1
|
Zhou B, Purmann C, Guo H, Shin G, Huang Y, Pattni R, Meng Q, Greer SU, Roychowdhury T, Wood RN, Ho M, zu Dohna H, Abyzov A, Hallmayer JF, Wong WH, Ji HP, Urban AE. Resolving the 22q11.2 deletion using CTLR-Seq reveals chromosomal rearrangement mechanisms and individual variance in breakpoints. Proc Natl Acad Sci U S A 2024; 121:e2322834121. [PMID: 39042694 PMCID: PMC11295037 DOI: 10.1073/pnas.2322834121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/15/2024] [Indexed: 07/25/2024] Open
Abstract
We developed a generally applicable method, CRISPR/Cas9-targeted long-read sequencing (CTLR-Seq), to resolve, haplotype-specifically, the large and complex regions in the human genome that had been previously impenetrable to sequencing analysis, such as large segmental duplications (SegDups) and their associated genome rearrangements. CTLR-Seq combines in vitro Cas9-mediated cutting of the genome and pulse-field gel electrophoresis to isolate intact large (i.e., up to 2,000 kb) genomic regions that encompass previously unresolvable genomic sequences. These targets are then sequenced (amplification-free) at high on-target coverage using long-read sequencing, allowing for their complete sequence assembly. We applied CTLR-Seq to the SegDup-mediated rearrangements that constitute the boundaries of, and give rise to, the 22q11.2 Deletion Syndrome (22q11DS), the most common human microdeletion disorder. We then performed de novo assembly to resolve, at base-pair resolution, the full sequence rearrangements and exact chromosomal breakpoints of 22q11.2DS (including all common subtypes). Across multiple patients, we found a high degree of variability for both the rearranged SegDup sequences and the exact chromosomal breakpoint locations, which coincide with various transposons within the 22q11.2 SegDups, suggesting that 22q11DS can be driven by transposon-mediated genome recombination. Guided by CTLR-Seq results from two 22q11DS patients, we performed three-dimensional chromosomal folding analysis for the 22q11.2 SegDups from patient-derived neurons and astrocytes and found chromosome interactions anchored within the SegDups to be both cell type-specific and patient-specific. Lastly, we demonstrated that CTLR-Seq enables cell-type specific analysis of DNA methylation patterns within the deletion haplotype of 22q11DS.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Hanmin Guo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Department of Statistics, Stanford University, Stanford, CA94305
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305
| | - GiWon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Qingxi Meng
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Stephanie U. Greer
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Tanmoy Roychowdhury
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN55905
| | - Raegan N. Wood
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Heinrich zu Dohna
- Department of Biology, American University of Beirut, Beirut1107 2020, Lebanon
| | - Alexej Abyzov
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN55905
| | - Joachim F. Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
| | - Wing H. Wong
- Department of Statistics, Stanford University, Stanford, CA94305
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Alexander E. Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA94305
- Stanford Maternal and Child Health Research Institute, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Program on Genetics of Brain Function, Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
2
|
Ma H, Wang M, Zhang YE, Tan S. The power of "controllers": Transposon-mediated duplicated genes evolve towards neofunctionalization. J Genet Genomics 2023; 50:462-472. [PMID: 37068629 DOI: 10.1016/j.jgg.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Since the discovery of the first transposon by Dr. Barbara McClintock, the prevalence and diversity of transposable elements (TEs) have been gradually recognized. As fundamental genetic components, TEs drive organismal evolution not only by contributing functional sequences (e.g., regulatory elements or "controllers" as phrased by Dr. McClintock) but also by shuffling genomic sequences. In the latter respect, TE-mediated gene duplications have contributed to the origination of new genes and attracted extensive interest. In response to the development of this field, we herein attempt to provide an overview of TE-mediated duplication by focusing on common rules emerging across duplications generated by different TE types. Specifically, despite the huge divergence of transposition machinery across TEs, we identify three common features of various TE-mediated duplication mechanisms, including end bypass, template switching, and recurrent transposition. These three features lead to one common functional outcome, namely, TE-mediated duplicates tend to be subjected to exon shuffling and neofunctionalization. Therefore, the intrinsic properties of the mutational mechanism constrain the evolutionary trajectories of these duplicates. We finally discuss the future of this field including an in-depth characterization of both the duplication mechanisms and functions of TE-mediated duplicates.
Collapse
Affiliation(s)
- Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Delihas N. An ancestral genomic sequence that serves as a nucleation site for de novo gene birth. PLoS One 2022; 17:e0267864. [PMID: 35552551 PMCID: PMC9097989 DOI: 10.1371/journal.pone.0267864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022] Open
Abstract
The process of gene birth is of major interest with current excitement concerning de novo gene formation. We report a new and different mechanism of de novo gene birth based on the finding and the characteristics of a short non-coding sequence situated between two protein genes, termed a spacer sequence. This non-coding sequence is present in genomes of Mus musculus, the house mouse and Philippine tarsier, a primitive ancestral primate. The ancestral sequence is highly conserved during primate evolution with certain base pairs totally invariant from mouse to humans. By following the birth of the sequence of human lincRNA BCRP3 (BCR activator of RhoGEF and GTPase 3 pseudogene) during primate evolution, we find diverse genes, long non-coding RNA and protein genes (and sequences that do not appear to encode a gene) that all stem from the 3’ end of the spacer, and all begin with a similar sequence. During primate evolution, part of the BCRP3 sequence initially formed in the Old World Monkeys and developed into different primate genes before evolving into the BCRP3 gene in humans. The gene developmental process consists of the initiation of DNA synthesis at spacer 3’ ends, addition of a complex of tandem transposable elements and the addition of a segment of another gene. The findings support the concept of the spacer sequence as a starting site for DNA synthesis that leads to formation of different genes with the addition of other sequences. These data suggest a new process of de novo gene birth.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Cirillo A, Lioncino M, Maratea A, Passariello A, Fusco A, Fratta F, Monda E, Caiazza M, Signore G, Esposito A, Baban A, Versacci P, Putotto C, Marino B, Pignata C, Cirillo E, Giardino G, Sarubbi B, Limongelli G, Russo MG. Clinical Manifestations of 22q11.2 Deletion Syndrome. Heart Fail Clin 2021; 18:155-164. [PMID: 34776076 DOI: 10.1016/j.hfc.2021.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DiGeorge syndrome (DGS), also known as "22q11.2 deletion syndrome" (22q11DS) (MIM # 192430 # 188400), is a genetic disorder caused by hemizygous microdeletion of the long arm of chromosome 22. In the last decades, the introduction of fluorescence in situ hybridization assays, and in selected cases the use of multiplex ligation-dependent probe amplification, has allowed the detection of chromosomal microdeletions that could not be previously identified using standard karyotype analysis. The aim of this review is to address cardiovascular and systemic involvement in children with DGS, provide genotype-phenotype correlations, and discuss their medical management and therapeutic options.
Collapse
Affiliation(s)
- Annapaola Cirillo
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Annachiara Maratea
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Annalisa Passariello
- Pediatric Cardiology Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Adelaide Fusco
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Fiorella Fratta
- Pediatric Cardiology Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Giovanni Signore
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Augusto Esposito
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Viale Di San Paolo, 15, 00165 Rome, Italy
| | - Paolo Versacci
- Department of Pediatrics, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Carolina Putotto
- Department of Pediatrics, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences - Section of Pediatrics, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy
| | - Berardo Sarubbi
- Adult Congenital Heart Diseases Unit, AORN dei Colli, Monaldi Hospital, Naples
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy
| | - Maria Giovanna Russo
- Pediatric Cardiology Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131 Naples, Italy.
| |
Collapse
|
5
|
Riba A, Fumagalli MR, Caselle M, Osella M. A Model-Driven Quantitative Analysis of Retrotransposon Distributions in the Human Genome. Genome Biol Evol 2021; 12:2045-2059. [PMID: 32986810 PMCID: PMC7750997 DOI: 10.1093/gbe/evaa201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2020] [Indexed: 12/21/2022] Open
Abstract
Retrotransposons, DNA sequences capable of creating copies of themselves, compose about half of the human genome and played a central role in the evolution of mammals. Their current position in the host genome is the result of the retrotranscription process and of the following host genome evolution. We apply a model from statistical physics to show that the genomic distribution of the two most populated classes of retrotransposons in human deviates from random placement, and that this deviation increases with time. The time dependence suggests a major role of the host genome dynamics in shaping the current retrotransposon distributions. Focusing on a neutral scenario, we show that a simple model based on random placement followed by genome expansion and sequence duplications can reproduce the empirical retrotransposon distributions, even though more complex and possibly selective mechanisms can have contributed. Besides the inherent interest in understanding the origin of current retrotransposon distributions, this work sets a general analytical framework to analyze quantitatively the effects of genome evolutionary dynamics on the distribution of genomic elements.
