1
|
Xu CX, Chen L, Cheng Y, Du Y. Prevalence of congenital heart defects in people with Down syndrome: a systematic review and meta-analysis. J Epidemiol Community Health 2025:jech-2023-220638. [PMID: 39805637 DOI: 10.1136/jech-2023-220638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/15/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The prevalence of congenital heart defects (CHD) in Down syndrome (DS) varies considerably across studies (from 16% to 84%). This study aimed to estimate the prevalence of CHD in people with DS (CHD-DS). METHODS PubMed, Web of Science and the Chinese National Knowledge Infrastructure databases were searched through to 5 January 2023. English-language and Chinese-language articles reporting data on the prevalence of CHD in people with DS were included. Two independent observers performed data extraction and we used a random effects model for all statistical analyses by the Comprehensive Meta-Analysis V.3.3.070 software. RESULTS A pooled analysis, based on 102 studies that included 60 610 individuals, revealed the prevalence of CHD was 49.9% (95% CI: 46.8% to 53.0%) in people with DS. Most of the studies included in this meta-analysis were from North America, Europe and Asia, and subgroup analyses showed a slightly higher prevalence of CHD-DS in Asia (27 studies) compared with North America (28 studies) and Europe (35 studies) (Asia vs North America vs Europe; 54.2% vs 51.6% vs 46.2%). CONCLUSION These results demonstrated that approximately one-half of people with DS had CHD, reinforcing the need to screen all newborns suspected of Down syndrome for CHD.
Collapse
Affiliation(s)
- Chen-Xi Xu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Kim JJ, Park HM, Kyoung AY, Lim SK, Lee JE, Park BC. Redefining copy number variation and single-nucleotide polymorphism counting via novel concepts based on recent PCR enhancements. Biochem Biophys Res Commun 2024; 740:150988. [PMID: 39571227 DOI: 10.1016/j.bbrc.2024.150988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Human genes have numerous copy number variations (CNVs) and single-nucleotide polymorphisms (SNPs) that control most of the body's core functions. On average, 12-16 % of human genes have CNVs, and a single gene can have a few hundred to several thousand SNPs. Numerous genome-wide association studies (GWAS) have shown that CNVs and SNPs can coexist in certain genomic regions, amplifying their effects on gene expression and regulation and disease susceptibility. Researchers initially categorized CNVs and SNPs into two types: homozygous and heterozygous. However, copy numbers were soon found to have a much wider range, underscoring their significance in certain diseases and microbial interactions. Because of the significant impact of CNVs and SNPs, research groups worldwide have eagerly sought effective methods for detecting both simultaneously. Despite yielding some minor results, these simultaneous counting methods have failed to meet expectations, leaving researchers to measure CNVs and SNPs separately. To overcome these limitations, we developed a novel approach by combining primers designed using the STexS method with matching probes used in the STexS II method. This method successfully detected both CNVs and SNPs in CYP2A6 and CYP2A7 using a single quantitative polymerase chain reaction. Once properly adjusted based on the three core principles, this new method markedly improved the time, cost-effectiveness, and overall accuracy of determining an individual's genetic status. Further testing of 100 human genomic DNA samples enabled calculations of the overall frequency of the [T] and [G] alleles of the CYP2A6 -48T > G SNP within an East Asian population yielded results that were highly congruent with those in a National Institutes of Health (NIH) database. This novel method will redefine genetic profiling and provide a means to successfully predict genetic characteristics and enhance personalized medicine by pinpointing appropriate individualized treatments.
Collapse
Affiliation(s)
- Jae Jong Kim
- GenoTech Corporation, 26-69, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Hyoung-Min Park
- Biometrology Group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - A Young Kyoung
- GenoTech Corporation, 26-69, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Si-Kyu Lim
- GenoTech Corporation, 26-69, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - J Eugene Lee
- Biometrology Group, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Byoung Chul Park
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Feldman ER, Li Y, Cutler DJ, Rosser TC, Wechsler SB, Sanclemente L, Rachubinski AL, Elliott N, Vyas P, Roberts I, Rabin KR, Wagner M, Gelb BD, Espinosa JM, Lupo PJ, de Smith AJ, Sherman SL, Leslie EJ. Genome-wide association studies of Down syndrome associated congenital heart defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313183. [PMID: 39281767 PMCID: PMC11398599 DOI: 10.1101/2024.09.06.24313183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Congenital heart defects (CHDs) are the most common structural birth defect and are present in 40-50% of children born with Down syndrome (DS). To characterize the genetic architecture of DS-associated CHD, we sequenced genomes of a multiethnic group of children with DS and a CHD (n=886: atrioventricular septal defects (AVSD), n=438; atrial septal defects (ASD), n=122; ventricular septal defects (VSD), n=170; other types of CHD, n=156) and DS with a structurally normal heart (DS+NH, n=572). We performed four GWAS for common variants (MAF>0.05) comparing DS with CHD, stratified by CHD-subtype, to DS+NH controls. Although no SNP achieved genome-wide significance, multiple loci in each analysis achieved suggestive significance (p<2×10-6). Of these, the 1p35.1 locus (near RBBP4) was specifically associated with ASD risk and the 5q35.2 locus (near MSX2) was associated with any type of CHD. Each of the suggestive loci contained one or more plausible candidate genes expressed in the developing heart. While no SNP replicated (p<2×10-6) in an independent cohort of DS+CHD (DS+CHD: n=229; DS+NH: n=197), most SNPs that were suggestive in our GWASs remained suggestive when meta-analyzed with the GWASs from the replication cohort. These results build on previous work to identify genetic modifiers of DS-associated CHD.
Collapse
Affiliation(s)
- Elizabeth R Feldman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | - Yunqi Li
- Center for Genetic Epidemiology, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | - Tracie C Rosser
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | - Stephanie B Wechsler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | | | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Natalina Elliott
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Paresh Vyas
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Irene Roberts
- Department of Paediatrics and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University and BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | | | - Michael Wagner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Bruce D Gelb
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Adam J de Smith
- Center for Genetic Epidemiology, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
4
|
Qiao M, Huang Q, Wang X, Han J. ZBTB21 suppresses CRE-mediated transcription to impair synaptic function in Down syndrome. SCIENCE ADVANCES 2024; 10:eadm7373. [PMID: 38959316 PMCID: PMC11221507 DOI: 10.1126/sciadv.adm7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Down syndrome (DS) is the most common chromosomal disorder and a major cause of intellectual disability. The genetic etiology of DS is the extra copy of chromosome 21 (HSA21)-encoded genes; however, the contribution of specific HSA21 genes to DS pathogenesis remains largely unknown. Here, we identified ZBTB21, an HSA21-encoded zinc-finger protein, as a transcriptional repressor in the regulation of synaptic function. We found that normalization of the Zbtb21 gene copy number in DS mice corrected deficits in cognitive performance, synaptic function, and gene expression. Moreover, we demonstrated that ZBTB21 binds to canonical cAMP-response element (CRE) DNA and that its binding to CRE could be competitive with CRE-binding factors such as CREB. ZBTB21 represses CRE-dependent gene expression and results in the negative regulation of synaptic plasticity, learning and memory. Together, our results identify ZBTB21 as a CRE-binding protein and repressor in cAMP-dependent gene regulation, contributing to cognitive defects in DS.
Collapse
Affiliation(s)
- Muzhen Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianwen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Research Unit of Cellular Stress of CAMS, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
5
|
Lana-Elola E, Aoidi R, Llorian M, Gibbins D, Buechsenschuetz C, Bussi C, Flynn H, Gilmore T, Watson-Scales S, Haugsten Hansen M, Hayward D, Song OR, Brault V, Herault Y, Deau E, Meijer L, Snijders AP, Gutierrez MG, Fisher EMC, Tybulewicz VLJ. Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome. Sci Transl Med 2024; 16:eadd6883. [PMID: 38266108 PMCID: PMC7615651 DOI: 10.1126/scitranslmed.add6883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear. Here, we show that hearts from human fetuses with DS and embryonic hearts from the Dp1Tyb mouse model of DS show reduced expression of mitochondrial respiration genes and cell proliferation genes. Using systematic genetic mapping, we determined that three copies of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) gene, encoding a serine/threonine protein kinase, are associated with congenital heart disease pathology. In embryos from Dp1Tyb mice, reducing Dyrk1a gene copy number from three to two reversed defects in cellular proliferation and mitochondrial respiration in cardiomyocytes and rescued heart septation defects. Increased dosage of DYRK1A protein resulted in impairment of mitochondrial function and congenital heart disease pathology in mice with DS, suggesting that DYRK1A may be a useful therapeutic target for treating this common human condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Véronique Brault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Yann Herault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Emmanuel Deau
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | - Laurent Meijer
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | | | | | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | | |
Collapse
|
6
|
Mouat JS, Li S, Myint SS, Laufer BI, Lupo PJ, Schraw JM, Woodhouse JP, de Smith AJ, LaSalle JM. Epigenomic signature of major congenital heart defects in newborns with Down syndrome. Hum Genomics 2023; 17:92. [PMID: 37803336 PMCID: PMC10559462 DOI: 10.1186/s40246-023-00540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. METHODS We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical development (TD) WGBS NDBS samples. RESULTS We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS versus TD samples. CONCLUSIONS A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, University of California, Davis, CA, USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - John P Woodhouse
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
7
|
Wang R, Xu Q, Wang C, Tian K, Wang H, Ji X. Multiomic analysis of cohesin reveals that ZBTB transcription factors contribute to chromatin interactions. Nucleic Acids Res 2023; 51:6784-6805. [PMID: 37264934 PMCID: PMC10359638 DOI: 10.1093/nar/gkad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
One bottleneck in understanding the principles of 3D chromatin structures is caused by the paucity of known regulators. Cohesin is essential for 3D chromatin organization, and its interacting partners are candidate regulators. Here, we performed proteomic profiling of the cohesin in chromatin and identified transcription factors, RNA-binding proteins and chromatin regulators associated with cohesin. Acute protein degradation followed by time-series genomic binding quantitation and BAT Hi-C analysis were conducted, and the results showed that the transcription factor ZBTB21 contributes to cohesin chromatin binding, 3D chromatin interactions and transcriptional repression. Strikingly, multiomic analyses revealed that the other four ZBTB factors interacted with cohesin, and double degradation of ZBTB21 and ZBTB7B led to a further decrease in cohesin chromatin occupancy. We propose that multiple ZBTB transcription factors orchestrate the chromatin binding of cohesin to regulate chromatin interactions, and we provide a catalog of many additional proteins associated with cohesin that warrant further investigation.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qiqin Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Mouat JS, Li S, Myint SS, Laufer BI, Lupo PJ, Schraw JM, Woodhouse JP, de Smith AJ, LaSalle JM. Epigenomic signature of major congenital heart defects in newborns with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.02.23289417. [PMID: 37205408 PMCID: PMC10187438 DOI: 10.1101/2023.05.02.23289417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS) but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. Methods We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: 1) 45 DS-CHD (27 female, 18 male) and 2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD vs DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS vs typical development (TD) WGBS NDBS samples. Results We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3,938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS vs TD samples. Conclusions A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.
