Nowak
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Department of Anthropology, Southern Illinois University, 1000 Faner Drive, Carbondale, IL 62901, USA
| | - Marc de Manuel
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Tariq Desai
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Colin Groves
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia
| | - Marc Pybus
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Tugce Bilgin Sonay
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Adriano R Lameira
- Department of Anthropology, Durham University, Dawson Building, South Road, Durham DH1 3LE, UK; School of Psychology & Neuroscience, St. Andrews University, St. Mary's Quad, South Street, St. Andrews, Fife KY16 9JP, Scotland, UK
| | - Serge A Wich
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098, the Netherlands
| | - James Askew
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Marina Davila-Ross
- Department of Psychology, University of Portsmouth, King Henry Building, King Henry 1(st) Street, Portsmouth PO1 2DY, UK
| | - Gabriella Fredriksson
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098, the Netherlands
| | - Guillem de Valles
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Ferran Casals
- Servei de Genòmica, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | | | - Benoit Goossens
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia; Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia; Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff CF10 3BA, UK
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ Rijswijk, the Netherlands
| | - Kristin S Warren
- Conservation Medicine Program, College of Veterinary Medicine, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Ian Singleton
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Foundation for a Sustainable Ecosystem (YEL), Medan, Indonesia
| | - David A Marques
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Joko Pamungkas
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Faculty of Veterinary Medicine, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
| | - Dyah Perwitasari-Farajallah
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Animal Biosystematics and Ecology Division, Department of Biology, Bogor Agricultural University, Jalan Agatis, Dramaga Campus, Bogor 16680, Indonesia
| | - Puji Rianti
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Animal Biosystematics and Ecology Division, Department of Biology, Bogor Agricultural University, Jalan Agatis, Dramaga Campus, Bogor 16680, Indonesia
| | - Augustine Tuuga
- Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia
| | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Carel P van Schaik
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain; Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, UK
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Erik Meijaard
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia; Borneo Futures, Bandar Seri Begawan, Brunei Darussalam.
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
27
|
Qian X, Hou J, Wang Z, Ye Y, Lang M, Gao T, Liu J, Hou Y. Next Generation Sequencing Plus (NGS+) with Y-chromosomal Markers for Forensic Pedigree Searches. Sci Rep 2017; 7:11324. [PMID: 28900279 PMCID: PMC5595879 DOI: 10.1038/s41598-017-11955-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 11/17/2022] Open
Abstract
There is high demand for forensic pedigree searches with Y-chromosome short tandem repeat (Y-STR) profiling in large-scale crime investigations. However, when two Y-STR haplotypes have a few mismatched loci, it is difficult to determine if they are from the same male lineage because of the high mutation rate of Y-STRs. Here we design a new strategy to handle cases in which none of pedigree samples shares identical Y-STR haplotype. We combine next generation sequencing (NGS), capillary electrophoresis and pyrosequencing under the term ‘NGS+’ for typing Y-STRs and Y-chromosomal single nucleotide polymorphisms (Y-SNPs). The high-resolution Y-SNP haplogroup and Y-STR haplotype can be obtained with NGS+. We further developed a new data-driven decision rule, FSindex, for estimating the likelihood for each retrieved pedigree. Our approach enables positive identification of pedigree from mismatched Y-STR haplotypes. It is envisaged that NGS+ will revolutionize forensic pedigree searches, especially when the person of interest was not recorded in forensic DNA database.
Collapse
Affiliation(s)
- Xiaoqin Qian
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jiayi Hou
- Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yi Ye
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Min Lang
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tianzhen Gao
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Abstract
The properties of the human Y chromosome - namely, male specificity, haploidy and escape from crossing over - make it an unusual component of the genome, and have led to its genetic variation becoming a key part of studies of human evolution, population history, genealogy, forensics and male medical genetics. Next-generation sequencing (NGS) technologies have driven recent progress in these areas. In particular, NGS has yielded direct estimates of mutation rates, and an unbiased and calibrated molecular phylogeny that has unprecedented detail. Moreover, the availability of direct-to-consumer NGS services is fuelling a rise of 'citizen scientists', whose interest in resequencing their own Y chromosomes is generating a wealth of new data.
Collapse
|
29
|
Kivisild T. The study of human Y chromosome variation through ancient DNA. Hum Genet 2017; 136:529-546. [PMID: 28260210 PMCID: PMC5418327 DOI: 10.1007/s00439-017-1773-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
High throughput sequencing methods have completely transformed the study of human Y chromosome variation by offering a genome-scale view on genetic variation retrieved from ancient human remains in context of a growing number of high coverage whole Y chromosome sequence data from living populations from across the world. The ancient Y chromosome sequences are providing us the first exciting glimpses into the past variation of male-specific compartment of the genome and the opportunity to evaluate models based on previously made inferences from patterns of genetic variation in living populations. Analyses of the ancient Y chromosome sequences are challenging not only because of issues generally related to ancient DNA work, such as DNA damage-induced mutations and low content of endogenous DNA in most human remains, but also because of specific properties of the Y chromosome, such as its highly repetitive nature and high homology with the X chromosome. Shotgun sequencing of uniquely mapping regions of the Y chromosomes to sufficiently high coverage is still challenging and costly in poorly preserved samples. To increase the coverage of specific target SNPs capture-based methods have been developed and used in recent years to generate Y chromosome sequence data from hundreds of prehistoric skeletal remains. Besides the prospects of testing directly as how much genetic change in a given time period has accompanied changes in material culture the sequencing of ancient Y chromosomes allows us also to better understand the rate at which mutations accumulate and get fixed over time. This review considers genome-scale evidence on ancient Y chromosome diversity that has recently started to accumulate in geographic areas favourable to DNA preservation. More specifically the review focuses on examples of regional continuity and change of the Y chromosome haplogroups in North Eurasia and in the New World.