Collapse
Affiliation(s)
| | - Maria Rita Fumagalli
- Institute of Biophysics - CNR, National Research Council, Genova, Italy.,Department of Environmental Science and Policy, Center for Complexity and Biosystems, University of Milan, Milano, Italy
| | - Michele Caselle
- Department of Physics and INFN, University of Torino, Torino, Italy
| | - Matteo Osella
- Department of Physics and INFN, University of Torino, Torino, Italy
| |
Collapse
|
6
|
Vervoort L, Dierckxsens N, Pereboom Z, Capozzi O, Rocchi M, Shaikh TH, Vermeesch JR. 22q11.2 Low Copy Repeats Expanded in the Human Lineage. Front Genet 2021; 12:706641. [PMID: 34335701 PMCID: PMC8320366 DOI: 10.3389/fgene.2021.706641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Segmental duplications or low copy repeats (LCRs) constitute duplicated regions interspersed in the human genome, currently neglected in standard analyses due to their extreme complexity. Recent functional studies have indicated the potential of genes within LCRs in synaptogenesis, neuronal migration, and neocortical expansion in the human lineage. One of the regions with the highest proportion of duplicated sequence is the 22q11.2 locus, carrying eight LCRs (LCR22-A until LCR22-H), and rearrangements between them cause the 22q11.2 deletion syndrome. The LCR22-A block was recently reported to be hypervariable in the human population. It remains unknown whether this variability also exists in non-human primates, since research is strongly hampered by the presence of sequence gaps in the human and non-human primate reference genomes. To chart the LCR22 haplotypes and the associated inter- and intra-species variability, we de novo assembled the region in non-human primates by a combination of optical mapping techniques. A minimal and likely ancient haplotype is present in the chimpanzee, bonobo, and rhesus monkey without intra-species variation. In addition, the optical maps identified assembly errors and closed gaps in the orthologous chromosome 22 reference sequences. These findings indicate the LCR22 expansion to be unique to the human population, which might indicate involvement of the region in human evolution and adaptation. Those maps will enable LCR22-specific functional studies and investigate potential associations with the phenotypic variability in the 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
| | | | - Zjef Pereboom
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
- Evolutionary Ecology Group, Department of Biology, Antwerp University, Antwerp, Belgium
| | | | | | - Tamim H. Shaikh
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | |
Collapse
|
7
|
Rubino E, Cruciani M, Tchitchek N, Le Tortorec A, Rolland AD, Veli Ö, Vallet L, Gaggi G, Michel F, Dejucq-Rainsford N, Pellegrini S. Human Ubiquitin-Specific Peptidase 18 Is Regulated by microRNAs via the 3'Untranslated Region, A Sequence Duplicated in Long Intergenic Non-coding RNA Genes Residing in chr22q11.21. Front Genet 2021; 11:627007. [PMID: 33633774 PMCID: PMC7901961 DOI: 10.3389/fgene.2020.627007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Ubiquitin-specific peptidase 18 (USP18) acts as gatekeeper of type I interferon (IFN) responses by binding to the IFN receptor subunit IFNAR2 and preventing activation of the downstream JAK/STAT pathway. In any given cell type, the level of USP18 is a key determinant of the output of IFN-stimulated transcripts. How the baseline level of USP18 is finely tuned in different cell types remains ill defined. Here, we identified microRNAs (miRNAs) that efficiently target USP18 through binding to the 3’untranslated region (3’UTR). Among these, three miRNAs are particularly enriched in circulating monocytes which exhibit low baseline USP18. Intriguingly, the USP18 3’UTR sequence is duplicated in human and chimpanzee genomes. In humans, four USP18 3’UTR copies were previously found to be embedded in long intergenic non-coding (linc) RNA genes residing in chr22q11.21 and known as FAM247A-D. Here, we further characterized their sequence and measured their expression profile in human tissues. Importantly, we describe an additional lincRNA bearing USP18 3’UTR (here linc-UR-B1) that is expressed only in testis. RNA-seq data analyses from testicular cell subsets revealed a positive correlation between linc-UR-B1 and USP18 expression in spermatocytes and spermatids. Overall, our findings uncover a set of miRNAs and lincRNAs, which may be part of a network evolved to fine-tune baseline USP18, particularly in cell types where IFN responsiveness needs to be tightly controlled.
Collapse
Affiliation(s)
- Erminia Rubino
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France.,École Doctorale Physiologie, Physiopathologie et Thérapeutique, ED394, Sorbonne Université, Paris, France
| | - Melania Cruciani
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Nicolas Tchitchek
- École Doctorale Physiologie, Physiopathologie et Thérapeutique, ED394, Sorbonne Université, Paris, France.,i3 research unit, Hôpital Pitié-Salpêtrière-Sorbonne Université, Paris, France
| | - Anna Le Tortorec
- UMR_S1085, Institut de recherche en santé, environnement et travail (Irset), EHESP, Inserm, Univ Rennes, Rennes, France
| | - Antoine D Rolland
- UMR_S1085, Institut de recherche en santé, environnement et travail (Irset), EHESP, Inserm, Univ Rennes, Rennes, France
| | - Önay Veli
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Leslie Vallet
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Giulia Gaggi
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| | - Nathalie Dejucq-Rainsford
- UMR_S1085, Institut de recherche en santé, environnement et travail (Irset), EHESP, Inserm, Univ Rennes, Rennes, France
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
| |
Collapse
|
8
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
9
|
Consequences of 22q11.2 Microdeletion on the Genome, Individual and Population Levels. Genes (Basel) 2020; 11:genes11090977. [PMID: 32842603 PMCID: PMC7563277 DOI: 10.3390/genes11090977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Chromosomal 22q11.2 deletion syndrome (22q11.2DS) (ORPHA: 567) caused by microdeletion in chromosome 22 is the most common chromosomal microdeletion disorder in humans. Despite the same change on the genome level, like in the case of monozygotic twins, phenotypes are expressed differently in 22q11.2 deletion individuals. The rest of the genome, as well as epigenome and environmental factors, are not without influence on the variability of phenotypes. The penetrance seems to be more genotype specific than deleted locus specific. The transcript levels of deleted genes are not usually reduced by 50% as assumed due to haploinsufficiency. 22q11.2DS is often an undiagnosed condition, as each patient may have a different set out of 180 possible clinical manifestations. Diverse dysmorphic traits are present in patients from different ethnicities, which makes diagnosis even more difficult. 22q11.2 deletion syndrome serves as an example of a genetic syndrome that is not easy to manage at all stages: diagnosis, consulting and dealing with.
Collapse
|
10
|
Hou HT, Chen HX, Wang XL, Yuan C, Yang Q, Liu ZG, He GW. Genetic characterisation of 22q11.2 variations and prevalence in patients with congenital heart disease. Arch Dis Child 2020; 105:367-374. [PMID: 31666243 DOI: 10.1136/archdischild-2018-316634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/22/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The 22q11.2 deletion syndrome is considered the most frequent chromosomal microdeletion syndrome in humans and the second leading chromosomal cause of congenital heart disease (CHD). We aimed to identify the prevalence and the detailed genetic characterisation of 22q11.2 region in children with CHD including simple defects and to explore the genotype-phenotype relationship between deletion/amplification type and clinical data. METHODS Patients with CHD for surgery were screened by multiplex ligation-dependent probe amplification and capillary electrophoresis methods. Universal Probe Library technology was applied for validation. RESULTS In 354 patients with CHD, 40 (11.3%) carried different levels of deletions/amplifications at the 22q11.2 region with various phenotypes. The affected genes at this region include CDC45 (15 patients), TBX1 (8), USP18 (8), RTDR1 (7), SNAP29 (6), TOP3B (6), ZNF74 (4) and other genes with less frequency. Among those, two patients carried 3 Mb typically deleted region from CLTCL1 to LZTR1 (low copy repeats A-D) or 1.5 Mb deletions from CLTCL1 to MED15 (low copy repeats A-C). Clinical facial manifestations were found in 12 patients. CONCLUSIONS This study revealed an unexpected high prevalence of chromosome 22q11.2 variations in patients with CHD even in simple defects. The genotype-phenotype relationship analysis suggests that genetic detection of 22q11.2 may become necessary in all patients with CHD and that detection of unique deletions or amplifications may provide useful insight into personalised management in patients with CHD.
Collapse
Affiliation(s)
- Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiu-Li Wang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chao Yuan
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China .,Zhejiang University & Wannan Medical College, Hangzhou & Wuhu, China.,Department of Surgery, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
11
|
Formation of human long intergenic non-coding RNA genes, pseudogenes, and protein genes: Ancestral sequences are key players. PLoS One 2020; 15:e0230236. [PMID: 32214344 PMCID: PMC7098633 DOI: 10.1371/journal.pone.0230236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/25/2020] [Indexed: 12/20/2022] Open
Abstract
Pathways leading to formation of non-coding RNA and protein genes are varied and complex. We report finding a conserved repeat sequence present in human and chimpanzee genomes that appears to have originated from a common primate ancestor. This sequence is repeatedly copied in human chromosome 22 (chr22) low copy repeats (LCR22) or segmental duplications and forms twenty-one different genes, which include the human long intergenic non-coding RNA (lincRNA) family FAM230, a newly discovered lincRNA gene family termed conserved long intergenic non-coding RNAs (clincRNA), pseudogene families, as well as the gamma-glutamyltransferase (GGT) protein gene family and the RNA pseudogenes that originate from GGT sequences. Of particular interest are the GGT5 and USP18 protein genes that appear to have formed from an homologous repeat sequence that also forms the clincRNA gene family. The data point to ancestral DNA sequences, conserved through evolution and duplicated in humans by chromosomal repeat sequences that may serve as functional genomic elements in the development of diverse genes.