Collapse
Affiliation(s)
- Julia S Mouat
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, CA USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, CA USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| | - Philip J Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Jeremy M Schraw
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - John P Woodhouse
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, CA USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA USA
- Genome Center, University of California, Davis, CA USA
- MIND Institute, University of California, Davis, CA USA
| |
Collapse
|
9
|
Hu H, Geng Z, Zhang S, Xu Y, Wang Q, Chen S, Zhang B, Sun K, Lu Y. Rare copy number variation analysis identifies disease-related variants in atrioventricular septal defect patients. Front Genet 2023; 14:1075349. [PMID: 36816019 PMCID: PMC9936062 DOI: 10.3389/fgene.2023.1075349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Atrioventricular septal defect (AVSD) is a deleterious subtype of congenital heart diseases (CHD) characterized by atrioventricular canal defect. The pathogenic genetic changes of AVSD remain elusive, particularly for copy number variation (CNV), a large segment variation of the genome, which is one of the major forms of genetic variants resulting in congenital heart diseases. In the present study, we recruited 150 AVSD cases and 100 healthy subjects as controls for whole exome sequencing (WES). We identified total 4255 rare CNVs using exon Hidden Markov model (XHMM) and screened rare CNVs by eliminating common CNVs based on controls and Database of Genomic Variants (DGV). Each patient contained at least 9 CNVs, and the CNV burden was prominently presented in chromosomes 19,22,21&16. Small CNVs (<500 kb) were frequently observed. By leveraging gene-based burden test, we further identified 20 candidate AVSD-risk genes. Among them, DYRK1A, OBSCN and TTN were presented in the core disease network of CHD and highly and dynamically expressed in the heart during the development, which indicated they possessed the high potency to be AVSD-susceptible genes. These findings not only provided a roadmap for finally unveiling the genetic cause of AVSD, but also provided more resources and proofs for clinical genetics.
Collapse
Affiliation(s)
- Huan Hu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuejuan Xu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Bing Zhang, ; Kun Sun, ; Yanan Lu,
| | - Kun Sun
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Bing Zhang, ; Kun Sun, ; Yanan Lu,
| | - Yanan Lu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Bing Zhang, ; Kun Sun, ; Yanan Lu,
| |
Collapse
|
10
|
Genetics and Molecular Basis of Congenital Heart Defects in Down Syndrome: Role of Extracellular Matrix Regulation. Int J Mol Sci 2023; 24:ijms24032918. [PMID: 36769235 PMCID: PMC9918028 DOI: 10.3390/ijms24032918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS), a complex disorder that is caused by the trisomy of chromosome 21 (Hsa21), is a major cause of congenital heart defects (CHD). Interestingly, only about 50% of individuals with Hsa21 trisomy manifest CHD. Here we review the genetic basis of CHD in DS, focusing on genes that regulate extracellular matrix (ECM) organization. The overexpression of Hsa21 genes likely underlies the molecular mechanisms that contribute to CHD, even though the genes responsible for CHD could only be located in a critical region of Hsa21. A role in causing CHD has been attributed not only to protein-coding Hsa21 genes, but also to genes on other chromosomes, as well as miRNAs and lncRNAs. It is likely that the contribution of more than one gene is required, and that the overexpression of Hsa21 genes acts in combination with other genetic events, such as specific mutations or polymorphisms, amplifying their effect. Moreover, a key function in determining alterations in cardiac morphogenesis might be played by ECM. A large number of genes encoding ECM proteins are overexpressed in trisomic human fetal hearts, and many of them appear to be under the control of a Hsa21 gene, the RUNX1 transcription factor.
Collapse
|
11
|
Venegas-Zamora L, Bravo-Acuña F, Sigcho F, Gomez W, Bustamante-Salazar J, Pedrozo Z, Parra V. New Molecular and Organelle Alterations Linked to Down Syndrome Heart Disease. Front Genet 2022; 12:792231. [PMID: 35126461 PMCID: PMC8808411 DOI: 10.3389/fgene.2021.792231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by a trisomy of the human chromosome 21 (Hsa21). Overexpression of Hsa21 genes that encode proteins and non-coding RNAs (ncRNAs) can disrupt several cellular functions and biological processes, especially in the heart. Congenital heart defects (CHDs) are present in 45–50% of individuals with DS. Here, we describe the genetic background of this condition (Hsa21 and non-Hsa21 genes), including the role of ncRNAs, and the relevance of these new players in the study of the pathophysiology of DS heart diseases. Additionally, we discuss several distinct pathways in cardiomyocytes which help maintain a functional heart, but that might trigger hypertrophy and oxidative stress when altered. Moreover, we highlight the importance of investigating how mitochondrial and lysosomal dysfunction could eventually contribute to understanding impaired heart function and development in subjects with the Hsa21 trisomy. Altogether, this review focuses on the newest insights about the gene expression, molecular pathways, and organelle alterations involved in the cardiac phenotype of DS.
Collapse
Affiliation(s)
- Leslye Venegas-Zamora
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Bravo-Acuña
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco Sigcho
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - José Bustamante-Salazar
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Zully Pedrozo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para El Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
- *Correspondence: Zully Pedrozo, ; Valentina Parra,
| |
Collapse
|
12
|
Meerschaut I, Vergult S, Dheedene A, Menten B, De Groote K, De Wilde H, Muiño Mosquera L, Panzer J, Vandekerckhove K, Coucke PJ, De Wolf D, Callewaert B. A Reassessment of Copy Number Variations in Congenital Heart Defects: Picturing the Whole Genome. Genes (Basel) 2021; 12:genes12071048. [PMID: 34356064 PMCID: PMC8304049 DOI: 10.3390/genes12071048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Copy number variations (CNVs) can modulate phenotypes by affecting protein-coding sequences directly or through interference of gene expression. Recent studies in cancer and limb defects pinpointed the relevance of non-coding gene regulatory elements such as long non-coding RNAs (lncRNAs) and topologically associated domain (TAD)-related gene-enhancer interactions. The contribution of such non-coding elements is largely unexplored in congenital heart defects (CHD). We performed a retrospective analysis of CNVs reported in a cohort of 270 CHD patients. We reviewed the diagnostic yield of pathogenic CNVs, and performed a comprehensive reassessment of 138 CNVs of unknown significance (CNV-US), evaluating protein-coding genes, lncRNA genes, and potential interferences with TAD-related gene-enhancer interactions. Fifty-two of the 138 CNV-US may relate to CHD, revealing three candidate CHD regions, 19 candidate CHD genes, 80 lncRNA genes of interest, and six potentially CHD-related TAD interferences. Our study thus indicates a potential relevance of non-coding gene regulatory elements in CNV-related CHD pathogenesis. Shortcomings in our current knowledge on genomic variation call for continuous reporting of CNV-US in international databases, careful patient counseling, and additional functional studies to confirm these preliminary findings.
Collapse
Affiliation(s)
- Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Sarah Vergult
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Katya De Groote
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Hans De Wilde
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Laura Muiño Mosquera
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Joseph Panzer
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Kristof Vandekerckhove
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
| | - Paul J. Coucke
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
| | - Daniël De Wolf
- Department of Pediatric Cardiology, Ghent University Hospital, 9000 Ghent, Belgium; (K.D.G.); (H.D.W.); (J.P.); (K.V.); (D.D.W.)
- Department of Pediatric Cardiology, Brussels University Hospital, 1090 Brussels, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (I.M.); (S.V.); (A.D.); (B.M.); (L.M.M.); (P.J.C.)
- Correspondence: ; Tel.: +32-9-332-3603
| |
Collapse
|
13
|
Calcagni G, Pugnaloni F, Digilio MC, Unolt M, Putotto C, Niceta M, Baban A, Piceci Sparascio F, Drago F, De Luca A, Tartaglia M, Marino B, Versacci P. Cardiac Defects and Genetic Syndromes: Old Uncertainties and New Insights. Genes (Basel) 2021; 12:genes12071047. [PMID: 34356063 PMCID: PMC8307133 DOI: 10.3390/genes12071047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
Recent advances in understanding the genetic causes and anatomic subtypes of cardiac defects have revealed new links between genetic etiology, pathogenetic mechanisms and cardiac phenotypes. Although the same genetic background can result in different cardiac phenotypes, and similar phenotypes can be caused by different genetic causes, researchers’ effort to identify specific genotype–phenotype correlations remains crucial. In this review, we report on recent advances in the cardiac pathogenesis of three genetic diseases: Down syndrome, del22q11.2 deletion syndrome and Ellis–Van Creveld syndrome. In these conditions, the frequent and specific association with congenital heart defects and the recent characterization of the underlying molecular events contributing to pathogenesis provide significant examples of genotype–phenotype correlations. Defining these correlations is expected to improve diagnosis and patient stratification, and it has relevant implications for patient management and potential therapeutic options.
Collapse
Affiliation(s)
- Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
- Correspondence: ; Tel.: +39-06-68594096
| | - Flaminia Pugnaloni
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Marta Unolt
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Carolina Putotto
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Francesca Piceci Sparascio
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (F.P.S.); (A.D.L.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.U.); (A.B.); (F.D.)
