1
|
Nielsen MI, Wolters JC, Bringas OGR, Jiang H, Di Stefano LH, Oghbaie M, Hozeifi S, Nitert MJ, van Pijkeren A, Smit M, Ter Morsche L, Mourtzinos A, Deshpande V, Taylor MS, Chait BT, LaCava J. Targeted detection of endogenous LINE-1 proteins and ORF2p interactions. Mob DNA 2025; 16:3. [PMID: 39915890 PMCID: PMC11800616 DOI: 10.1186/s13100-024-00339-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Both the expression and activities of LINE-1 (L1) retrotransposons are known to occur in numerous cell-types and are implicated in pathobiological contexts such as aging-related inflammation, autoimmunity, and in cancers. L1s encode two proteins that are translated from bicistronic transcripts. The translation product of ORF1 (ORF1p) has been robustly detected by immunoassays and shotgun mass spectrometry (MS). Yet, more sensitive detection methods would enhance the use of ORF1p as a clinical biomarker. In contrast, until now, no direct evidence of endogenous L1 ORF2 translation to protein (ORF2p) has been shown. Instead, assays for ORF2p have been limited to ectopic L1 ORF over-expression contexts and to indirect detection of endogenous ORF2p enzymatic activity, such as by the sequencing of de novo genomic insertions. Immunoassays for endogenous ORF2p have been problematic, producing apparent false positives due to cross-reactivities, and shotgun MS has not yielded reliable evidence of ORF2p peptides in biological samples. RESULTS Here we present targeted mass spectrometry assays, selected and parallel reaction monitoring (SRM and PRM, respectively) to detect and quantify L1 ORF1p and ORF2p at their endogenous abundances. We were able to quantify ORF1p and ORF2p present in our samples down to a range in the low attomoles. Confident in our ability to affinity enrich ORF2p, we describe an interactome associated with endogenous ORF2-containing macromolecular assemblies. CONCLUSIONS This is the first assay to demonstrate sensitive and robust quantitation of endogenous ORF2p. The ability to assay ORF2p directly and quantitatively will improve our understanding of the developmental and diseased cell states where L1 expression and its activity naturally occur. The ability to simultaneously assay endogenous L1 ORF1p and ORF2p is an important step forward for L1 analytical biochemistry. Endogenous ORF2p interactomes can now be presented with confidence that ORF2p is among the enriched proteins.
Collapse
Affiliation(s)
- Mathias I Nielsen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Justina C Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Omar G Rosas Bringas
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Luciano H Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Samira Hozeifi
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mats J Nitert
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alienke van Pijkeren
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marieke Smit
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lars Ter Morsche
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Apostolos Mourtzinos
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vikram Deshpande
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Martin S Taylor
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
2
|
Mendez-Dorantes C, Zeng X, Karlow JA, Schofield P, Turner S, Kalinowski J, Denisko D, Lee EA, Burns KH, Zhang CZ. Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628481. [PMID: 39764018 PMCID: PMC11702581 DOI: 10.1101/2024.12.14.628481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1. We provide definitive evidence that L1 expression frequently and directly causes both local and long-range chromosomal rearrangements, small and large segmental copy-number alterations, and subclonal copy-number heterogeneity due to ongoing chromosomal instability. Mechanistically, all these alterations arise from DNA double-strand breaks (DSBs) generated by L1-encoded ORF2p. The processing of ORF2p-generated DSB ends prior to their ligation can produce diverse rearrangements of the target sequences. Ligation between DSB ends generated at distal loci can generate either stable chromosomes or unstable dicentric, acentric, or ring chromosomes that undergo subsequent evolution through breakage-fusion bridge cycles or DNA fragmentation. Together, these findings suggest L1 is a potent mutagenic force capable of driving genome evolution beyond simple insertions.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Xi Zeng
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PRC
| | - Jennifer A Karlow
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Phillip Schofield
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Serafina Turner
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Jupiter Kalinowski
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Danielle Denisko
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
3
|
Kogan V, Molodtsov I, Fleyshman DI, Leontieva OV, Koman IE, Gudkov AV. The reconstruction of evolutionary dynamics of processed pseudogenes indicates deep silencing of "retrobiome" in naked mole rat. Proc Natl Acad Sci U S A 2024; 121:e2313581121. [PMID: 39467133 PMCID: PMC11551321 DOI: 10.1073/pnas.2313581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/02/2024] [Indexed: 10/30/2024] Open
Abstract
Approximately half of mammalian genomes are occupied by retrotransposons, highly repetitive interspersed genetic elements expanded through the mechanism of reverse transcription. The evolution of this "retrobiome" involved a series of explosive amplifications, presumably associated with high mutation rates, interspersed with periods of silencing. A by-product of retrotransposon activity is the formation of processed pseudogenes (PPGs)-intron-less, promoter-less DNA copies of messenger RNA (mRNA). We examined the proportion of PPGs with varying degrees of deviation from their ancestor mRNAs as an indicator of the intensity of retrotranspositions at different times in the past. Our analysis revealed a high proportion of "young'' (recently acquired) PPGs in the DNA of mice and rats, indicating significant retrobiome activity during the recent evolution of these species. The ongoing process of new PPG entries in mouse germ line DNA was confirmed by identifying diversity in PPG content within the single strain of mice, C57BL/6. In contrast, the highly abundant PPGs of the naked mole rat (NMR) exhibited substantial deviation from their mRNAs, with a near-complete lack of PPGs without mutations, indicative of the silencing of the retrobiome in the most recent evolutionary past, preceded by a period of high activity. This distinctive feature of the NMR genome was confirmed through the analysis of a broad range of mammalian species. The peculiar evolutionary dynamics of PPGs in the NMR, an organism with exceptional longevity and resistance to cancer, may reflect the role played by the retrobiome in aging and cancer.
Collapse
Affiliation(s)
- Valeria Kogan
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel4070000, Israel
| | - Ivan Molodtsov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Daria I. Fleyshman
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Olga V. Leontieva
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| | - Igor E. Koman
- Institute for Personalized and Translational Medicine, Adelson School of Medicine, Ariel University, Ariel4070000, Israel
| | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
| |
Collapse
|
4
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
5
|
Kines KJ, Sokolowski M, DeFreece C, Shareef A, deHaro DL, Belancio VP. Large Deletions, Cleavage of the Telomeric Repeat Sequence, and Reverse Transcriptase-Mediated DNA Damage Response Associated with Long Interspersed Element-1 ORF2p Enzymatic Activities. Genes (Basel) 2024; 15:143. [PMID: 38397133 PMCID: PMC10887698 DOI: 10.3390/genes15020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
L1 elements can cause DNA damage and genomic variation via retrotransposition and the generation of endonuclease-dependent DNA breaks. These processes require L1 ORF2p protein that contains an endonuclease domain, which cuts genomic DNA, and a reverse transcriptase domain, which synthesizes cDNA. The complete impact of L1 enzymatic activities on genome stability and cellular function remains understudied, and the spectrum of L1-induced mutations, other than L1 insertions, is mostly unknown. Using an inducible system, we demonstrate that an ORF2p containing functional reverse transcriptase is sufficient to elicit DNA damage response even in the absence of the functional endonuclease. Using a TK/Neo reporter system that captures misrepaired DNA breaks, we demonstrate that L1 expression results in large genomic deletions that lack any signatures of L1 involvement. Using an in vitro cleavage assay, we demonstrate that L1 endonuclease efficiently cuts telomeric repeat sequences. These findings support that L1 could be an unrecognized source of disease-promoting genomic deletions, telomere dysfunction, and an underappreciated source of chronic RT-mediated DNA damage response in mammalian cells. Our findings expand the spectrum of biological processes that can be triggered by functional and nonfunctional L1s, which have impactful evolutionary- and health-relevant consequences.
Collapse
Affiliation(s)
- Kristine J. Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Cecily DeFreece
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Afzaal Shareef
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Dawn L. deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Taylor MS, Wu C, Fridy PC, Zhang SJ, Senussi Y, Wolters JC, Cajuso T, Cheng WC, Heaps JD, Miller BD, Mori K, Cohen L, Jiang H, Molloy KR, Chait BT, Goggins MG, Bhan I, Franses JW, Yang X, Taplin ME, Wang X, Christiani DC, Johnson BE, Meyerson M, Uppaluri R, Egloff AM, Denault EN, Spring LM, Wang TL, Shih IM, Fairman JE, Jung E, Arora KS, Yilmaz OH, Cohen S, Sharova T, Chi G, Norden BL, Song Y, Nieman LT, Pappas L, Parikh AR, Strickland MR, Corcoran RB, Mustelin T, Eng G, Yilmaz ÖH, Matulonis UA, Chan AT, Skates SJ, Rueda BR, Drapkin R, Klempner SJ, Deshpande V, Ting DT, Rout MP, LaCava J, Walt DR, Burns KH. Ultrasensitive Detection of Circulating LINE-1 ORF1p as a Specific Multicancer Biomarker. Cancer Discov 2023; 13:2532-2547. [PMID: 37698949 PMCID: PMC10773488 DOI: 10.1158/2159-8290.cd-23-0313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. Although proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible expression in normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 mol/L) ORF1p concentrations in plasma across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multianalyte panel, provides early therapeutic response monitoring in gastroesophageal cancers, and is prognostic for overall survival in gastroesophageal and colorectal cancers. Together, these observations nominate ORF1p as a multicancer biomarker with potential utility for disease detection and monitoring. SIGNIFICANCE The LINE-1 ORF1p transposon protein is pervasively expressed in many cancers and is a highly specific biomarker of multiple common, lethal carcinomas and their high-risk precursors in tissue and blood. Ultrasensitive ORF1p assays from as little as 25 μL plasma are novel, rapid, cost-effective tools in cancer detection and monitoring. See related commentary by Doucet and Cristofari, p. 2502. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Martin S. Taylor
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - Connie Wu
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Peter C. Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - Stephanie J. Zhang
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Yasmeen Senussi
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Justina C. Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tatiana Cajuso
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Wen-Chih Cheng
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - John D. Heaps
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Bryant D. Miller
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kei Mori
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Healthcare Optics Research Laboratory, Canon U.S.A., Inc., Cambridge, Massachusetts
| | - Limor Cohen
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - Kelly R. Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York
| | | | - Irun Bhan
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph W. Franses
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaoyu Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xinan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - David C. Christiani
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Bruce E. Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Ravindra Uppaluri
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ann Marie Egloff
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elyssa N. Denault
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Laura M. Spring
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tian-Li Wang
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ie-Ming Shih
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Euihye Jung
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kshitij S. Arora
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - Osman H. Yilmaz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tatyana Sharova
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gary Chi
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bryanna L. Norden
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yuhui Song
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Linda T. Nieman
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Leontios Pappas
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Aparna R. Parikh
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matthew R. Strickland
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryan B. Corcoran
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington
| | - George Eng
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ömer H. Yilmaz
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven J. Skates
- MGH Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ronny Drapkin
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Samuel J. Klempner
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
| | - David T. Ting
- Mass General Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, the Netherlands
| | - David R. Walt
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Kathleen H. Burns
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Han M, Perkins MH, Novaes LS, Xu T, Chang H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Front Genet 2023; 14:1290146. [PMID: 38098473 PMCID: PMC10719622 DOI: 10.3389/fgene.2023.1290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
It has been 70 years since Barbara McClintock discovered transposable elements (TE), and the mechanistic studies and functional applications of transposable elements have been at the forefront of life science research. As an essential part of the genome, TEs have been discovered in most species of prokaryotes and eukaryotes, and the relative proportion of the total genetic sequence they comprise gradually increases with the expansion of the genome. In humans, TEs account for about 40% of the genome and are deeply involved in gene regulation, chromosome structure maintenance, inflammatory response, and the etiology of genetic and non-genetic diseases. In-depth functional studies of TEs in mammalian cells and the human body have led to a greater understanding of these fundamental biological processes. At the same time, as a potent mutagen and efficient genome editing tool, TEs have been transformed into biological tools critical for developing new techniques. By controlling the random insertion of TEs into the genome to change the phenotype in cells and model organisms, critical proteins of many diseases have been systematically identified. Exploiting the TE's highly efficient in vitro insertion activity has driven the development of cutting-edge sequencing technologies. Recently, a new technology combining CRISPR with TEs was reported, which provides a novel targeted insertion system to both academia and industry. We suggest that interrogating biological processes that generally depend on the actions of TEs with TEs-derived genetic tools is a very efficient strategy. For example, excessive activation of TEs is an essential factor in the occurrence of cancer in humans. As potent mutagens, TEs have also been used to unravel the key regulatory elements and mechanisms of carcinogenesis. Through this review, we aim to effectively combine the traditional views of TEs with recent research progress, systematically link the mechanistic discoveries of TEs with the technological developments of TE-based tools, and provide a comprehensive approach and understanding for researchers in different fields.