Collapse
|
12
|
Sullivan KE. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol Rev 2019; 287:186-201. [PMID: 30565249 DOI: 10.1111/imr.12701] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Chromosome 22q11.2 deletion syndrome is the most common microdeletion syndrome in humans. The effects are protean and highly variable, making a unified approach difficult. Nevertheless, commonalities have been identified and white papers with recommended evaluations and anticipatory guidance have been published. This review will cover the immune system in detail and discuss both the primary features and the secondary features related to thymic hypoplasia. A brief discussion of the other organ system involvement will be provided for context. The immune system, percolating throughout the body can impact the function of other organs through allergy or autoimmune disease affecting organs in deleterious manners. Our work has shown that the primary effect of thymic hypoplasia is to restrict T cell production. Subsequent homeostatic proliferation and perhaps other factors drive a Th2 polarization, most obvious in adulthood. This contributes to atopic risk in this population. Thymic hypoplasia also contributes to low regulatory T cells and this may be part of the overall increased risk of autoimmunity. Collectively, the effects are complex and often age-dependent. Future goals of improving thymic function or augmenting thymic volume may offer a direct intervention to ameliorate infections, atopy, and autoimmunity.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Morrow BE, McDonald-McGinn DM, Emanuel BS, Vermeesch JR, Scambler PJ. Molecular genetics of 22q11.2 deletion syndrome. Am J Med Genet A 2019; 176:2070-2081. [PMID: 30380194 DOI: 10.1002/ajmg.a.40504] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023]
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is a congenital malformation and neuropsychiatric disorder caused by meiotic chromosome rearrangements. One of the goals of this review is to summarize the current state of basic research studies of 22q11.2DS. It highlights efforts to understand the mechanisms responsible for the 22q11.2 deletion that occurs in meiosis. This mechanism involves the four sets of low copy repeats (LCR22) that are dispersed in the 22q11.2 region and the deletion is mediated by nonallelic homologous recombination events. This review also highlights selected genes mapping to the 22q11.2 region that may contribute to the typical clinical findings associated with the disorder and explain that mutations in genes on the remaining allele can uncover rare recessive conditions. Another important aspect of 22q11.2DS is the existence of phenotypic heterogeneity. While some patients are mildly affected, others have severe medical, cognitive, and/or psychiatric challenges. Variability may be due in part to the presence of genetic modifiers. This review discusses current genome-wide efforts to identify such modifiers that could shed light on molecular pathways required for normal human development, cognition or behavior.
Collapse
Affiliation(s)
- Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Joris R Vermeesch
- Center for Human Genetics, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Peter J Scambler
- Institute of Child Health, University College London, London, UK
| |
Collapse
|
14
|
Delihas N. A family of long intergenic non-coding RNA genes in human chromosomal region 22q11.2 carry a DNA translocation breakpoint/AT-rich sequence. PLoS One 2018; 13:e0195702. [PMID: 29668722 PMCID: PMC5906017 DOI: 10.1371/journal.pone.0195702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
FAM230C, a long intergenic non-coding RNA (lincRNA) gene in human chromosome 13 (chr13) is a member of lincRNA genes termed family with sequence similarity 230. An analysis using bioinformatics search tools and alignment programs was undertaken to determine properties of FAM230C and its related genes. Results reveal that the DNA translocation element, the Translocation Breakpoint Type A (TBTA) sequence, which consists of satellite DNA, Alu elements, and AT-rich sequences is embedded in the FAM230C gene. Eight lincRNA genes related to FAM230C also carry the TBTA sequences. These genes were formed from a large segment of the 3’ half of the FAM230C sequence duplicated in chr22, and are specifically in regions of low copy repeats (LCR22)s, in or close to the 22q.11.2 region. 22q11.2 is a chromosomal segment that undergoes a high rate of DNA translocation and is prone to genetic deletions. FAM230C-related genes present in other chromosomes do not carry the TBTA motif and were formed from the 5’ half region of the FAM230C sequence. These findings identify a high specificity in lincRNA gene formation by gene sequence duplication in different chromosomes.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Guo T, Diacou A, Nomaru H, McDonald-McGinn DM, Hestand M, Demaerel W, Zhang L, Zhao Y, Ujueta F, Shan J, Montagna C, Zheng D, Crowley TB, Kushan-Wells L, Bearden CE, Kates WR, Gothelf D, Schneider M, Eliez S, Breckpot J, Swillen A, Vorstman J, Zackai E, Benavides Gonzalez F, Repetto GM, Emanuel BS, Bassett AS, Vermeesch JR, Marshall CR, Morrow BE. Deletion size analysis of 1680 22q11.2DS subjects identifies a new recombination hotspot on chromosome 22q11.2. Hum Mol Genet 2018; 27:1150-1163. [PMID: 29361080 PMCID: PMC6059186 DOI: 10.1093/hmg/ddy028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
Recurrent, de novo, meiotic non-allelic homologous recombination events between low copy repeats, termed LCR22s, leads to the 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome/DiGeorge syndrome). Although most 22q11.2DS patients have a similar sized 3 million base pair (Mb), LCR22A-D deletion, some have nested LCR22A-B or LCR22A-C deletions. Our goal is to identify additional recurrent 22q11.2 deletions associated with 22q11.2DS, serving as recombination hotspots for meiotic chromosomal rearrangements. Here, using data from Affymetrix 6.0 microarrays on 1680 22q11.2DS subjects, we identified what appeared to be a nested proximal 22q11.2 deletion in 38 (2.3%) of them. Using molecular and haplotype analyses from 14 subjects and their parent(s) with available DNA, we found essentially three types of scenarios to explain this observation. In eight subjects, the proximal breakpoints occurred in a small sized 12 kb LCR distal to LCR22A, referred to LCR22A+, resulting in LCR22A+-B or LCR22A+-D deletions. Six of these eight subjects had a nested 22q11.2 deletion that occurred during meiosis in a parent carrying a benign 0.2 Mb duplication of the LCR22A-LCR22A+ region with a breakpoint in LCR22A+. Another six had a typical de novo LCR22A-D deletion on one allele and inherited the LCR22A-A+ duplication from the other parent thus appearing on microarrays to have a nested deletion. LCR22A+ maps to an evolutionary breakpoint between mice and humans and appears to serve as a local hotspot for chromosome rearrangements on 22q11.2.
Collapse
Affiliation(s)
- Tingwei Guo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hiroko Nomaru
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Matthew Hestand
- Center for Human Genetics, Katholieke University Leuven (KULeuven), Leuven, Belgium
| | - Wolfram Demaerel
- Center for Human Genetics, Katholieke University Leuven (KULeuven), Leuven, Belgium
| | - Liangtian Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yingjie Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Francisco Ujueta
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jidong Shan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Terrence B Crowley
- Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, and Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Doron Gothelf
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Maude Schneider
- Developmental Imaging and Psychopathology Lab, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, University of Geneva School of Medicine, Geneva, Switzerland
| | - Jeroen Breckpot
- Center for Human Genetics, Katholieke University Leuven (KULeuven), Leuven, Belgium
| | - Ann Swillen
- Center for Human Genetics, Katholieke University Leuven (KULeuven), Leuven, Belgium
| | - Jacob Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elaine Zackai
- Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Felipe Benavides Gonzalez
- Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Gabriela M Repetto
- Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Beverly S Emanuel
- Division of Human Genetics, Children’s Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Anne S Bassett
- Center for Addiction and Mental Health, Toronto General Hospital and the University of Toronto, Toronto, Canada
- Department of Pediatric Laboratory Medicine and Laboratory of Medicine and Pathobiology, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Joris R Vermeesch
- Center for Human Genetics, Katholieke University Leuven (KULeuven), Leuven, Belgium
| | - Christian R Marshall
- Department of Pediatric Laboratory Medicine and Laboratory of Medicine and Pathobiology, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
16
|
Pezer Ž, Chung AG, Karn RC, Laukaitis CM. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions. Genome Biol Evol 2018; 9:3858091. [PMID: 28575204 PMCID: PMC5513543 DOI: 10.1093/gbe/evx099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2017] [Indexed: 12/26/2022] Open
Abstract
The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice.