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (F.P.S.); (A.D.L.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.N.); (M.T.)
| | - Bruno Marino
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| | - Paolo Versacci
- Department of Pediatrics, Obstetrics and Gynecology, “Sapienza” University, 00161 Rome, Italy; (F.P.); (C.P.); (B.M.); (P.V.)
| |
Collapse
|
14
|
Importance of determining variations in the number of copies in newborns with autosomal aneuploidies. ACTA ACUST UNITED AC 2021; 41:282-292. [PMID: 34214269 PMCID: PMC8387016 DOI: 10.7705/biomedica.5354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Las aneuploidías son trastornos genéticos frecuentes en la práctica clínica; sin embargo, se conoce poco sobre las otras variantes genéticas que modifican el fenotipo final. Objetivo. Determinar las variantes en el número de copias y las regiones con pérdida de heterocigosidad autosómica mayor de 0,5 % o de regiones mayores de 10 Mb en neonatos con aneuploidías autosómicas. Materiales y métodos. Se hizo el análisis cromosómico por micromatrices a los neonatos con aneuploidías autosómicas (n=7), trisomía 21 (n=5) y trisomía 18 (n=2) evaluados en los hospitales Antonio Lorena y Regional de Cusco, Perú, en el 2018. Resultados. En dos neonatos se encontraron variantes en el número de copias, patogénicas o probablemente patogénicas, en regiones diferentes al cromosoma 21 o al 18. Además, se observaron dos variantes del número de copias con más de 500 kpb de patogenia desconocida. Conclusiones. Si bien el número de pacientes era muy reducido, es importante resaltar que se encontraron otras variantes en el número de copias que se han descrito asociadas con trastornos del neurodesarrollo, varias anomalías congénitas, hipoacusia y talla baja o alta, entre otras, lo que probablemente influye negativamente en el fenotipo de este grupo de pacientes.
Collapse
|
15
|
Congenital heart defects among Down’s syndrome cases: an updated review from basic research to an emerging diagnostics technology and genetic counselling. J Genet 2021. [DOI: 10.1007/s12041-021-01296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Schneider L, Tripathi A. Progress and Challenges in Laboratory-Based Diagnostic and Screening Approaches for Aneuploidy Detection during Pregnancy. SLAS Technol 2021; 26:425-440. [PMID: 34148381 DOI: 10.1177/24726303211021787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aneuploidy is caused by problems during cellular division and segregation errors during meiosis that lead to an abnormal number of chromosomes and initiate significant genetic abnormalities during pregnancy or the loss of a fetus due to miscarriage. Screening and diagnostic technologies have been developed to detect this genetic condition and provide parents with critical information about their unborn child. In this review, we highlight the complexities of aneuploidy as a disease as well as multiple technological advancements in testing that help to identify aneuploidy at various time points throughout pregnancy. We focus on aneuploidy diagnosis during preimplantation genetic testing that is performed during in vitro fertilization as well as prenatal screening and diagnosis during pregnancy. This review focuses on DNA-based analysis and laboratory techniques for aneuploidy detection through reviewing molecular- and engineering-based technical advancements. We also present key challenges in aneuploidy detection during pregnancy, including sample collection, mosaic embryos, economic factors, and the social implications of this testing. The goal of this review is to synthesize broad information about aneuploidy screening and diagnostic sample collection and analysis during pregnancy and discuss major challenges the field is still facing despite decades of advancements.
Collapse
Affiliation(s)
- Lindsay Schneider
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
17
|
Hendrix JA, Amon A, Abbeduto L, Agiovlasitis S, Alsaied T, Anderson HA, Bain LJ, Baumer N, Bhattacharyya A, Bogunovic D, Botteron KN, Capone G, Chandan P, Chase I, Chicoine B, Cieuta-Walti C, DeRuisseau LR, Durand S, Esbensen A, Fortea J, Giménez S, Granholm AC, Hahn LJ, Head E, Hillerstrom H, Jacola LM, Janicki MP, Jasien JM, Kamer AR, Kent RD, Khor B, Lawrence JB, Lemonnier C, Lewanda AF, Mobley W, Moore PE, Nelson LP, Oreskovic NM, Osorio RS, Patterson D, Rasmussen SA, Reeves RH, Roizen N, Santoro S, Sherman SL, Talib N, Tapia IE, Walsh KM, Warren SF, White AN, Wong GW, Yi JS. Opportunities, barriers, and recommendations in down syndrome research. TRANSLATIONAL SCIENCE OF RARE DISEASES 2021; 5:99-129. [PMID: 34268067 PMCID: PMC8279178 DOI: 10.3233/trd-200090] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. OBJECTIVE The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. METHODS NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. RESULTS This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. CONCLUSIONS This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy.
Collapse
Affiliation(s)
| | - Angelika Amon
- Deceased. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA; MIND Institute, University of California, Davis, CA, USA
| | | | - Tarek Alsaied
- Heart Institute Department of Pediatrics Cincinnati Children’s Hospital Medical Center University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Nicole Baumer
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA; Down Syndrome Program, Developmental Medicine Center, Boston Children’s Hospital, Boston, MA, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mt. Sinai, New York, NY; Precision Immunology Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Kelly N. Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Priya Chandan
- Department of Neurosurgery, Division of Physical Medicine and Rehabilitation, University of Louisville School of Medicine, Louisville, KY, USA
| | - Isabelle Chase
- Department of Pediatric Dentistry, Boston Children’s Hospital, Boston, MA, USA
| | - Brian Chicoine
- Advocate Medical Group Adult Down Syndrome Center, Park Ridge, IL, USA
| | | | | | | | - Anna Esbensen
- Department of Pediatrics, University of Cincinnati College of Medicine & Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Juan Fortea
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Sandra Giménez
- Multidisciplinary Sleep Unit, Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Laura J. Hahn
- Department of Speech and Hearing Science, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, CA, USA
| | | | - Lisa M. Jacola
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Joan M. Jasien
- Division of Pediatric Neurology, Duke University Health System, Durham, NC, USA
| | - Angela R. Kamer
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, NY, USA
| | - Raymond D. Kent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Bernard Khor
- Benaroy Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jeanne B. Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Amy Feldman Lewanda
- Children s National Rare Disease Institute, Children’s National Health System, Washington, DC., USA
| | - William Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Paul E. Moore
- Division of Allergy, Immunology, and Pulmonology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicolas M. Oreskovic
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ricardo S. Osorio
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
- Eleanor Roosevelt Institute, University of Denver, Denver, CO, USA; Department of Biological Sciences, University of Denver, Denver, CO, USA; Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| | - Sonja A. Rasmussen
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL; Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, FL
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nancy Roizen
- Department of Pediatrics, UH/Rainbow Babies and Children’s Hospital and Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie Santoro
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie L. Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nasreen Talib
- Division of General Pediatrics, Children’s Mercy Kansas City, 2401 Gillham Road, Kansas City, MO, USA
| | - Ignacio E. Tapia
- Sleep Center, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle M. Walsh
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Steven F. Warren
- Institute for Life Span Studies, University of Kansas, Lawrence, KS, USA
| | - A. Nicole White
- Research Foundation, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Guang William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John S. Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
18
|
Chen B, Hou A, Zhao L, Liu Y, Shi X, Du B, Yu Y, Zhao P, Gao Y. Next Generation Sequencing Identify Rare Copy Number Variants in Non-syndromic Patent Ductus Arteriosus. Front Genet 2020; 11:600787. [PMID: 33281884 PMCID: PMC7689032 DOI: 10.3389/fgene.2020.600787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Patent ductus arteriosus (PDA) is a common congenital cardiovascular malformation with both inherited and acquired causes. Several genes have been reported to be related to PDA, but the molecular pathogenesis is still unclear. Here, we screened a population matched cohort of 39 patients with PDA and 100 healthy children using whole exome sequencing (WES). And identified 10 copy number variants (CNVs) and 20 candidate genes using Gene ontology (GO) functional enrichment analysis. In gene network analysis, we screened 7 pathogenic CNVs of 10 candidate genes (MAP3K1, MYC, VAV2, WDR5, RXRA, APLNR, TJP1, ERCC2, FOSB, CHRNA4). Further analysis of transcriptome array showed that 7 candidate genes (MAP3K1, MYC, VAV2, APLNR, TJP1, FOSB, CHRNA4) were indeed significantly expressed in human embryonic heart. Moreover, CHRNA4 was observed the most important genes. Our data provided rare CNVs as potential genetic cause of PDA in humans and also advance understanding of the genetic components of PDA.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aiping Hou
- Department of Pediatric, Shidong Hospital, Shanghai, China
| | - Lin Zhao
- Department of Pediatric, Shidong Hospital, Shanghai, China
| | - Ying Liu
- Department of Pediatric, Shidong Hospital, Shanghai, China
| | - Xin Shi
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Du
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengjun Zhao
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Gao
- Department of Pediatric, Shidong Hospital, Shanghai, China
| |
Collapse
|
19
|
Trevino CE, Holleman AM, Corbitt H, Maslen CL, Rosser TC, Cutler DJ, Johnston HR, Rambo-Martin BL, Oberoi J, Dooley KJ, Capone GT, Reeves RH, Cordell HJ, Keavney BD, Agopian AJ, Goldmuntz E, Gruber PJ, O'Brien JE, Bittel DC, Wadhwa L, Cua CL, Moskowitz IP, Mulle JG, Epstein MP, Sherman SL, Zwick ME. Identifying genetic factors that contribute to the increased risk of congenital heart defects in infants with Down syndrome. Sci Rep 2020; 10:18051. [PMID: 33093519 PMCID: PMC7582922 DOI: 10.1038/s41598-020-74650-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/05/2020] [Indexed: 01/16/2023] Open
Abstract
Atrioventricular septal defects (AVSD) are a severe congenital heart defect present in individuals with Down syndrome (DS) at a > 2000-fold increased prevalence compared to the general population. This study aimed to identify risk-associated genes and pathways and to examine a potential polygenic contribution to AVSD in DS. We analyzed a total cohort of 702 individuals with DS with or without AVSD, with genomic data from whole exome sequencing, whole genome sequencing, and/or array-based imputation. We utilized sequence kernel association testing and polygenic risk score (PRS) methods to examine rare and common variants. Our findings suggest that the Notch pathway, particularly NOTCH4, as well as genes involved in the ciliome including CEP290 may play a role in AVSD in DS. These pathways have also been implicated in DS-associated AVSD in prior studies. A polygenic component for AVSD in DS has not been examined previously. Using weights based on the largest genome-wide association study of congenital heart defects available (2594 cases and 5159 controls; all general population samples), we found PRS to be associated with AVSD with odds ratios ranging from 1.2 to 1.3 per standard deviation increase in PRS and corresponding liability r2 values of approximately 1%, suggesting at least a small polygenic contribution to DS-associated AVSD. Future studies with larger sample sizes will improve identification and quantification of genetic contributions to AVSD in DS.