Collapse
Affiliation(s)
- Mei Han
- Guangzhou National Laboratory, Guangzhou, China
| | - Matthew H. Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leonardo Santana Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China
| | - Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Katoh H, Honda T. Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity. Biomolecules 2023; 13:1706. [PMID: 38136578 PMCID: PMC10741599 DOI: 10.3390/biom13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
Collapse
Affiliation(s)
- Hirokazu Katoh
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Tomoyuki Honda
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
10
|
Alkailani MI, Gibbings D. The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers (Basel) 2023; 15:4340. [PMID: 37686616 PMCID: PMC10486412 DOI: 10.3390/cancers15174340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in sequencing technologies and the bioinformatic analysis of big data facilitate the study of jumping genes' activity in the human genome in cancer from a broad perspective. Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism, are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests that retrotransposons can induce inflammation, the research investigating the exact mechanism of triggering these responses is ongoing. Understanding these mechanisms could improve the therapeutic management of cancer through the use of retrotransposon-induced inflammation as a tool to instigate immune responses to tumors.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
11
|
Rajaby R, Liu DX, Au CH, Cheung YT, Lau AYT, Yang QY, Sung WK. INSurVeyor: improving insertion calling from short read sequencing data. Nat Commun 2023; 14:3243. [PMID: 37277343 DOI: 10.1038/s41467-023-38870-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Insertions are one of the major types of structural variations and are defined as the addition of 50 nucleotides or more into a DNA sequence. Several methods exist to detect insertions from next-generation sequencing short read data, but they generally have low sensitivity. Our contribution is two-fold. First, we introduce INSurVeyor, a fast, sensitive and precise method that detects insertions from next-generation sequencing paired-end data. Using publicly available benchmark datasets (both human and non-human), we show that INSurVeyor is not only more sensitive than any individual caller we tested, but also more sensitive than all of them combined. Furthermore, for most types of insertions, INSurVeyor is almost as sensitive as long reads callers. Second, we provide state-of-the-art catalogues of insertions for 1047 Arabidopsis Thaliana genomes from the 1001 Genomes Project and 3202 human genomes from the 1000 Genomes Project, both generated with INSurVeyor. We show that they are more complete and precise than existing resources, and important insertions are missed by existing methods.
Collapse
Affiliation(s)
- Ramesh Rajaby
- Hong Kong Genome Institute, Hong Kong Science Park, Shatin, Hong Kong, China
- A*STAR Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
| | - Dong-Xu Liu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun Hang Au
- Hong Kong Genome Institute, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Yuen-Ting Cheung
- Hong Kong Genome Institute, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Amy Yuet Ting Lau
- Hong Kong Genome Institute, Hong Kong Science Park, Shatin, Hong Kong, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wing-Kin Sung
- Hong Kong Genome Institute, Hong Kong Science Park, Shatin, Hong Kong, China.
- A*STAR Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.
- Laboratory of Computational Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore.
| |
Collapse
|
12
|
Mosaddeghi P, Farahmandnejad M, Zarshenas MM. The role of transposable elements in aging and cancer. Biogerontology 2023:10.1007/s10522-023-10028-z. [PMID: 37017895 DOI: 10.1007/s10522-023-10028-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
Transposable elements (TEs) constitute a large portion of the human genome. Various mechanisms at the transcription and post-transcription levels developed to suppress TE activity in healthy conditions. However, a growing body of evidence suggests that TE dysregulation is involved in various human diseases, including age-related diseases and cancer. In this review, we explained how sensing TEs by the immune system could induce innate immune responses, chronic inflammation, and following age-related diseases. We also noted that inflammageing and exogenous carcinogens could trigger the upregulation of TEs in precancerous cells. Increased inflammation could enhance epigenetic plasticity and upregulation of early developmental TEs, which rewires the transcriptional networks and gift the survival advantage to the precancerous cells. In addition, upregulated TEs could induce genome instability, activation of oncogenes, or inhibition of tumor suppressors and consequent cancer initiation and progression. So, we suggest that TEs could be considered therapeutic targets in aging and cancer.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Farahmandnejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Quality Control of Drug Products Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Taylor MS, Connie W, Fridy PC, Zhang SJ, Senussi Y, Wolters JC, Cheng WC, Heaps J, Miller BD, Mori K, Cohen L, Jiang H, Molloy KR, Norden BL, Chait BT, Goggins M, Bhan I, Franses JW, Yang X, Taplin ME, Wang X, Christiani DC, Johnson BE, Meyerson M, Uppaluri R, Egloff AM, Denault EN, Spring LM, Wang TL, Shih IM, Jung E, Arora KS, Zukerberg LR, Yilmaz OH, Chi G, Matulonis UA, Song Y, Nieman L, Parikh AR, Strickland M, Corcoran RB, Mustelin T, Eng G, Yilmaz ÃMH, Skates SJ, Rueda BR, Drapkin R, Klempner SJ, Deshpande V, Ting DT, Rout MP, LaCava J, Walt DR, Burns KH. Ultrasensitive detection of circulating LINE-1 ORF1p as a specific multi-cancer biomarker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525462. [PMID: 36747644 PMCID: PMC9900799 DOI: 10.1101/2023.01.25.525462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. While proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1, L1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible detectable expression in corresponding normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore the potential of ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 M) ORF1p concentrations in patient plasma samples across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multi-analyte panel, and provides early therapeutic response monitoring in gastric and esophageal cancers. Together, these observations nominate ORF1p as a multi-cancer biomarker with potential utility for disease detection and monitoring.
Collapse
|
14
|
Warkocki Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett 2023; 597:380-406. [PMID: 36460901 DOI: 10.1002/1873-3468.14551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
15
|
Sarkar A, Lanciano S, Cristofari G. Targeted Nanopore Resequencing and Methylation Analysis of LINE-1 Retrotransposons. Methods Mol Biol 2023; 2607:173-198. [PMID: 36449164 DOI: 10.1007/978-1-0716-2883-6_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Retrotransposition of LINE-1 (L1) elements represents a major source of insertional polymorphisms in mammals, and their mutagenic activity is restricted by silencing mechanisms, such as DNA methylation. Despite a very high level of sequence identity between copies, their internal sequence contains small nucleotide polymorphisms (SNPs) that can alter their activity. Such internal SNPs can also appear in different alleles of a given L1 locus. Given their repetitive nature and relatively long size, short-read sequencing approaches have limited access to L1 internal sequence or DNA methylation state. Here, we describe a targeted method to specifically sequence more than a hundred L1-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. Our protocol, modified from the nanopore Cas9 targeted sequencing (nCATS) strategy, provides a full and haplotype-resolved L1 sequence and DNA methylation levels. It introduces a streamlined and multiplex approach to synthesize guide RNAs and a quantitative PCR (qPCR)-based quality check during library preparation for cost-effective L1 sequencing. More generally, this method can be applied to any type of transposable elements and organisms.
Collapse
Affiliation(s)
- Arpita Sarkar
- Université Côte d'Azur, Inserm, CNRS, IRCAN, Nice, France
| | | | | |
Collapse
|
16
|
Das S, Jones AE, Abrams JM. Generalized nuclear localization of retroelement transcripts. Mob DNA 2022; 13:30. [PMID: 36461093 PMCID: PMC9717504 DOI: 10.1186/s13100-022-00287-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND LINE-1s, Alus and SVAs are the only retrotransposition competent elements in humans. Their mobilization followed by insertional mutagenesis is often linked to disease. Apart from these rare integration events, accumulation of retrotransposition intermediates in the cytoplasm is potentially pathogenic due to induction of inflammatory response pathways. Although the retrotransposition of LINE-1 and Alu retroelements has been studied in considerable detail, there are mixed observations about the localization of their RNAs. RESULTS We undertook a comprehensive and unbiased approach to analyze retroelement RNA localization using common cell lines and publicly available datasets containing RNA-sequencing data from subcellular fractions. Using our customized analytic pipeline, we compared localization patterns of RNAs transcribed from retroelements and single-copy protein coding genes. Our results demonstrate a generalized characteristic pattern of retroelement RNA nuclear localization that is conserved across retroelement classes as well as evolutionarily young and ancient elements. Preferential nuclear enrichment of retroelement transcripts was consistently observed in cell lines, in vivo and across species. Moreover, retroelement RNA localization patterns were dynamic and subject to change during development, as seen in zebrafish embryos. CONCLUSION The pronounced nuclear localization of transcripts arising from ancient as well as de novo transcribed retroelements suggests that these transcripts are retained in the nucleus as opposed to being re-imported to the nucleus or degraded in the cytoplasm. This raises the possibility that there is adaptive value associated with this localization pattern to the host, the retroelements or possibly both.