Collapse
Affiliation(s)
- Željka Pezer
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ruđer Bošković Institute, Zagreb, Croatia
| | - Amanda G Chung
- Department of Medicine, College of Medicine, University of Arizona
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona
| | | |
Collapse
|
17
|
Gur RE, Bassett AS, McDonald-McGinn DM, Bearden CE, Chow E, Emanuel BS, Owen M, Swillen A, Van den Bree M, Vermeesch J, Vorstman JAS, Warren S, Lehner T, Morrow B. A neurogenetic model for the study of schizophrenia spectrum disorders: the International 22q11.2 Deletion Syndrome Brain Behavior Consortium. Mol Psychiatry 2017; 22:1664-1672. [PMID: 28761081 PMCID: PMC5935262 DOI: 10.1038/mp.2017.161] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
Rare copy number variants contribute significantly to the risk for schizophrenia, with the 22q11.2 locus consistently implicated. Individuals with the 22q11.2 deletion syndrome (22q11DS) have an estimated 25-fold increased risk for schizophrenia spectrum disorders, compared to individuals in the general population. The International 22q11DS Brain Behavior Consortium is examining this highly informative neurogenetic syndrome phenotypically and genomically. Here we detail the procedures of the effort to characterize the neuropsychiatric and neurobehavioral phenotypes associated with 22q11DS, focusing on schizophrenia and subthreshold expression of psychosis. The genomic approach includes a combination of whole-genome sequencing and genome-wide microarray technologies, allowing the investigation of all possible DNA variation and gene pathways influencing the schizophrenia-relevant phenotypic expression. A phenotypically rich data set provides a psychiatrically well-characterized sample of unprecedented size (n=1616) that informs the neurobehavioral developmental course of 22q11DS. This combined set of phenotypic and genomic data will enable hypothesis testing to elucidate the mechanisms underlying the pathogenesis of schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- RE Gur
- Perelman School of Medicine and Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - AS Bassett
- Centre for Addiction and Mental Health, Toronto General Hospital and the University of Toronto, Toronto, ON, Canada
| | - DM McDonald-McGinn
- The Children’s Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - CE Bearden
- University of California Los Angeles, Los Angeles, CA, USA
| | - E Chow
- Centre for Addiction and Mental Health, Toronto General Hospital and the University of Toronto, Toronto, ON, Canada
| | - BS Emanuel
- The Children’s Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - M Owen
- Cardiff University, Cardiff, UK
| | - A Swillen
- Katholieke University, Leuven, Belgium
| | | | | | - JAS Vorstman
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Warren
- Emory University, Atlanta, GA, USA
| | - T Lehner
- National Institute of Mental Health, Bethesda, MD, USA
| | - B Morrow
- Albert Einstein College of Medicine, New York, NY, USA
| | | |
Collapse
|
18
|
Demaerel W, Hestand MS, Vergaelen E, Swillen A, López-Sánchez M, Pérez-Jurado LA, McDonald-McGinn DM, Zackai E, Emanuel BS, Morrow BE, Breckpot J, Devriendt K, Vermeesch JR. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements. Am J Hum Genet 2017; 101:616-622. [PMID: 28965848 DOI: 10.1016/j.ajhg.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/16/2017] [Indexed: 11/17/2022] Open
Abstract
Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders.
Collapse
Affiliation(s)
- Wolfram Demaerel
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthew S Hestand
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elfi Vergaelen
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ann Swillen
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marcos López-Sánchez
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Luis A Pérez-Jurado
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeroen Breckpot
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
An exploratory study of predisposing genetic factors for DiGeorge/velocardiofacial syndrome. Sci Rep 2017; 7:40031. [PMID: 28059126 PMCID: PMC5216377 DOI: 10.1038/srep40031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
DiGeorge/velocardiofacial syndrome (DGS/VCFS) is a disorder caused by a 22q11.2 deletion mediated by non-allelic homologous recombination (NAHR) between low-copy repeats (LCRs). We have evaluated the role of LCR22 genomic architecture and PRDM9 variants as DGS/VCFS predisposing factors. We applied FISH using fosmid probes on chromatin fibers to analyze the number of tandem repeat blocks in LCR22 in two DGS/VCFS fathers-of-origin with proven 22q11.2 NAHR susceptibility. Results revealed copy number variations (CNVs) of L9 and K3 fosmids in these individuals compared to controls. The total number of L9 and K3 copies was also characterized using droplet digital PCR (ddPCR). Although we were unable to confirm variations, we detected an additional L9 amplicon corresponding to a pseudogene. Moreover, none of the eight DGS/VCFS parents-of-origin was heterozygote for the inv(22)(q11.2) haplotype. PRDM9 sequencing showed equivalent allelic distributions between DGS/VCFS parents-of-origin and controls, although a new PRDM9 allele (L50) was identified in one case. Our results support the hypothesis that LCR22s variations influences 22q11.2 NAHR events, however further studies are needed to confirm this association and clarify the contribution of pseudogenes and rare PDRM9 alleles to NAHR susceptibility.
Collapse
|
20
|
Dugoff L, Mennuti MT, McDonald-McGinn DM. The benefits and limitations of cell-free DNA screening for 22q11.2 deletion syndrome. Prenat Diagn 2016; 37:53-60. [DOI: 10.1002/pd.4864] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Lorraine Dugoff
- Department of OB/GYN, Divisions of Reproductive Genetics and Maternal Fetal Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Michael T. Mennuti
- Department of OB/GYN, Divisions of Reproductive Genetics and Maternal Fetal Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Donna M. McDonald-McGinn
- Division of Human Genetics, 22q and You Center and Clinical Genetics Center, The Children's Hospital of Philadelphia, and the Department of Pediatrics; The Perelman School of Medicine of the University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
21
|
Guo X, Delio M, Haque N, Castellanos R, Hestand MS, Vermeesch JR, Morrow BE, Zheng D. Variant discovery and breakpoint region prediction for studying the human 22q11.2 deletion using BAC clone and whole genome sequencing analysis. Hum Mol Genet 2016; 25:3754-3767. [PMID: 27436579 DOI: 10.1093/hmg/ddw221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022] Open
Abstract
Velo-cardio-facial syndrome/DiGeorge syndrome/22q11.2 deletion syndrome (22q11.2DS) is caused by meiotic non-allelic homologous recombination events between flanking low copy repeats termed LCR22A and LCR22D, resulting in a 3 million base pair (Mb) deletion. Due to their complex structure, large size and high sequence identity, genetic variation within LCR22s among different individuals has not been well characterized. In this study, we sequenced 13 BAC clones derived from LCR22A/D and aligned them with 15 previously available BAC sequences to create a new genetic variation map. The thousands of variants identified by this analysis were not uniformly distributed in the two LCR22s. Moreover, shared single nucleotide variants between LCR22A and LCR22D were enriched in the Breakpoint Cluster Region pseudogene (BCRP) block, suggesting the existence of a possible recombination hotspot there. Interestingly, breakpoints for atypical 22q11.2 rearrangements have previously been located to BCRPs To further explore this finding, we carried out in-depth analyses of whole genome sequence (WGS) data from two unrelated probands harbouring a de novo 3Mb 22q11.2 deletion and their normal parents. By focusing primarily on WGS reads uniquely mapped to LCR22A, using the variation map from our BAC analysis to help resolve allele ambiguity, and by performing PCR analysis, we infer that the deletion breakpoints were most likely located near or within the BCRP module. In summary, we found a high degree of sequence variation in LCR22A and LCR22D and a potential recombination breakpoint near or within the BCRP block, providing a starting point for future breakpoint mapping using additional trios.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deyou Zheng
- Department of Neurology .,Department of Genetics.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
22
|
Abstract
22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.