Collapse
Affiliation(s)
- Cristina E Trevino
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Aaron M Holleman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Holly Corbitt
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Cheryl L Maslen
- Division of Cardiovascular Medicine and the Heart Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Tracie C Rosser
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Benjamin L Rambo-Martin
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Jai Oberoi
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Kenneth J Dooley
- Sibley Heart Center Cardiology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | | | - Roger H Reeves
- Department of Physiology and the Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A J Agopian
- Human Genetics Center; Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter J Gruber
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - James E O'Brien
- The Ward Family Heart Center, Section of Cardiac Surgery, Children's Mercy Hospital, Kansas City, MO, USA
| | - Douglas C Bittel
- College of Biosciences, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | | | - Clifford L Cua
- Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, 300 Whitehead Biomedical Research Building, 615 Michael St., Atlanta, GA, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
20
|
Zheng X, Zhao P, Yang K, Ning C, Wang H, Zhou L, Liu J. CNV analysis of Meishan pig by next-generation sequencing and effects of AHR gene CNV on pig reproductive traits. J Anim Sci Biotechnol 2020; 11:42. [PMID: 32337028 PMCID: PMC7171861 DOI: 10.1186/s40104-020-00442-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background Reproductive performance of livestock is an economically important aspect of global food production. The Chinese Meishan pig is a prolific breed, with an average of three to five more piglets per litter than European breeds; however, the genetic basis for this difference is not well understood. Results In this study, we investigated copy number variations (CNVs) of 32 Meishan pigs and 29 Duroc pigs by next-generation sequencing. A genome-wide analysis of 61 pigs revealed 12,668 copy number variable regions (CNVRs) that were further divided into three categories based on copy number (CN) of the whole population, i.e., gain (n = 7,638), and loss (n = 5,030) CNVRs. We then compared Meishan and Duroc pigs and identified 17.17 Mb of 6,387 CNVRs that only existing in Meishan pigs CNVRs that overlapped the reproduction-related gene encoding the aryl hydrocarbon receptor (AHR) gene. We found that normal AHR CN was more frequent than CN loss in four different pig breeds. An association analysis showed that AHR CN had a positive effect on litter size (P < 0.05) and that a higher CN was associated with higher total number born (P < 0.05), number born alive (P < 0.05), number of weaned piglets, and birth weight. Conclusions The present study provides comprehensive CNVRs for Meishan and Duroc pigs through large-scale population resequencing. Our results provide a supplement for the high-resolution map of copy number variation in the porcine genome and valuable information for the investigation of genomic structural variation underlying traits of interest in pig. In addition, the association results provide evidence for AHR as a candidate gene associated with reproductive traits that can be used as a genetic marker in pig breeding programs.
Collapse
Affiliation(s)
- Xianrui Zheng
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Pengju Zhao
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kaijie Yang
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Chao Ning
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haifei Wang
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China.,2Department of Animal Genetics, Breeding and Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Lei Zhou
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianfeng Liu
- 1National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
21
|
Congenital heart diseases: genetics, non-inherited risk factors, and signaling pathways. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-0050-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Congenital heart diseases (CHDs) are the most common congenital anomalies with an estimated prevalence of 8 in 1000 live births. CHDs occur as a result of abnormal embryogenesis of the heart. Congenital heart diseases are associated with significant mortality and morbidity. The damage of the heart is irreversible due to a lack of regeneration potential, and usually, the patients may require surgical intervention. Studying the developmental biology of the heart is essential not only in understanding the mechanisms and pathogenesis of congenital heart diseases but also in providing us with insight towards developing new preventive and treatment methods.
Main body
The etiology of congenital heart diseases is still elusive. Both genetic and environmental factors have been implicated to play a role in the pathogenesis of the diseases. Recently, cardiac transcription factors, cardiac-specific genes, and signaling pathways, which are responsible for early cardiac morphogenesis have been extensively studied in both human and animal experiments but leave much to be desired. The discovery of novel genetic methods such as next generation sequencing and chromosomal microarrays have led to further study the genes, non-coding RNAs and subtle chromosomal changes, elucidating their implications to the etiology of congenital heart diseases. Studies have also implicated non-hereditary risk factors such as rubella infection, teratogens, maternal age, diabetes mellitus, and abnormal hemodynamics in causing CHDs.
These etiological factors raise questions on multifactorial etiology of CHDs. It is therefore important to endeavor in research based on finding the causes of CHDs. Finding causative factors will enable us to plan intervention strategies and mitigate the consequences associated with CHDs. This review, therefore, puts forward the genetic and non-genetic causes of congenital heart diseases. Besides, it discusses crucial signaling pathways which are involved in early cardiac morphogenesis. Consequently, we aim to consolidate our knowledge on multifactorial causes of CHDs so as to pave a way for further research regarding CHDs.
Conclusion
The multifactorial etiology of congenital heart diseases gives us a challenge to explicitly establishing specific causative factors and therefore plan intervention strategies. More well-designed studies and the use of novel genetic technologies could be the way through the discovery of etiological factors implicated in the pathogenesis of congenital heart diseases.
Collapse
|
22
|
Pelleri MC, Cicchini E, Petersen MB, Tranebjærg L, Mattina T, Magini P, Antonaros F, Caracausi M, Vitale L, Locatelli C, Seri M, Strippoli P, Piovesan A, Cocchi G. Partial trisomy 21 map: Ten cases further supporting the highly restricted Down syndrome critical region (HR-DSCR) on human chromosome 21. Mol Genet Genomic Med 2019; 7:e797. [PMID: 31237416 PMCID: PMC6687668 DOI: 10.1002/mgg3.797] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Down syndrome (DS) is characterized by the presence of an extra full or partial human chromosome 21 (Hsa21). An invaluable model to define genotype-phenotype correlations in DS is the study of the extremely rare cases of partial (segmental) trisomy 21 (PT21), the duplication of only a delimited region of Hsa21 associated or not to DS. A systematic retrospective reanalysis of 125 PT21 cases described up to 2015 allowed the creation of the most comprehensive PT21 map and the identification of a 34-kb highly restricted DS critical region (HR-DSCR) as the minimal region whose duplication is shared by all PT21 subjects diagnosed with DS. We reanalyzed at higher resolution three cases previously published and we accurately searched for any new PT21 reports in order to verify whether HR-DSCR limits could prospectively be confirmed and possibly refined. METHODS Hsa21 partial duplications of three PT21 subjects were refined by adding array-based comparative genomic hybridization data. Seven newly described PT21 cases fulfilling stringent cytogenetic and clinical criteria have been incorporated into the PT21 integrated map. RESULTS The PT21 map now integrates fine structure of Hsa21 sequence intervals of 132 subjects onto a common framework fully consistent with the presence of a duplicated HR-DSCR, on distal 21q22.13 sub-band, only in DS subjects and not in non-DS individuals. No documented exception to the HR-DSCR model was found. CONCLUSIONS The findings presented here further support the association of the HR-DSCR with the diagnosis of DS, representing an unbiased validation of the original model. Further studies are needed to identify and characterize genetic determinants presumably located in the HR-DSCR and functionally associated to the critical manifestations of DS.
Collapse
Affiliation(s)
- Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Michael B. Petersen
- Department of GeneticsAalborg University HospitalAalborgDenmark
- Department of Clinical GeneticsAalborg UniversityAalborgDenmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics/RigshospitaletThe Kennedy CentreGlostrupDenmark
- University of Copenhagen, Institute of Clinical Medicine, The Panum InstituteCopenhagen NDenmark
| | - Teresa Mattina
- Department of PediatricsMedical Genetics University of CataniaItaly
| | - Pamela Magini
- Medical Genetics UnitSt. Orsola‐Malpighi PolyclinicBologna (BO)Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | | | - Marco Seri
- Medical Genetics Unit, Department of Medical and Surgical Sciences (DIMEC)St. Orsola‐Malpighi Polyclinic, University of BolognaBologna (BO)Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied BiologyUniversity of BolognaBologna (BO)Italy
| | - Guido Cocchi
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC)St. Orsola‐Malpighi Polyclinic, University of BolognaBologna (BO)Italy
| |
Collapse
|
23
|
Corona-Rivera JR, Nieto-García R, Gutiérrez-Chávez AS, Bobadilla-Morales L, Rios-Flores IM, Corona-Rivera A, Fabián-Morales GE, Zavala-Cortés I, Lugo-Iglesias C, Peña-Padilla C. Maternal risk factors for congenital heart defects in infants with Down syndrome from Western Mexico. Am J Med Genet A 2019; 179:1857-1865. [PMID: 31321895 DOI: 10.1002/ajmg.a.61300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/01/2019] [Accepted: 07/10/2019] [Indexed: 11/07/2022]
Abstract
Atrioventricular septal defects (AVSDs) have been identified as intriguingly infrequent among Hispanics with Down syndrome (DS) born in the United States. The aim of this study was to evaluate the effect of possible maternal risk factors in the presence of congenital heart defects (CHDs) in Mexican infants with DS. A total of 231 live birth infants born with DS during 2009-2018 at the "Dr. Juan I. Menchaca" Civil Hospital of Guadalajara (Guadalajara, Mexico) were ascertained in a case-control study. Patients with DS with any major CHD were included as cases and those without major CHD as controls. Potential risk factors were analyzed using logistic regression. Of eligible infants with DS, 100 (43.3%) had ≥1 major CHDs (cases) and were compared with a control group of 131 infants (56.7%) with DS without CHDs. Prevalent CHDs were ostium secundum atrial septal defects (ASDs) (46.9%), ventricular septal defects (27.3%), and AVSDs (14%). Lack of folic acid supplementation before pregnancy had a significant risk for CHDs in infants with DS (adjusted odds ratio [aORs] = 2.9 (95% confidence interval [95% CI]: 1.0-8.6) and in the analysis by subtype of CHDs, also, for the occurrence of ASDs (aOR = 11.5, 95% CI: 1.4-94.4). Almost half of the infants with DS in our sample had CHDs, being ASD the commonest subtype and AVSD the rarest. Our ethnic background alone or in concomitance with observed nutritional disadvantages seems to contribute differences in CHD subtype rates in our DS patients.