Collapse
Affiliation(s)
- Toomas Kivisild
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, CB2 1QH, UK.
- Estonian Biocentre, 51010, Tartu, Estonia.
| |
Collapse
|
30
|
Toward a consensus on SNP and STR mutation rates on the human Y-chromosome. Hum Genet 2017; 136:575-590. [PMID: 28455625 DOI: 10.1007/s00439-017-1805-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
The mutation rate on the Y-chromosome matters for estimating the time-to-the-most-recent-common-ancestor (TMRCA, i.e. haplogroup age) in population genetics, as well as for forensic, medical, and genealogical studies. Large-scale sequencing efforts have produced several independent estimates of Y-SNP mutation rates. Genealogical, or pedigree, rates tend to be slightly faster than evolutionary rates obtained from ancient DNA or calibrations using dated (pre)historical events. It is, therefore, suggested to report TMRCAs using an envelope defined by the average aDNA-based rate and the average pedigree-based rate. The current estimate of the "envelope rate" is 0.75-0.89 substitutions per billion base pairs per year. The available Y-SNP mutation rates can be applied to high-coverage data from the entire X-degenerate region, but other datasets may demand recalibrated rates. While a consensus on Y-SNP rates is approaching, the debate on Y-STR rates has continued for two decades, because multiple genealogical rates were consistent with each other but three times faster than the single evolutionary estimate. Applying Y-SNP and Y-STR rates to the same haplogroups recently helped to clarify the issue. Genealogical and evolutionary STR rates typically provide lower and upper bounds of the "true" (SNP-based) age. The genealogical rate often-but not always-works well for haplogroups less than 7000 years old. The evolutionary rate, although calibrated using recent events, inflates ages of young haplogroups and deflates the age of the entire Y-chromosomal tree, but often provides reasonable estimates for intermediate ages (old haplogroups). Future rate estimates and accumulating case studies should further clarify the Y-SNP rates.
Collapse
|
31
|
Improved phylogenetic resolution for Y-chromosome Haplogroup O2a1c-002611. Sci Rep 2017; 7:1146. [PMID: 28442769 PMCID: PMC5430735 DOI: 10.1038/s41598-017-01340-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/28/2017] [Indexed: 11/25/2022] Open
Abstract
Y-chromosome Haplogroup O2a1c-002611 is one of the dominant lineages of East Asians and Southeast Asians. However, its internal phylogeny remains insufficiently investigated. In this study, we genotyped 89 new highly informative single nucleotide polymorphisms (SNPs) in 305 individuals with Haplogroup O2a1c-002611 identified from 2139 Han Chinese males. Two major branches were identified, O2a1c1-F18 and O2a1c2-L133.2 and the first was further divided into two main subclades, O2a1c1a-F11 and O2a1c1b-F449, accounting for 11.13% and 2.20% of Han Chinese, respectively. In Haplogroup O2a1c1a-F11, we also determined seven sublineages with quite different frequency distributions in Han Chinese ranging from 0.187% to 3.553%, implying they might have different demographic history. The reconstructed haplogroup tree for all the major clades within Haplogroup O2a1c-002611 permits better resolution of male lineages in population studies of East Asia and Southeast Asia. The dataset generated in the present study are also valuable for forensic identification and paternity tests in China.
Collapse
|
32
|
Mondal M, Bergström A, Xue Y, Calafell F, Laayouni H, Casals F, Majumder PP, Tyler-Smith C, Bertranpetit J. Y-chromosomal sequences of diverse Indian populations and the ancestry of the Andamanese. Hum Genet 2017; 136:499-510. [PMID: 28444560 DOI: 10.1007/s00439-017-1800-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 01/25/2023]
Abstract
We present 42 new Y-chromosomal sequences from diverse Indian tribal and non-tribal populations, including the Jarawa and Onge from the Andaman Islands, which are analysed within a calibrated Y-chromosomal phylogeny incorporating South Asian (in total 305 individuals) and worldwide (in total 1286 individuals) data from the 1000 Genomes Project. In contrast to the more ancient ancestry in the South than in the North that has been claimed, we detected very similar coalescence times within Northern and Southern non-tribal Indian populations. A closest neighbour analysis in the phylogeny showed that Indian populations have an affinity towards Southern European populations and that the time of divergence from these populations substantially predated the Indo-European migration into India, probably reflecting ancient shared ancestry rather than the Indo-European migration, which had little effect on Indian male lineages. Among the tribal populations, the Birhor (Austro-Asiatic-speaking) and Irula (Dravidian-speaking) are the nearest neighbours of South Asian non-tribal populations, with a common origin in the last few millennia. In contrast, the Riang (Tibeto-Burman-speaking) and Andamanese have their nearest neighbour lineages in East Asia. The Jarawa and Onge shared haplogroup D lineages with each other within the last ~7000 years, but had diverged from Japanese haplogroup D Y-chromosomes ~53000 years ago, most likely by a split from a shared ancestral population. This analysis suggests that Indian populations have complex ancestry which cannot be explained by a single expansion model.