Collapse
|
23
|
Delihas N. Complexity of a small non-protein coding sequence in chromosomal region 22q11.2: presence of specialized DNA secondary structures and RNA exon/intron motifs. BMC Genomics 2015; 16:785. [PMID: 26467088 PMCID: PMC4607176 DOI: 10.1186/s12864-015-1958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND DiGeorge Syndrome is a genetic abnormality involving ~3 Mb deletion in human chromosome 22, termed 22q.11.2. To better understand the non-coding regions of 22q.11.2, a small 10,000 bp non-protein-coding sequence close to the DiGeorge Critical Region 6 gene (DGCR6) was chosen for analysis and functional entities as the homologous sequence in the chimpanzee genome could be aligned and used for comparisons. METHODS The GenBank database provided genomic sequences. In silico computer programs were used to find homologous DNA sequences in human and chimpanzee genomes, generate random sequences, determine DNA sequence alignments, sequence comparisons and nucleotide repeat copies, and to predicted DNA secondary structures. RESULTS At its 5' half, the 10,000 bp sequence has three distinct sections that represent phylogenetically variable sequences. These Variable Regions contain biased mutations with a very high A + T content, multiple copies of the motif TATAATATA and sequences that fold into long A:T-base-paired stem loops. The 3' half of the 10,000 bp unit, highly conserved between human and chimpanzee, has sequences representing exons of lncRNA genes and segments of introns of protein genes. Central to the 10,000 bp unit are the multiple copies of a sequence that originates from the flanking 5' end of the translocation breakpoint Type A sequence. This breakpoint flanking sequence carries the exon and intron motifs. The breakpoint Type A sequence seems to be a major player in the proliferation of these RNA motifs, as well as the proliferation of Variable Regions in the 10,000 bp segment and other regions within 22q.11.2. CONCLUSIONS The data indicate that a non-coding region of the chromosome may be reserved for highly biased mutations that lead to formation of specialized sequences and DNA secondary structures. On the other hand, the highly conserved nucleotide sequence of the non-coding region may form storage sites for RNA motifs.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony, Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
24
|
The Alu-rich genomic architecture of SPAST predisposes to diverse and functionally distinct disease-associated CNV alleles. Am J Hum Genet 2014; 95:143-61. [PMID: 25065914 DOI: 10.1016/j.ajhg.2014.06.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 01/27/2023] Open
Abstract
Intragenic copy-number variants (CNVs) contribute to the allelic spectrum of both Mendelian and complex disorders. Although pathogenic deletions and duplications in SPAST (mutations in which cause autosomal-dominant spastic paraplegia 4 [SPG4]) have been described, their origins and molecular consequences remain obscure. We mapped breakpoint junctions of 54 SPAST CNVs at nucleotide resolution. Diverse combinations of exons are deleted or duplicated, highlighting the importance of particular exons for spastin function. Of the 54 CNVs, 38 (70%) appear to be mediated by an Alu-based mechanism, suggesting that the Alu-rich genomic architecture of SPAST renders this locus susceptible to various genome rearrangements. Analysis of breakpoint Alus further informs a model of Alu-mediated CNV formation characterized by small CNV size and potential involvement of mechanisms other than homologous recombination. Twelve deletions (22%) overlap part of SPAST and a portion of a nearby, directly oriented gene, predicting novel chimeric genes in these subjects' genomes. cDNA from a subject with a SPAST final exon deletion contained multiple SPAST:SLC30A6 fusion transcripts, indicating that SPAST CNVs can have transcriptional effects beyond the gene itself. SLC30A6 has been implicated in Alzheimer disease, so these fusion gene data could explain a report of spastic paraplegia and dementia cosegregating in a family with deletion of the final exon of SPAST. Our findings provide evidence that the Alu genomic architecture of SPAST predisposes to diverse CNV alleles with distinct transcriptional--and possibly phenotypic--consequences. Moreover, we provide further mechanistic insights into Alu-mediated copy-number change that are extendable to other loci.
Collapse
|
25
|
Hu H, Yao H, Dong Y, Long Y, Xu L, Hu B, Xu G, Liang Z. Distinct karyotypes in two offspring of a man with jumping translocation karyotype 45,XY,der(16)t(16;22)(q24;q11.2), -22 [59]/45,XY,der(1)t(1;22)(p36;q11.2), -22 [11]/45,XY,der(22)t(22;22)(p13;q11.2), -22 [10]. Am J Med Genet A 2014; 164A:2048-53. [PMID: 24737738 DOI: 10.1002/ajmg.a.36560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 03/10/2014] [Indexed: 11/07/2022]
Abstract
We examined a man and his daughter, who both had different jumping translocation karyotypes. The man's wife was pregnant and had been referred for prenatal diagnosis of the fetus. The karyotype of the husband's peripheral blood lymphocytes was 45,XY,der(16)t(16;22)(q24;q11.2), -22 [59]/45,XY,der(1)t(1;22)(p36;q11.2), -22 [11]/45,XY,der(22)t(22;22)(p13;q11.2), -22 [10]. The karyotype of the daughter's peripheral blood lymphocytes was 45,XX,der(16)t(16;22)(q24;q11.2), -22 [45]/45,XX,der(9)t(9;22)(q34;q11.2), -22 [30]/45,XX,der(5)t(5;22)(q35;q11.2), -22 [25]. The wife and the fetus both had a normal karyotype. To the best of our knowledge, the present familial transmitted jumping translocation has not been previously described and the jumping translocation in the husband and daughter did not cause any phenotypic abnormalities.
Collapse
Affiliation(s)
- Hua Hu
- Center for Prenatal Diagnosis, Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, ChongQing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Guffanti G, Gaudi S, Fallon JH, Sobell J, Potkin SG, Pato C, Macciardi F. Transposable elements and psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:201-16. [PMID: 24585726 DOI: 10.1002/ajmg.b.32225] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022]
Abstract
Transposable Elements (TEs) or transposons are low-complexity elements (e.g., LINEs, SINEs, SVAs, and HERVs) that make up to two-thirds of the human genome. There is mounting evidence that TEs play an essential role in genomic architecture and regulation related to both normal function and disease states. Recently, the identification of active TEs in several different human brain regions suggests that TEs play a role in normal brain development and adult physiology and quite possibly in psychiatric disorders. TEs have been implicated in hemophilia, neurofibromatosis, and cancer. With the advent of next-generation whole-genome sequencing approaches, our understanding of the relationship between TEs and psychiatric disorders will greatly improve. We will review the biology of TEs and early evidence for TE involvement in psychiatric disorders.
Collapse
Affiliation(s)
- Guia Guffanti
- Department of Psychiatry, Columbia University, New York, New York
| | | | | | | | | | | | | |
Collapse
|
27
|
Janoušek V, Karn RC, Laukaitis CM. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family. BMC Evol Biol 2013; 13:107. [PMID: 23718880 PMCID: PMC3669608 DOI: 10.1186/1471-2148-13-107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/14/2013] [Indexed: 12/01/2022] Open
Abstract
Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study.
Collapse
Affiliation(s)
- Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague 128 43, Czech Republic
| | | | | |
Collapse
|
28
|
Mona M, Mehrdad N, Mehrdad B, Elham N, Khazamipour N. Rearrangement in 22q11 implicated in Iranian patients with mental retardation. Int J Pediatr Otorhinolaryngol 2012; 76:1604-9. [PMID: 22939590 DOI: 10.1016/j.ijporl.2012.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 01/16/2023]
Abstract
Chromosome 22, particularly 22q11.2 region, is predisposed to rearrangements due to misalignments of low-copy repeats (LCRs). DiGeorge/velo-cardio-facial syndrome is a common disorder resulting from microdeletion within the same band. Although both deletion and duplication in this region are expected to occur in equal proportions as reciprocal events caused by LCR-mediated rearrangements, very few microduplications have been identified. The phenotype of these patients with microduplications is extremely diverse, ranging from normal to behavioral abnormalities to multiple defects, only some of which are reminiscent of the 22q11.2 deletion syndrome. The aim of this study was to investigate 22q11.2 microdeletion and microduplication among Iranian patients with mental retardation. For this purpose, 46 mental retarded patients who were tested negative for fragile X syndrome were involved in this study. The samples were assessed for 22q11.2 microduplication and microdeletions by Semi-Quantitative Multiplex Polymerase chain reaction (SQMPCR). MLPA was carried out to confirm the findings and to rule out other abnormalities in subtelomeric region. We found three patients with microdeletion and one with microduplication and one with 10p deletion syndrome. These findings proved evidence that microdeletion and microduplication of 22q11.2 can be a reason of mental retardation in Iranian population with unknown causes.
Collapse
Affiliation(s)
- Malekmohamadi Mona
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
29
|
High-resolution fish on DNA fibers for low-copy repeats genome architecture studies. Genomics 2012; 100:380-6. [PMID: 22954586 PMCID: PMC3778886 DOI: 10.1016/j.ygeno.2012.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 11/22/2022]
Abstract
Low-copy repeats (LCRs) constitute 5% of the human genome. LCRs act as substrates for non-allelic homologous recombination (NAHR) leading to genomic structural variation. The aim of this study was to assess the potential of Fiber-FISH for LCRs direct visualization to support investigations of genome architecture within these challenging genomic regions. We describe a set of Fiber-FISH experiments designed for the study of the LCR22-2. This LCR is involved in recurrent reorganizations causing different genomic disorders. Four fosmid clones covering the entire length of the LCR22-2 and two single-copy BAC-clones, delimiting the LCR22-2 proximally and distally, were selected. The probes were hybridized in different multiple color combinations on DNA fibers from two karyotypically normal cell lines. We were able to identify three distinct structural haplotypes characterized by differences in copy-number and arrangement of the LCR22-2 genes and pseudogenes. Our results show that Multicolor Fiber-FISH is a viable methodological approach for the analysis of genome organization within complex LCR regions.
Collapse
|
30
|
Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012; 2012:947089. [PMID: 22792041 PMCID: PMC3389668 DOI: 10.1155/2012/947089] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/17/2022] Open
Abstract
Sequence repeats are an important phenomenon in the human genome, playing important roles in genomic alteration often with phenotypic consequences. The two major types of repeat elements in the human genome are tandem repeats (TRs) including microsatellites, minisatellites, and satellites and transposable elements (TEs). So far, very little has been known about the relationship between these two types of repeats. In this study, we identified TRs that are derived from TEs either based on sequence similarity or overlapping genomic positions. We then analyzed the distribution of these TRs among TE families/subfamilies. Our study shows that at least 7,276 TRs or 23% of all minisatellites/satellites is derived from TEs, contributing ∼0.32% of the human genome. TRs seem to be generated more likely from younger/more active TEs, and once initiated they are expanded with time via local duplication of the repeat units. The currently postulated mechanisms for origin of TRs can explain only 6% of all TE-derived TRs, indicating the presence of one or more yet to be identified mechanisms for the initiation of such repeats. Our result suggests that TEs are contributing to genome expansion and alteration not only by transposition but also by generating tandem repeats.