Collapse
Affiliation(s)
- Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Stow EC, Baddoo M, LaRosa AJ, LaCoste D, Deininger P, Belancio V. SCIFER: approach for analysis of LINE-1 mRNA expression in single cells at a single locus resolution. Mob DNA 2022; 13:21. [PMID: 36028901 PMCID: PMC9413895 DOI: 10.1186/s13100-022-00276-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Endogenous expression of L1 mRNA is the first step in an L1-initiated mutagenesis event. However, the contribution of individual cell types to patterns of organ-specific L1 mRNA expression remains poorly understood, especially at single-locus resolution. We introduce a method to quantify expression of mobile elements at the single-locus resolution in scRNA-Seq datasets called Single Cell Implementation to Find Expressed Retrotransposons (SCIFER). SCIFER aligns scRNA-Seq reads uniquely to the genome and extracts alignments from single cells by cell-specific barcodes. In contrast to the alignment performed using default parameters, this alignment strategy increases accuracy of L1 locus identification by retaining only reads that are uniquely mapped to individual L1 loci. L1 loci expressed in single cells are unambiguously identified using a list of L1 loci manually validated to be expressed in bulk RNA-Seq datasets generated from the same cell line or organ. RESULTS Validation of SCIFER using MCF7 cells determined technical parameters needed for optimal detection of L1 expression in single cells. We show that unsupervised analysis of L1 expression in single cells exponentially inflates both the levels of L1 expression and the number of expressed L1 loci. Application of SCIFER to analysis of scRNA-Seq datasets generated from mouse and human testes identified that mouse Round Spermatids and human Spermatogonia, Spermatocytes, and Round Spermatids express the highest levels of L1 mRNA. Our analysis also determined that similar to mice, human testes from unrelated individuals share as much as 80% of expressed L1 loci. Additionally, SCIFER determined that individual mouse cells co-express different L1 sub-families and different families of transposable elements, experimentally validating their co-existence in the same cell. CONCLUSIONS SCIFER detects mRNA expression of individual L1 loci in single cells. It is compatible with scRNA-Seq datasets prepared using traditional sequencing methods. Validated using a human cancer cell line, SCIFER analysis of mouse and human testes identified key cell types supporting L1 expression in these species. This will further our understanding of differences and similarities in endogenous L1 mRNA expression patterns in mice and humans.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Alexis J LaRosa
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Dawn LaCoste
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Victoria Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, 70112, USA.
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
18
|
Sun Z, Zhang R, Zhang X, Sun Y, Liu P, Francoeur N, Han L, Lam WY, Yi Z, Sebra R, Walsh M, Yu J, Zhang W. LINE-1 promotes tumorigenicity and exacerbates tumor progression via stimulating metabolism reprogramming in non-small cell lung cancer. Mol Cancer 2022; 21:147. [PMID: 35842613 PMCID: PMC9288060 DOI: 10.1186/s12943-022-01618-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long Interspersed Nuclear Element-1 (LINE-1, L1) is increasingly regarded as a genetic risk for lung cancer. Transcriptionally active LINE-1 forms a L1-gene chimeric transcript (LCTs), through somatic L1 retrotransposition (LRT) or L1 antisense promoter (L1-ASP) activation, to play an oncogenic role in cancer progression. METHODS Here, we developed Retrotransposon-gene fusion estimation program (ReFuse), to identify and quantify LCTs in RNA sequencing data from TCGA lung cancer cohort (n = 1146) and a single cell RNA sequencing dataset then further validated those LCTs in an independent cohort (n = 134). We next examined the functional roles of a cancer specific LCT (L1-FGGY) in cell proliferation and tumor progression in LUSC cell lines and mice. RESULTS The LCT events correspond with specific metabolic processes and mitochondrial functions and was associated with genomic instability, hypomethylation, tumor stage and tumor immune microenvironment (TIME). Functional analysis of a tumor specific and frequent LCT involving FGGY (L1-FGGY) reveal that the arachidonic acid (AA) metabolic pathway was activated by the loss of FGGY through the L1-FGGY chimeric transcript to promote tumor growth, which was effectively targeted by a combined use of an anti-HIV drug (NVR) and a metabolic inhibitor (ML355). Lastly, we identified a set of transcriptomic signatures to stratify the LUSC patients with a higher risk for poor outcomes who may benefit from treatments using NVR alone or combined with an anti-metabolism drug. CONCLUSIONS This study is the first to characterize the role of L1 in metabolic reprogramming of lung cancer and provide rationale for L1-specifc prognosis and potential for a therapeutic strategy for treating lung cancer. TRIAL REGISTRATION Study on the mechanisms of the mobile element L1-FGGY promoting the proliferation, invasion and immune escape of lung squamous cell carcinoma through the 12-LOX/Wnt pathway, Ek2020111. Registered 27 March 2020 - Retrospectively registered.
Collapse
Affiliation(s)
- Zeguo Sun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Nancy Francoeur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wan Yee Lam
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Zhengzi Yi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
19
|
Halabian R, Makałowski W. A Map of 3' DNA Transduction Variants Mediated by Non-LTR Retroelements on 3202 Human Genomes. BIOLOGY 2022; 11:1032. [PMID: 36101413 PMCID: PMC9311842 DOI: 10.3390/biology11071032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 05/03/2023]
Abstract
As one of the major structural constituents, mobile elements comprise more than half of the human genome, among which Alu, L1, and SVA elements are still active and continue to generate new offspring. One of the major characteristics of L1 and SVA elements is their ability to co-mobilize adjacent downstream sequences to new loci in a process called 3' DNA transduction. Transductions influence the structure and content of the genome in different ways, such as increasing genome variation, exon shuffling, and gene duplication. Moreover, given their mutagenicity capability, 3' transductions are often involved in tumorigenesis or in the development of some diseases. In this study, we analyzed 3202 genomes sequenced at high coverage by the New York Genome Center to catalog and characterize putative 3' transduced segments mediated by L1s and SVAs. Here, we present a genome-wide map of inter/intrachromosomal 3' transduction variants, including their genomic and functional location, length, progenitor location, and allelic frequency across 26 populations. In total, we identified 7103 polymorphic L1s and 3040 polymorphic SVAs. Of these, 268 and 162 variants were annotated as high-confidence L1 and SVA 3' transductions, respectively, with lengths that ranged from 7 to 997 nucleotides. We found specific loci within chromosomes X, 6, 7, and 6_GL000253v2_alt as master L1s and SVAs that had yielded more transductions, among others. Together, our results demonstrate the dynamic nature of transduction events within the genome and among individuals and their contribution to the structural variations of the human genome.
Collapse
Affiliation(s)
| | - Wojciech Makałowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, 48149 Münster, Germany;
| |
Collapse
|
20
|
Ma G, Babarinde IA, Zhou X, Hutchins AP. Transposable Elements in Pluripotent Stem Cells and Human Disease. Front Genet 2022; 13:902541. [PMID: 35719395 PMCID: PMC9201960 DOI: 10.3389/fgene.2022.902541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can randomly integrate into other genomic sites. They have successfully replicated and now occupy around 40% of the total DNA sequence in humans. TEs in the genome have a complex relationship with the host cell, being both potentially deleterious and advantageous at the same time. Only a tiny minority of TEs are still capable of transposition, yet their fossilized sequence fragments are thought to be involved in various molecular processes, such as gene transcriptional activity, RNA stability and subcellular localization, and chromosomal architecture. TEs have also been implicated in biological processes, although it is often hard to reveal cause from correlation due to formidable technical issues in analyzing TEs. In this review, we compare and contrast two views of TE activity: one in the pluripotent state, where TEs are broadly beneficial, or at least mechanistically useful, and a second state in human disease, where TEs are uniformly considered harmful.
Collapse
|
21
|
Grundy EE, Diab N, Chiappinelli KB. Transposable element regulation and expression in cancer. FEBS J 2022; 289:1160-1179. [PMID: 33471418 PMCID: PMC11577309 DOI: 10.1111/febs.15722] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Approximately 45% of the human genome is composed of transposable elements (TEs). Expression of these elements is tightly regulated during normal development. TEs may be expressed at high levels in embryonic stem cells but are epigenetically silenced in terminally differentiated cells. As part of the global 'epigenetic dysregulation' that cells undergo during transformation from normal to cancer, TEs can lose epigenetic silencing and become transcribed, and, in some cases, active. Here, we summarize recent advances detailing the consequences of TE activation in cancer and describe how these understudied residents of our genome can both aid tumorigenesis and potentially be harnessed for anticancer therapies.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at The George Washington University, Washington, DC, USA
| | - Noor Diab
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| |
Collapse
|
22
|
The Ribosomal Protein RpL22 Interacts In Vitro with 5′-UTR Sequences Found in Some Drosophila melanogaster Transposons. Genes (Basel) 2022; 13:genes13020305. [PMID: 35205350 PMCID: PMC8872304 DOI: 10.3390/genes13020305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/23/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mobility of eukaryotic transposable elements (TEs) are finely regulated to avoid an excessive mutational load caused by their movement. The transposition of retrotransposons is usually regulated through the interaction of host- and TE-encoded proteins, with non-coding regions (LTR and 5′-UTR) of the transposon. Examples of new potent cis-acting sequences, identified and characterized in the non-coding regions of retrotransposons, include the insulator of gypsy and Idefix, and the enhancer of ZAM of Drosophila melanogaster. Recently we have shown that in the 5′-UTR of the LTR-retrotransposon ZAM there is a sequence structured in tandem-repeat capable of operating as an insulator both in Drosophila (S2R+) and human cells (HEK293). Here, we test the hypothesis that tandem repeated 5′-UTR of a different LTR-retrotransposon could accommodate similar regulatory elements. The comparison of the 5′-UTR of some LTR-transposons allowed us to identify a shared motif of 13 bp, called Transposable Element Redundant Motif (TERM). Surprisingly, we demonstrated, by Yeast One-Hybrid assay, that TERM interacts with the D. melanogaster ribosomal protein RpL22. The Drosophila RpL22 has additional Ala-, Lys- and Pro-rich sequences at the amino terminus, which resembles the carboxy-terminal portion of histone H1 and histone H5. For this reason, it has been hypothesized that RpL22 might have two functions, namely the role in organizing the ribosome, and a potential regulatory role involving DNA-binding similar to histone H1, which represses transcription in Drosophila. In this paper, we show, by two independent sets of experiments, that DmRpL22 is able to directly and specifically bind DNA of Drosophila melanogaster.