Collapse
Affiliation(s)
- Mayukh Mondal
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA,, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA,, UK
| | - Francesc Calafell
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA,, UK.
| | - Jaume Bertranpetit
- Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
33
|
Batini C, Jobling MA. Detecting past male-mediated expansions using the Y chromosome. Hum Genet 2017; 136:547-557. [PMID: 28349239 DOI: 10.1007/s00439-017-1781-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/15/2017] [Indexed: 12/29/2022]
Abstract
Males and females display biological differences that lead to a higher variance of offspring number in males, and this is frequently exacerbated in human societies by mating practices, and possibly by past socio-cultural circumstances. This implies that the genetic record might contain the imprint of past male-mediated expansions, which can be investigated by analysing the male-specific region of the Y chromosome (MSY). Here, we review studies that have used MSY data to infer such expansions. Sets of short-tandem repeats define haplotypes of very low average frequencies, but in a few cases, high-frequency haplotypes are observed, forming the core of descent clusters. Estimates of the ages of such clusters, together with geographical information, have been used to propose powerful historical founders, including Genghis Khan, although without direct supporting evidence. Resequencing of multi-megabase segments of MSY has allowed the construction of detailed phylogenies in which branch lengths are proportional to time, leading to the identification of lineage expansions in the last few millennia as well as the more distant past. Comparisons with maternally-inherited mitochondrial DNA sequence data allow the male specificity of some of these expansions to be demonstrated. These include expansions in Europe in the last ~5000 years that may be associated with a cultural shift during the Bronze Age, as well as expansions elsewhere in the world for which explanations from archaeological evidence are not yet clear.
Collapse
Affiliation(s)
- Chiara Batini
- Department of Health Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Mark A Jobling
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
34
|
Y chromosome palindromes and gene conversion. Hum Genet 2017; 136:605-619. [PMID: 28303348 DOI: 10.1007/s00439-017-1777-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023]
Abstract
The presence of large and near-identical inverted repeat sequences (called palindromes) is a common feature of the constitutively haploid sex chromosomes of different species. Despite the fact palindromes originated in a non-recombining context, they have evolved a strong recombinational activity in the form of abundant arm-to-arm gene conversion. Their independent appearance in different species suggests they can have a profound biological significance that has yet to be fully clarified. It has been theorized that natural selection may have favored palindromic organization of male-specific genes and that the establishment of intra-palindrome gene conversion has strong adaptive significance. Arm-to-arm gene conversion allows the efficient removal of deleterious mutations, increases the fixation rate of beneficial mutations and has played an important role in modulating the equilibrium between gene loss and acquisition during Y chromosome evolution. Additionally, a palindromic organization of duplicates could favor the formation of unusual chromatin structures and could optimize the use of gene conversion as a mechanism to maintain the structural integrity of male-specific genes. In this review, we describe the structural features of palindromes on mammalian sex chromosomes and summarize different hypotheses regarding palindrome evolution and the functional benefits of arm-to-arm gene conversion on the unique haploid portion of the nuclear genome.
Collapse
|
35
|
Abstract
The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.
Collapse
|
36
|
Trombetta B, Fantini G, D'Atanasio E, Sellitto D, Cruciani F. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome. Sci Rep 2016; 6:28710. [PMID: 27346230 PMCID: PMC4921805 DOI: 10.1038/srep28710] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Long Terminal Repeats (LTRs) are nearly identical DNA sequences found at either end of Human Endogenous Retroviruses (HERVs). The high sequence similarity that exists among different LTRs suggests they could be substrate of ectopic gene conversion events. To understand the extent to which gene conversion occurs and to gain new insights into the evolutionary history of these elements in humans, we performed an intra-species phylogenetic study of 52 LTRs on different unrelated Y chromosomes. From this analysis, we obtained direct evidence that demonstrates the occurrence of ectopic gene conversion in several LTRs, with donor sequences located on both sex chromosomes and autosomes. We also found that some of these elements are characterized by an extremely high density of polymorphisms, showing one of the highest nucleotide diversities in the human genome, as well as a complex patchwork of sequences derived from different LTRs. Finally, we highlighted the limits of current short-read NGS studies in the analysis of genetic diversity of the LTRs in the human genome. In conclusion, our comparative re-sequencing analysis revealed that ectopic gene conversion is a common event in the evolution of LTR elements, suggesting complex genetic links among LTRs from different chromosomes.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Gloria Fantini
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | | | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, CNR, Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
37
|
Poznik GD, Xue Y, Mendez FL, Willems TF, Massaia A, Wilson Sayres MA, Ayub Q, McCarthy SA, Narechania A, Kashin S, Chen Y, Banerjee R, Rodriguez-Flores JL, Cerezo M, Shao H, Gymrek M, Malhotra A, Louzada S, Desalle R, Ritchie GRS, Cerveira E, Fitzgerald TW, Garrison E, Marcketta A, Mittelman D, Romanovitch M, Zhang C, Zheng-Bradley X, Abecasis GR, McCarroll SA, Flicek P, Underhill PA, Coin L, Zerbino DR, Yang F, Lee C, Clarke L, Auton A, Erlich Y, Handsaker RE, Bustamante CD, Tyler-Smith C. Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences. Nat Genet 2016; 48:593-9. [PMID: 27111036 PMCID: PMC4884158 DOI: 10.1038/ng.3559] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
We report the sequences of 1,244 human Y chromosomes randomly ascertained from 26 worldwide populations by the 1000 Genomes Project. We discovered more than 65,000 variants, including single-nucleotide variants, multiple-nucleotide variants, insertions and deletions, short tandem repeats, and copy number variants. Of these, copy number variants contribute the greatest predicted functional impact. We constructed a calibrated phylogenetic tree on the basis of binary single-nucleotide variants and projected the more complex variants onto it, estimating the number of mutations for each class. Our phylogeny shows bursts of extreme expansion in male numbers that have occurred independently among each of the five continental superpopulations examined, at times of known migrations and technological innovations.