Collapse
|
31
|
Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 2012; 19:787-808. [PMID: 21850457 DOI: 10.1007/s10577-011-9230-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
Collapse
Affiliation(s)
- Mateusz Janicki
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L1C6, Canada
| | | | | |
Collapse
|
32
|
Liewluck T, Sacharow SJ, Fan Y, Lopez-Alberola R. A novel sporadic 614-Kb duplication of the 22q11.2 chromosome in a child with amyoplasia. J Child Neurol 2011; 26:1005-8. [PMID: 21572057 DOI: 10.1177/0883073810394846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arthrogryposis is a rare congenital disorder characterized by multiple fixed joint contractures. Decreased fetal movement, regardless of etiology, causes an immobilization of the affected joints and subsequent contractures. Amyoplasia refers to the most common variant of arthrogryposis in which patients develop symmetrical limb contractures because of muscle underdevelopment. It is a sporadic condition with no known genetic abnormality being linked to this syndrome. The authors report a 4-month-old boy with amyoplasia carrying a novel de novo 614-Kb duplication of the 22q11.2 region. Amyoplasia has not been reported in patients with 22q11.2 microduplication syndrome. This particular 614-Kb duplicated segment contains 7 genes located within the typical 22q11.2 duplication region and 2 genes, TUBA8 and USP18, mapping outside of the typical region. This patient broadens the phenotypic spectrum of the 22q11.2 microduplication syndrome and raises the possibility that TUBA8 and USP18 may play an important role in the pathogenesis of amyoplasia.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
33
|
Wincent J, Bruno DL, van Bon BWM, Bremer A, Stewart H, Bongers EMHF, Ockeloen CW, Willemsen MH, Keays DDA, Baird G, Newbury DF, Kleefstra T, Marcelis C, Kini U, Stark Z, Savarirayan R, Sheffield LJ, Zuffardi O, Slater HR, de Vries BB, Knight SJL, Anderlid BM, Schoumans J. Sixteen New Cases Contributing to the Characterization of Patients with Distal 22q11.2 Microduplications. Mol Syndromol 2011; 1:246-254. [PMID: 22140377 DOI: 10.1159/000327982] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
The chromosome region 22q11.2 has long been recognized to be susceptible to genomic rearrangement. More recently, this genomic instability has been shown to extend distally (involving LCR22E-H) to the commonly deleted/duplicated region. To date, 21 index cases with 'distal' 22q11.2 duplications have been reported. We report on the clinical and molecular characterization of 16 individuals with distal 22q11.2 duplications identified by DNA microarray analysis. Two of the individuals have been partly described previously. The clinical phenotype varied among the patients in this study, although the majority displayed various degrees of developmental delay and speech disturbances. Other clinical features included behavioral problems, hypotonia, and dysmorphic facial features. Notably, none of the patients was diagnosed with a congenital heart defect. We found a high degree of inherited duplications. Additional copy number changes of unclear clinical significance were identified in 5 of our patients, and it is possible that these may contribute to the phenotypic expression in these patients as has been suggested recently in a 2-hit 'digenic' model for 16p12.1 deletions. The varied phenotypic expression and incomplete penetrance observed for distal 22q11.2 duplications makes it exceedingly difficult to ascribe pathogenicity for these duplications. Given the observed enrichment of the duplication in patient samples versus healthy controls, it is likely that distal 22q11.2 duplications represent a susceptibility/risk locus for speech and mild developmental delay.
Collapse
Affiliation(s)
- J Wincent
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guo X, Freyer L, Morrow B, Zheng D. Characterization of the past and current duplication activities in the human 22q11.2 region. BMC Genomics 2011; 12:71. [PMID: 21269513 PMCID: PMC3040729 DOI: 10.1186/1471-2164-12-71] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/26/2011] [Indexed: 12/02/2022] Open
Abstract
Background Segmental duplications (SDs) on 22q11.2 (LCR22), serve as substrates for meiotic non-allelic homologous recombination (NAHR) events resulting in several clinically significant genomic disorders. Results To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs) exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb) are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints. Conclusions Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements.
Collapse
Affiliation(s)
- Xingyi Guo
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
35
|
Girirajan S, Eichler EE. Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet 2010; 19:R176-87. [PMID: 20807775 PMCID: PMC2953748 DOI: 10.1093/hmg/ddq366] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 07/28/2010] [Accepted: 08/24/2010] [Indexed: 11/13/2022] Open
Abstract
The duplication architecture of the human genome predisposes our species to recurrent copy number variation and disease. Emerging data suggest that this mechanism of mutation contributes to both common and rare diseases. Two features regarding this form of mutation have emerged. First, common structural polymorphisms create susceptible and protective chromosomal architectures. These structural polymorphisms occur at varying frequencies in populations, leading to different susceptibility and ethnic predilection. Second, a subset of rearrangements shows extreme variability in expressivity. We propose that two types of genomic disorders may be distinguished: syndromic forms where the phenotypic features are largely invariant and those where the same molecular lesion associates with a diverse set of diagnoses including epilepsy, schizophrenia, autism, intellectual disability and congenital malformations. Copy number variation analyses of patient genomes reveal that disease type and severity may be explained by the occurrence of additional rare events and their inheritance within families. We propose that the overall burden of copy number variants creates differing sensitized backgrounds during development leading to different thresholds and disease outcomes. We suggest that the accumulation of multiple high-penetrant alleles of low frequency may serve as a more general model for complex genetic diseases, posing a significant challenge for diagnostics and disease management.
Collapse
Affiliation(s)
| | - Evan E. Eichler
- Department of Genome Sciences, Howard Hughes Medical Institute,University of Washington School of Medicine, PO Box 355065, Foege S413C, 3720 15th Avenue NE, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Lima K, Følling I, Eiklid KL, Natvig S, Abrahamsen TG. Age-dependent clinical problems in a Norwegian national survey of patients with the 22q11.2 deletion syndrome. Eur J Pediatr 2010; 169:983-9. [PMID: 20186429 DOI: 10.1007/s00431-010-1161-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
Abstract
Patients with the 22q11.2 deletion syndrome display a wide phenotypic variation that is important for clinical follow-up. In this national survey of 60 patients (ages 1 to 54 years) diagnosed by Fluorescence in situ hybridization test, data were collected from medical records, a physical examination, and a semistructured interview. Ultrasound investigation of the kidneys was also performed. In addition, multiplex ligation probe amplification assay was performed to detect deletion size. Phenotypic features leading to the genetic diagnosis were noted. The patients showed a variety of organ malformations including 39 with heart anomalies. Only 20 individuals had been diagnosed with 22q11.2 DS in the first year of life. Four patients had renal and five males had genital malformations. The increased infection susceptibility (excluding otitis media) and most feeding difficulties subsided during early childhood. Speech difficulties started early and were a major problem for many patients at least until 10 years of age. Ten patients developed kyphoscoliosis in late childhood. In teenagers and adults, abnormal social behavior, learning disabilities, and psychiatric symptoms dominated. Our study which also includes adult patients emphasizes a marked change in challenges in individuals with the 22q11.2 deletion syndrome with increasing age.
Collapse
Affiliation(s)
- Kari Lima
- Department of Endocrinology, Division of Medicine, Akershus University Hospital, Sykehusveien 27, 1478 Lørenskog, Norway.
| | | | | | | | | |
Collapse
|
37
|
Akasaki T, Nikaido M, Nishihara H, Tsuchiya K, Segawa S, Okada N. Characterization of a novel SINE superfamily from invertebrates: "Ceph-SINEs" from the genomes of squids and cuttlefish. Gene 2009; 454:8-19. [PMID: 19914361 DOI: 10.1016/j.gene.2009.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/30/2009] [Accepted: 11/06/2009] [Indexed: 11/27/2022]
Abstract
Five tRNA-derived short interspersed repetitive elements (SINEs), named SepiaSINE, Sepioth-SINE1, Sepioth-SINE2A, Sepioth-SINE2B and OegopSINE, were isolated from the genomes of three decabrachian species [Sepia officinalis (order Sepiida), Sepiotheuthis lessoniana (suborder Myopsida), and Mastigoteuthis cordiformes (suborder Oegopsida)], by random sequencing and genome screening. In addition, two tRNA-derived SINEs, named IdioSINE1 and IdioSINE2, were further detected from EST (expressed sequence tag) data of Idiosepius paradoxus (order Idiosepiida), using a GenBank FASTA search with a conserved sequence of the SepiaSINE as the query. All the isolated SINEs had a common and unique highly conserved 149-bp sequence in their central structures (Sepioth-SINE2B and IdioSINEs, however, had a continuous 73-bp deletion in the conserved region.), and are therefore grouped as the fourth SINE superfamily "Ceph-SINEs", following the CORE-SINE, V-SINE, and DeuSINE superfamilies. Our analysis suggested that the central conserved region called the "Ceph-domain" might have originated before the diversification of cephalopods (505 myr ago). A sequence alignment of Sepioth-SINE1, Sepioth-SINE2A, and Sepioth-SINE2B demonstrated that Sepioth-SINE2A has a chimeric structure shared with two other SINEs. The above relationship suggests possible template switching in the central conserved domain during reverse transcription for the birth of Sepioth-SINE2A, providing the possibility that the presence of the conserved domain contributed to yield a variety of SINEs during evolution. Furthermore, the distributions of the isolated SINEs showed that order Sepiida, suborders Oegopsida and Myopsida, and order Idiosepiida have their own independent SINE(s), and suggest that order Sepiida can be largely separated into two groups, with clarification of the phylogenetic relatedness between subfamily Sepioteuthinae and the other loliginid squids.