Collapse
|
23
|
Urazbakhtin S, Smirnova A, Volakhava A, Zerkalenkova E, Salyutina M, Doubek M, Jelinkova H, Khudainazarova N, Volchkov E, Belyaeva L, Komech E, Pavlova S, Lebedev Y, Plevova K, Olshanskaya Y, Komkov A, Mamedov I. The Absence of Retroelement Activity Is Characteristic for Childhood Acute Leukemias and Adult Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms23031756. [PMID: 35163677 PMCID: PMC8835895 DOI: 10.3390/ijms23031756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/06/2023] Open
Abstract
Retroelements (RE) have been proposed as important players in cancerogenesis. Different cancer types are characterized by a different level of tumor-specific RE insertions. In previous studies, small cohorts of hematological malignancies, such as acute myeloid leukemia, multiple myeloma, and chronic lymphocytic leukemia have been characterized by a low level of RE insertional activity. Acute lymphoblastic leukemia (ALL) in adults and childhood acute leukemias have not been studied in this context. We performed a search for new RE insertions (Alu and L1) in 44 childhood ALL, 14 childhood acute myeloid leukemia, and 14 adult ALL samples using a highly sensitive NGS-based approach. First, we evaluated the method sensitivity revealing the 1% detection threshold for the proportion of cells with specific RE insertion. Following this result, we did not identify new tumor-specific RE insertions in the tested cohort of acute leukemia samples at the established level of sensitivity. Additionally, we analyzed the transcription levels of active L1 copies and found them increased. Thus, the increased transcription of active L1 copies is not sufficient for overt elevation of L1 retrotranspositional activity in leukemia.
Collapse
Affiliation(s)
- Shamil Urazbakhtin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (S.U.); (A.S.); (M.S.); (N.K.); (E.K.); (Y.L.); (A.K.)
| | - Anastasia Smirnova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (S.U.); (A.S.); (M.S.); (N.K.); (E.K.); (Y.L.); (A.K.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anastasiya Volakhava
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (A.V.); (M.D.); (S.P.); (K.P.)
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (E.Z.); (E.V.); (L.B.); (Y.O.)
| | - Maria Salyutina
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (S.U.); (A.S.); (M.S.); (N.K.); (E.K.); (Y.L.); (A.K.)
| | - Michael Doubek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (A.V.); (M.D.); (S.P.); (K.P.)
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Hana Jelinkova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Nelly Khudainazarova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (S.U.); (A.S.); (M.S.); (N.K.); (E.K.); (Y.L.); (A.K.)
| | - Egor Volchkov
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (E.Z.); (E.V.); (L.B.); (Y.O.)
| | - Laima Belyaeva
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (E.Z.); (E.V.); (L.B.); (Y.O.)
| | - Ekaterina Komech
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (S.U.); (A.S.); (M.S.); (N.K.); (E.K.); (Y.L.); (A.K.)
| | - Sarka Pavlova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (A.V.); (M.D.); (S.P.); (K.P.)
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Yuri Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (S.U.); (A.S.); (M.S.); (N.K.); (E.K.); (Y.L.); (A.K.)
| | - Karla Plevova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (A.V.); (M.D.); (S.P.); (K.P.)
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (E.Z.); (E.V.); (L.B.); (Y.O.)
| | - Alexander Komkov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (S.U.); (A.S.); (M.S.); (N.K.); (E.K.); (Y.L.); (A.K.)
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (E.Z.); (E.V.); (L.B.); (Y.O.)
| | - Ilgar Mamedov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (S.U.); (A.S.); (M.S.); (N.K.); (E.K.); (Y.L.); (A.K.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (A.V.); (M.D.); (S.P.); (K.P.)
- Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (E.Z.); (E.V.); (L.B.); (Y.O.)
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-910-4228-706
| |
Collapse
|
24
|
Freeman B, White T, Kaul T, Stow EC, Baddoo M, Ungerleider N, Morales M, Yang H, Deharo D, Deininger P, Belancio V. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res 2022; 50:1888-1907. [PMID: 35100410 PMCID: PMC8887483 DOI: 10.1093/nar/gkac013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of ‘transitional’ L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.
Collapse
Affiliation(s)
- Benjamin Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Travis White
- Sloan Kettering Institute for Cancer Research, NY, NY 10065, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily C Stow
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Maria Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- To whom correspondence should be addressed. Tel: +1 504 988 4506; Fax: +1 504 988 1687;
| |
Collapse
|
25
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
26
|
Chuang NT, Gardner EJ, Terry DM, Crabtree J, Mahurkar AA, Rivell GL, Hong CC, Perry JA, Devine SE. Mutagenesis of human genomes by endogenous mobile elements on a population scale. Genome Res 2021; 31:2225-2235. [PMID: 34772701 PMCID: PMC8647825 DOI: 10.1101/gr.275323.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Several large-scale Illumina whole-genome sequencing (WGS) and whole-exome sequencing (WES) projects have emerged recently that have provided exceptional opportunities to discover mobile element insertions (MEIs) and study the impact of these MEIs on human genomes. However, these projects also have presented major challenges with respect to the scalability and computational costs associated with performing MEI discovery on tens or even hundreds of thousands of samples. To meet these challenges, we have developed a more efficient and scalable version of our mobile element locator tool (MELT) called CloudMELT. We then used MELT and CloudMELT to perform MEI discovery in 57,919 human genomes and exomes, leading to the discovery of 104,350 nonredundant MEIs. We leveraged this collection (1) to examine potentially active L1 source elements that drive the mobilization of new Alu, L1, and SVA MEIs in humans; (2) to examine the population distributions and subfamilies of these MEIs; and (3) to examine the mutagenesis of GENCODE genes, ENCODE-annotated features, and disease genes by these MEIs. Our study provides new insights on the L1 source elements that drive MEI mutagenesis and brings forth a better understanding of how this mutagenesis impacts human genomes.
Collapse
Affiliation(s)
- Nelson T Chuang
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Eugene J Gardner
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Diane M Terry
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Anup A Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Guillermo L Rivell
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Scott E Devine
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
27
|
Liao X, Hu K, Salhi A, Zou Y, Wang J, Gao X. msRepDB: a comprehensive repetitive sequence database of over 80 000 species. Nucleic Acids Res 2021; 50:D236-D245. [PMID: 34850956 PMCID: PMC8728181 DOI: 10.1093/nar/gkab1089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Repeats are prevalent in the genomes of all bacteria, plants and animals, and they cover nearly half of the Human genome, which play indispensable roles in the evolution, inheritance, variation and genomic instability, and serve as substrates for chromosomal rearrangements that include disease-causing deletions, inversions, and translocations. Comprehensive identification, classification and annotation of repeats in genomes can provide accurate and targeted solutions towards understanding and diagnosis of complex diseases, optimization of plant properties and development of new drugs. RepBase and Dfam are two most frequently used repeat databases, but they are not sufficiently complete. Due to the lack of a comprehensive repeat database of multiple species, the current research in this field is far from being satisfactory. LongRepMarker is a new framework developed recently by our group for comprehensive identification of genomic repeats. We here propose msRepDB based on LongRepMarker, which is currently the most comprehensive multi-species repeat database, covering >80 000 species. Comprehensive evaluations show that msRepDB contains more species, and more complete repeats and families than RepBase and Dfam databases. (https://msrepdb.cbrc.kaust.edu.sa/pages/msRepDB/index.html).
Collapse
Affiliation(s)
- Xingyu Liao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.,Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China
| | - Kang Hu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China
| | - Adil Salhi
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - You Zou
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
28
|
Riba A, Fumagalli MR, Caselle M, Osella M. A Model-Driven Quantitative Analysis of Retrotransposon Distributions in the Human Genome. Genome Biol Evol 2021; 12:2045-2059. [PMID: 32986810 PMCID: PMC7750997 DOI: 10.1093/gbe/evaa201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 12/21/2022] Open
Abstract
Retrotransposons, DNA sequences capable of creating copies of themselves, compose about half of the human genome and played a central role in the evolution of mammals. Their current position in the host genome is the result of the retrotranscription process and of the following host genome evolution. We apply a model from statistical physics to show that the genomic distribution of the two most populated classes of retrotransposons in human deviates from random placement, and that this deviation increases with time. The time dependence suggests a major role of the host genome dynamics in shaping the current retrotransposon distributions. Focusing on a neutral scenario, we show that a simple model based on random placement followed by genome expansion and sequence duplications can reproduce the empirical retrotransposon distributions, even though more complex and possibly selective mechanisms can have contributed. Besides the inherent interest in understanding the origin of current retrotransposon distributions, this work sets a general analytical framework to analyze quantitatively the effects of genome evolutionary dynamics on the distribution of genomic elements.