Collapse
Affiliation(s)
- G David Poznik
- Program in Biomedical Informatics, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fernando L Mendez
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Thomas F Willems
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- New York Genome Center, New York, New York, USA
| | - Andrea Massaia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Melissa A Wilson Sayres
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Qasim Ayub
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shane A McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Seva Kashin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yuan Chen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ruby Banerjee
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Maria Cerezo
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Haojing Shao
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Melissa Gymrek
- New York Genome Center, New York, New York, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ankit Malhotra
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Sandra Louzada
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rob Desalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| | - Graham R S Ritchie
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Eliza Cerveira
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | | | - Erik Garrison
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anthony Marcketta
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Mittelman
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Chengsheng Zhang
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Xiangqun Zheng-Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Gonçalo R Abecasis
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Peter A Underhill
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Lachlan Coin
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Daniel R Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Charles Lee
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Adam Auton
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yaniv Erlich
- New York Genome Center, New York, New York, USA
- Department of Computer Science, Fu Foundation School of Engineering, Columbia University, New York, New York, USA
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, USA
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos D Bustamante
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
38
|
|
39
|
Barbieri C, Hübner A, Macholdt E, Ni S, Lippold S, Schröder R, Mpoloka SW, Purps J, Roewer L, Stoneking M, Pakendorf B. Refining the Y chromosome phylogeny with southern African sequences. Hum Genet 2016; 135:541-553. [PMID: 27043341 PMCID: PMC4835522 DOI: 10.1007/s00439-016-1651-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 12/04/2022]
Abstract
The recent availability of large-scale sequence data for the human Y chromosome has revolutionized analyses of and insights gained from this non-recombining, paternally inherited chromosome. However, the studies to date focus on Eurasian variation, and hence the diversity of early-diverging branches found in Africa has not been adequately documented. Here, we analyze over 900 kb of Y chromosome sequence obtained from 547 individuals from southern African Khoisan- and Bantu-speaking populations, identifying 232 new sequences from basal haplogroups A and B. We identify new clades in the phylogeny, an older age for the root, and substantially older ages for some individual haplogroups. Furthermore, while haplogroup B2a is traditionally associated with the spread of Bantu speakers, we find that it probably also existed in Khoisan groups before the arrival of Bantu speakers. Finally, there is pronounced variation in branch length between major haplogroups; in particular, haplogroups associated with Bantu speakers have significantly longer branches. Technical artifacts cannot explain this branch length variation, which instead likely reflects aspects of the demographic history of Bantu speakers, such as recent population expansion and an older average paternal age. The influence of demographic factors on branch length variation has broader implications both for the human Y phylogeny and for similar analyses of other species.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 07745, Jena, Germany.
| | - Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Enrico Macholdt
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Shengyu Ni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Sebastian Lippold
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | | | - Josephine Purps
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, 10559, Berlin, Germany
| | - Lutz Roewer
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité-Universitätsmedizin, 10559, Berlin, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Brigitte Pakendorf
- Dynamique du Langage, UMR5596, CNRS & Université Lyon 2, 69363, Lyon Cedex 07, France.
| |
Collapse
|
40
|
New native South American Y chromosome lineages. J Hum Genet 2016; 61:593-603. [PMID: 27030145 DOI: 10.1038/jhg.2016.26] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/23/2016] [Accepted: 02/22/2016] [Indexed: 11/09/2022]
Abstract
Many single-nucleotide polymorphisms (SNPs) in the non-recombining region of the human Y chromosome have been described in the last decade. High-coverage sequencing has helped to characterize new SNPs, which has in turn increased the level of detail in paternal phylogenies. However, these paternal lineages still provide insufficient information on population history and demography, especially for Native Americans. The present study aimed to identify informative paternal sublineages derived from the main founder lineage of the Americas-haplogroup Q-L54-in a sample of 1841 native South Americans. For this purpose, we used a Y-chromosomal genotyping multiplex platform and conventional genotyping methods to validate 34 new SNPs that were identified in the present study by sequencing, together with many Y-SNPs previously described in the literature. We updated the haplogroup Q phylogeny and identified two new Q-M3 and three new Q-L54*(xM3) sublineages defined by five informative SNPs, designated SA04, SA05, SA02, SA03 and SA29. Within the Q-M3, sublineage Q-SA04 was mostly found in individuals from ethnic groups belonging to the Tukanoan linguistic family in the northwest Amazon, whereas sublineage Q-SA05 was found in Peruvian and Bolivian Amazon ethnic groups. Within Q-L54*, the derived sublineages Q-SA03 and Q-SA02 were exclusively found among Coyaima individuals (Cariban linguistic family) from Colombia, while Q-SA29 was found only in Maxacali individuals (Jean linguistic family) from southeast Brazil. Furthermore, we validated the usefulness of several published SNPs among indigenous South Americans. This new Y chromosome haplogroup Q phylogeny offers an informative paternal genealogy to investigate the pre-Columbian history of South America.Journal of Human Genetics advance online publication, 31 March 2016; doi:10.1038/jhg.2016.26.