Collapse
Affiliation(s)
- Jorge Román Corona-Rivera
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico.,Dr. Enrique Corona-Rivera Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Rafael Nieto-García
- Service of Cardiology, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Andrea S Gutiérrez-Chávez
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lucina Bobadilla-Morales
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico.,Dr. Enrique Corona-Rivera Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Izabel M Rios-Flores
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alfredo Corona-Rivera
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico.,Dr. Enrique Corona-Rivera Institute of Human Genetics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Gerardo E Fabián-Morales
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ignacio Zavala-Cortés
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Cynthia Lugo-Iglesias
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Christian Peña-Padilla
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics and Cytogenetics Unit, Pediatrics Division, Dr. Juan I. Menchaca Civil Hospital of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
24
|
Zhang H, Liu L, Tian J. Molecular mechanisms of congenital heart disease in down syndrome. Genes Dis 2019; 6:372-377. [PMID: 31832516 PMCID: PMC6889238 DOI: 10.1016/j.gendis.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS), as a typical genomic aneuploidy, is a common cause of various birth defects, among which is congenital heart disease (CHD). 40-60% neonates with DS have some kinds of CHD. However, the molecular pathogenic mechanisms of DS associated CHD are still not fully understood. This review summarizes available studies on DS associated CHD from seven aspects so as to provide a crucial and updated overview of what we known so far in this domain.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Lingjuan Liu
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Jie Tian
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| |
Collapse
|
25
|
Targeted Next-Generation Sequencing of 406 Genes Identified Genetic Defects Underlying Congenital Heart Disease in Down Syndrome Patients. Pediatr Cardiol 2018; 39:1676-1680. [PMID: 30105468 DOI: 10.1007/s00246-018-1951-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/04/2018] [Indexed: 10/28/2022]
Abstract
Down syndrome (DS) is the most common autosomal chromosome anomaly. DS is frequently associated with congenital heart disease (CHD). Patients with DS have 40-60% chance of having CHD. It means that CHD in DS is not only due to trisomy 21 and there are some other genetic factors underlying CHD in DS children. In this study, a total of 240 DNA samples from patients were analyzed including 100 patients with CHD only, 110 patients having CHD along with DS and 30 patients with isolated DS. A cardiovascular gene panel consisting of probes for 406 genes was used to screen DNA samples of all 240 patients for mutation identification. All variants were annotated and common variants were obtained. Briefly, 28 common variants (variants common in two or more than two individuals) were obtained in a group of samples containing DNA from DS patients having CHD as well, 63 variants were found to be unique to DS group of samples and 73 variants have been identified in patients with CHD only. In order to identify genomic variations determining the risk for CHD in DS, only those variants present in DS-CHD group and absent in isolated CHD and/or isolated DS group were considered for further analysis. Variants specific to DS-CHD group were further evaluated based on expression and function data and pathogenicity of the variant of interest. We have implicated mutations in GATA3, KCNH2, ENG, FLNA, and GUSB genes as an underlying risk factor for CHD in DS patients.
Collapse
|
26
|
Feng B, Hoskins W, Zhang Y, Meng Z, Samuels DC, Wang J, Xia R, Liu C, Tang J, Guo Y. Bi-stream CNN Down Syndrome screening model based on genotyping array. BMC Med Genomics 2018; 11:105. [PMID: 30453947 PMCID: PMC6245487 DOI: 10.1186/s12920-018-0416-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Human Down syndrome (DS) is usually caused by genomic micro-duplications and dosage imbalances of human chromosome 21. It is associated with many genomic and phenotype abnormalities. Even though human DS occurs about 1 per 1,000 births worldwide, which is a very high rate, researchers haven't found any effective method to cure DS. Currently, the most efficient ways of human DS prevention are screening and early detection. METHODS In this study, we used deep learning techniques and analyzed a set of Illumina genotyping array data. We built a bi-stream convolutional neural networks model to screen/predict the occurrence of DS. Firstly, we built image input data by converting the intensities of each SNP site into chromosome SNP maps. Next, we proposed a bi-stream convolutional neural network (CNN) architecture with nine layers and two branch models. We further merged two CNN branch models into one model in the fourth convolutional layer, and output the prediction in the last layer. RESULTS Our bi-stream CNN model achieved 99.3% average accuracies, and very low false-positive and false-negative rates, which was necessary for further applications in disease prediction and medical practice. We further visualized the feature maps and learned filters from intermediate convolutional layers, which showed the genomic patterns and correlated SNPs variations in human DS genomes. We also compared our methods with other CNN and traditional machine learning models. We further analyzed and discussed the characteristics and strengths of our bi-stream CNN model. CONCLUSIONS Our bi-stream model used two branch CNN models to learn the local genome features and regional patterns among adjacent genes and SNP sites from two chromosomes simultaneously. It achieved the best performance in all evaluating metrics when compared with two single-stream CNN models and three traditional machine-learning algorithms. The visualized feature maps also provided opportunities to study the genomic markers and pathway components associated with Human DS, which provided insights for gene therapy and genomic medicine developments.
Collapse
Affiliation(s)
- Bing Feng
- College of Education, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China.,Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - William Hoskins
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - Yan Zhang
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA.,School of Computer Science and Technology, Tianjin University, 300072, Tianjin, 300072, People's Republic of China
| | - Zibo Meng
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - David C Samuels
- Vanderbilt University School of Medicine,Vanderbilt University, Nashville, 37232, TN, USA
| | - Jiandong Wang
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - Ruofan Xia
- Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA
| | - Chao Liu
- College of Education, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jijun Tang
- College of Education, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China. .,Department of Computer Science and Engineering,University of South Carolina, Columbia, 29208, SC, USA. .,School of Computer Science and Technology, Tianjin University, 300072, Tianjin, 300072, People's Republic of China.
| | - Yan Guo
- School of Medicine,The University of New Mexico, Albuquerque, 87131, NM, USA.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW In the last 40 years, with a better understanding of cardiac defects, and with the improved results of cardiac surgery, the life expectancy of persons with Down syndrome has significantly increased. This review article reports on advances in knowledge of cardiac defects and cardiovascular system of persons with trisomy 21. RECENT FINDINGS New insights into the genetics of this syndrome have improved our understanding of the pathogenetic mechanisms of cardiac defects. Recent changes in neonatal prevalence of Down syndrome suggest a growing number of children with cardiac malformations, in particular with simple types of defects. Ethnic and sex differences of the prevalence of specific types of congenital heart disease (CHD) have also been underlined. A recent study confirmed that subclinical morphologic anomalies are present in children with trisomy 21, also in the absence of cardiac defects, representing an internal stigma of Down syndrome. The results of cardiac surgery are significantly improved in terms of immediate and long-term outcomes, but specific treatments are indicated in relation to pulmonary hypertension. Particular aspects of the cardiovascular system have been described, clarifying a reduced sympathetic response to stress but also a 'protection' from atherosclerosis and arterial hypertension in these patients. SUMMARY Continuing dedication to clinical and basic research studies is essential to further improve survival and the quality of life from childhood to adulthood of patients with trisomy 21.
Collapse
Affiliation(s)
| | | | - Maria C Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Pediatric Hospital and Research Institute, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome
| |
Collapse
|
28
|
Rambo-Martin BL, Mulle JG, Cutler DJ, Bean LJH, Rosser TC, Dooley KJ, Cua C, Capone G, Maslen CL, Reeves RH, Sherman SL, Zwick ME. Analysis of Copy Number Variants on Chromosome 21 in Down Syndrome-Associated Congenital Heart Defects. G3 (BETHESDA, MD.) 2018; 8:105-111. [PMID: 29141989 PMCID: PMC5765339 DOI: 10.1534/g3.117.300366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
One in five people with Down syndrome (DS) are born with an atrioventricular septal defect (AVSD), an incidence 2000 times higher than in the euploid population. The genetic loci that contribute to this risk are poorly understood. In this study, we tested two hypotheses: (1) individuals with DS carrying chromosome 21 copy number variants (CNVs) that interrupt exons may be protected from AVSD, because these CNVs return AVSD susceptibility loci back to disomy, and (2) individuals with DS carrying chromosome 21 genes spanned by microduplications are at greater risk for AVSD because these microduplications boost the dosage of AVSD susceptibility loci beyond a tolerable threshold. We tested 198 case individuals with DS+AVSD, and 211 control individuals with DS and a normal heart, using a custom microarray with dense probes tiled on chromosome 21 for array CGH (aCGH). We found that neither an individual chromosome 21 CNV nor any individual gene intersected by a CNV was associated with AVSD in DS. Burden analyses revealed that African American controls had more bases covered by rare deletions than did African American cases. Inversely, we found that Caucasian cases had more genes intersected by rare duplications than did Caucasian controls. We also showed that previously DS+AVSD (DS and a complete AVSD)-associated common CNVs on chromosome 21 failed to replicate. This research adds to the swell of evidence indicating that DS-associated AVSD is similarly heterogeneous, as is AVSD in the euploid population.
Collapse
Affiliation(s)
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Lora J H Bean
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tracie C Rosser
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Kenneth J Dooley
- Department of Pediatrics, Sibley Heart Center Cardiology, Children's Healthcare of Atlanta, Atlanta, Georgia 30033
| | - Clifford Cua
- Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205
| | - George Capone
- Kennedy Krieger Institute, Baltimore, Maryland 21205
| | - Cheryl L Maslen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon 97239
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Roger H Reeves
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
- McKusick Nathans Institute for Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
29
|
Popadin K, Peischl S, Garieri M, Sailani MR, Letourneau A, Santoni F, Lukowski SW, Bazykin GA, Nikolaev S, Meyer D, Excoffier L, Reymond A, Antonarakis SE. Slightly deleterious genomic variants and transcriptome perturbations in Down syndrome embryonic selection. Genome Res 2017; 28:1-10. [PMID: 29237728 PMCID: PMC5749173 DOI: 10.1101/gr.228411.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
The majority of aneuploid fetuses are spontaneously miscarried. Nevertheless, some aneuploid individuals survive despite the strong genetic insult. Here, we investigate if the survival probability of aneuploid fetuses is affected by the genome-wide burden of slightly deleterious variants. We analyzed two cohorts of live-born Down syndrome individuals (388 genotyped samples and 16 fibroblast transcriptomes) and observed a deficit of slightly deleterious variants on Chromosome 21 and decreased transcriptome-wide variation in the expression level of highly constrained genes. We interpret these results as signatures of embryonic selection, and propose a genetic handicap model whereby an individual bearing an extremely severe deleterious variant (such as aneuploidy) could escape embryonic lethality if the genome-wide burden of slightly deleterious variants is sufficiently low. This approach can be used to study the composition and effect of the numerous slightly deleterious variants in humans and model organisms.