Collapse
Affiliation(s)
| | - Maria Rita Fumagalli
- Institute of Biophysics - CNR, National Research Council, Genova, Italy.,Department of Environmental Science and Policy, Center for Complexity and Biosystems, University of Milan, Milano, Italy
| | - Michele Caselle
- Department of Physics and INFN, University of Torino, Torino, Italy
| | - Matteo Osella
- Department of Physics and INFN, University of Torino, Torino, Italy
| |
Collapse
|
29
|
Ding C, Li Y, Wang S, Xing C, Chen L, Zhang H, Wang Y, Dai M. ROBO2 hampers malignant biological behavior and predicts a better prognosis in pancreatic adenocarcinoma. Scand J Gastroenterol 2021; 56:955-964. [PMID: 34148491 DOI: 10.1080/00365521.2021.1930144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a fatalmalignant cancer with extremely poor prognosis and high mortality. Genome wide studies show that Slit/Robo signaling pathway takes a major effect in the oncogenesis and progression of pancreatic cancer. However, the function and mechanism of ROBO2 in the development of PDAC remains unclear. METHODS In present study, we use Western blot and real-time polymerase chain reaction (RT-PCR) to detect the expression of ROBO2 in pancreatic cell lines. Cell proliferation,Transwellmigration and invasion were conducted inAsPC-1, MIA PaCa-2 and PANC-1cell lines. RNA sequencing, bioinformatics analysisand Western blot were used to explore its mechanism and potential target molecules. The expression of ROBO2 in 95 tumor tissues was detected by immunohistochemistry. RESULTS ROBO2 expression was downregulated in PDAC cell lines and tissue samples. A high expression of ROBO2 was associated with better prognosis. Upregulation of ROBO2 inhibited PDAC cell proliferation, migration, and invasion. However, we found theoppositeresults in the ROBO2 downregulation group. In addition, the function of ROBO2 on cell proliferation was further affirmed by the animal model. Finally, the results of RNA sequencing indicated that ROBO2 partly promoted the antitumor activity by inhibiting ECM1 in PDAC. CONCLUSIONS Our work suggests that ROBO2 inhibits tumor progression in PDAC and may serve as a predictive biomarker and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Cheng Ding
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cheng Xing
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Stow EC, Kaul T, deHaro DL, Dem MR, Beletsky AG, Morales ME, Du Q, LaRosa AJ, Yang H, Smither E, Baddoo M, Ungerleider N, Deininger P, Belancio VP. Organ-, sex- and age-dependent patterns of endogenous L1 mRNA expression at a single locus resolution. Nucleic Acids Res 2021; 49:5813-5831. [PMID: 34023901 PMCID: PMC8191783 DOI: 10.1093/nar/gkab369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Expression of L1 mRNA, the first step in the L1 copy-and-paste amplification cycle, is a prerequisite for L1-associated genomic instability. We used a reported stringent bioinformatics method to parse L1 mRNA transcripts and measure the level of L1 mRNA expressed in mouse and rat organs at a locus-specific resolution. This analysis determined that mRNA expression of L1 loci in rodents exhibits striking organ specificity with less than 0.8% of loci shared between organs of the same organism. This organ specificity in L1 mRNA expression is preserved in male and female mice and across age groups. We discovered notable differences in L1 mRNA expression between sexes with only 5% of expressed L1 loci shared between male and female mice. Moreover, we report that the levels of total L1 mRNA expression and the number and spectrum of expressed L1 loci fluctuate with age as independent variables, demonstrating different patterns in different organs and sexes. Overall, our comparisons between organs and sexes and across ages ranging from 2 to 22 months establish previously unforeseen dynamic changes in L1 mRNA expression in vivo. These findings establish the beginning of an atlas of endogenous L1 mRNA expression across a broad range of biological variables that will guide future studies.
Collapse
Affiliation(s)
- Emily C Stow
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Madeleine R Dem
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Anna G Beletsky
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Maria E Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Qianhui Du
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Alexis J LaRosa
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA.,Department of Structural and Cellular Biology, Tulane School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112 USA
| |
Collapse
|
31
|
Mukherjee K, Sur D, Singh A, Rai S, Das N, Sekar R, Narindi S, Dhingra VK, Jat B, Balraam KVV, Agarwal SP, Mandal PK. Robust expression of LINE-1 retrotransposon encoded proteins in oral squamous cell carcinoma. BMC Cancer 2021; 21:628. [PMID: 34044801 PMCID: PMC8161598 DOI: 10.1186/s12885-021-08174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Oral Squamous Cell Carcinoma (OSCC) results from a series of genetic alteration in squamous cells. This particular type of cancer considers one of the most aggressive malignancies to control because of its frequent local invasions to the regional lymph node. Although several biomarkers have been reported, the key marker used to predict the behavior of the disease is largely unknown. Here we report Long INterpersed Element-1 (LINE1 or L1) retrotransposon activity in post-operative oral cancer samples. L1 is the only active retrotransposon occupying around 17% of the human genome with an estimated 500,000 copies. An active L1 encodes two proteins (L1ORF1p and L1ORF2p); both of which are critical in the process of retrotransposition. Several studies report that the L1 retrotransposon is highly active in many cancers. L1 activity is generally determined by assaying L1ORF1p because of its high expression and availability of the antibody. However, due to its lower expression and unavailability of a robust antibody, detection of L1ORF2p has been limited. L1ORF2p is the crucial protein in the process of retrotransposition as it provides endonuclease and reverse transcriptase (RT) activity. METHODS Immunohistochemistry and Western blotting were performed on the post-operative oral cancer samples and murine tissues. RESULTS Using in house novel antibodies against both the L1 proteins (L1ORF1p and L1ORF2p), we found L1 retrotransposon is extremely active in post-operative oral cancer tissues. Here, we report a novel human L1ORF2p antibody generated using an 80-amino-acid stretch from the RT domain, which is highly conserved among different species. The antibody detects significant L1ORF2p expression in human oral squamous cell carcinoma (OSCC) samples and murine germ tissues. CONCLUSIONS We report exceptionally high L1ORF1p and L1ORF2p expression in post-operative oral cancer samples. The novel L1ORF2p antibody reported in this study will serve as a useful tool to understand why L1 activity is deregulated in OSCC and how it contributes to the progression of this particular cancer. Cross-species reactivity of L1ORF2p antibody due to the conserved epitope will be useful to study the retrotransposon biology in mice and rat germ tissues.
Collapse
Affiliation(s)
- Koel Mukherjee
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | - Debpali Sur
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | - Abhijeet Singh
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | - Sandhya Rai
- Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand India
| | | | - Rakshanya Sekar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Vandana Kumar Dhingra
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | - Bhinyaram Jat
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | | | - Satya Prakash Agarwal
- Department of Head-Neck Surgery and Oncology, AIIMS Rishikesh, Rishikesh, Uttarakhand India
| | | |
Collapse
|
32
|
Abstract
I have been fortunate and privileged to have participated in amazing breakthroughs in human genetics since the 1960s. I was lucky to have trained in medical school at Dartmouth and Johns Hopkins, in pediatrics at the University of Minnesota and Johns Hopkins, and in genetics and molecular biology with Dr. Barton Childs at Johns Hopkins and Dr. Harvey Itano at the National Institutes of Health. Later, the collaborative spirit at Johns Hopkins and the University of Pennsylvania were important to my career. Here, I describe the thrill of scientific discovery in two diverse areas of human genetics: DNA haplotypes and their role in solving the molecular basis of beta thalassemia and the role of retrotransposons (jumping genes) in human biology. I hope that this article may inspire others who love human genetics as much as I do.
Collapse
Affiliation(s)
- Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
33
|
Siudeja K, van den Beek M, Riddiford N, Boumard B, Wurmser A, Stefanutti M, Lameiras S, Bardin AJ. Unraveling the features of somatic transposition in the Drosophila intestine. EMBO J 2021; 40:e106388. [PMID: 33634906 PMCID: PMC8090852 DOI: 10.15252/embj.2020106388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) play a significant role in evolution, contributing to genetic variation. However, TE mobilization in somatic cells is not well understood. Here, we address the prevalence of transposition in a somatic tissue, exploiting the Drosophila midgut as a model. Using whole-genome sequencing of in vivo clonally expanded gut tissue, we have mapped hundreds of high-confidence somatic TE integration sites genome-wide. We show that somatic retrotransposon insertions are associated with inactivation of the tumor suppressor Notch, likely contributing to neoplasia formation. Moreover, applying Oxford Nanopore long-read sequencing technology we provide evidence for tissue-specific differences in retrotransposition. Comparing somatic TE insertional activity with transcriptomic and small RNA sequencing data, we demonstrate that transposon mobility cannot be simply predicted by whole tissue TE expression levels or by small RNA pathway activity. Finally, we reveal that somatic TE insertions in the adult fly intestine are enriched in genic regions and in transcriptionally active chromatin. Together, our findings provide clear evidence of ongoing somatic transposition in Drosophila and delineate previously unknown features underlying somatic TE mobility in vivo.
Collapse
Affiliation(s)
- Katarzyna Siudeja
- Institut CurieCNRSUMR 3215INSERM U934Stem Cells and Tissue Homeostasis GroupPSL Research UniversityParisFrance
- Sorbonne UniversitésUPMC Univ Paris 6ParisFrance
| | - Marius van den Beek
- Institut CurieCNRSUMR 3215INSERM U934Stem Cells and Tissue Homeostasis GroupPSL Research UniversityParisFrance
- Sorbonne UniversitésUPMC Univ Paris 6ParisFrance
| | - Nick Riddiford
- Institut CurieCNRSUMR 3215INSERM U934Stem Cells and Tissue Homeostasis GroupPSL Research UniversityParisFrance
- Sorbonne UniversitésUPMC Univ Paris 6ParisFrance
| | - Benjamin Boumard
- Institut CurieCNRSUMR 3215INSERM U934Stem Cells and Tissue Homeostasis GroupPSL Research UniversityParisFrance
- Sorbonne UniversitésUPMC Univ Paris 6ParisFrance
| | - Annabelle Wurmser
- Institut CurieCNRSUMR 3215INSERM U934Stem Cells and Tissue Homeostasis GroupPSL Research UniversityParisFrance
- Sorbonne UniversitésUPMC Univ Paris 6ParisFrance
| | - Marine Stefanutti
- Institut CurieCNRSUMR 3215INSERM U934Stem Cells and Tissue Homeostasis GroupPSL Research UniversityParisFrance
- Sorbonne UniversitésUPMC Univ Paris 6ParisFrance
| | - Sonia Lameiras
- ICGex Next‐Generation Sequencing PlatformInstitut CuriePSL Research UniversityParisFrance
| | - Allison J Bardin
- Institut CurieCNRSUMR 3215INSERM U934Stem Cells and Tissue Homeostasis GroupPSL Research UniversityParisFrance
- Sorbonne UniversitésUPMC Univ Paris 6ParisFrance
| |
Collapse
|
34
|
Keegan RM, Talbot LR, Chang YH, Metzger MJ, Dubnau J. Intercellular viral spread and intracellular transposition of Drosophila gypsy. PLoS Genet 2021; 17:e1009535. [PMID: 33886543 PMCID: PMC8096092 DOI: 10.1371/journal.pgen.1009535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/04/2021] [Accepted: 04/06/2021] [Indexed: 01/12/2023] Open
Abstract
It has become increasingly clear that retrotransposons (RTEs) are more widely expressed in somatic tissues than previously appreciated. RTE expression has been implicated in a myriad of biological processes ranging from normal development and aging, to age related diseases such as cancer and neurodegeneration. Long Terminal Repeat (LTR)-RTEs are evolutionary ancestors to, and share many features with, exogenous retroviruses. In fact, many organisms contain endogenous retroviruses (ERVs) derived from exogenous retroviruses that integrated into the germ line. These ERVs are inherited in Mendelian fashion like RTEs, and some retain the ability to transmit between cells like viruses, while others develop the ability to act as RTEs. The process of evolutionary transition between LTR-RTE and retroviruses is thought to involve multiple steps by which the element loses or gains the ability to transmit copies between cells versus the ability to replicate intracellularly. But, typically, these two modes of transmission are incompatible because they require assembly in different sub-cellular compartments. Like murine IAP/IAP-E elements, the gypsy family of retroelements in arthropods appear to sit along this evolutionary transition. Indeed, there is some evidence that gypsy may exhibit retroviral properties. Given that gypsy elements have been found to actively mobilize in neurons and glial cells during normal aging and in models of neurodegeneration, this raises the question of whether gypsy replication in somatic cells occurs via intracellular retrotransposition, intercellular viral spread, or some combination of the two. These modes of replication in somatic tissues would have quite different biological implications. Here, we demonstrate that Drosophila gypsy is capable of both cell-associated and cell-free viral transmission between cultured S2 cells of somatic origin. Further, we demonstrate that the ability of gypsy to move between cells is dependent upon a functional copy of its viral envelope protein. This argues that the gypsy element has transitioned from an RTE into a functional endogenous retrovirus with the acquisition of its envelope gene. On the other hand, we also find that intracellular retrotransposition of the same genomic copy of gypsy can occur in the absence of the Env protein. Thus, gypsy exhibits both intracellular retrotransposition and intercellular viral transmission as modes of replicating its genome.