Collapse
|
41
|
Voskarides K, Mazières S, Hadjipanagi D, Di Cristofaro J, Ignatiou A, Stefanou C, King RJ, Underhill PA, Chiaroni J, Deltas C. Y-chromosome phylogeographic analysis of the Greek-Cypriot population reveals elements consistent with Neolithic and Bronze Age settlements. INVESTIGATIVE GENETICS 2016; 7:1. [PMID: 26870315 PMCID: PMC4750176 DOI: 10.1186/s13323-016-0032-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 12/15/2022]
Abstract
Background The archeological record indicates that the permanent settlement of Cyprus began with pioneering agriculturalists circa 11,000 years before present, (ca. 11,000 y BP). Subsequent colonization events followed, some recognized regionally. Here, we assess the Y-chromosome structure of Cyprus in context to regional populations and correlate it to phases of prehistoric colonization. Results Analysis of haplotypes from 574 samples showed that island-wide substructure was barely significant in a spatial analysis of molecular variance (SAMOVA). However, analyses of molecular variance (AMOVA) of haplogroups using 92 binary markers genotyped in 629 Cypriots revealed that the proportion of variance among the districts was irregularly distributed. Principal component analysis (PCA) revealed potential genetic associations of Greek-Cypriots with neighbor populations. Contrasting haplogroups in the PCA were used as surrogates of parental populations. Admixture analyses suggested that the majority of G2a-P15 and R1b-M269 components were contributed by Anatolia and Levant sources, respectively, while Greece Balkans supplied the majority of E-V13 and J2a-M67. Haplotype-based expansion times were at historical levels suggestive of recent demography. Conclusions Analyses of Cypriot haplogroup data are consistent with two stages of prehistoric settlement. E-V13 and E-M34 are widespread, and PCA suggests sourcing them to the Balkans and Levant/Anatolia, respectively. The persistent pre-Greek component is represented by elements of G2-U5(xL30) haplogroups: U5*, PF3147, and L293. J2b-M205 may contribute also to the pre-Greek strata. The majority of R1b-Z2105 lineages occur in both the westernmost and easternmost districts. Distinctively, sub-haplogroup R1b- M589 occurs only in the east. The absence of R1b- M589 lineages in Crete and the Balkans and the presence in Asia Minor are compatible with Late Bronze Age influences from Anatolia rather than from Mycenaean Greeks. Electronic supplementary material The online version of this article (doi:10.1186/s13323-016-0032-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Stéphane Mazières
- Aix Marseille Université, ADES UMR7268, CNRS, EFS-AM, Marseille, France
| | - Despina Hadjipanagi
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | | | - Anastasia Ignatiou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Charalambos Stefanou
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| | - Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA
| | - Peter A Underhill
- Department of Genetics, Stanford University, Stanford, California 94305 USA
| | - Jacques Chiaroni
- Aix Marseille Université, ADES UMR7268, CNRS, EFS-AM, Marseille, France
| | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Kallipoleos 75, 1678 Nicosia, Cyprus
| |
Collapse
|
42
|
Aarnes SG, Hagen SB, Andreassen R, Schregel J, Knappskog PM, Hailer F, Stenhouse G, Janke A, Eiken HG. Y-chromosomal testing of brown bears (Ursus arctos): Validation of a multiplex PCR-approach for nine STRs suitable for fecal and hair samples. Forensic Sci Int Genet 2015; 19:197-204. [PMID: 26264959 DOI: 10.1016/j.fsigen.2015.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/27/2015] [Accepted: 07/26/2015] [Indexed: 11/15/2022]
Abstract
High-resolution Y-chromosomal markers have been applied to humans and other primates to study population genetics, migration, social structures and reproduction. Y-linked markers allow the direct assessment of the genetic structure and gene flow of uniquely male inherited lineages and may also be useful for wildlife conservation and forensics, but have so far been available only for few wild species. Thus, we have developed two multiplex PCR reactions encompassing nine Y-STR markers identified from the brown bear (Ursus arctos) and tested them on hair, fecal and tissue samples. The multiplex PCR approach was optimized and analyzed for species specificity, sensitivity and stutter-peak ratios. The nine Y-STRs also showed specific STR-fragments for male black bears and male polar bears, while none of the nine markers produced any PCR products when using DNA from female bears or males from 12 other mammals. The multiplex PCR approach in two PCR reactions could be amplified with as low as 0.2 ng template input. Precision was high in DNA templates from hairs, fecal scats and tissues, with standard deviations less than 0.14 and median stutter ratios from 0.04 to 0.63. Among the eight di- and one tetra-nucleotide repeat markers, we detected simple repeat structures in seven of the nine markers with 9-25 repeat units. Allelic variation was found for eight of the nine Y-STRs, with 2-9 alleles for each marker and a total of 36 alleles among 453 male brown bears sampled mainly from Northern Europe. We conclude that the multiplex PCR approach with these nine Y-STRs would provide male bear Y-chromosomal specificity and evidence suited for samples from conservation and wildlife forensics.