Collapse
Affiliation(s)
- Tetsuya Akasaki
- Department of Biological Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Marques-Bonet T, Girirajan S, Eichler EE. The origins and impact of primate segmental duplications. Trends Genet 2009; 25:443-54. [PMID: 19796838 PMCID: PMC2847396 DOI: 10.1016/j.tig.2009.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 12/25/2022]
Abstract
Duplicated sequences are substrates for the emergence of new genes and are an important source of genetic instability associated with rare and common diseases. Analyses of primate genomes have shown an increase in the proportion of interspersed segmental duplications (SDs) within the genomes of humans and great apes. This contrasts with other mammalian genomes that seem to have their recently duplicated sequences organized in a tandem configuration. In this review, we focus on the mechanistic origin and impact of this difference with respect to evolution, genetic diversity and primate phenotype. Although many genomes will be sequenced in the future, resolution of this aspect of genomic architecture still requires high quality sequences and detailed analyses.
Collapse
Affiliation(s)
- Tomas Marques-Bonet
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | | |
Collapse
|
39
|
Zhang F, Carvalho CMB, Lupski JR. Complex human chromosomal and genomic rearrangements. Trends Genet 2009; 25:298-307. [PMID: 19560228 DOI: 10.1016/j.tig.2009.05.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 01/08/2023]
Abstract
Copy number variation (CNV) is a major source of genetic variation among humans. In addition to existing as benign polymorphisms, CNVs can also convey clinical phenotypes, including genomic disorders, sporadic diseases and complex human traits. CNV results from genomic rearrangements that can represent simple deletion or duplication of a genomic segment, or be more complex. Complex chromosomal rearrangements (CCRs) have been known for some time but their mechanisms have remained elusive. Recent technology advances and high-resolution human genome analyses have revealed that complex genomic rearrangements can account for a large fraction of non-recurrent rearrangements at a given locus. Various mechanisms, most of which are DNA-replication-based, for example fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR), have been proposed for generating such complex genomic rearrangements and are probably responsible for CCR.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | |
Collapse
|
40
|
Carvalho CMB, Zhang F, Liu P, Patel A, Sahoo T, Bacino CA, Shaw C, Peacock S, Pursley A, Tavyev YJ, Ramocki MB, Nawara M, Obersztyn E, Vianna-Morgante AM, Stankiewicz P, Zoghbi HY, Cheung SW, Lupski JR. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet 2009; 18:2188-203. [PMID: 19324899 DOI: 10.1093/hmg/ddp151] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from approximately 250 kb to approximately 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.
Collapse
Affiliation(s)
- Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ait-Ali T, Wilson AW, Finlayson H, Carré W, Ramaiahgari SC, Westcott DG, Waterfall M, Frossard JP, Baek KH, Drew TW, Bishop SC, Archibald AL. Functional analysis of the porcine USP18 and its role during porcine arterivirus replication. Gene 2009; 439:35-42. [PMID: 19285125 DOI: 10.1016/j.gene.2009.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 02/18/2009] [Accepted: 02/24/2009] [Indexed: 11/19/2022]
Abstract
Emerging evidence places deubiquitylation at the core of a multitude of regulatory processes, ranging from cell growth to innate immune response and health, such as cancer, degenerative and infectious diseases. Little is known about deubiquitylation in pig and arterivirus infection. This report provides information on the biochemical and functional role of the porcine USP18 during innate immune response to the porcine respiratory and reproductive syndrome virus (PRRSV). We have shown that UBP gene is the ortholog of the murine USP18 (Ubp43) gene and the human ubiquitin specific protease 18 (USP18) gene and encodes a biochemically functional de-ubiquitin enzyme which inhibits signalling pathways that lead to IFN-stimulating response element (ISRE) promotor regulation. Furthermore we have demonstrated that overexpression of the porcine USP18 leads to reduced replication and/or growth of PRRSV. Our data contrast with the conclusion of numerous reports demonstrating that USP18-deficient mice are highly resistant to viral and bacterial infections and to oncogenic transformation by BCR-ABL, and highlight USP18 as a potential target gene that promotes reduced replication of PRRSV.
Collapse
Affiliation(s)
- Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9PS, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gu W, Lupski JR. CNV and nervous system diseases--what's new? Cytogenet Genome Res 2009; 123:54-64. [PMID: 19287139 DOI: 10.1159/000184692] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2008] [Indexed: 11/19/2022] Open
Abstract
Several new genomic disorders caused by copy number variation (CNV) of genes whose dosage is critical for the physiological function of the nervous system have been recently identified. Dup(7)(q11.23) patients carry duplications of the genomic region deleted in Williams-Beuren syndrome, they are characterized by prominent speech delay. The phenotypes of Potocki-Lupski syndrome and MECP2 duplication syndrome were neuropsychologically examined in detail, which revealed autism as an endophenotype and a prominent behavioral feature of these disorders. Tandem duplication of LMNB1 was reported to cause adult-onset autosomal dominant leukodystrophy. PAFAH1B1/LIS1 and YWHAE, which were deleted in isolated lissencephaly (PAFAH1B1/LIS1 alone) and Miller-Dieker syndrome (both genes), were found to be duplicated in patients with developmental delay. Finally, two novel microdeletion syndromes affecting 17q21.31 and 15q13.3, as well as their reciprocal duplications, were also identified. In this review, we provide an overview of the phenotypic manifestation of these syndromes and the rearrangements causing them.
Collapse
Affiliation(s)
- W Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
43
|
Kambere MB, Lane RP. Exceptional LINE density at V1R loci: the Lyon repeat hypothesis revisited on autosomes. J Mol Evol 2009; 68:145-59. [PMID: 19153790 DOI: 10.1007/s00239-008-9195-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/15/2008] [Accepted: 12/09/2008] [Indexed: 11/24/2022]
Abstract
The mammalian olfactory system utilizes three large receptor families: the olfactory receptors (ORs) of the main nose and the vomeronasal type-1 and type-2 receptor genes (V1Rs and V2Rs) of the vomeronasal organ. We find that these loci are among the most long interspersed nuclear element (LINE)-dense regions of mammalian genomes. We investigate two evolutionary models to account for this cohabitation. First, we investigate an adaptive selection model, in which LINEs have contributed to expansions of mouse V1R repertoires. We find that even evolutionarily stable V1R loci are exceptionally LINE-rich compared to other genome loci, including loci containing other large gene clusters. Also, a more detailed analysis of specific V1R duplications does not reveal LINE patterns predicted by common LINE-mediated duplication mechanisms. Next, we investigate neutral models, in which LINEs were tolerated by, but not advantageous for, surrounding V1R genes. We find that V1R loci are exceptionally LINE-rich compared to other regions of similar AT base composition, and that duplicated V1R gene blocks are generally depleted of LINE elements, suggesting that these loci did not become densely populated with LINEs simply as a consequence of targeted integration or passive multiplication along with the genes. Finally, we show that individual LINE repeats of a given age at V1R, V2R, and OR loci exhibit a significantly longer average length than at other autosomal loci, suggesting a reduced tendency for these LINEs to be disrupted. We speculate that LINEs at V1R, V2R, and OR loci might be selectively retained because they contribute to allelic regulation of these three gene families.
Collapse
Affiliation(s)
- Marijo B Kambere
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA.
| | | |
Collapse
|
44
|
Abstract
Copy number variation (CNV) is a source of genetic diversity in humans. Numerous CNVs are being identified with various genome analysis platforms, including array comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) genotyping platforms, and next-generation sequencing. CNV formation occurs by both recombination-based and replication-based mechanisms and de novo locus-specific mutation rates appear much higher for CNVs than for SNPs. By various molecular mechanisms, including gene dosage, gene disruption, gene fusion, position effects, etc., CNVs can cause Mendelian or sporadic traits, or be associated with complex diseases. However, CNV can also represent benign polymorphic variants. CNVs, especially gene duplication and exon shuffling, can be a predominant mechanism driving gene and genome evolution.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
45
|
Abstract
There is growing appreciation that the human genome contains significant numbers of structural rearrangements, such as insertions, deletions, inversions, and large tandem repeats. Recent studies have defined approximately 5% of the human genome as structurally variant in the normal population, involving more than 800 independent genes. We present a detailed review of the various structural rearrangements identified to date in humans, with particular reference to their influence on human phenotypic variation. Our current knowledge of the extent of human structural variation shows that the human genome is a highly dynamic structure that shows significant large-scale variation from the currently published genome reference sequence.