Collapse
Affiliation(s)
- Richard M. Keegan
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
| | - Lillian R. Talbot
- Medical Scientist Training Program, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
| | - Yung-Heng Chang
- Department of Anesthesiology, Stony Brook School of Medicine, New York City, New York, United States of America
| | - Michael J. Metzger
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Josh Dubnau
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York City, New York, United States of America
- Department of Anesthesiology, Stony Brook School of Medicine, New York City, New York, United States of America
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Fabian DK, Dönertaş HM, Fuentealba M, Partridge L, Thornton JM. Transposable Element Landscape in Drosophila Populations Selected for Longevity. Genome Biol Evol 2021; 13:6141024. [PMID: 33595657 PMCID: PMC8355499 DOI: 10.1093/gbe/evab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) inflict numerous negative effects on health and fitness as they replicate by integrating into new regions of the host genome. Even though organisms employ powerful mechanisms to demobilize TEs, transposons gradually lose repression during aging. The rising TE activity causes genomic instability and was implicated in age-dependent neurodegenerative diseases, inflammation, and the determination of lifespan. It is therefore conceivable that long-lived individuals have improved TE silencing mechanisms resulting in reduced TE expression relative to their shorter-lived counterparts and fewer genomic insertions. Here, we test this hypothesis by performing the first genome-wide analysis of TE insertions and expression in populations of Drosophila melanogaster selected for longevity through late-life reproduction for 50–170 generations from four independent studies. Contrary to our expectation, TE families were generally more abundant in long-lived populations compared with nonselected controls. Although simulations showed that this was not expected under neutrality, we found little evidence for selection driving TE abundance differences. Additional RNA-seq analysis revealed a tendency for reducing TE expression in selected populations, which might be more important for lifespan than regulating genomic insertions. We further find limited evidence of parallel selection on genes related to TE regulation and transposition. However, telomeric TEs were genomically and transcriptionally more abundant in long-lived flies, suggesting improved telomere maintenance as a promising TE-mediated mechanism for prolonging lifespan. Our results provide a novel viewpoint indicating that reproduction at old age increases the opportunity of TEs to be passed on to the next generation with little impact on longevity.
Collapse
Affiliation(s)
- Daniel K Fabian
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
- Corresponding author: E-mail:
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Matías Fuentealba
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, United Kingdom
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
36
|
Pappalardo AM, Ferrito V, Biscotti MA, Canapa A, Capriglione T. Transposable Elements and Stress in Vertebrates: An Overview. Int J Mol Sci 2021; 22:1970. [PMID: 33671215 PMCID: PMC7922186 DOI: 10.3390/ijms22041970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Since their identification as genomic regulatory elements, Transposable Elements (TEs) were considered, at first, molecular parasites and later as an important source of genetic diversity and regulatory innovations. In vertebrates in particular, TEs have been recognized as playing an important role in major evolutionary transitions and biodiversity. Moreover, in the last decade, a significant number of papers has been published highlighting a correlation between TE activity and exposition to environmental stresses and dietary factors. In this review we present an overview of the impact of TEs in vertebrate genomes, report the silencing mechanisms adopted by host genomes to regulate TE activity, and finally we explore the effects of environmental and dietary factor exposures on TE activity in mammals, which is the most studied group among vertebrates. The studies here reported evidence that several factors can induce changes in the epigenetic status of TEs and silencing mechanisms leading to their activation with consequent effects on the host genome. The study of TE can represent a future challenge for research for developing effective markers able to detect precocious epigenetic changes and prevent human diseases.
Collapse
Affiliation(s)
- Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Teresa Capriglione
- Department of Biology, University of Naples "Federico II", Via Cinthia 21-Ed7, 80126 Naples, Italy
| |
Collapse
|
37
|
Striking heterogeneity of somatic L1 retrotransposition in single normal and cancerous gastrointestinal cells. Proc Natl Acad Sci U S A 2020; 117:32215-32222. [PMID: 33277430 DOI: 10.1073/pnas.2019450117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Somatic LINE-1 (L1) retrotransposition has been detected in early embryos, adult brains, and the gastrointestinal (GI) tract, and many cancers, including epithelial GI tumors. We previously found numerous somatic L1 insertions in paired normal and GI cancerous tissues. Here, using a modified method of single-cell analysis for somatic L1 insertions, we studied adenocarcinomas of colon, pancreas, and stomach, and found a variable number of somatic L1 insertions in tumors of the same type from patient to patient. We detected no somatic L1 insertions in single cells of 5 of 10 tumors studied. In three tumors, aneuploid cells were detected by FACS. In one pancreatic tumor, there were many more L1 insertions in aneuploid than in euploid tumor cells. In one gastric cancer, both aneuploid and euploid cells contained large numbers of likely clonal insertions. However, in a second gastric cancer with aneuploid cells, no somatic L1 insertions were found. We suggest that when the cellular environment is favorable to retrotransposition, aneuploidy predisposes tumor cells to L1 insertions, and retrotransposition may occur at the transition from euploidy to aneuploidy. Seventeen percent of insertions were also present in normal cells, similar to findings in genomic DNA from normal tissues of GI tumor patients. We provide evidence that: 1) The number of L1 insertions in tumors of the same type is highly variable, 2) most somatic L1 insertions in GI cancer tissues are absent from normal tissues, and 3) under certain conditions, somatic L1 retrotransposition exhibits a propensity for occurring in aneuploid cells.
Collapse
|
38
|
RNA-cDNA hybrids mediate transposition via different mechanisms. Sci Rep 2020; 10:16034. [PMID: 32994470 PMCID: PMC7524711 DOI: 10.1038/s41598-020-73018-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022] Open
Abstract
Retrotransposons can represent half of eukaryotic genomes. Retrotransposon dysregulation destabilizes genomes and has been linked to various human diseases. Emerging regulators of retromobility include RNA–DNA hybrid-containing structures known as R-loops. Accumulation of these structures at the transposons of yeast 1 (Ty1) elements has been shown to increase Ty1 retromobility through an unknown mechanism. Here, via a targeted genetic screen, we identified the rnh1Δ rad27Δ yeast mutant, which lacked both the Ty1 inhibitor Rad27 and the RNA–DNA hybrid suppressor Rnh1. The mutant exhibited elevated levels of Ty1 cDNA-associated RNA–DNA hybrids that promoted Ty1 mobility. Moreover, in this rnh1Δ rad27Δ mutant, but not in the double RNase H mutant rnh1Δ rnh201Δ, RNA–DNA hybrids preferentially existed as duplex nucleic acid structures and increased Ty1 mobility in a Rad52-dependent manner. The data indicate that in cells lacking RNA–DNA hybrid and Ty1 repressors, elevated levels of RNA-cDNA hybrids, which are associated with duplex nucleic acid structures, boost Ty1 mobility via a Rad52-dependent mechanism. In contrast, in cells lacking RNA–DNA hybrid repressors alone, elevated levels of RNA-cDNA hybrids, which are associated with triplex nucleic acid structures, boost Ty1 mobility via a Rad52-independent process. We propose that duplex and triplex RNA–DNA hybrids promote transposon mobility via Rad52-dependent or -independent mechanisms.
Collapse
|
39
|
LeBien J, McCollam G, Atallah J. An in silico model of LINE-1-mediated neoplastic evolution. Bioinformatics 2020; 36:4144-4153. [PMID: 32365170 DOI: 10.1093/bioinformatics/btaa279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Recent research has uncovered roles for transposable elements (TEs) in multiple evolutionary processes, ranging from somatic evolution in cancer to putatively adaptive germline evolution across species. Most models of TE population dynamics, however, have not incorporated actual genome sequence data. The effect of site integration preferences of specific TEs on evolutionary outcomes and the effects of different selection regimes on TE dynamics in a specific genome are unknown. We present a stochastic model of LINE-1 (L1) transposition in human cancer. This system was chosen because the transposition of L1 elements is well understood, the population dynamics of cancer tumors has been modeled extensively, and the role of L1 elements in cancer progression has garnered interest in recent years. RESULTS Our model predicts that L1 retrotransposition (RT) can play either advantageous or deleterious roles in tumor progression, depending on the initial lesion size, L1 insertion rate and tumor driver genes. Small changes in the RT rate or set of driver tumor-suppressor genes (TSGs) were observed to alter the dynamics of tumorigenesis. We found high variation in the density of L1 target sites across human protein-coding genes. We also present an analysis, across three cancer types, of the frequency of homozygous TSG disruption in wild-type hosts compared to those with an inherited driver allele. AVAILABILITY AND IMPLEMENTATION Source code is available at https://github.com/atallah-lab/neoplastic-evolution. CONTACT jlebien@uno.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jack LeBien
- Department of Biological Sciences, The University of New, Orleans, New Orleans, LA 70148, USA
| | - Gerald McCollam
- Advanced Academic Programs, John Hopkins University, Baltimore, MD 21218, USA
| | - Joel Atallah
- Department of Biological Sciences, The University of New, Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
40
|
Luo X, Guo X, Tan Y, Zhang Y, Garcia-Milian R, Wang Z, Shi J, Yu T, Ji J, Wang X, Xu J, Zhang H, Zuo L, Lu L, Wang K, Li CSR. KTN1 variants and risk for attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:234-244. [PMID: 32190980 PMCID: PMC7210069 DOI: 10.1002/ajmg.b.32782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 01/21/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022]
Abstract
Individuals with attention deficit hyperactivity disorder (ADHD) show gray matter volume (GMV) reduction in the putamen. KTN1 variants may regulate kinectin 1 expression in the putamen and influence putamen structure and function. We aim to test the hypothesis that the KTN1 variants may represent a genetic risk factor of ADHD. Two independent family-based Caucasian samples were analyzed, including 922 parent-child trios (a total of 2,757 subjects with 924 ADHD children) and 735 parent-child trios (a total of 1,383 subjects with 613 ADHD children). The association between ADHD and a total of 143 KTN1 SNPs was analyzed in the first sample, and the nominally-significant (p < .05) risk SNPs were classified into independent haplotype blocks. All SNPs, including imputed SNPs within these blocks, and haplotypes across each block, were explored for replication of associations in both samples. The potential biological functions of all risk SNPs were predicted using a series of bioinformatics analyses, their regulatory effects on the putamen volumes were tested, and the KTN1 mRNA expression was examined in three independent human putamen tissue samples. We found that fifteen SNPs were nominally associated with ADHD (p < .05) in the first sample, and three of them remained significant even after correction for multiple testing (1.3 × 10-10 ≤ p ≤ 1.2 × 10-4 ; α = 2.5 × 10-3 ). These 15 risk SNPs were located in five haplotype blocks, and 13 SNPs within four of these blocks were associated with ADHD in the second sample. Six haplotypes within these blocks were also significantly (1.2 × 10-7 ≤ p ≤ .009) associated with ADHD in these samples. These risk variants were located in disease-related transposons and/or transcription-related functional regions. Major alleles of these risk variants significantly increased putamen volumes. Finally, KTN1 mRNA was significantly expressed in putamen across three independent cohorts. We concluded that the KTN1 variants were significantly associated with ADHD. KTN1 may play a functional role in the development of ADHD.