Collapse
Affiliation(s)
- Konstantin Popadin
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland.,Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.,Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Interfaculty Bioinformatics Unit, University of Bern, 3012 Bern, Switzerland
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - M Reza Sailani
- Stanford School of Medicine, Stanford University, Stanford, California 94305, USA
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Federico Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, 127051, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, 143026, Russia
| | - Sergey Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, 05508-090, Sao Paulo, Brazil
| | - Laurent Excoffier
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Institute for Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| |
Collapse
|
30
|
Diogenes TCP, Mourato FA, de Lima Filho JL, Mattos SDS. Gender differences in the prevalence of congenital heart disease in Down's syndrome: a brief meta-analysis. BMC MEDICAL GENETICS 2017; 18:111. [PMID: 28985718 PMCID: PMC6389118 DOI: 10.1186/s12881-017-0475-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Down's syndrome (DS) affects one per 700 live births and congenital heart disease (CHD) occurs in 40-60% of these patients. Contributing factors to the association between DS and CHD are being unraveled. Gender could be one of them. METHODS We performed a meta-analysis of CHD prevalence in DS, separated by gender. Three search engines were used and 578 articles were reviewed. Twelve articles were included. RESULTS Quantitative analysis showed a higher prevalence of CHD, particularly atrioventricular septal defects (AVSD), in female patients. No differences were found in others forms of CHD. CONCLUSION CHD, particularly AVSD, are more common in the female gender of Down's syndrome patients.
Collapse
Affiliation(s)
| | - Felipe Alves Mourato
- Círculo do Coração de Pernambuco, Recife, Pernambuco, Brazil. .,Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil. .,Unidade de Cardiologia Materno e Fetal (UCMF), Av. Governador Agamenon Magalhães, 4760, Paissandu, PE, CEP 52010-902, Brazil.
| | | | - Sandra da Silva Mattos
- Círculo do Coração de Pernambuco, Recife, Pernambuco, Brazil.,Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
31
|
Plaiasu V. Down Syndrome - Genetics and Cardiogenetics. MAEDICA 2017; 12:208-213. [PMID: 29218069 PMCID: PMC5706761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the last years, Down syndrome has been the focus of special attention. Down syndrome is a genetic disorder characterized by distinct physical features and some degree of cognitive disability. Patients with Down syndrome also present many other congenital anomalies. The mapping for phenotypes to specific regions of chromosome 21 permits to identify which genes (or small regions) contribute to the phenotypic features of Down syndrome and thus, to understand its pathogenesis. Mainly there are three cytogenetic forms of Down syndrome: free trisomy 21, mosaic trisomy 21 and robertsonian translocation trisomy 21. Prenatal and postnatal testing has become commonly used to diagnose different cases presenting the same pathology. Early clinical diagnosis is extremely important for patient prognosis. Lately, advances in Down syndrome research have been registered, but little is known about cardiovascular phenotype in Down syndrome. About half of patients with Down syndrome have congenital heart disease, and atrioventricular septal defects are the most common defects found. Basic research on Down syndrome is now rapidly accelerating, using new genomic technologies. There were many studies performed to identify a correlation between genotype and phenotype in Down syndrome.
Collapse
Affiliation(s)
- Vasilica Plaiasu
- Alessandrescu-Rusescu INSMC, Regional Center of Medical Genetics, Bucharest, Romania
| |
Collapse
|
32
|
Calcagni G, Unolt M, Digilio MC, Baban A, Versacci P, Tartaglia M, Baldini A, Marino B. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms. Expert Rev Mol Diagn 2017; 17:861-870. [PMID: 28745539 DOI: 10.1080/14737159.2017.1360766] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.
Collapse
Affiliation(s)
- Giulio Calcagni
- a Department of Pediatric Cardiology and Cardiac Surgery , Bambino Gesù Children's Hospital and Research Institute , Rome , Italy
| | - Marta Unolt
- b Department of Pediatrics , Sapienza University , Rome , Italy
| | - Maria Cristina Digilio
- c Genetics and Rare Diseases Research Division , Bambino Gesù Children's Hospital and Research Institute , Rome , Italy
| | - Anwar Baban
- a Department of Pediatric Cardiology and Cardiac Surgery , Bambino Gesù Children's Hospital and Research Institute , Rome , Italy
| | - Paolo Versacci
- b Department of Pediatrics , Sapienza University , Rome , Italy
| | - Marco Tartaglia
- c Genetics and Rare Diseases Research Division , Bambino Gesù Children's Hospital and Research Institute , Rome , Italy
| | - Antonio Baldini
- d CNR Institute of Genetics and Biophysics Adriano Buzzati Traverso; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II , Naples , Italy
| | - Bruno Marino
- b Department of Pediatrics , Sapienza University , Rome , Italy
| |
Collapse
|
33
|
Genotype-phenotype correlation for congenital heart disease in Down syndrome through analysis of partial trisomy 21 cases. Genomics 2017. [PMID: 28648597 DOI: 10.1016/j.ygeno.2017.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among Down syndrome (DS) children, 40-50% have congenital heart disease (CHD). Although trisomy 21 is not sufficient to cause CHD, three copies of at least part of chromosome 21 (Hsa21) increases the risk for CHD. In order to establish a genotype-phenotype correlation for CHD in DS, we built an integrated Hsa21 map of all described partial trisomy 21 (PT21) cases with sufficient indications regarding presence or absence of CHD (n=107), focusing on DS PT21 cases. We suggest a DS CHD candidate region on 21q22.2 (0.96Mb), being shared by most PT21 cases with CHD and containing three known protein-coding genes (DSCAM, BACE2, PLAC4) and four known non-coding RNAs (DSCAM-AS1, DSCAM-IT1, LINC00323, MIR3197). The characterization of a DS CHD candidate region provides a useful approach to identify specific genes contributing to the pathology and to orient further investigations and possibly more effective therapy in relation to the multifactorial pathogenesis of CHD.
Collapse
|
34
|
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 2017; 17:333-51. [PMID: 27184599 PMCID: PMC10373632 DOI: 10.1038/nrg.2016.49] [Citation(s) in RCA: 2315] [Impact Index Per Article: 289.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the completion of the human genome project in 2003, extraordinary progress has been made in genome sequencing technologies, which has led to a decreased cost per megabase and an increase in the number and diversity of sequenced genomes. An astonishing complexity of genome architecture has been revealed, bringing these sequencing technologies to even greater advancements. Some approaches maximize the number of bases sequenced in the least amount of time, generating a wealth of data that can be used to understand increasingly complex phenotypes. Alternatively, other approaches now aim to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions. These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.
Collapse
Affiliation(s)
- Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine; and the Comprehensive Cancer Center, University of California, Davis, California 95817, USA
| | | |
Collapse
|
35
|
Revilla M, Puig-Oliveras A, Castelló A, Crespo-Piazuelo D, Paludo E, Fernández AI, Ballester M, Folch JM. A global analysis of CNVs in swine using whole genome sequence data and association analysis with fatty acid composition and growth traits. PLoS One 2017; 12:e0177014. [PMID: 28472114 PMCID: PMC5417718 DOI: 10.1371/journal.pone.0177014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/20/2017] [Indexed: 11/30/2022] Open
Abstract
Copy number variations (CNVs) are important genetic variants complementary to SNPs, and can be considered as biomarkers for some economically important traits in domestic animals. In the present study, a genomic analysis of porcine CNVs based on next-generation sequencing data was carried out to identify CNVs segregating in an Iberian x Landrace backcross population and study their association with fatty acid composition and growth-related traits. A total of 1,279 CNVs, including duplications and deletions, were detected, ranging from 106 to 235 CNVs across samples, with an average of 183 CNVs per sample. Moreover, we detected 540 CNV regions (CNVRs) containing 245 genes. Functional annotation suggested that these genes possess a great variety of molecular functions and may play a role in production traits in commercial breeds. Some of the identified CNVRs contained relevant functional genes (e.g., CLCA4, CYP4X1, GPAT2, MOGAT2, PLA2G2A and PRKG1, among others). The variation in copy number of four of them (CLCA4, GPAT2, MOGAT2 and PRKG1) was validated in 150 BC1_LD (25% Iberian and 75% Landrace) animals by qPCR. Additionally, their contribution regarding backfat and intramuscular fatty acid composition and growth–related traits was analyzed. Statistically significant associations were obtained for CNVR112 (GPAT2) for the C18:2(n-6)/C18:3(n-3) ratio in backfat and carcass length, among others. Notably, GPATs are enzymes that catalyze the first step in the biosynthesis of both triglycerides and glycerophospholipids, suggesting that this CNVR may contribute to genetic variation in fatty acid composition and growth traits. These findings provide useful genomic information to facilitate the further identification of trait-related CNVRs affecting economically important traits in pigs.
Collapse
Affiliation(s)
- Manuel Revilla
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
- * E-mail:
| | - Anna Puig-Oliveras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Ediane Paludo
- Department of Animal Science, Santa Catarina State University, Lages, Santa Catarina, Brazil
| | - Ana I. Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Josep M. Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| |
Collapse
|
36
|
Rachubinski AL, Hepburn S, Elias ER, Gardiner K, Shaikh TH. The co-occurrence of Down syndrome and autism spectrum disorder: is it because of additional genetic variations? Prenat Diagn 2017; 37:31-36. [PMID: 27859447 DOI: 10.1002/pd.4957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/23/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) are diagnosed with autism spectrum disorder (ASD) at a significantly higher frequency than the typical population. The differentiation of ASD symptoms from those of severe intellectual disability presents diagnostic challenges, which have led to more refined methods in the clinical evaluation of ASD in DS. These improved phenotypic characterization methods not only provide better diagnosis of ASD in DS, but may also be useful in elucidating the etiology of the increased prevalence of ASD in DS. Because all individuals with the classic presentation of DS have trisomy 21, it is possible that those with co-occurring DS and ASD may have additional genetic variants which can act as modifiers of the phenotype, leading to the development of ASD. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Angela L Rachubinski
- JFK Partners, Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Susan Hepburn
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, USA
| | - Ellen R Elias
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Special Care Clinic, Children's Hospital Colorado, Aurora, CO, USA
| | - Katheleen Gardiner
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Tamim H Shaikh
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
| |
Collapse
|
37
|
Abstract
Down syndrome (also known as trisomy 21) is the model human phenotype for all genomic gain dosage imbalances, including microduplications. The functional genomic exploration of the post-sequencing years of chromosome 21, and the generation of numerous cellular and mouse models, have provided an unprecedented opportunity to decipher the molecular consequences of genome dosage imbalance. Studies of Down syndrome could provide knowledge far beyond the well-known characteristics of intellectual disability and dysmorphic features, as several other important features, including congenital heart defects, early ageing, Alzheimer disease and childhood leukaemia, are also part of the Down syndrome phenotypic spectrum. The elucidation of the molecular mechanisms that cause or modify the risk for different Down syndrome phenotypes could lead to the introduction of previously unimaginable therapeutic options.