Collapse
Affiliation(s)
| | | | - Rune Andreassen
- Faculty of Health Sciences, Oslo and Akershus University College, Oslo Norway
| | | | | | - Frank Hailer
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Gordon Stenhouse
- Foothills Research Institute, 1176 Switzer Drive, Box 6330, Hinton, AB T7V 1X6, Canada
| | - Axel Janke
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Goethe University Frankfurt, Institute for Ecology, Evolution & Diversity, Frankfurt am Main, Germany
| | | |
Collapse
|
43
|
Rothe J, Nagy M. Separation of Y-chromosomal haplotypes from male DNA mixtures via multiplex haplotype-specific extraction. Forensic Sci Int Genet 2015; 19:223-231. [PMID: 26275613 DOI: 10.1016/j.fsigen.2015.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/05/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
Abstract
In forensic analysis, the interpretation of DNA mixtures is the subject of ongoing debate and requires expertise knowledge. Haplotype-specific extraction (HSE) is an alternative method that enables the separation of large chromosome fragments or haplotypes by using magnetic beads in conjunction with allele-specific probes. HSE thus allows physical separation of the components of a DNA mixture. Here, we present the first multiplex HSE separation of a Y-chromosomal haplotype consisting of six Yfiler short tandem repeat markers from a mixture of male DNA.
Collapse
Affiliation(s)
- Jessica Rothe
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité- Campus Virchow-Klinikum, Augustenburger Platz 1, Forum 4, 13353 Berlin, Germany.
| | - Marion Nagy
- Department of Forensic Genetics, Institute of Legal Medicine and Forensic Sciences, Charité- Campus Virchow-Klinikum, Augustenburger Platz 1, Forum 4, 13353 Berlin, Germany
| |
Collapse
|
44
|
Trombetta B, D'Atanasio E, Massaia A, Myres NM, Scozzari R, Cruciani F, Novelletto A. Regional Differences in the Accumulation of SNPs on the Male-Specific Portion of the Human Y Chromosome Replicate Autosomal Patterns: Implications for Genetic Dating. PLoS One 2015; 10:e0134646. [PMID: 26226630 PMCID: PMC4520482 DOI: 10.1371/journal.pone.0134646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
Factors affecting the rate and pattern of the mutational process are being identified for human autosomes, but the same relationships for the male specific portion of the Y chromosome (MSY) are not established. We considered 3,390 mutations occurring in 19 sequence bins identified by sequencing 1.5 Mb of the MSY from each of 104 present-day chromosomes. The occurrence of mutations was not proportional to the amount of sequenced bases in each bin, with a 2-fold variation. The regression of the number of mutations per unit sequence against a number of indicators of the genomic features of each bin, revealed the same fundamental patterns as in the autosomes. By considering the sequences of the same region from two precisely dated ancient specimens, we obtained a calibrated region-specific substitution rate of 0.716 × 10-9/site/year. Despite its lack of recombination and other peculiar features, the MSY then resembles the autosomes in displaying a marked regional heterogeneity of the mutation rate. An immediate implication is that a given figure for the substitution rate only makes sense if bound to a specific DNA region. By strictly applying this principle we obtained an unbiased estimate of the antiquity of lineages relevant to the genetic history of the human Y chromosome. In particular, the two deepest nodes of the tree highlight the survival, in Central-Western Africa, of lineages whose coalescence (291 ky, 95% C.I. 253-343) predates the emergence of anatomically modern features in the fossil record.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Andrea Massaia
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | | | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Andrea Novelletto
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| |
Collapse
|
45
|
Groucutt HS, Petraglia MD, Bailey G, Scerri EM, Parton A, Clark-Balzan L, Jennings RP, Lewis L, Blinkhorn J, Drake NA, Breeze PS, Inglis RH, Devès MH, Meredith-Williams M, Boivin N, Thomas MG, Scally A. Rethinking the dispersal of Homo sapiens out of Africa. Evol Anthropol 2015; 24:149-64. [PMID: 26267436 PMCID: PMC6715448 DOI: 10.1002/evan.21455] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Current fossil, genetic, and archeological data indicate that Homo sapiens originated in Africa in the late Middle Pleistocene. By the end of the Late Pleistocene, our species was distributed across every continent except Antarctica, setting the foundations for the subsequent demographic and cultural changes of the Holocene. The intervening processes remain intensely debated and a key theme in hominin evolutionary studies. We review archeological, fossil, environmental, and genetic data to evaluate the current state of knowledge on the dispersal of Homo sapiens out of Africa. The emerging picture of the dispersal process suggests dynamic behavioral variability, complex interactions between populations, and an intricate genetic and cultural legacy. This evolutionary and historical complexity challenges simple narratives and suggests that hybrid models and the testing of explicit hypotheses are required to understand the expansion of Homo sapiens into Eurasia.