Collapse
Affiliation(s)
- Xingguang Luo
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China;,Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA;,Corresponding authors: Xingguang Luo, MD, PhD and Chiang-Shan R. Li, MD, PhD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520. (X.L.); (C.-S.R.L.)
| | - Xiaoyun Guo
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Yong Zhang
- Tianjin Mental Health Center, Tianjin 300222, China
| | - Rolando Garcia-Milian
- Curriculum & Research Support Department, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Jing Shi
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ting Yu
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Jiawu Ji
- Department of Psychiatry, Fuzhou Neuropsychiatric Hospital, Fujian Medical University, Fuzhou 350008, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jianying Xu
- Zhuhai Municipal Maternal and Children’s Health Hospital, Zhuhai, Guangdong, China
| | - Huihao Zhang
- The First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lu Lu
- Departments of Genetics, Genomics, Informatics, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA;,Corresponding authors: Xingguang Luo, MD, PhD and Chiang-Shan R. Li, MD, PhD; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520. (X.L.); (C.-S.R.L.)
| |
Collapse
|
41
|
Burns KH. Our Conflict with Transposable Elements and Its Implications for Human Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:51-70. [PMID: 31977294 DOI: 10.1146/annurev-pathmechdis-012419-032633] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our genome is a historic record of successive invasions of mobile genetic elements. Like other eukaryotes, we have evolved mechanisms to limit their propagation and minimize the functional impact of new insertions. Although these mechanisms are vitally important, they are imperfect, and a handful of retroelement families remain active in modern humans. This review introduces the intrinsic functions of transposons, the tactics employed in their restraint, and the relevance of this conflict to human pathology. The most straightforward examples of disease-causing transposable elements are germline insertions that disrupt a gene and result in a monogenic disease allele. More enigmatic are the abnormal patterns of transposable element expression in disease states. Changes in transposon regulation and cellular responses to their expression have implicated these sequences in diseases as diverse as cancer, autoimmunity, and neurodegeneration. Distinguishing their epiphenomenal from their pathogenic effects may provide wholly new perspectives on our understanding of disease.
Collapse
Affiliation(s)
- Kathleen H Burns
- Department of Pathology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
42
|
Lu JY, Shao W, Chang L, Yin Y, Li T, Zhang H, Hong Y, Percharde M, Guo L, Wu Z, Liu L, Liu W, Yan P, Ramalho-Santos M, Sun Y, Shen X. Genomic Repeats Categorize Genes with Distinct Functions for Orchestrated Regulation. Cell Rep 2020; 30:3296-3311.e5. [PMID: 32160538 PMCID: PMC7195444 DOI: 10.1016/j.celrep.2020.02.048] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 11/06/2022] Open
Abstract
Repetitive elements are abundantly distributed in mammalian genomes. Here, we reveal a striking association between repeat subtypes and gene function. SINE, L1, and low-complexity repeats demarcate distinct functional categories of genes and may dictate the time and level of gene expression by providing binding sites for different regulatory proteins. Importantly, imaging and sequencing analysis show that L1 repeats sequester a large set of genes with specialized functions in nucleolus- and lamina-associated inactive domains that are depleted of SINE repeats. In addition, L1 transcripts bind extensively to its DNA in embryonic stem cells (ESCs). Depletion of L1 RNA in ESCs leads to relocation of L1-enriched chromosomal segments from inactive domains to the nuclear interior and de-repression of L1-associated genes. These results demonstrate a role of L1 DNA and RNA in gene silencing and suggest a general theme of genomic repeats in orchestrating the function, regulation, and expression of their host genes.
Collapse
Affiliation(s)
- J Yuyang Lu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Chang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yafei Yin
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Zhang
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Michelle Percharde
- MRC London Institute of Medical Sciences (LMS), London W120NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W120NN, UK
| | - Lerui Guo
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongyang Wu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lichao Liu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Liu
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pixi Yan
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xiaohua Shen
- Tsinghua Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, Santamarina M, Ju YS, Temes J, Garcia-Souto D, Detering H, Li Y, Rodriguez-Castro J, Dueso-Barroso A, Bruzos AL, Dentro SC, Blanco MG, Contino G, Ardeljan D, Tojo M, Roberts ND, Zumalave S, Edwards PA, Weischenfeldt J, Puiggròs M, Chong Z, Chen K, Lee EA, Wala JA, Raine KM, Butler A, Waszak SM, Navarro FCP, Schumacher SE, Monlong J, Maura F, Bolli N, Bourque G, Gerstein M, Park PJ, Wedge DC, Beroukhim R, Torrents D, Korbel JO, Martincorena I, Fitzgerald RC, Van Loo P, Kazazian HH, Burns KH, Campbell PJ, Tubio JMC. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020; 52:306-319. [PMID: 32024998 PMCID: PMC7058536 DOI: 10.1038/s41588-019-0562-0] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/26/2019] [Indexed: 01/24/2023]
Abstract
About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage-fusion-bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors.
Collapse
Affiliation(s)
- Bernardo Rodriguez-Martin
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva G Alvarez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jorge Zamora
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jonas Demeulemeester
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Martin Santamarina
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Javier Temes
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Harald Detering
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
- Galicia Sur Health Research Institute, Vigo, Spain
| | - Yilong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jorge Rodriguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Dueso-Barroso
- Faculty of Science and Technology, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Alicia L Bruzos
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Stefan C Dentro
- The Francis Crick Institute, London, UK
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Oxford Big Data Institute, University of Oxford, Oxford, UK
| | - Miguel G Blanco
- DNA Repair and Genome Integrity, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gianmarco Contino
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Daniel Ardeljan
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
| | - Marta Tojo
- The Biomedical Research Centre (CINBIO), Universidade de Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Nicola D Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sonia Zumalave
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paul A Edwards
- University of Cambridge, Cambridge, UK
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joachim Weischenfeldt
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Finsen Laboratory and Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Zechen Chong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genetics and Informatics Institute, University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, USA
| | - Ken Chen
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremiah A Wala
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keiran M Raine
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Adam Butler
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Fabio C P Navarro
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Steven E Schumacher
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jean Monlong
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Francesco Maura
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Niccolo Bolli
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Guillaume Bourque
- Canadian Center for Computational Genomics, McGill University, Montreal, Quebec, Canada
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - David C Wedge
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK
- Experimental Cancer Genetics, Wellcome Sanger Institute, Cambridge, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Rameen Beroukhim
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Torrents
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge, UK
| | - Peter Van Loo
- The Francis Crick Institute, London, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Jose M C Tubio
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Biomedical Research Centre (CINBIO), University of Vigo, Vigo, Spain.
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
44
|
Bellisai C, Sciamanna I, Rovella P, Giovannini D, Baranzini M, Pugliese GM, Zeya Ansari MS, Milite C, Sinibaldi-Vallebona P, Cirilli R, Sbardella G, Pichierri P, Trisciuoglio D, Lavia P, Serafino A, Spadafora C. Reverse transcriptase inhibitors promote the remodelling of nuclear architecture and induce autophagy in prostate cancer cells. Cancer Lett 2020; 478:133-145. [PMID: 32112906 DOI: 10.1016/j.canlet.2020.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Emerging data indicate that the reverse transcriptase (RT) protein encoded by LINE-1 transposable elements is a promising cancer target. Nonnucleoside RT inhibitors, e.g. efavirenz (EFV) and SPV122.2, reduce proliferation and promote differentiation of cancer cells, concomitant with a global reprogramming of the transcription profile. Both inhibitors have therapeutic anticancer efficacy in animal models. Here we have sought to clarify the mechanisms of RT inhibitors in cancer cells. We report that exposure of PC3 metastatic prostate carcinoma cells to both RT inhibitors results in decreased proliferation, and concomitantly induces genome damage. This is associated with rearrangements of the nuclear architecture, particularly at peripheral chromatin, disruption of the nuclear lamina, and budding of micronuclei. These changes are reversible upon discontinuation of the RT-inhibitory treatment, with reconsititution of the lamina and resumption of the cancer cell original features. The use of pharmacological autophagy inhibitors proves that autophagy is largely responsible for the antiproliferative effect of RT inhibitors. These alterations are not induced in non-cancer cell lines exposed to RT inhibitors. These data provide novel insight in the molecular pathways targeted by RT inhibitors in cancer cells.