Collapse
Affiliation(s)
- Andrew J Sharp
- Department of Genome Sciences, University of Washington, Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
46
|
Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 2008; 18:343-58. [PMID: 18256243 DOI: 10.1101/gr.5558208] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) have shared an exceptionally long coexistence with their host organisms and have come to occupy a significant fraction of eukaryotic genomes. The bulk of the expansion occurring within mammalian genomes has arisen from the activity of type I retrotransposons, which amplify in a "copy-and-paste" fashion through an RNA intermediate. For better or worse, the sequences of these retrotransposons are now wedded to the genomes of their mammalian hosts. Although there are several reported instances of the positive contribution of mobile elements to their host genomes, these discoveries have occurred alongside growing evidence of the role of TEs in human disease and genetic instability. Here we examine, with a particular emphasis on human retrotransposon activity, several newly discovered aspects of mammalian retrotransposon biology. We consider their potential impact on host biology as well as their ultimate implications for the nature of the TE-host relationship.
Collapse
Affiliation(s)
- Victoria P Belancio
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
47
|
Yang S, Arguello JR, Li X, Ding Y, Zhou Q, Chen Y, Zhang Y, Zhao R, Brunet F, Peng L, Long M, Wang W. Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet 2007; 4:e3. [PMID: 18208328 PMCID: PMC2211543 DOI: 10.1371/journal.pgen.0040003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/27/2007] [Indexed: 01/05/2023] Open
Abstract
Previous studies of repetitive elements (REs) have implicated a mechanistic role in generating new chimerical genes. Such examples are consistent with the classic model for exon shuffling, which relies on non-homologous recombination. However, recent data for chromosomal aberrations in model organisms suggest that ectopic homology-dependent recombination may also be important. Lack of a dataset comprising experimentally verified young duplicates has hampered an effective examination of these models as well as an investigation of sequence features that mediate the rearrangements. Here we use ∼7,000 cDNA probes (∼112,000 primary images) to screen eight species within the Drosophila melanogaster subgroup and identify 17 duplicates that were generated through ectopic recombination within the last 12 mys. Most of these are functional and have evolved divergent expression patterns and novel chimeric structures. Examination of their flanking sequences revealed an excess of repetitive sequences, with the majority belonging to the transposable element DNAREP1 family, associated with the new genes. Our dataset strongly suggests an important role for REs in the generation of chimeric genes within these species. In numerous organisms, many new genes have been found to originate through dispersed gene duplication and exon/domain shuffling. What recombination mechanisms were involved in the duplication and the shuffling processes? Lack of the intermediate products of recombination that share adequate sequence identity between homologous sequences, or the parental sequences from which the new genes were derived, often makes answering these questions difficult. We identified a number of young genes that originated in recently diverged branches in the evolutionary tree of the eight Drosophila melanogaster subgroup species, by using fluorescence in situ hybridization with polytene chromosomes. We analyzed the genomic regions surrounding 17 new dispersed duplicate genes and observed that most of these genes are flanked by repetitive elements (REs), including a large and diverged transposable element family, DNAREP1. Several copies of these REs are kept in both new and parental gene regions, and their degeneration is correlated with the increasing ages of the identified new genes. These data suggest that REs mediate the recombination responsible for the new gene origination.
Collapse
Affiliation(s)
- Shuang Yang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - J. Roman Arguello
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Xin Li
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Yun Ding
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Qi Zhou
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Ying Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Yue Zhang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ruoping Zhao
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Frédéric Brunet
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Lixin Peng
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Manyuan Long
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail: (ML); (WW)
| | - Wen Wang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * To whom correspondence should be addressed. E-mail: (ML); (WW)
| |
Collapse
|
48
|
Babcock M, Yatsenko S, Hopkins J, Brenton M, Cao Q, de Jong P, Stankiewicz P, Lupski JR, Sikela JM, Morrow BE. Hominoid lineage specific amplification of low-copy repeats on 22q11.2 (LCR22s) associated with velo-cardio-facial/digeorge syndrome. Hum Mol Genet 2007; 16:2560-71. [PMID: 17675367 DOI: 10.1093/hmg/ddm197] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Segmental duplications or low-copy repeats (LCRs) constitute approximately 5% of the sequenced portion of the human genome and are associated with many human congenital anomaly disorders. The low-copy repeats on chromosome 22q11.2 (LCR22s) mediate chromosomal rearrangements resulting in deletions, duplications and translocations. The evolutionary mechanisms leading to LCR22 formation is unknown. Four genes, USP18, BCR, GGTLA and GGT, map adjacent to the LCR22s and pseudogene copies are located within them. It has been hypothesized that gene duplication occurred during primate evolution, followed by recombination events, forming pseudogene copies. We investigated whether gene duplication could be detected in non-human hominoid species. FISH mapping was performed using probes to the four functional gene loci. There was evidence for a single copy in humans but additional copies in hominoid species. We then compared LCR22 copy number using LCR22 FISH probes. Lineage specific LCR22 variation was detected in the hominoid species supporting the hypothesis. To independently validate initial findings, real time PCR, and screening of gorilla BAC library filters were performed. This was compared to array comparative genome hybridization data available. The most striking finding was a dramatic amplification of LCR22s in the gorilla. The LCR22s localized to the telomeric or subtelomeric bands of gorilla chromosomes. The most parsimonious explanation is that the LCR22s became amplified by inter-chromosomal recombination between telomeric bands. In summary, our results are consistent with a lineage specific coupling between gene and LCR22 duplication events. The LCR22s thus serve as an important model for evolution of genome variation.
Collapse
Affiliation(s)
- Melanie Babcock
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. mbabcock@aecom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Long interspersed nucleotide element (LINE)-1 retrotransposon (L1) has emerged as the largest contributor to mammalian genome mass, responsible for over 35% of the human genome. Differences in the number and activity levels of L1s contribute to interindividual variation in humans, both by affecting an individual's likelihood of acquiring new L1-mediated mutations, as well as by differentially modifying gene expression. Here, we report on recent progress in understanding L1 biology, with a focus on mechanisms of L1-mediated disease. We discuss known details of L1 life cycle, including L1 structure, transcriptional regulation, and the mechanisms of translation and retrotransposition. Current views on cell type specificity, timing, and control of retrotransposition are put forth. Finally, we discuss the role of L1 as a mutagen, using the latest findings in L1 biology to illuminate molecular mechanisms of L1-mediated gene disruption.
Collapse
Affiliation(s)
- Daria V Babushok
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6145, USA
| | | |
Collapse
|
50
|
Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD, Jurka J. Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 2007; 17:992-1004. [PMID: 17495012 PMCID: PMC1899126 DOI: 10.1101/gr.6070707] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The genome of the gray short-tailed opossum Monodelphis domestica is notable for its large size ( approximately 3.6 Gb). We characterized nearly 500 families of interspersed repeats from the Monodelphis. They cover approximately 52% of the genome, higher than in any other amniotic lineage studied to date, and may account for the unusually large genome size. In comparison to other mammals, Monodelphis is significantly rich in non-LTR retrotransposons from the LINE-1, CR1, and RTE families, with >29% of the genome sequence comprised of copies of these elements. Monodelphis has at least four families of RTE, and we report support for horizontal transfer of this non-LTR retrotransposon. In addition to short interspersed elements (SINEs) mobilized by L1, we found several families of SINEs that appear to use RTE elements for mobilization. In contrast to L1-mobilized SINEs, the RTE-mobilized SINEs in Monodelphis appear to shift from G+C-rich to G+C-low regions with time. Endogenous retroviruses have colonized approximately 10% of the opossum genome. We found that their density is enhanced in centromeric and/or telomeric regions of most Monodelphis chromosomes. We identified 83 new families of ancient repeats that are highly conserved across amniotic lineages, including 14 LINE-derived repeats; and a novel SINE element, MER131, that may have been exapted as a highly conserved functional noncoding RNA, and whose emergence dates back to approximately 300 million years ago. Many of these conserved repeats are also present in human, and are highly over-represented in predicted cis-regulatory modules. Seventy-six of the 83 families are present in chicken in addition to mammals.
Collapse
Affiliation(s)
- Andrew J. Gentles
- Department of Radiology, School of Medicine, Stanford University, Stanford, California 94305, USA
- Genetic Information Research Institute, Mountain View, California 94043, USA
- Corresponding authors.E-mail ; fax (650) 723-5795.E-mail ; fax (650) 961-4473
| | - Matthew J. Wakefield
- ARC Centre for Kangaroo Genomics, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Oleksiy Kohany
- Genetic Information Research Institute, Mountain View, California 94043, USA
| | - Wanjun Gu
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora 80045, Colorado, USA
| | - Mark A. Batzer
- Department of Biological Sciences, Biological Computation and Visualization Center, Center for BioModular Multi-Scale Systems, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora 80045, Colorado, USA
| | - Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California 94043, USA
- Corresponding authors.E-mail ; fax (650) 723-5795.E-mail ; fax (650) 961-4473
| |
Collapse
|