Collapse
Affiliation(s)
- Huw S. Groucutt
- School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Michael D. Petraglia
- School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Geoff Bailey
- Department of Archaeology, University of York, York, YO1 7EP, United Kingdom
| | - Eleanor M.L. Scerri
- UMR5199 (CNRS) De la Préhistoire à l’Actuel: Culture, Environment et Anthropologie (PACEA), Université de Bordeaux, Avenues des Facultes, Pessac, 33405, France
| | - Ash Parton
- School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Laine Clark-Balzan
- School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Richard P. Jennings
- School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Laura Lewis
- School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - James Blinkhorn
- UMR5199 (CNRS) De la Préhistoire à l’Actuel: Culture, Environment et Anthropologie (PACEA), Université de Bordeaux, Avenues des Facultes, Pessac, 33405, France
| | - Nick A. Drake
- Department of Geography, King’s College London, WC2R 2LS, United Kingdom
| | - Paul S. Breeze
- Department of Geography, King’s College London, WC2R 2LS, United Kingdom
| | - Robyn H. Inglis
- Department of Archaeology, University of York, York, YO1 7EP, United Kingdom
| | - Maud H. Devès
- Department of Archaeology, University of York, York, YO1 7EP, United Kingdom
- Laboratoire Tectonique, Institut de Physique du Globe, Paris, 75252, France
| | | | - Nicole Boivin
- School of Archaeology, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Mark G. Thomas
- Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
46
|
Trombetta B, D'Atanasio E, Massaia A, Ippoliti M, Coppa A, Candilio F, Coia V, Russo G, Dugoujon JM, Moral P, Akar N, Sellitto D, Valesini G, Novelletto A, Scozzari R, Cruciani F. Phylogeographic Refinement and Large Scale Genotyping of Human Y Chromosome Haplogroup E Provide New Insights into the Dispersal of Early Pastoralists in the African Continent. Genome Biol Evol 2015; 7:1940-50. [PMID: 26108492 PMCID: PMC4524485 DOI: 10.1093/gbe/evv118] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Haplogroup E, defined by mutation M40, is the most common human Y chromosome clade within Africa. To increase the level of resolution of haplogroup E, we disclosed the phylogenetic relationships among 729 mutations found in 33 haplogroup DE Y-chromosomes sequenced at high coverage in previous studies. Additionally, we dissected the E-M35 subclade by genotyping 62 informative markers in 5,222 samples from 118 worldwide populations. The phylogeny of haplogroup E showed novel features compared with the previous topology, including a new basal dichotomy. Within haplogroup E-M35, we resolved all the previously known polytomies and assigned all the E-M35* chromosomes to five new different clades, all belonging to a newly identified subhaplogroup (E-V1515), which accounts for almost half of the E-M35 chromosomes from the Horn of Africa. Moreover, using a Bayesian phylogeographic analysis and a single nucleotide polymorphism-based approach we localized and dated the origin of this new lineage in the northern part of the Horn, about 12 ka. Time frames, phylogenetic structuring, and sociogeographic distribution of E-V1515 and its subclades are consistent with a multistep demic spread of pastoralism within north-eastern Africa and its subsequent diffusion to subequatorial areas. In addition, our results increase the discriminative power of the E-M35 haplogroup for use in forensic genetics through the identification of new ancestry-informative markers.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Andrea Massaia
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy Present address: The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Marco Ippoliti
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Italy
| | | | - Valentina Coia
- Accademia Europea di Bolzano (EURAC), Istituto per le Mummie e l'Iceman, Bolzano, Italy
| | - Gianluca Russo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Italy
| | - Jean-Michel Dugoujon
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288, Centre National de la Recherche Scientifique (CNRS), Université Toulouse-3-Paul-Sabatier, Toulouse, France
| | - Pedro Moral
- Department of Animal Biology-Anthropology, Biodiversity Research Institute, University of Barcelona, Spain
| | - Nejat Akar
- Pediatrics Department, TOBB-Economy and Technology University Hospital, Ankara, Turkey
| | | | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy
| | - Andrea Novelletto
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma, Italy Istituto di Biologia e Patologia Molecolari, CNR, Rome Italy
| |
Collapse
|
47
|
Bidon T, Schreck N, Hailer F, Nilsson MA, Janke A. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses. Genome Biol Evol 2015; 7:2010-22. [PMID: 26019166 PMCID: PMC4524476 DOI: 10.1093/gbe/evv103] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears.