Collapse
Affiliation(s)
- Cristina Bellisai
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy; University of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Paola Rovella
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| | - Daniela Giovannini
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy
| | - Mirko Baranzini
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy
| | - Giusj Monia Pugliese
- University of Rome "Tor Vergata", 00133, Rome, Italy; Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Mohammad Salik Zeya Ansari
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| | - Ciro Milite
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | - Paola Sinibaldi-Vallebona
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy; University of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Gianluca Sbardella
- Department of Pharmacy, University of Salerno, 84084, Fisciano, SA, Italy
| | | | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133, Rome, Italy.
| |
Collapse
|
45
|
Percharde M, Sultana T, Ramalho-Santos M. What Doesn't Kill You Makes You Stronger: Transposons as Dual Players in Chromatin Regulation and Genomic Variation. Bioessays 2020; 42:e1900232. [PMID: 32053231 DOI: 10.1002/bies.201900232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Indexed: 12/22/2022]
Abstract
Transposable elements (TEs) are sequences currently or historically mobile, and are present across all eukaryotic genomes. A growing interest in understanding the regulation and function of TEs has revealed seemingly dichotomous roles for these elements in evolution, development, and disease. On the one hand, many gene regulatory networks owe their organization to the spread of cis-elements and DNA binding sites through TE mobilization during evolution. On the other hand, the uncontrolled activity of transposons can generate mutations and contribute to disease, including cancer, while their increased expression may also trigger immune pathways that result in inflammation or senescence. Interestingly, TEs have recently been found to have novel essential functions during mammalian development. Here, the function and regulation of TEs are discussed, with a focus on LINE1 in mammals. It is proposed that LINE1 is a beneficial endogenous dual regulator of gene expression and genomic diversity during mammalian development, and that both of these functions may be detrimental if deregulated in disease contexts.
Collapse
Affiliation(s)
- Michelle Percharde
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Tania Sultana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5T 3L9, Ontario, Canada
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, M5T 3L9, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Ontario, Canada
| |
Collapse
|
46
|
McKerrow W, Tang Z, Steranka JP, Payer LM, Boeke JD, Keefe D, Fenyö D, Burns KH, Liu C. Human transposon insertion profiling by sequencing (TIPseq) to map LINE-1 insertions in single cells. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190335. [PMID: 32075555 PMCID: PMC7061987 DOI: 10.1098/rstb.2019.0335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Long interspersed element-1 (LINE-1, L1) sequences, which comprise about 17% of human genome, are the product of one of the most active types of mobile DNAs in modern humans. LINE-1 insertion alleles can cause inherited and de novo genetic diseases, and LINE-1-encoded proteins are highly expressed in some cancers. Genome-wide LINE-1 mapping in single cells could be useful for defining somatic and germline retrotransposition rates, and for enabling studies to characterize tumour heterogeneity, relate insertions to transcriptional and epigenetic effects at the cellular level, or describe cellular phylogenies in development. Our laboratories have reported a genome-wide LINE-1 insertion site mapping method for bulk DNA, named transposon insertion profiling by sequencing (TIPseq). There have been significant barriers applying LINE-1 mapping to single cells, owing to the chimeric artefacts and features of repetitive sequences. Here, we optimize a modified TIPseq protocol and show its utility for LINE-1 mapping in single lymphoblastoid cells. Results from single-cell TIPseq experiments compare well to known LINE-1 insertions found by whole-genome sequencing and TIPseq on bulk DNA. Among the several approaches we tested, whole-genome amplification by multiple displacement amplification followed by restriction enzyme digestion, vectorette ligation and LINE-1-targeted PCR had the best assay performance. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Wilson McKerrow
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Zuojian Tang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| | - Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - David Keefe
- Department of Obstetrics and Gynecology, New York University Langone School of Medicine, 462 First Avenue, New York, NY 10016, USA.,Department of Cell Biology, New York University Langone School of Medicine, 462 First Avenue, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401N Broadway, Baltimore, MD 21231, USA
| | - Chunhong Liu
- Department of Pathology, Johns Hopkins University School of Medicine, 733N Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Alekseeva LA, Sen'kova AV, Zenkova MA, Mironova NL. Targeting Circulating SINEs and LINEs with DNase I Provides Metastases Inhibition in Experimental Tumor Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:50-61. [PMID: 32146418 PMCID: PMC7058713 DOI: 10.1016/j.omtn.2020.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/16/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
Tumor-associated cell-free DNAs (cfDNAs) are found to play some important roles at different stages of tumor progression; they are involved in the transformation of normal cells and contribute to tumor migration and invasion. DNase I is considered a promising cancer cure, due to its ability to degrade cfDNAs. Previous studies using murine tumor models have proved the high anti-metastatic potential of DNase I. Later circulating cfDNAs, especially tandem repeats associated with short-interspersed nuclear elements (SINEs) and long-interspersed nuclear elements (LINEs), have been found to be the enzyme's main molecular targets. Here, using Lewis lung carcinoma, melanoma B16, and lymphosarcoma RLS40 murine tumor models, we reveal that tumor progression is accompanied by an increase in the level of SINE and LINEs in the pool of circulating cfDNAs. Treatment with DNase I decreased in the number and area of metastases by factor 3-10, and the size of the primary tumor node by factor 1.5-2, which correlated with 5- to 10-fold decreasing SINEs and LINEs. We demonstrated that SINEs and LINEs from cfDNA of tumor-bearing mice are able to penetrate human cells. The results show that SINEs and LINEs could be important players in metastasis, and this allows them to be considered as attractive new targets for anticancer therapy.
Collapse
Affiliation(s)
- Ludmila A Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Nadezhda L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia.
| |
Collapse
|
48
|
Chalmers TJ, Wu LE. Transposable Elements Cross Kingdom Boundaries and Contribute to Inflammation and Ageing: Somatic Acquisition of Foreign Transposable Elements as a Catalyst of Genome Instability, Epigenetic Dysregulation, Inflammation, Senescence, and Ageing. Bioessays 2020; 42:e1900197. [PMID: 31994769 DOI: 10.1002/bies.201900197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/23/2019] [Indexed: 01/07/2023]
Abstract
The de-repression of transposable elements (TEs) in mammalian genomes is thought to contribute to genome instability, inflammation, and ageing, yet is viewed as a cell-autonomous event. In contrast to mammalian cells, prokaryotes constantly exchange genetic material through TEs, crossing both cell and species barriers, contributing to rapid microbial evolution and diversity in complex communities such as the mammalian gut. Here, it is proposed that TEs released from prokaryotes in the microbiome or from pathogenic infections regularly cross the kingdom barrier to the somatic cells of their eukaryotic hosts. It is proposed this horizontal transfer of TEs from microbe to host is a stochastic, ongoing catalyst of genome destabilization, resulting in structural and epigenetic variations, and activation of well-evolved host defense mechanisms contributing to inflammation, senescence, and biological ageing. It is proposed that innate immunity pathways defend against the horizontal acquisition of microbial TEs, and that activation of this pathway during horizontal transposon transfer promotes chronic inflammation during ageing. Finally, it is suggested that horizontal acquisition of prokaryotic TEs into mammalian genomes has been masked and subsequently under-reported due to flaws in current sequencing pipelines, and new strategies to uncover these events are proposed.
Collapse
Affiliation(s)
| | - Lindsay E Wu
- School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
49
|
Ardeljan D, Wang X, Oghbaie M, Taylor MS, Husband D, Deshpande V, Steranka JP, Gorbounov M, Yang WR, Sie B, Larman HB, Jiang H, Molloy KR, Altukhov I, Li Z, McKerrow W, Fenyö D, Burns KH, LaCava J. LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mob DNA 2019; 11:1. [PMID: 31892958 PMCID: PMC6937734 DOI: 10.1186/s13100-019-0191-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long interspersed element-1 (LINE-1, L1) is the major driver of mobile DNA activity in modern humans. When expressed, LINE-1 loci produce bicistronic transcripts encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Many types of human cancers are characterized by L1 promoter hypomethylation, L1 transcription, L1 ORF1p protein expression, and somatic L1 retrotransposition. ORF2p encodes the endonuclease and reverse transcriptase activities required for L1 retrotransposition. Its expression is poorly characterized in human tissues and cell lines. RESULTS We report mass spectrometry-based tumor proteome profiling studies wherein ORF2p eludes detection. To test whether ORF2p could be detected with specific reagents, we developed and validated five rabbit monoclonal antibodies with immunoreactivity for specific epitopes on the protein. These reagents readily detect ectopic ORF2p expressed from bicistronic L1 constructs. However, endogenous ORF2p is not detected in human tumor samples or cell lines by western blot, immunoprecipitation, or immunohistochemistry despite high levels of ORF1p expression. Moreover, we report endogenous ORF1p-associated interactomes, affinity isolated from colorectal cancers, wherein we similarly fail to detect ORF2p. These samples include primary tumors harboring hundreds of somatically acquired L1 insertions. The new data are available via ProteomeXchange with identifier PXD013743. CONCLUSIONS Although somatic retrotransposition provides unequivocal genetic evidence for the expression of ORF2p in human cancers, we are unable to directly measure its presence using several standard methods. Experimental systems have previously indicated an unequal stoichiometry between ORF1p and ORF2p, but in vivo, the expression of these two proteins may be more strikingly uncoupled. These findings are consistent with observations that ORF2p is not tolerable for cell growth.
Collapse
Affiliation(s)
- Daniel Ardeljan
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xuya Wang
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Martin S. Taylor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - David Husband
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jared P. Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mikhail Gorbounov
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Wan Rou Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Brandon Sie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Kelly R. Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 USA
| | - Ilya Altukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Zhi Li
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Wilson McKerrow
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - David Fenyö
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Kathleen H. Burns
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, 9713 AV The Netherlands
| |
Collapse
|
50
|
Nguyen THM, Carreira PE, Sanchez-Luque FJ, Schauer SN, Fagg AC, Richardson SR, Davies CM, Jesuadian JS, Kempen MJHC, Troskie RL, James C, Beaven EA, Wallis TP, Coward JIG, Chetty NP, Crandon AJ, Venter DJ, Armes JE, Perrin LC, Hooper JD, Ewing AD, Upton KR, Faulkner GJ. L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution. Cell Rep 2019; 23:3730-3740. [PMID: 29949758 DOI: 10.1016/j.celrep.2018.05.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 01/04/2018] [Accepted: 05/26/2018] [Indexed: 01/07/2023] Open
Abstract
LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity.
Collapse
Affiliation(s)
- Thu H M Nguyen
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PT Ciencias de la Salud, Granada 18016, Spain
| | - Stephanie N Schauer
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Allister C Fagg
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | | | - J Samuel Jesuadian
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Marie-Jeanne H C Kempen
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Robin-Lee Troskie
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Cini James
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | | | | | - Jermaine I G Coward
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Mater Health Services, South Brisbane, QLD 4101, Australia
| | - Naven P Chetty
- Mater Health Services, South Brisbane, QLD 4101, Australia
| | | | - Deon J Venter
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Mater Health Services, South Brisbane, QLD 4101, Australia
| | - Jane E Armes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Mater Health Services, South Brisbane, QLD 4101, Australia
| | - Lewis C Perrin
- Mater Health Services, South Brisbane, QLD 4101, Australia
| | - John D Hooper
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Kyle R Upton
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|