Collapse
|
38
|
Pelleri MC, Cicchini E, Locatelli C, Vitale L, Caracausi M, Piovesan A, Rocca A, Poletti G, Seri M, Strippoli P, Cocchi G. Systematic reanalysis of partial trisomy 21 cases with or without Down syndrome suggests a small region on 21q22.13 as critical to the phenotype. Hum Mol Genet 2016; 25:2525-2538. [PMID: 27106104 PMCID: PMC5181629 DOI: 10.1093/hmg/ddw116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 01/13/2023] Open
Abstract
A 'Down Syndrome critical region' (DSCR) sufficient to induce the most constant phenotypes of Down syndrome (DS) had been identified by studying partial (segmental) trisomy 21 (PT21) as an interval of 0.6-8.3 Mb within human chromosome 21 (Hsa21), although its existence was later questioned. We propose an innovative, systematic reanalysis of all described PT21 cases (from 1973 to 2015). In particular, we built an integrated, comparative map from 125 cases with or without DS fulfilling stringent cytogenetic and clinical criteria. The map allowed to define or exclude as candidates for DS fine Hsa21 sequence intervals, also integrating duplication copy number variants (CNVs) data. A highly restricted DSCR (HR-DSCR) of only 34 kb on distal 21q22.13 has been identified as the minimal region whose duplication is shared by all DS subjects and is absent in all non-DS subjects. Also being spared by any duplication CNV in healthy subjects, HR-DSCR is proposed as a candidate for the typical DS features, the intellectual disability and some facial phenotypes. HR-DSCR contains no known gene and has relevant homology only to the chimpanzee genome. Searching for HR-DSCR functional loci might become a priority for understanding the fundamental genotype-phenotype relationships in DS.
Collapse
Affiliation(s)
- Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Elena Cicchini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Alessandro Rocca
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | - Giulia Poletti
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Via Massarenti 9, 40138 Bologna, BO, Italy
| | | | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, BO, Italy
| |
Collapse
|
39
|
Penetrance of Congenital Heart Disease in a Mouse Model of Down Syndrome Depends on a Trisomic Potentiator of a Disomic Modifier. Genetics 2016; 203:763-70. [PMID: 27029737 DOI: 10.1534/genetics.116.188045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/19/2016] [Indexed: 01/14/2023] Open
Abstract
Down syndrome (DS) is a significant risk factor for congenital heart disease (CHD), increasing the incidence 50 times over the general population. However, half of people with DS have a normal heart and thus trisomy 21 is not sufficient to cause CHD by itself. Ts65Dn mice are trisomic for orthologs of >100 Hsa21 genes, and their heart defect frequency is significantly higher than their euploid littermates. Introduction of a null allele of Creld1 into Ts65Dn increases the penetrance of heart defects significantly. However, this increase was not seen when the Creld1 null allele was introduced into Ts1Cje, a mouse that is trisomic for about two thirds of the Hsa21 orthologs that are triplicated in Ts65Dn. Among the 23 genes present in three copies in Ts65Dn but not Ts1Cje, we identified Jam2 as necessary for the increased penetrance of Creld1-mediated septal defects in Ts65Dn. Thus, overexpression of the trisomic gene, Jam2, is a necessary potentiator of the disomic genetic modifier, Creld1 No direct physical interaction between Jam2 and Creld1 was identified by several methods. Regions of Hsa21 containing genes that are risk factors of CHD have been identified, but Jam2 (and its environs) has not been linked to heart formation previously. The complexity of this interaction may be more representative of the clinical situation in people than consideration of simple single-gene models.
Collapse
|
40
|
|
41
|
Chen D, Zhang Z, Meng Y. Systematic Tracking of Disrupted Modules Identifies Altered Pathways Associated with Congenital Heart Defects in Down Syndrome. Med Sci Monit 2015; 21:3334-42. [PMID: 26524729 PMCID: PMC4635630 DOI: 10.12659/msm.896001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This work aimed to identify altered pathways in congenital heart defects (CHD) in Down syndrome (DS) by systematically tracking the dysregulated modules of reweighted protein-protein interaction (PPI) networks. MATERIAL AND METHODS We performed systematic identification and comparison of modules across normal and disease conditions by integrating PPI and gene-expression data. Based on Pearson correlation coefficient (PCC), normal and disease PPI networks were inferred and reweighted. Then, modules in the PPI network were explored by clique-merging algorithm; altered modules were identified via maximum weight bipartite matching and ranked in non-increasing order. Finally, pathways enrichment analysis of genes in altered modules was carried out based on Database for Annotation, Visualization, and Integrated Discovery (DAVID) to study the biological pathways in CHD in DS. RESULTS Our analyses revealed that 348 altered modules were identified by comparing modules in normal and disease PPI networks. Pathway functional enrichment analysis of disrupted module genes showed that the 4 most significantly altered pathways were: ECM-receptor interaction, purine metabolism, focal adhesion, and dilated cardiomyopathy. CONCLUSIONS We successfully identified 4 altered pathways and we predicted that these pathways would be good indicators for CHD in DS.
Collapse
Affiliation(s)
- Denghong Chen
- Department of Obstetrics, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| | - Zhenhua Zhang
- Department of Children's Health Prevention, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| | - Yuxiu Meng
- Department of Neonatology, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
42
|
Sánchez O, Domínguez C, Ruiz A, Ribera I, Alijotas J, Cabero L, Carreras E, Llurba E. Angiogenic Gene Expression in Down Syndrome Fetal Hearts. Fetal Diagn Ther 2015; 40:21-7. [PMID: 26513650 DOI: 10.1159/000441356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Forty percent of Down syndrome (DS) fetuses have congenital heart defects (CHD). An abnormal angiogenic environment has been described in euploid fetuses with CHD. However, the underlying pathophysiologic pathway that contributes to CHD in DS remains unknown. The objective was to compare the expression of angiogenic factors and chronic hypoxia genes in heart tissue from DS and euploid fetuses with and without CHD. METHODS The gene expression profile was determined by real-time PCR quantification in heart tissue from 33 fetuses with DS, 23 euploid fetuses with CHD and 23 control fetuses. RESULTS Angiogenic factors mRNA expression was significantly increased in the DS group compared to the controls (soluble fms-like tyrosine kinase-1, 81%, p = 0.007; vascular endothelial growth factor A, 57%, p = 0.006, and placental growth factor, 32%, p = 0.0227). Significant increases in the transcript level of hypoxia-inducible factor-2α and heme oxygenase 1 were also observed in the DS group compared to the controls. The expression of angiogenic factors was similar in DS fetuses and CHD euploid fetuses with CHD. CONCLUSION Abnormal angiogenesis was detected in the hearts of DS fetuses with and without CHD. Our results suggest that DS determines an intrinsically angiogenic impairment that may be present in the fetal heart.
Collapse
Affiliation(s)
- Olga Sánchez
- Maternal and Child Health and Development Network II (SAMID II) RD12/0026, Institute of Health Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sailani MR, Santoni FA, Letourneau A, Borel C, Makrythanasis P, Hibaoui Y, Popadin K, Bonilla X, Guipponi M, Gehrig C, Vannier A, Carre-Pigeon F, Feki A, Nizetic D, Antonarakis SE. DNA-Methylation Patterns in Trisomy 21 Using Cells from Monozygotic Twins. PLoS One 2015; 10:e0135555. [PMID: 26317209 PMCID: PMC4552626 DOI: 10.1371/journal.pone.0135555] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is essential in mammalian development. We have hypothesized that methylation differences induced by trisomy 21 (T21) contribute to the phenotypic characteristics and heterogeneity in Down syndrome (DS). In order to determine the methylation differences in T21 without interference of the interindividual genomic variation, we have used fetal skin fibroblasts from monozygotic (MZ) twins discordant for T21. We also used skin fibroblasts from MZ twins concordant for T21, normal MZ twins without T21, and unrelated normal and T21 individuals. Reduced Representation Bisulfite Sequencing (RRBS) revealed 35 differentially methylated promoter regions (DMRs) (Absolute methylation differences = 25%, FDR < 0.001) in MZ twins discordant for T21 that have also been observed in comparison between unrelated normal and T21 individuals. The identified DMRs are enriched for genes involved in embryonic organ morphogenesis (FDR = 1.60 e -03) and include genes of the HOXB and HOXD clusters. These DMRs are maintained in iPS cells generated from this twin pair and are correlated with the gene expression changes. We have also observed an increase in DNA methylation level in the T21 methylome compared to the normal euploid methylome. This observation is concordant with the up regulation of DNA methyltransferase enzymes (DNMT3B and DNMT3L) and down regulation of DNA demethylation enzymes (TET2 and TET3) observed in the iPSC of the T21 versus normal twin. Altogether, the results of this study highlight the epigenetic effects of the extra chromosome 21 in T21 on loci outside of this chromosome that are relevant to DS associated phenotypes.
Collapse
Affiliation(s)
- M. Reza Sailani
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
| | - Federico A. Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Youssef Hibaoui
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland
- Department of Obstetrics and Gynecology, Hôpital Cantonal Fribourgeois, Fribourg, Switzerland
| | - Konstantin Popadin
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Ximena Bonilla
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Corinne Gehrig
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Anne Vannier
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Frederique Carre-Pigeon
- Centre Hospitalier Universitaire Reims, Service de Genetique et de Biologie de la Reproduction, CECOS, Hopital Maison Blanche, F-51092 Reims, France
| | - Anis Feki
- Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland
- Department of Obstetrics and Gynecology, Hôpital Cantonal Fribourgeois, Fribourg, Switzerland
| | - Dean Nizetic
- The Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Unit 04–11, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research Frontiers in Genetics Program, University of Geneva, Geneva, Switzerland
- iGE3 institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Genome-Wide Association Study of Down Syndrome-Associated Atrioventricular Septal Defects. G3-GENES GENOMES GENETICS 2015; 5:1961-71. [PMID: 26194203 PMCID: PMC4592978 DOI: 10.1534/g3.115.019943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The goal of this study was to identify the contribution of common genetic variants to Down syndrome−associated atrioventricular septal defect, a severe heart abnormality. Compared with the euploid population, infants with Down syndrome, or trisomy 21, have a 2000-fold increased risk of presenting with atrioventricular septal defects. The cause of this increased risk remains elusive. Here we present data from the largest heart study conducted to date on a trisomic background by using a carefully characterized collection of individuals from extreme ends of the phenotypic spectrum. We performed a genome-wide association study using logistic regression analysis on 452 individuals with Down syndrome, consisting of 210 cases with complete atrioventricular septal defects and 242 controls with structurally normal hearts. No individual variant achieved genome-wide significance. We identified four disomic regions (1p36.3, 5p15.31, 8q22.3, and 17q22) and two trisomic regions on chromosome 21 (around PDXK and KCNJ6 genes) that merit further investigation in large replication studies. Our data show that a few common genetic variants of large effect size (odds ratio >2.0) do not account for the elevated risk of Down syndrome−associated atrioventricular septal defects. Instead, multiple variants of low-to-moderate effect sizes may contribute to this elevated risk, highlighting the complex genetic architecture of atrioventricular septal defects even in the highly susceptible Down syndrome population.