Collapse
Affiliation(s)
- Tobias Bidon
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany International Graduate School of Science and Engineering (IGSSE), Technische Universität München, Garching, Germany
| | - Nancy Schreck
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany
| | - Frank Hailer
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany Institute for Ecology, Evolution & Diversity, Goethe University Frankfurt, Germany
| |
Collapse
|
48
|
Wei W, Fitzgerald TW, Fitzgerald T, Ayub Q, Massaia A, Smith BH, Smith BB, Dominiczak AF, Dominiczak AA, Morris AD, Morris AA, Porteous DJ, Porteous DD, Hurles ME, Tyler-Smith C, Xue Y. Copy number variation in the human Y chromosome in the UK population. Hum Genet 2015; 134:789-800. [PMID: 25957587 PMCID: PMC4460274 DOI: 10.1007/s00439-015-1562-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022]
Abstract
We have assessed copy number variation (CNV) in the male-specific part of the human Y chromosome discovered by array comparative genomic hybridization (array-CGH) in 411 apparently healthy UK males, and validated the findings using SNP genotype intensity data available for 149 of them. After manual curation taking account of the complex duplicated structure of Y-chromosomal sequences, we discovered 22 curated CNV events considered validated or likely, mean 0.93 (range 0–4) per individual. 16 of these were novel. Curated CNV events ranged in size from <1 kb to >3 Mb, and in frequency from 1/411 to 107/411. Of the 24 protein-coding genes or gene families tested, nine showed CNV. These included a large duplication encompassing the AMELY and TBL1Y genes that probably has no phenotypic effect, partial deletions of the TSPY cluster and AZFc region that may influence spermatogenesis, and other variants with unknown functional implications, including abundant variation in the number of RBMY genes and/or pseudogenes, and a novel complex duplication of two segments overlapping the AZFa region and including the 3′ end of the UTY gene.
Collapse
Affiliation(s)
- Wei Wei
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Francalacci P, Sanna D, Useli A, Berutti R, Barbato M, Whalen MB, Angius A, Sidore C, Alonso S, Tofanelli S, Cucca F. Detection of phylogenetically informative polymorphisms in the entire euchromatic portion of human Y chromosome from a Sardinian sample. BMC Res Notes 2015; 8:174. [PMID: 25926048 PMCID: PMC4423141 DOI: 10.1186/s13104-015-1130-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/21/2015] [Indexed: 11/16/2022] Open
Abstract
Background Next-Generation Sequencing methods have led to a great increase in phylogenetically useful markers within the male specific portion of the Y chromosome, but previous studies have limited themselves to the study of the X-degenerate regions. Methods DNA was extracted from peripheral blood samples of adult males whose paternal grandfathers were born in Sardinia. The DNA samples were sequenced, genotyped and subsequently analysed for variant calling for approximately 23.1 Mbp of the Y chromosome. A phylogenetic tree was built using Network 4.6 software. Results From low coverage whole genome sequencing of 1,194 Sardinian males, we extracted 20,155 phylogenetically informative single nucleotide polymorphisms from the whole euchromatic region, including the X-degenerate, X-transposed, and Ampliconic regions, along with variants in other unclassified chromosome intervals and in the readable sequences of the heterochromatic region. Conclusions The non X-degenerate classes contain a significant portion of the phylogenetic variation of the whole chromosome and their inclusion in the analysis, almost doubling the number of informative polymorphisms, refining the known molecular phylogeny of the human Y chromosome. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1130-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paolo Francalacci
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Sassari, Italy.
| | - Daria Sanna
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Sassari, Italy.
| | - Antonella Useli
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Sassari, Italy.
| | - Riccardo Berutti
- Center for Advanced Studies, Research and Development in Sardinia, Sassari, Italy. .,Institut für Humangenetik, Helmholtz Zentrum, Munich, Germany.
| | - Mario Barbato
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | | | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica CNR, Cagliari, Italy.
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica CNR, Cagliari, Italy.
| | - Santos Alonso
- Departamento de Genética, Antropología Física y Fisiología Animal, Universidad del País Vasco, Bilbao, Spain.
| | | | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica CNR, Cagliari, Italy. .,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy.
| |
Collapse
|
50
|
Xue Y, Prado-Martinez J, Sudmant PH, Narasimhan V, Ayub Q, Szpak M, Frandsen P, Chen Y, Yngvadottir B, Cooper DN, de Manuel M, Hernandez-Rodriguez J, Lobon I, Siegismund HR, Pagani L, Quail MA, Hvilsom C, Mudakikwa A, Eichler EE, Cranfield MR, Marques-Bonet T, Tyler-Smith C, Scally A. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 2015; 348:242-245. [PMID: 25859046 PMCID: PMC4668944 DOI: 10.1126/science.aaa3952] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/03/2015] [Indexed: 12/30/2022]
Abstract
Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival.
Collapse
Affiliation(s)
- Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Javier Prado-Martinez
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain
| | - Peter H. Sudmant
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Vagheesh Narasimhan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - Qasim Ayub
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Michal Szpak
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Peter Frandsen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Yuan Chen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Bryndis Yngvadottir
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - David N. Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain
| | - Jessica Hernandez-Rodriguez
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain
| | - Irene Lobon
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain
| | - Hans R. Siegismund
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Luca Pagani
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40134 Bologna, Italy
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Christina Hvilsom
- Research and Conservation, Copenhagen Zoo, DK-2000 Frederiksberg, Denmark
| | | | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 91895, USA
| | - Michael R. Cranfield
- Gorilla Doctors, Karen C. Drayer Wildlife Health Center, University of California, Davis, CA 95616, USA
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain
- Centro Nacional de Análisis Genómico (Parc Cientific de Barcelona), Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|