Collapse
|
45
|
Yu S, Yi H, Wang Z, Dong J. Screening key genes associated with congenital heart defects in Down syndrome based on differential expression network. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8385-8393. [PMID: 26339408 PMCID: PMC4555736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Down syndrome (DS) is the most common viable chromosomal disorder with intellectual impairment and several other developmental abnormalities. Forty to fifty percent of newborns with DS have some form of congenital heart defects (CHD). The genome of CHD in DS has already been obtained, but the underlying genomic or gene expression variation that contributes to the manifestation of a CHD in DS is still unknown. OBJECTIVE This study was aimed to analyze key genes of patients with CHD in DS. METHODS Differential expression network (DEN) approach was employed to analyze the dyeregulated genes and pathways in this study. First, the differentially expressed genes (DEGs) between CHD in DS and normal subjects were screened based on the microarray expression data. Next, the differential interactions were identified using spearman correlation coefficients of edges in different conditions. The DEN was then constructed combining both DEGs and differential interactions, and HUB genes were gained by degree centrality analysis of DEN. Meanwhile, disease genes included in the DEN were also ascertained. RESULTS When analyzing gene expression values in different conditions, no DEGs were identified. While, a total of 984 gene pairs with significant differential expression were identified. Finally, the DEN was constructed only using differential edges in our study. In this network, eight HUB genes were identified, and thereinto four genes (UBC, APP, HUWE1 and SRC) were both HUB genes and disease genes. CONCLUSIONS DEN approach should be taken as a useful complement to traditional differential genes methods. We provide several potential underlying biomarkers for CHD in DS.
Collapse
Affiliation(s)
- Shan Yu
- Department of Obstetrics, Jinan Maternity and Child Care Hospital Jinan 250001, Shandong Province, P.R. China
| | - Huani Yi
- Department of Obstetrics, Jinan Maternity and Child Care Hospital Jinan 250001, Shandong Province, P.R. China
| | - Zhimin Wang
- Department of Obstetrics, Jinan Maternity and Child Care Hospital Jinan 250001, Shandong Province, P.R. China
| | - Juan Dong
- Department of Obstetrics, Jinan Maternity and Child Care Hospital Jinan 250001, Shandong Province, P.R. China
| |
Collapse
|
46
|
Calkoen E, Adriaanse B, Haak M, Bartelings M, Kolesnik A, Niszczota C, van Vugt J, Roest A, Blom N, Gittenberger-de Groot A, Jongbloed M. How Normal is a 'Normal' Heart in Fetuses and Infants with Down Syndrome? Fetal Diagn Ther 2015; 39:13-20. [PMID: 26112974 DOI: 10.1159/000381710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/12/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Congenital heart disease is present in 44-56% of fetuses with Down syndrome (DS). There are, however, signs that hearts in DS without apparent structural heart defects also differ from those in the normal population. We aimed to compare the atrioventricular (AV) septum and valves in 3 groups: DS without AV septal defect (DS no-AVSD), DS with AVSD (DS AVSD) and control hearts. METHODS The ventricular septum, membranous septum and AV valves were examined and measured in histological sections of 15 DS no-AVSD, 8 DS AVSD and 34 control hearts. In addition, the ventricular septum length was measured on ultrasound images of fetal (6 DS AVSD, 9 controls) and infant (10 DS no-AVSD, 10 DS AVSD, 10 controls) hearts. RESULTS The membranous septum was 3 times larger in DS no-AVSD fetuses compared to control fetuses, and valve dysplasia was frequently (64%) observed. The ventricular septum was shorter in patients with DS both with and without AVSD, as compared to the control group. CONCLUSION DS no-AVSD hearts are not normal as they have a larger membranous septum, shorter ventricular septum and dysplasia of the AV valves as compared to control hearts.
Collapse
Affiliation(s)
- Emmeline Calkoen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bosman A, Letourneau A, Sartiani L, Del Lungo M, Ronzoni F, Kuziakiv R, Tohonen V, Zucchelli M, Santoni F, Guipponi M, Dumevska B, Hovatta O, Antonarakis SE, Jaconi ME. Perturbations of Heart Development and Function in Cardiomyocytes from Human Embryonic Stem Cells with Trisomy 21. Stem Cells 2015; 33:1434-46. [DOI: 10.1002/stem.1961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Alexis Bosman
- Department of Pathology and Immunology; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Victor Chang Cardiac Research Institute; Darlinghurst New South Wales Australia
| | - Audrey Letourneau
- Department of Genetic Medicine and Development; Faculty of Medicine, University of Geneva; Geneva Switzerland
| | - Laura Sartiani
- Department of Neuroscience; Psychology, Drug Research and Child Health, Center of Molecular Medicine, University of Florence; Florence Italy
| | - Martina Del Lungo
- Department of Neuroscience; Psychology, Drug Research and Child Health, Center of Molecular Medicine, University of Florence; Florence Italy
| | - Flavio Ronzoni
- Department of Pathology and Immunology; Faculty of Medicine; University of Geneva; Geneva Switzerland
| | - Rostyslav Kuziakiv
- Department of Pathology and Immunology; Faculty of Medicine; University of Geneva; Geneva Switzerland
| | - Virpi Tohonen
- Department of Biosciences and Nutrition; Karolinska Institute; Huddinge Sweden
| | - Marco Zucchelli
- Department of Biosciences and Nutrition; Karolinska Institute; Huddinge Sweden
| | - Federico Santoni
- Department of Genetic Medicine and Development; Faculty of Medicine, University of Geneva; Geneva Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development; Faculty of Medicine, University of Geneva; Geneva Switzerland
| | | | - Outi Hovatta
- Division of Obstetrics and Gynecology; Department of Clinical Science; Karolinska Institute; Huddinge Stockholm Sweden
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development; Faculty of Medicine, University of Geneva; Geneva Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva; Geneva Switzerland
| | - Marisa E. Jaconi
- Department of Pathology and Immunology; Faculty of Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|
48
|
Wang W, Wang W, Sun W, Crowley JJ, Szatkiewicz JP. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing. Nucleic Acids Res 2015; 43:e90. [PMID: 25883151 PMCID: PMC4538801 DOI: 10.1093/nar/gkv319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/27/2015] [Indexed: 11/14/2022] Open
Abstract
Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/.
Collapse
Affiliation(s)
- WeiBo Wang
- Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599-3175, USA
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Wei Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599-7400, USA
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, NC 27599-7264, USA
| | - Jin P Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
49
|
Aburawi EH, Aburawi HE, Bagnall KM, Bhuiyan ZA. Molecular insight into heart development and congenital heart disease: An update review from the Arab countries. Trends Cardiovasc Med 2014; 25:291-301. [PMID: 25541328 DOI: 10.1016/j.tcm.2014.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023]
Abstract
Congenital heart defect (CHD) has a major influence on affected individuals as well as on the supportive and associated environment such as the immediate family. Unfortunately, CHD is common worldwide with an incidence of approximately 1% and consequently is a major health concern. The Arab population has a high rate of consanguinity, fertility, birth, and annual population growth, in addition to a high incidence of diabetes mellitus and obesity. All these factors may lead to a higher incidence and prevalence of CHD within the Arab population than in the rest of the world, making CHD of even greater concern. Sadly, most Arab countries lack appropriate public health measures directed toward the control and prevention of congenital malformations and so the importance of CHD within the population remains unknown but is thought to be high. In approximately 85% of CHD patients, the multifactorial theory is considered as the pathologic basis. The genetic risk factors for CHD can be attributed to large chromosomal aberrations, copy number variations (CNV) of particular regions in the chromosome, and gene mutations in specific nuclear transcription pathways and in the genes that are involved in cardiac structure and development. The application of modern molecular biology techniques such as high-throughput nucleotide sequencing and chromosomal array and methylation array all have the potential to reveal more genetic defects linked to CHD. Exploring the genetic defects in CHD pathology will improve our knowledge and understanding about the diverse pathways involved and also about the progression of this disease. Ultimately, this will link to more efficient genetic diagnosis and development of novel preventive therapeutic strategies, as well as gene-targeted clinical management. This review summarizes our current understanding of the molecular basis of normal heart development and the pathophysiology of a wide range of CHD. The risk factors that might account for the high prevalence of CHD within the Arab population and the measures required to be undertaken for conducting research into CHD in Arab countries will also be discussed.
Collapse
Affiliation(s)
- Elhadi H Aburawi
- Department of Pediatrics, United Arab Emirates University, Al-Ain, UAE
| | - Hanan E Aburawi
- Department of Biology, Faculty of Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Keith M Bagnall
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Zahurul A Bhuiyan
- Laboratoire de Diagnostic Moléculaire, Service de Génétique Médicale, BH19_512, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, Lausanne CH-1011, Switzerland.
| |
Collapse
|
50
|
Contribution of copy-number variation to Down syndrome-associated atrioventricular septal defects. Genet Med 2014; 17:554-60. [PMID: 25341113 PMCID: PMC4408203 DOI: 10.1038/gim.2014.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/11/2014] [Indexed: 01/12/2023] Open
Abstract
Purpose The goal of this study was to identify the contribution of large copy number variants (CNV) to Down syndrome (DS) associated atrioventricular septal defects (AVSD), whose risk in the trisomic population is 2000-fold more compared to general disomic population. Methods Genome-wide CNV analysis was performed on 452 individuals with DS (210 cases with complete AVSD; 242 controls with structurally normal hearts) using Affymetrix SNP 6.0 arrays, making this the largest heart study conducted to date on a trisomic background. Results Large common CNVs with substantial effect sizes (OR>2.0) do not account for the increased risk observed in DS-associated AVSD. In contrast, cases had a greater burden of large rare deletions (p<0.01) and intersected more genes (p<0.007) when compared to controls. We also observed a suggestive enrichment of deletions intersecting ciliome genes in cases compared to controls. Conclusion Our data provide strong evidence that large rare deletions increase the risk of DS-associated AVSD, while large common CNVs do not appear to increase the risk of DS-associated AVSD. The genetic architecture of AVSD is complex and multifactorial in nature.
Collapse
|